Nothing Special   »   [go: up one dir, main page]

JP2012117716A - Solar power generation system - Google Patents

Solar power generation system Download PDF

Info

Publication number
JP2012117716A
JP2012117716A JP2010266338A JP2010266338A JP2012117716A JP 2012117716 A JP2012117716 A JP 2012117716A JP 2010266338 A JP2010266338 A JP 2010266338A JP 2010266338 A JP2010266338 A JP 2010266338A JP 2012117716 A JP2012117716 A JP 2012117716A
Authority
JP
Japan
Prior art keywords
receiver
gas
casing
power generation
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010266338A
Other languages
Japanese (ja)
Other versions
JP5621555B2 (en
Inventor
Kazumasa Wakimoto
一政 脇元
Toki Iemoto
勅 家本
Yoji Ishikawa
洋史 石川
Yutaka Suzukawa
豊 鈴川
Toru Shiomitsu
徹 塩満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010266338A priority Critical patent/JP5621555B2/en
Publication of JP2012117716A publication Critical patent/JP2012117716A/en
Application granted granted Critical
Publication of JP5621555B2 publication Critical patent/JP5621555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar power generation system capable of suppressing oxidative deterioration of a receiver.SOLUTION: The solar power generation system includes a condensing tower 1 mounting a receiver 2 on its top and a plurality of heliostats 3 arranged on the periphery of the same and is configured so as to reflect solar light by the heliostats 3 and condense the reflected light by the receiver 2, wherein steam is generated by heating liquid by heat of solar light condensed by the receiver 2, a steam turbine 6 is driven by the steam and power generation is performed by an electrical generator 7. A light receiving part 4 of the receiver 2 is arranged in a casing 5 capable of transmitting light through the front and having airtightness, a gas introducing port 8 and a gas discharge port 9 are formed on the casing 5, and non-oxidative gas is introduced and discharged to/from the casing 5 through them. Since the light receiving part 4 of the receiver 2 is arranged in the casing 5 held in non-oxidative gas atmosphere, oxidative deterioration of a heat transfer pipe composing the light receiving part 4 can be effectively suppressed.

Description

本発明は、レシーバーの酸化劣化を抑えることができる太陽熱発電装置に関するものである。   The present invention relates to a solar thermal power generation apparatus that can suppress oxidative deterioration of a receiver.

従来、特許文献1に示すような太陽熱発電システムが知られている。この太陽熱発電システムでは、太陽光をヘリオスタット群で反射して、集光タワーの上部に設置されたレシーバーに集光し、このレシーバーに循環する流体を加熱気化して蒸気とする。この蒸気をタービンに送り、発電機を駆動して電力を得るものである。タービンを出た蒸気は、凝縮器で冷却されて凝縮し、凝縮した流体は循環ポンプによりレシーバーに送られる。レシーバーは、伝熱管で構成される受光部を有しており、ヘリオスタット群で反射した太陽光は、この受光部に集光される。
ヘリオスタットは、駆動機構により角度調整が可能な反射鏡を備えており、駆動機構により太陽の位置変化に追従して角度を変えることで、太陽光をレシーバーの受光部に集光するように制御される。
Conventionally, a solar thermal power generation system as shown in Patent Document 1 is known. In this solar thermal power generation system, sunlight is reflected by a group of heliostats, condensed on a receiver installed on the upper part of the condensing tower, and the fluid circulating in the receiver is heated and vaporized to form steam. This steam is sent to a turbine, and a generator is driven to obtain electric power. The steam leaving the turbine is cooled and condensed by a condenser, and the condensed fluid is sent to a receiver by a circulation pump. The receiver has a light receiving part constituted by a heat transfer tube, and sunlight reflected by the heliostat group is condensed on the light receiving part.
The heliostat is equipped with a reflector that can be adjusted by the drive mechanism. The drive mechanism controls the sunlight so that it is focused on the receiver's light receiver by changing the angle following the change in the position of the sun. Is done.

国際公開第2009/105689号International Publication No. 2009/105689

レシーバーには、数千基のヘリオスタットからの光が集光されるため、高いエネルギー密度の光線が届く。そのため、レシーバーの受光部を構成する伝熱管の表面温度は高温となり、伝熱管内部を通過する流体を加熱する。しかし、伝熱管は高温になるため、大気中の酸素と反応して酸化されやすくなる。このため、レシーバーの伝熱管は一定期間経過すると酸化減肉のため交換する必要があり、また、その交換作業中は装置による発電を停止する必要があり、設備コストや装置の稼働率の面で問題があった。   Since the light from thousands of heliostats is collected at the receiver, light beams with high energy density arrive. Therefore, the surface temperature of the heat transfer tube constituting the light receiving unit of the receiver becomes high, and the fluid passing through the heat transfer tube is heated. However, since the heat transfer tube becomes high temperature, it easily reacts with oxygen in the atmosphere and is oxidized. For this reason, it is necessary to replace the heat transfer tube of the receiver after a certain period of time due to oxidation thinning, and it is necessary to stop the power generation by the device during the replacement work, in terms of equipment cost and device operation rate There was a problem.

したがって本発明の目的は、レシーバーの受光部を構成する伝熱管の酸化劣化を抑えることができる太陽熱発電装置を提供することにある。   Accordingly, an object of the present invention is to provide a solar thermal power generation apparatus that can suppress oxidative deterioration of a heat transfer tube constituting a light receiving portion of a receiver.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]上部にレシーバー(2)を備えた集光タワー(1)と、その周囲に設置される複数のヘリオスタット(3)を備え、太陽光線をヘリオスタット(3)で反射してレシーバー(2)に集光し、レシーバー(2)では集光された太陽光線の熱で液体を加熱して蒸気を生成させ、この蒸気で蒸気タービン(6)を駆動して発電機(7)により発電を行う太陽熱発電装置において、
レシーバー(2)の受光部(4)を、前面が光を透過し且つ気密性のあるケーシング(5)内に配置し、該ケーシング(5)にはガス導入口(8)とガス排出口(9)を設け、これらを通じてケーシング(5)に対する非酸化性ガスの導入と排出を行うようにしたことを特徴とする太陽熱発電装置。
The gist of the present invention for solving the above problems is as follows.
[1] A condensing tower (1) having a receiver (2) at the top and a plurality of heliostats (3) installed around the receiver, and reflecting the sunlight rays by the heliostat (3) 2), and the receiver (2) heats the liquid with the heat of the collected sunlight to generate steam, which drives the steam turbine (6) to generate electricity by the generator (7). In the solar thermal power generation device that performs
The light receiving part (4) of the receiver (2) is arranged in a casing (5) whose front surface transmits light and is airtight, and the casing (5) has a gas inlet (8) and a gas outlet ( 9), through which the non-oxidizing gas is introduced into and discharged from the casing (5).

[2]上記[1]の太陽熱発電装置において、ケーシング(5)に対して非酸化性ガスを循環させるガス流路(x)を設けるとともに、該ガス流路(x)の途中に、ケーシング(5)から排出された非酸化性ガスをレシーバー(2)に供給する発電用流体と熱交換することで、該発電用流体を予熱する熱交換器(14)を設けたことを特徴とする太陽熱発電装置。
[3]上記[2]の太陽熱発電装置において、ガス流路(x)内を流れる非酸化性ガスの酸素濃度を測定する酸素濃度計(10)と、同じく非酸化性ガスの圧力を測定する圧力計(11)と、酸素濃度計(10)で測定される酸素濃度に基づき、ガス流路(x)内に新たな非酸化性ガスを補充するガス供給機構(12)と、圧力計(11)で測定されるガス圧力に基づき、ガス流路(x)内の非酸化性ガスを系外に排出して圧力調整を行う圧力調整機構(13)を有することを特徴とする太陽熱発電装置。
[2] In the solar thermal power generator of [1], a gas flow path (x) for circulating a non-oxidizing gas is provided in the casing (5), and a casing ( 5) Solar heat characterized by providing a heat exchanger (14) for preheating the power generation fluid by exchanging heat with the power generation fluid supplied to the receiver (2) with the non-oxidizing gas discharged from 5) Power generation device.
[3] In the solar power generation device of [2] above, the oxygen concentration meter (10) for measuring the oxygen concentration of the non-oxidizing gas flowing in the gas flow path (x) is also measured, and the pressure of the non-oxidizing gas is also measured. Based on the pressure gauge (11), the oxygen concentration measured by the oxygen concentration meter (10), a gas supply mechanism (12) for replenishing a new non-oxidizing gas in the gas flow path (x), and a pressure gauge ( 11) A solar thermal power generation apparatus having a pressure adjustment mechanism (13) for adjusting the pressure by discharging the non-oxidizing gas in the gas flow path (x) out of the system based on the gas pressure measured in 11) .

本発明の太陽熱発電装置は、レシーバー(2)の受光部(4)が非酸化性ガス雰囲気に保たれるケーシング(5)内に配置されるため、受光部(4)を構成する伝熱管の酸化劣化が効果的に抑えられる。
また、ケーシング(5)内で昇温した非酸化性ガスの顕熱を、熱交換器(14)を用いて発電用流体の予熱に利用するとともに、この熱交換によって非酸化性窒素ガスの温度を下げてからケーシング(5)に循環させる機構を有することで、太陽熱発電装置の総合熱効率を高める効果がある。
さらに、ケーシング(5)に対して循環させる非酸化性ガスの酸素濃度と圧力を管理することにより、ケーシング(5)の構成部材に損傷を生じさせることなく、ケーシング(5)内を酸素濃度が極めて低い非酸化性ガス雰囲気に維持し、受光部(4)を構成する伝熱管の酸化劣化を特に効果的に抑えることができる。
In the solar thermal power generation apparatus of the present invention, since the light receiving part (4) of the receiver (2) is disposed in the casing (5) maintained in a non-oxidizing gas atmosphere, the heat transfer tube constituting the light receiving part (4) Oxidative degradation is effectively suppressed.
Further, the sensible heat of the non-oxidizing gas heated in the casing (5) is used for preheating the power generation fluid using the heat exchanger (14), and the temperature of the non-oxidizing nitrogen gas is obtained by this heat exchange. By having a mechanism that circulates to the casing (5) after lowering the temperature, there is an effect of increasing the overall thermal efficiency of the solar thermal power generation apparatus.
Furthermore, by managing the oxygen concentration and pressure of the non-oxidizing gas to be circulated with respect to the casing (5), the oxygen concentration in the casing (5) can be reduced without causing damage to the components of the casing (5). An extremely low non-oxidizing gas atmosphere can be maintained, and the oxidative deterioration of the heat transfer tube constituting the light receiving section (4) can be particularly effectively suppressed.

本発明の太陽熱発電装置の一実施形態を示す全体構成図The whole block diagram which shows one Embodiment of the solar thermal power generation device of this invention 図1の実施形態において、ヘリオスタットと集光タワーおよびレシーバーの配置を平面的に示す説明図In the embodiment of FIG. 1, an explanatory view showing the arrangement of a heliostat, a light collecting tower, and a receiver in a plan view 図1の実施形態におけるレシーバーの斜視図The perspective view of the receiver in embodiment of FIG. 図3のレシーバーを構成する1つの受光部の水平断面図Horizontal sectional view of one light-receiving unit constituting the receiver of FIG. 本発明の他の実施形態における非酸化性ガスの循環系を示す説明図Explanatory drawing which shows the circulation system of the non-oxidizing gas in other embodiment of this invention

図1〜図4は本発明の太陽熱発電装置の一実施形態を示すもので、図1は全体構成図、図2はヘリオスタットと集光タワーおよびレシーバーの配置を平面的に示す説明図、図3はレシーバーの斜視図、図4はレシーバーを構成する1つの受光部の水平断面図である。
この太陽熱発電装置の基本的な構成は公知の装置と同様であり、上部にレシーバー2を備えた集光タワー1と、その周囲に設置される複数(多数)のヘリオスタット3を備え、太陽光線をヘリオスタット3で反射してレシーバー2に集光し、このレシーバー2では集光された太陽光線の熱で液体(通常、水)を加熱して蒸気を生成させ、この蒸気で蒸気タービン6を駆動して発電機7により発電を行うものである。すなわち、レシーバー2では系内を循環する流体を加熱して蒸気とし、この蒸気を蒸気タービン6に送ってタービンを駆動させ、発電機7で発電がなされる。蒸気タービン6を出た蒸気は、凝縮器18で冷却されて凝縮して液体になり、図示しない循環ポンプによりレシーバー2に循環する。
1 to 4 show an embodiment of a solar thermal power generation apparatus according to the present invention. FIG. 1 is an overall configuration diagram, and FIG. 2 is an explanatory diagram showing a plan view of the arrangement of a heliostat, a light collecting tower, and a receiver. 3 is a perspective view of the receiver, and FIG. 4 is a horizontal cross-sectional view of one light receiving portion constituting the receiver.
The basic configuration of this solar thermal power generation device is the same as that of a known device, which includes a condensing tower 1 having a receiver 2 at the top, and a plurality of (many) heliostats 3 installed around it. Is reflected by the heliostat 3 and focused on the receiver 2, and the receiver 2 heats the liquid (usually water) with the heat of the collected sunlight to generate steam, and the steam is used to generate the steam turbine 6. The power is generated by the generator 7 by driving. That is, in the receiver 2, the fluid circulating in the system is heated to form steam, and this steam is sent to the steam turbine 6 to drive the turbine, and the generator 7 generates power. The steam exiting the steam turbine 6 is cooled and condensed by the condenser 18 to become a liquid, and is circulated to the receiver 2 by a circulation pump (not shown).

前記集光タワー1の高さは、通常、50〜150m程度であり、レシーバー2はその最上部に設置される。
前記ヘリオスタット3は、一般に、反射鏡30と、この反射鏡30の支持体31(支柱など)と、反射鏡30の角度を太陽の位置変化に追従して調整する駆動装置(図示せず)などで構成される。
前記レシーバー2は、内部に流体が通される伝熱管20(通常、複数の並列した伝熱管)で構成される受光部4を備えており、本実施形態では、集光タワー1の周囲の広範な領域に設置されたヘリオスタット群から受光するため、異なる方向を向いた3つの受光部4を備えている。ヘリオスタット3で反射した太陽光線は、これら受光部4に集光され、伝熱管20内を流れる流体を加熱する。伝熱管20で構成される受光部4は、その前面側(受光面側)が凹形に窪んだ形状をしている。なお、本発明装置において、受光部4の数は任意である。
The height of the condensing tower 1 is usually about 50 to 150 m, and the receiver 2 is installed at the top.
The heliostat 3 generally includes a reflecting mirror 30, a support 31 (a support column) of the reflecting mirror 30, and a driving device (not shown) for adjusting the angle of the reflecting mirror 30 following the change in the position of the sun. Etc.
The receiver 2 includes a light receiving unit 4 configured by a heat transfer tube 20 (usually a plurality of parallel heat transfer tubes) through which a fluid is passed. In the present embodiment, a wide area around the light collecting tower 1 is provided. In order to receive light from a heliostat group installed in a certain area, three light receiving portions 4 facing different directions are provided. The sunlight rays reflected by the heliostat 3 are collected by these light receiving portions 4 and heat the fluid flowing in the heat transfer tubes 20. The light receiving unit 4 constituted by the heat transfer tube 20 has a concave shape on the front side (light receiving side). In the device of the present invention, the number of the light receiving parts 4 is arbitrary.

前記各受光部4は、前面が光を透過し且つ気密性のあるケーシング5内に配置されている。このケーシング5は、ヘリオスタット3からの光を受ける前面側の部材50が光透過性のガラス板(通常、透明ガラス板)などで構成されるとともに、背面側の部材51(受光部4の背面を覆う部材)がカオウールなどのような耐火性材料で構成される。
ケーシング5には、ガス導入口8とガス排出口9が設けられ、これらを通じてケーシング5に対する非酸化性ガスの導入と排出を行うことができるようにしている。この実施形態では、ケーシング5を構成する部材51の幅方向両側に各々ガス導入口8が設けられ、部材51の中央部にガス排出口9が設けられている。
Each of the light receiving portions 4 is disposed in a casing 5 that has a front surface that transmits light and is airtight. In the casing 5, the front member 50 that receives light from the heliostat 3 is formed of a light-transmitting glass plate (usually a transparent glass plate) and the like, and a rear member 51 (the rear surface of the light receiving unit 4). Is made of a refractory material such as kao wool.
The casing 5 is provided with a gas inlet 8 and a gas outlet 9 through which non-oxidizing gas can be introduced into and discharged from the casing 5. In this embodiment, the gas introduction ports 8 are provided on both sides in the width direction of the member 51 constituting the casing 5, and the gas discharge port 9 is provided in the center of the member 51.

このような本発明の装置では、ヘリオスタット3で集光された太陽光は、ガラス板などからなる部材50を透過して受光部4に入射する。ケーシング5内には、ガス導入口8から非酸化性ガスが導入され、ケーシング5内が非酸化性ガス雰囲気に維持されることにより、受光部4を構成する伝熱管20の酸化劣化が抑えられる。ケーシング5内に導入された非酸化性ガスは、ガス排出口9から順次排出される。ケーシング5内の非酸化性ガス雰囲気は、酸素濃度が0.1vol%未満であることが好ましく、これにより伝熱管20の酸化劣化をより効果的に抑えることができる。
非酸化性ガスとしては、通常は窒素ガスを用いるが、それ以外にも、例えばアルゴンガスなどを用いることができる。したがって、窒素ガス、アルゴンガスなどの1種または2種以上を用いることができる。
In such an apparatus of the present invention, the sunlight collected by the heliostat 3 passes through the member 50 made of a glass plate or the like and enters the light receiving unit 4. Non-oxidizing gas is introduced into the casing 5 from the gas inlet 8 and the inside of the casing 5 is maintained in a non-oxidizing gas atmosphere, so that oxidative deterioration of the heat transfer tube 20 constituting the light receiving unit 4 is suppressed. . The non-oxidizing gas introduced into the casing 5 is sequentially discharged from the gas discharge port 9. The non-oxidizing gas atmosphere in the casing 5 preferably has an oxygen concentration of less than 0.1 vol%, whereby the oxidative deterioration of the heat transfer tube 20 can be more effectively suppressed.
As the non-oxidizing gas, nitrogen gas is usually used, but other than that, for example, argon gas or the like can be used. Therefore, 1 type (s) or 2 or more types, such as nitrogen gas and argon gas, can be used.

本発明の装置では、ケーシング5に対して非酸化性ガスを循環使用することが好ましく、この場合の好ましい実施形態としては、ケーシング5に対して非酸化性ガスを循環させるガス流路xを設けるとともに、この流路xの途中に、ケーシング5から排出された非酸化性ガスをレシーバー2に供給する発電用流体と熱交換することで、この発電用流体を予熱する熱交換器14を設けることが好ましい。
その場合、さらに、ガス流路x内を流れる非酸化性ガスの酸素濃度を測定する酸素濃度計10と、同じく非酸化性ガスの圧力を測定する圧力計11と、酸素濃度計10で測定される酸素濃度に基づき、ガス流路x内に新たな非酸化性ガスを補充するガス供給機構12と、圧力計11で測定されるガス圧力に基づき、ガス流路x内の非酸化性ガスを系外に排出して圧力調整を行う圧力調整機構12を有することが好ましい。
In the apparatus of the present invention, it is preferable to circulate and use a non-oxidizing gas with respect to the casing 5, and as a preferred embodiment in this case, a gas flow path x for circulating the non-oxidizing gas with respect to the casing 5 is provided. At the same time, a heat exchanger 14 that preheats the power generation fluid is provided in the middle of the flow path x by exchanging heat with the power generation fluid that supplies the non-oxidizing gas discharged from the casing 5 to the receiver 2. Is preferred.
In that case, the oxygen concentration meter 10 for measuring the oxygen concentration of the non-oxidizing gas flowing in the gas flow path x, the pressure gauge 11 for measuring the pressure of the non-oxidizing gas, and the oxygen concentration meter 10 are further measured. The gas supply mechanism 12 for replenishing a new non-oxidizing gas in the gas flow path x based on the oxygen concentration to be added, and the non-oxidizing gas in the gas flow path x based on the gas pressure measured by the pressure gauge 11 It is preferable to have a pressure adjustment mechanism 12 for adjusting pressure by discharging out of the system.

図5は、そのような構成を有する本発明装置の一実施形態を示すもので、非酸化性ガスの循環系を示す説明図である。なお、図5には、便宜上1つの受光部4のみを示してある。以下、非酸化性ガスとして窒素ガスを用いる場合を例に説明する。窒素ガスは図中矢印の方向に流れる。
ガス流路xを流れる窒素ガスは、受光部4が配置されたケーシング5内に導入され、ケーシング5内を窒素ガス雰囲気とすることで、受光部4を構成する伝熱管を酸化劣化から保護する。窒素ガスはケーシング5内で太陽光を受けて昇温し、ケーシング5から排出された窒素ガスは、熱交換器14で発電用流体(通常、水)と熱交換することで、発電用流体を予熱する。熱交換器14で予熱された発電用流体は受光部4に供給され、太陽光の熱で加熱されることにより蒸気となる。
FIG. 5 shows an embodiment of the apparatus of the present invention having such a configuration, and is an explanatory view showing a circulation system of a non-oxidizing gas. FIG. 5 shows only one light receiving unit 4 for convenience. Hereinafter, a case where nitrogen gas is used as the non-oxidizing gas will be described as an example. Nitrogen gas flows in the direction of the arrow in the figure.
Nitrogen gas flowing through the gas flow path x is introduced into the casing 5 in which the light receiving unit 4 is arranged, and the inside of the casing 5 is set to a nitrogen gas atmosphere to protect the heat transfer tubes constituting the light receiving unit 4 from oxidative degradation. . Nitrogen gas is heated by receiving sunlight in the casing 5, and the nitrogen gas discharged from the casing 5 is heat-exchanged with the power generation fluid (usually water) by the heat exchanger 14, thereby generating the power generation fluid. Preheat. The power generation fluid preheated by the heat exchanger 14 is supplied to the light receiving unit 4 and becomes steam by being heated by the heat of sunlight.

窒素ガスは熱交換器14での発電用流体(通常、水)との熱交換で温度が低下する。熱交換器14を出た窒素ガスは圧力計11で圧力が測定され、弁制御装置16は、測定された圧力が予め設定された目標値より高い場合は、圧力調整弁130を開いて、圧力が目標値になるように制御する。ここで、圧力の目標値としては、下記のような観点から5〜10Pa程度が好ましい。このような制御を行うことにより、ケーシング5の内部圧力を大気圧より高くして大気の浸入を抑制する一方で、ガラス板などからなる部材50が内部圧力により変形して破損するのを防止することができる。
圧力計11を経た窒素ガスは、循環ファン15で昇圧される。昇圧された窒素ガスは酸素濃度計10で酸素濃度が測定(通常、連続測定)される。弁制御装置17は、測定された酸素濃度が予め設定された基準値(上限値)を超える場合、ガス供給機構12を構成する流量調整弁120を開いてガス供給源19から窒素ガスを供給(補充)する。ここで、酸素濃度の基準値は0.001〜0.01vol%程度が好ましい。このような制御を行うことにより、ケーシング5内を酸素濃度が極めて低い窒素ガス雰囲気に維持することができ、受光部4を構成する伝熱管の酸化劣化を特に効果的に抑えることができる。
The temperature of the nitrogen gas decreases due to heat exchange with the power generation fluid (usually water) in the heat exchanger 14. The pressure of the nitrogen gas exiting the heat exchanger 14 is measured by the pressure gauge 11, and when the measured pressure is higher than the preset target value, the valve control device 16 opens the pressure regulating valve 130 to Is controlled to become the target value. Here, the target value of pressure is preferably about 5 to 10 Pa from the following viewpoints. By performing such control, the internal pressure of the casing 5 is made higher than the atmospheric pressure to suppress the intrusion of the air, while the member 50 made of a glass plate or the like is prevented from being deformed and damaged by the internal pressure. be able to.
The nitrogen gas that has passed through the pressure gauge 11 is pressurized by the circulation fan 15. The oxygen concentration of the pressurized nitrogen gas is measured by an oxygen concentration meter 10 (usually continuous measurement). When the measured oxygen concentration exceeds a preset reference value (upper limit value), the valve control device 17 opens the flow rate adjustment valve 120 constituting the gas supply mechanism 12 and supplies nitrogen gas from the gas supply source 19 ( refill. Here, the reference value of the oxygen concentration is preferably about 0.001 to 0.01 vol%. By performing such control, the inside of the casing 5 can be maintained in a nitrogen gas atmosphere having a very low oxygen concentration, and oxidation deterioration of the heat transfer tubes constituting the light receiving unit 4 can be particularly effectively suppressed.

本実施形態のように、ケーシング5内で昇温した窒素ガスの顕熱を、熱交換器14を用いてレシーバー2(受光部4)に送る発電用流体の予熱に利用するとともに、この熱交換によって窒素ガスの温度を下げてからケーシング5に循環させる機構を有することで、太陽熱発電装置の総合熱効率を高める効果がある。さらに、ケーシング5に対して循環させる窒素ガスの酸素濃度と圧力を管理することにより、ケーシング5の構成部材(特に、ガラス板などからなる部材50)に損傷を生じさせることなく、ケーシング5内を酸素濃度が極めて低い窒素ガス雰囲気に維持し、受光部4を構成する伝熱管の酸化劣化を特に効果的に抑えることができる。   As in this embodiment, the sensible heat of the nitrogen gas heated in the casing 5 is used for preheating the power generation fluid sent to the receiver 2 (light receiving unit 4) using the heat exchanger 14, and this heat exchange is performed. By having a mechanism for reducing the temperature of the nitrogen gas and circulating it through the casing 5, there is an effect of increasing the overall thermal efficiency of the solar thermal power generation apparatus. Furthermore, by managing the oxygen concentration and pressure of the nitrogen gas circulated with respect to the casing 5, the inside of the casing 5 can be maintained without causing damage to the constituent members of the casing 5 (particularly, the member 50 made of a glass plate or the like). A nitrogen gas atmosphere having an extremely low oxygen concentration can be maintained, and oxidation deterioration of the heat transfer tube constituting the light receiving unit 4 can be particularly effectively suppressed.

1 集光タワー
2 レシーバー
3 ヘリオスタット
4 受光部
5 ケーシング
6 蒸気タービン
7 発電機
8 ガス導入口
9 ガス排出口
10 酸素濃度計
11 圧力計
12 ガス供給機構
13 圧力調整機構
14 熱交換器
15 循環ファン
16,17 弁制御装置
18 凝縮器
19 ガス供給源
20 伝熱管
30 反射鏡
31 支持体
50,51 部材
120 流量調整弁
130 圧力調整弁
x ガス流路
DESCRIPTION OF SYMBOLS 1 Condensing tower 2 Receiver 3 Heliostat 4 Light-receiving part 5 Casing 6 Steam turbine 7 Generator 8 Gas inlet 9 Gas outlet 10 Oxygen meter 11 Pressure gauge 12 Gas supply mechanism 13 Pressure adjustment mechanism 14 Heat exchanger 15 Circulation fan 16, 17 Valve control device 18 Condenser 19 Gas supply source 20 Heat transfer tube 30 Reflector 31 Support body 50, 51 Member 120 Flow rate adjustment valve 130 Pressure adjustment valve x Gas flow path

Claims (3)

上部にレシーバー(2)を備えた集光タワー(1)と、その周囲に設置される複数のヘリオスタット(3)を備え、太陽光線をヘリオスタット(3)で反射してレシーバー(2)に集光し、レシーバー(2)では集光された太陽光線の熱で液体を加熱して蒸気を生成させ、この蒸気で蒸気タービン(6)を駆動して発電機(7)により発電を行う太陽熱発電装置において、
レシーバー(2)の受光部(4)を、前面が光を透過し且つ気密性のあるケーシング(5)内に配置し、該ケーシング(5)にはガス導入口(8)とガス排出口(9)を設け、これらを通じてケーシング(5)に対する非酸化性ガスの導入と排出を行うようにしたことを特徴とする太陽熱発電装置。
Condensing tower (1) with receiver (2) at the top and a plurality of heliostats (3) installed around it, reflecting sunlight to heliostat (3) to receiver (2) The solar heat is collected and heated at the receiver (2) by heating the liquid with the heat of the concentrated solar rays to generate steam, and the steam turbine (6) is driven by the steam to generate power by the generator (7). In the power generator,
The light receiving part (4) of the receiver (2) is arranged in a casing (5) whose front surface transmits light and is airtight, and the casing (5) has a gas inlet (8) and a gas outlet ( 9), through which the non-oxidizing gas is introduced into and discharged from the casing (5).
ケーシング(5)に対して非酸化性ガスを循環させるガス流路(x)を設けるとともに、該ガス流路(x)の途中に、ケーシング(5)から排出された非酸化性ガスをレシーバー(2)に供給する発電用流体と熱交換することで、該発電用流体を予熱する熱交換器(14)を設けたことを特徴とする請求項1に記載の太陽熱発電装置。   A gas flow path (x) for circulating the non-oxidizing gas to the casing (5) is provided, and the non-oxidizing gas discharged from the casing (5) is received in the receiver ( 2. The solar thermal power generation device according to claim 1, further comprising a heat exchanger (14) that preheats the power generation fluid by exchanging heat with the power generation fluid supplied to 2). ガス流路(x)内を流れる非酸化性ガスの酸素濃度を測定する酸素濃度計(10)と、同じく非酸化性ガスの圧力を測定する圧力計(11)と、酸素濃度計(10)で測定される酸素濃度に基づき、ガス流路(x)内に新たな非酸化性ガスを補充するガス供給機構(12)と、圧力計(11)で測定されるガス圧力に基づき、ガス流路(x)内の非酸化性ガスを系外に排出して圧力調整を行う圧力調整機構(13)を有することを特徴とする請求項2に記載の太陽熱発電装置。   An oxygen concentration meter (10) that measures the oxygen concentration of the non-oxidizing gas flowing in the gas flow path (x), a pressure gauge (11) that similarly measures the pressure of the non-oxidizing gas, and an oxygen concentration meter (10) On the basis of the oxygen concentration measured by the gas flow mechanism (12), a gas supply mechanism (12) for replenishing the gas flow path (x) with a new non-oxidizing gas, and a gas flow based on the gas pressure measured by the pressure gauge (11). The solar thermal power generation device according to claim 2, further comprising a pressure adjustment mechanism (13) for adjusting the pressure by discharging the non-oxidizing gas in the passage (x) out of the system.
JP2010266338A 2010-11-30 2010-11-30 Solar power generator Expired - Fee Related JP5621555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010266338A JP5621555B2 (en) 2010-11-30 2010-11-30 Solar power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266338A JP5621555B2 (en) 2010-11-30 2010-11-30 Solar power generator

Publications (2)

Publication Number Publication Date
JP2012117716A true JP2012117716A (en) 2012-06-21
JP5621555B2 JP5621555B2 (en) 2014-11-12

Family

ID=46500766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010266338A Expired - Fee Related JP5621555B2 (en) 2010-11-30 2010-11-30 Solar power generator

Country Status (1)

Country Link
JP (1) JP5621555B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025694A (en) * 2012-07-27 2014-02-06 CHEN Huang-Han Solar power system
CN104634132A (en) * 2013-11-06 2015-05-20 夏有启 Novel condensing tower
CN109140791A (en) * 2018-09-05 2019-01-04 广东工业大学 A kind of stacked solar energy cavity heat absorber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852934A (en) * 1981-09-24 1983-03-29 Fuji Electric Co Ltd Water heater utilizing solar heat
JPH10306946A (en) * 1997-05-06 1998-11-17 Pado:Kk Solar heat utilizing heating medium heater
JP2004278837A (en) * 2003-03-13 2004-10-07 Takeo Saito Solar heat collection device
JP2008014627A (en) * 2006-06-30 2008-01-24 United Technol Corp <Utc> Solar energy tower system, and method of using high-temperature molten salt in solar energy tower system
JP2008523351A (en) * 2004-12-15 2008-07-03 シェク ラボズ−ソーラー ハイドロゲン エナジー コーポレイション Solar energy collection apparatus and method
WO2009105689A2 (en) * 2008-02-22 2009-08-27 Esolar, Inc. Solar receivers with internal reflections and flux-limiting patterns of reflectivity
JP2010085079A (en) * 2008-09-03 2010-04-15 Mitaka Koki Co Ltd Sunlight thermal converting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852934A (en) * 1981-09-24 1983-03-29 Fuji Electric Co Ltd Water heater utilizing solar heat
JPH10306946A (en) * 1997-05-06 1998-11-17 Pado:Kk Solar heat utilizing heating medium heater
JP2004278837A (en) * 2003-03-13 2004-10-07 Takeo Saito Solar heat collection device
JP2008523351A (en) * 2004-12-15 2008-07-03 シェク ラボズ−ソーラー ハイドロゲン エナジー コーポレイション Solar energy collection apparatus and method
JP2008014627A (en) * 2006-06-30 2008-01-24 United Technol Corp <Utc> Solar energy tower system, and method of using high-temperature molten salt in solar energy tower system
WO2009105689A2 (en) * 2008-02-22 2009-08-27 Esolar, Inc. Solar receivers with internal reflections and flux-limiting patterns of reflectivity
JP2010085079A (en) * 2008-09-03 2010-04-15 Mitaka Koki Co Ltd Sunlight thermal converting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025694A (en) * 2012-07-27 2014-02-06 CHEN Huang-Han Solar power system
CN104634132A (en) * 2013-11-06 2015-05-20 夏有启 Novel condensing tower
CN109140791A (en) * 2018-09-05 2019-01-04 广东工业大学 A kind of stacked solar energy cavity heat absorber
CN109140791B (en) * 2018-09-05 2020-02-07 广东工业大学 Stacked solar cavity heat absorber

Also Published As

Publication number Publication date
JP5621555B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
ES2586768T3 (en) Solar steam generator
JP5399565B2 (en) Combined cycle power plant using solar heat
SA111320102B1 (en) Molten Salt Solar Receiver and Procedure to Reduce the Temperature Gradient in Said Receiver
JP2010176939A (en) Power storage system, and operation method thereof
JP2013128333A (en) Steam generator and energy supply system using the same
US20130047976A1 (en) Solar energy collecting systems and methods
US20130276774A1 (en) Solar power system and method of operation
US9279416B2 (en) Solar power system
WO2011154945A2 (en) Thermal energy generation system
JP5621555B2 (en) Solar power generator
US8820076B2 (en) Solar heat collecting apparatus and solar power generation system
JP5598288B2 (en) Solar thermal power generation apparatus and operation method thereof
EP2439462B1 (en) Superheated steam solar receiver
JP5799692B2 (en) Steam generation method and apparatus using solar heat
CN101832623A (en) Pre-heat system of thermal power plant
JP2013105927A (en) Power generating facility utilizing solar energy and operational method thereof
JP2013096384A (en) Solar thermal power generation method and facility
CN104956160A (en) Solar concentrator power station of the fresnel type with improved control of the outlet steam temperature
JP2013083235A (en) Solar power generator with hot water effect
ES2556355T3 (en) Solar steam generator that has a backup heat supply system
CN207333115U (en) Solar groove type heat collector and low temperature stirling generator group combined generating system
JP2013221651A (en) Thermal power generation and hot-water supply device
JP2015161284A (en) control system and heat supply method
US9546816B2 (en) Method and device for the air-based solar thermal generation of process heat
JP2011220286A (en) Solar thermal power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees