Nothing Special   »   [go: up one dir, main page]

JP2012116825A - Method for producing acene diimide compound - Google Patents

Method for producing acene diimide compound Download PDF

Info

Publication number
JP2012116825A
JP2012116825A JP2011048301A JP2011048301A JP2012116825A JP 2012116825 A JP2012116825 A JP 2012116825A JP 2011048301 A JP2011048301 A JP 2011048301A JP 2011048301 A JP2011048301 A JP 2011048301A JP 2012116825 A JP2012116825 A JP 2012116825A
Authority
JP
Japan
Prior art keywords
compound
acene
reaction
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011048301A
Other languages
Japanese (ja)
Inventor
Hidemitsu Uno
英満 宇野
Yoko Yamada
容子 山田
Shuhei Katsuta
修平 勝田
Kazuki Tanaka
和樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Original Assignee
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC filed Critical Ehime University NUC
Priority to JP2011048301A priority Critical patent/JP2012116825A/en
Publication of JP2012116825A publication Critical patent/JP2012116825A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method easily producible of an acene diimide compound.SOLUTION: The method for producing an acene diimide compound comprises a step of obtaining the acene diimide compound by reacting an acene dicarboxylic acid compound or a carboxylic derivative thereof with an isocyanate compound in the presence of a catalyst. For obtaining the acene diimide compound, the method may include a step of obtaining 1,2-diol by subjecting an acene compound and vinylene carbonate to Diels-Alder reaction, and a step of obtaining the acene dicarboxylic compound by oxidative cleavage of the resulting 1,2-diol.

Description

本発明は、アントラセンジイミドやテトラセンジイミド等のアセンジイミド化合物の製造方法に関するものである。   The present invention relates to a method for producing an acene diimide compound such as anthracene diimide or tetracene diimide.

ナフタレンジイミドやペリレンジイミドに代表されるように、芳香族ジイミド類は低いLUMOを有し、n型有機電子材料として注目されている。これらの芳香族ジイミド類については、有機太陽電池や有機ELへの適用を目指して、様々な研究開発が行われている。従来、芳香族ジイミド類の製造方法としては、ピレンを酸化分解してナフタレンジイミドを合成したり、ナフタレンイミドをカップリングさせてペリレンジイミドを合成する方法が一般に知られているが、これら以外の芳香族ジイミド類の一般的な製造方法は確立されていない。   As represented by naphthalene diimide and perylene diimide, aromatic diimides have low LUMO and are attracting attention as n-type organic electronic materials. About these aromatic diimides, various research and development are performed aiming at the application to an organic solar cell or organic EL. Conventionally, as a method for producing aromatic diimides, there are generally known methods for synthesizing naphthalene diimide by oxidizing and decomposing pyrene or synthesizing perylene diimide by coupling naphthalene imide. The general manufacturing method of group diimides has not been established.

芳香族ジイミド類であるアセンジイミド化合物を製造する方法として、例えば特許文献1には、テトラセンからテトラセンジイミド化合物を合成する方法が開示されている。特許文献1に開示される方法によれば、テトラセンを臭素と反応させて5,6,11,12位をブロモ化し、その後n−BuLiとホルムアルデヒドを順次反応させてブロモ基をヒドロキシメチル基に置換し、さらに過マンガン酸カリウムでヒドロキシメチル基をカルボキシ基に酸化して、5,6,11,12位がカルボキシ基で置換されたテトラセンを得ている。そして、5位と6位のカルボキシ基と、11位と12位のカルボキシ基を、それぞれ脱水縮合して酸無水物とした後、アルキルアミンと反応させることにより、テトラセンジイミド化合物を得ている。   As a method for producing an acene diimide compound that is an aromatic diimide, for example, Patent Document 1 discloses a method for synthesizing a tetracene diimide compound from tetracene. According to the method disclosed in Patent Document 1, tetracene is reacted with bromine to bromination at positions 5, 6, 11 and 12, and then n-BuLi and formaldehyde are sequentially reacted to replace the bromo group with a hydroxymethyl group. Furthermore, the hydroxymethyl group is oxidized to a carboxy group with potassium permanganate to obtain tetracene substituted at the 5, 6, 11 and 12 positions with the carboxy group. Then, the 5-position and 6-position carboxy groups and the 11-position and 12-position carboxy groups are dehydrated and condensed to acid anhydrides, and then reacted with an alkylamine to obtain a tetracene diimide compound.

中国特許出願公開第1990488号明細書Chinese Patent Application No. 1990488

しかし、特許文献1に開示された方法は、有機合成化学の常識から判断すれば実際には実施が困難と考えられ、少なくとも工業的な大量合成には適さない。即ち、当該方法では5,6,11,12−テトラブロモテトラセンをn−BuLiと反応させることにより、理論上5,6,11,12位の4ヶ所にリチウムが結合したテトラセンが中間体として得られなくてはならないが、このような化合物は化学的に非常に不安定であり、所望通り次反応に付すことが非常に困難であったり、その収率自体が非常に低いと考えられる。また、ヒドロキシメチル基をカルボキシ基に酸化する反応では、過マンガン酸カリウムの酸化能があまりに強いためテトラセン骨格が分解し、所望する生成物(5,6,11,12−テトラカルボキシテトラセン)が得られなかったり、その収率が非常に低くなると考えられる。実際、本発明者らによる実験的知見によれば、かかる反応で目的化合物を得ることはできなかった。従って、特許文献1に開示された方法によりアセンジイミド化合物を製造するのは、現実的には多大な困難が伴うと考えられる。   However, the method disclosed in Patent Document 1 is considered to be difficult to implement if judged from common sense of organic synthetic chemistry, and is not suitable for at least industrial mass synthesis. That is, in this method, by reacting 5,6,11,12-tetrabromotetracene with n-BuLi, tetracene in which lithium is bound to four positions of 5, 6, 11, 12 is theoretically obtained as an intermediate. However, such a compound is chemically very unstable and is very difficult to be subjected to the next reaction as desired, or the yield itself is considered to be very low. In the reaction of oxidizing a hydroxymethyl group to a carboxy group, the oxidation capability of potassium permanganate is so strong that the tetracene skeleton is decomposed and the desired product (5,6,11,12-tetracarboxytetracene) is obtained. Or the yield is considered to be very low. In fact, according to experimental findings by the present inventors, the target compound could not be obtained by such a reaction. Therefore, it is considered that it is actually difficult to produce an acenediimide compound by the method disclosed in Patent Document 1.

本発明は前記事情に鑑みてなされたものであり、その目的は、簡便にアセンジイミド化合物を製造することができる方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the method which can manufacture an acene diimide compound simply.

本発明者らは、上記課題を解決すべく鋭意研究を行った。その結果、特許文献1に記載の方法のようにアセン化合物へ4つのカルボキシ基を導入するのではなく、導入すべきカルボキシ基の数を2つにすれば、アセンジイミド化合物を非常に簡便かつ効率的に製造することができ、また、中間体化合物であるジカルボン酸化合物自体も簡便に製造できることを見出して、本発明を完成した。   The present inventors have intensively studied to solve the above problems. As a result, if four carboxy groups are not introduced into the acene compound as in the method described in Patent Document 1, but the number of carboxy groups to be introduced is two, the acene diimide compound is very simple and efficient. The present invention was completed by finding that the dicarboxylic acid compound itself as an intermediate compound can be easily produced.

本発明に係るアセンジイミド化合物は、下記式(3)で示されるアセンジカルボン酸化合物またはそのカルボン酸誘導体を、下記式(4)で示されるイソシアネート化合物と触媒存在下で反応させて、下記式(1)または下記式(2)で示されるアセンジイミド化合物を得る工程を有することを特徴とする。   The acene diimide compound according to the present invention is prepared by reacting an acene dicarboxylic acid compound represented by the following formula (3) or a carboxylic acid derivative thereof with an isocyanate compound represented by the following formula (4) in the presence of a catalyst. Or an acenediimide compound represented by the following formula (2).

なお、上記式(1)〜(3)中、mは0以上の整数を表し、nは0以上の整数を表し、式(1),(2),(4)中、Rは炭素数1〜20のアルキル基または炭素数6〜12のアリール基を表す。   In the above formulas (1) to (3), m represents an integer of 0 or more, n represents an integer of 0 or more, and in formulas (1), (2), (4), R represents 1 carbon atom. Represents an -20 alkyl group or an aryl group having 6 to 12 carbon atoms.

式(3)で示されるアセンジカルボン酸化合物またはそのカルボン酸誘導体を式(4)で示されるイソシアネート化合物と反応させる際に用いる触媒としては、ルイス酸触媒が好ましい。   As the catalyst used when the acene dicarboxylic acid compound represented by the formula (3) or the carboxylic acid derivative thereof is reacted with the isocyanate compound represented by the formula (4), a Lewis acid catalyst is preferable.

本発明の製造方法において、式(3)で示されるアセンジカルボン酸化合物は、下記式(5)で示されるアセン化合物とビニレンカーボネートとをDiels−Alder反応させて1,2−ジオールを得た後、得られた1,2−ジオールを酸化的開裂させることにより得ることが好ましい。すなわち、本発明のアセンジイミド化合物の製造方法は、下記式(5)で示されるアセン化合物とビニレンカーボネートとをDiels−Alder反応させて1,2−ジオールを得る工程と、得られた1,2−ジオールを酸化的開裂させて、前記式(3)で示されるアセンジカルボン酸化合物を得る工程をさらに有することが好ましい。   In the production method of the present invention, the acene dicarboxylic acid compound represented by the formula (3) is subjected to Diels-Alder reaction between the acene compound represented by the following formula (5) and vinylene carbonate to obtain 1,2-diol. The obtained 1,2-diol is preferably obtained by oxidative cleavage. That is, the method for producing an acene diimide compound of the present invention includes a step of obtaining 1,2-diol by Diels-Alder reaction of an acene compound represented by the following formula (5) and vinylene carbonate, and the obtained 1,2- It is preferable to further include a step of oxidative cleavage of the diol to obtain the acene dicarboxylic acid compound represented by the formula (3).


[式(5)中、mおよびnは上記式(1)〜式(3)と同じである。]

[In Formula (5), m and n are the same as said Formula (1)-Formula (3). ]

上記工程を経れば、式(5)で示されるアセン化合物から式(3)で示されるアセンジカルボン酸化合物を非常に容易に得ることができる。従って、アセン化合物を出発原料として、アセンジイミド化合物をより一層簡便に製造することができるようになる。   Through the above steps, the acene dicarboxylic acid compound represented by the formula (3) can be obtained very easily from the acene compound represented by the formula (5). Therefore, the acene diimide compound can be more easily produced using the acene compound as a starting material.

上記反応において、1,2−ジオールの酸化的開裂は、過ヨウ素酸、過ヨウ素酸ナトリウム、2−ヨードキシ安息香酸、デス・マーチン・ペルヨージナン、または四酢酸鉛の存在下で行うことが好ましい。   In the above reaction, the oxidative cleavage of 1,2-diol is preferably performed in the presence of periodic acid, sodium periodate, 2-iodoxybenzoic acid, Dess-Martin periodinane, or lead tetraacetate.

従来、半導体材料としてはシリコンなどが用いられているが、資源の少ない我が国では、より安価な有機半導体材料が切望されている。本発明の製造方法によれば、有機半導体材料となり得るアセンジイミド化合物を簡便に製造することができることから、本発明は、有機太陽電池、有機EL、有機トランジスタなどの開発や実用化に寄与するものとして、産業上非常に有用である。   Conventionally, silicon or the like has been used as a semiconductor material, but in Japan where resources are scarce, a cheaper organic semiconductor material is eagerly desired. According to the production method of the present invention, an acenediimide compound that can be an organic semiconductor material can be easily produced. Therefore, the present invention contributes to the development and practical application of organic solar cells, organic EL, organic transistors, and the like. It is very useful in industry.

以下、中間体化合物であるアセンジカルボン酸化合物(3)の製造も含め、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail including the production of the acene dicarboxylic acid compound (3) which is an intermediate compound.

1. Diels−Alder反応工程
本発明の出発原料化合物としては、比較的容易に入手可能なアセン化合物(5)とビニレンカーボネート(6)を用いることが好ましい。これら化合物から、Diels−Alder反応とアルカリ加水分解反応により1,2−ジオールを得る。
1. Diels-Alder reaction step As the starting material compound of the present invention, it is preferable to use an acene compound (5) and vinylene carbonate (6) which are relatively easily available. From these compounds, 1,2-diol is obtained by Diels-Alder reaction and alkaline hydrolysis reaction.

式(5)中、mは0以上の整数を表し、nも0以上の整数を表す。従って、m+nは0以上であればよい。mとnの上限は特に限定されないが、式(5)で示されるアセン化合物の製造容易性や入手容易性の点から、m+nは6以下が好ましく、5以下がより好ましく、4以下がさらに好ましい。   In formula (5), m represents an integer of 0 or more, and n represents an integer of 0 or more. Therefore, m + n may be 0 or more. The upper limits of m and n are not particularly limited, but m + n is preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less, from the viewpoint of ease of production and availability of the acene compound represented by formula (5). .

Diels−Alder反応は、アセン化合物(5)とビニレンカーボネート(6)を含む溶液を加熱することにより行う。Diels−Alder反応では、アセン化合物(5)に基づく反応収率を高めるために、ビニレンカーボネート(6)をアセン化合物(5)の等モル量以上(より好ましくは1.5倍以上のモル量)用いることが好ましい。Diels−Alder反応は、例えば、窒素ガスやアルゴンガス等の不活性ガス雰囲気下、100℃〜260℃の温度範囲で、6時間〜5日間行えばよい。反応温度や反応時間は、出発原料や反応生成物の熱的安定性や反応の進行状況に応じて、適宜調整すればよい。   The Diels-Alder reaction is performed by heating a solution containing the acene compound (5) and vinylene carbonate (6). In the Diels-Alder reaction, in order to increase the reaction yield based on the acene compound (5), vinylene carbonate (6) is more than equimolar amount of the acene compound (5) (more preferably more than 1.5 times molar amount). It is preferable to use it. The Diels-Alder reaction may be performed for 6 hours to 5 days in a temperature range of 100 ° C. to 260 ° C., for example, in an inert gas atmosphere such as nitrogen gas or argon gas. What is necessary is just to adjust reaction temperature and reaction time suitably according to the thermal stability of a starting material or a reaction product, and the progress of reaction.

上記Diels−Alder反応においては、ビニレンカーボネート(6)は、アセン化合物(5)の中央に近いベンゼン環骨格との反応が優勢となる。アセン化合物(5)では、中央に近いベンゼン環骨格ほど電子密度が高くなりやすく、ビニレンカーボネート(6)は、電子密度が高い部位に選択的に付加しやすくなるためである。   In the Diels-Alder reaction, vinylene carbonate (6) is predominantly reacted with the benzene ring skeleton close to the center of the acene compound (5). In the acene compound (5), the benzene ring skeleton closer to the center is more likely to have an electron density, and the vinylene carbonate (6) is likely to be selectively added to a site having a higher electron density.

アセン化合物(5)とビニレンカーボネート(6)とが反応することにより、下記式(7)で示される1,2−ジオール化合物が得られる。下記式(7)中、mおよびnは上記式(5)と同じである。なお、ビニレンカーボネート(6)はアセン化合物(5)の中央に近いベンゼン環骨格との反応が優勢となることから、より高収率で下記式(7)の1,2−ジオール化合物を得るためには、m−nが−2以上4以下であることが好ましく、−1以上3以下であることがより好ましく、0以上2以下であることがさらに好ましい。   By reacting the acene compound (5) with the vinylene carbonate (6), a 1,2-diol compound represented by the following formula (7) is obtained. In the following formula (7), m and n are the same as in the above formula (5). Since vinylene carbonate (6) has a predominant reaction with the benzene ring skeleton close to the center of the acene compound (5), a 1,2-diol compound of the following formula (7) can be obtained in a higher yield. Mn is preferably −2 or more and 4 or less, more preferably −1 or more and 3 or less, and further preferably 0 or more and 2 or less.

2. 酸化的開裂工程
次に、得られた1,2−ジオールを酸化的開裂させることにより、アセンジアルデヒド化合物(8)とする。下記式(8)中、mおよびnは上記式(5)と同じである。
2. Oxidative cleavage step Next, the 1,2-diol obtained is oxidatively cleaved to obtain an acenedialdehyde compound (8). In the following formula (8), m and n are the same as in the above formula (5).

1,2−ジオール構造部分の酸化的開裂反応は酸化剤の存在下で行うことが好ましい。酸化剤としては公知の酸化剤を用いることができるが、好ましくは、例えば、過ヨウ素酸、過ヨウ素酸ナトリウム、2−ヨードキシ安息香酸、デス・マーチン・ペルヨージナン(Dess−Martin Periodinane;DMP)、または四酢酸鉛を用いる。なお、デス・マーチン・ペルヨージナンは1,1,1−トリアセトキシ−1,1−ジヒドロ−1,2−ベンズヨードキソール−3(1H)−オンの通称である。このような酸化剤を用いれば、1,2−ジオール構造部分の酸化的開裂反応を比較的穏和な条件で効率良く進行させることができる。これらの酸化剤は、1,2−ジオール構造部分を酸化的開裂させるのに必要な酸化当量の1.0倍以上のモル量を用いることが好ましく、1.2倍以上のモル量を用いることがより好ましく、また、5.0倍以下のモル量を用いることが好ましく、3.0倍以下のモル量を用いることがより好ましい。   The oxidative cleavage reaction of the 1,2-diol structural moiety is preferably performed in the presence of an oxidizing agent. As the oxidizing agent, a known oxidizing agent can be used. Preferably, for example, periodic acid, sodium periodate, 2-iodoxybenzoic acid, Dess-Martin Periodinane (DMP), or Use lead tetraacetate. Dess-Martin periodinane is a common name for 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3 (1H) -one. If such an oxidizing agent is used, the oxidative cleavage reaction of the 1,2-diol structure can be efficiently advanced under relatively mild conditions. These oxidizing agents are preferably used in a molar amount of 1.0 times or more of the oxidation equivalent necessary for oxidative cleavage of the 1,2-diol structural portion, and in a molar amount of 1.2 times or more. More preferably, a molar amount of 5.0 times or less is preferably used, and a molar amount of 3.0 times or less is more preferably used.

過ヨウ素酸や過ヨウ素酸ナトリウムを用いて1,2−ジオールを酸化的開裂させる反応は、Malaprade反応として一般に知られている。四酢酸鉛を用いて1,2−ジオールを酸化的開裂させる反応は、Criegee反応として一般に知られている。2−ヨードキシ安息香酸を用いて1,2−ジオールを酸化的開裂させる反応は、Org. Biomol. Chem., 5, 767-771 (2007)等の文献を参考にできる。   A reaction that oxidatively cleaves 1,2-diol using periodic acid or sodium periodate is generally known as a Malaprade reaction. The reaction of oxidative cleavage of 1,2-diol using lead tetraacetate is generally known as the Criegee reaction. The reaction of oxidative cleavage of 1,2-diol using 2-iodoxybenzoic acid can be referred to documents such as Org. Biomol. Chem., 5, 767-771 (2007).

酸化的開裂反応は、比較的穏和な条件で反応を進行できる点で、2−ヨードキシ安息香酸を用いることが好ましい。この場合、2−ヨードキシ安息香酸の溶解性を高める点から、溶媒としてジメチルスルホキシド(DMSO)を用いることが好ましい。2−ヨードキシ安息香酸を用いた酸化的開裂反応は、例えば、20℃〜200℃の温度範囲で、5分〜24時間行えばよい。反応温度や反応時間は、出発原料や反応生成物の熱的安定性や反応の進行状況に応じて、適宜調整すればよい。   In the oxidative cleavage reaction, 2-iodoxybenzoic acid is preferably used because the reaction can proceed under relatively mild conditions. In this case, it is preferable to use dimethyl sulfoxide (DMSO) as a solvent from the viewpoint of increasing the solubility of 2-iodoxybenzoic acid. The oxidative cleavage reaction using 2-iodoxybenzoic acid may be performed at a temperature range of 20 ° C. to 200 ° C. for 5 minutes to 24 hours, for example. What is necessary is just to adjust reaction temperature and reaction time suitably according to the thermal stability of a starting material or a reaction product, and the progress of reaction.

3. 酸化工程
次に、得られたアセンジアルデヒド化合物(8)のアルデヒド基を酸化してカルボキシ基とすることにより、アセンジカルボン酸化合物(3)を得る。
3. Oxidation step Next, the aldehyde group of the obtained acene dialdehyde compound (8) is oxidized to form a carboxy group, thereby obtaining an acene dicarboxylic acid compound (3).

アルデヒド基を酸化してカルボキシ基とする方法は公知の酸化反応を用いればよく、酸化剤としては、比較的穏和な条件で酸化することができる亜塩素酸ナトリウムを用いることが好ましい。特に、比較的穏和な条件下でアルデヒド基をカルボキシ基に酸化できる方法として、亜塩素酸ナトリウムを用いるPinnick(Kraus)酸化反応を利用することが好ましい。Pinnick(Kraus)酸化反応は、J. Org. Chem., 45, 4825 (1980)、J. Org. Chem., 45, 1175 (1980)、Tetrahedron, 37, 2091 (1981)等の文献を参考にできる。   A known oxidation reaction may be used as a method for oxidizing an aldehyde group to form a carboxy group, and it is preferable to use sodium chlorite that can be oxidized under relatively mild conditions as an oxidizing agent. In particular, as a method capable of oxidizing an aldehyde group to a carboxy group under relatively mild conditions, it is preferable to use a Pinnick (Kraus) oxidation reaction using sodium chlorite. The Pinnick (Kraus) oxidation reaction is described with reference to documents such as J. Org. Chem., 45, 4825 (1980), J. Org. Chem., 45, 1175 (1980), Tetrahedron, 37, 2091 (1981). it can.

Pinnick(Kraus)酸化反応を利用してアルデヒド基をカルボキシ基に酸化する場合、例えば、アセンジアルデヒド化合物(8)を適当な溶媒に溶解させた後、2−メチル−2−ブテンを加え、さらに亜塩素酸ナトリウムとリン酸二水素ナトリウムを水に溶解させて加えることで、アセンジアルデヒド化合物(8)の酸化反応が進行する。   When an aldehyde group is oxidized to a carboxy group using a Pinnick (Kraus) oxidation reaction, for example, the acenedialdehyde compound (8) is dissolved in a suitable solvent, and then 2-methyl-2-butene is added. By adding sodium chlorite and sodium dihydrogen phosphate dissolved in water, the oxidation reaction of the acenedialdehyde compound (8) proceeds.

アセンジアルデヒド化合物(8)を溶解させる溶媒としては、アセンジアルデヒド化合物(8)を溶解でき、かつ水との相溶性を有する溶媒を適宜選択すればよく、例えば、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、テトラヒドロフラン等のエーテル類:アセトン、メチルエチルケトン等のケトン類を用いればよい。   As a solvent for dissolving the acenedialdehyde compound (8), a solvent capable of dissolving the acenedialdehyde compound (8) and having compatibility with water may be appropriately selected. For example, dimethyl ether, diethyl ether, methyl ethyl Ethers such as ether and tetrahydrofuran: Ketones such as acetone and methyl ethyl ketone may be used.

亜塩素酸ナトリウムとリン酸二水素ナトリウムは等モル量用いることが好ましく、また、亜塩素酸ナトリウムとリン酸二水素ナトリウムは、アセンジアルデヒド化合物(8)のアルデヒド基の等モル量以上(より好ましくは1.2倍以上のモル量)用いることが好ましい。Pinnick(Kraus)酸化反応は、例えば、窒素ガスやアルゴンガス等の不活性ガス雰囲気下、−20℃〜60℃の温度範囲で、10分〜48時間行えばよい。反応温度や反応時間は、出発原料や反応生成物の熱的安定性や反応の進行状況に応じて、適宜調整すればよい。   Sodium chlorite and sodium dihydrogen phosphate are preferably used in equimolar amounts, and sodium chlorite and sodium dihydrogen phosphate are used in an equimolar amount or more of the aldehyde group of the acenedialdehyde compound (8) (more The molar amount is preferably 1.2 times or more. The Pinnick (Kraus) oxidation reaction may be performed, for example, in a temperature range of −20 ° C. to 60 ° C. for 10 minutes to 48 hours in an inert gas atmosphere such as nitrogen gas or argon gas. What is necessary is just to adjust reaction temperature and reaction time suitably according to the thermal stability of a starting material or a reaction product, and the progress of reaction.

あるいは、対応するジハロゲン化合物、例えばジブロモ化合物が容易に入手できたり合成可能である場合には、ブチルリチウムなどでリチウム化したり、グリニヤール試薬とした後に二酸化炭素を作用させることにより、アセンジカルボン酸化合物(3)としてもよい。   Alternatively, when a corresponding dihalogen compound such as a dibromo compound is readily available or can be synthesized, it can be lithiated with butyllithium or the like, or a Grignard reagent to be reacted with carbon dioxide, whereby an acene dicarboxylic acid compound ( 3).

4. イミド化工程
次に、得られたアセンジカルボン酸化合物(3)またはそのカルボン酸誘導体を、下記式(4)で示されるイソシアネート化合物と触媒存在下で反応させて、アセンジイミド化合物を得る。
4). Next, the acene dicarboxylic acid compound (3) or a carboxylic acid derivative thereof is reacted with an isocyanate compound represented by the following formula (4) in the presence of a catalyst to obtain an acene diimide compound.

式(3)中、mは0以上の整数を表し、nも0以上の整数を表す。従って、m+nは0以上であればよい。mとnの上限は特に限定されないが、式(3)で示されるアセンジカルボン酸の製造容易性や入手容易性の点から、m+nは6以下が好ましく、5以下がより好ましく、4以下がさらに好ましい。   In formula (3), m represents an integer of 0 or more, and n represents an integer of 0 or more. Therefore, m + n may be 0 or more. The upper limits of m and n are not particularly limited, but m + n is preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less, from the viewpoint of ease of production and availability of the acene dicarboxylic acid represented by formula (3). preferable.

式(4)中、Rは炭素数1〜20のアルキル基または炭素数6〜12のアリール基を表す。   In formula (4), R represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms.

前記アルキル基は、直鎖状であっても、分枝状であっても、脂環構造を有するものであってもよい。アルキル基は置換基を有していてもよい。アルキル基が有する置換基としては、ハロゲン基およびC6-12アリール基よりなる群から選ばれる少なくとも1種であることが好ましい。このようなアルキル基を有するイソシアネート化合物であれば、比較的容易に入手または製造できる。アルキル基の炭素数としては、1〜12が好ましく、1〜8がより好ましい。なおアルキル基の炭素数には、アルキル基に結合した置換基の炭素数も含まれる。炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、i−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ドデシル基、オクタデシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ベンジル基、2−フェニルエチル基、トリフルオロメチル基等が挙げられる。 The alkyl group may be linear, branched, or have an alicyclic structure. The alkyl group may have a substituent. The substituent that the alkyl group has is preferably at least one selected from the group consisting of a halogen group and a C 6-12 aryl group. Any isocyanate compound having such an alkyl group can be obtained or produced relatively easily. As carbon number of an alkyl group, 1-12 are preferable and 1-8 are more preferable. The carbon number of the alkyl group includes the carbon number of the substituent bonded to the alkyl group. Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, i-butyl group, tert-butyl group, and pentyl. Group, hexyl group, heptyl group, octyl group, dodecyl group, octadecyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, benzyl group, 2-phenylethyl group, trifluoromethyl group and the like.

前記アリール基は、単環式であっても、多環式(縮合環式を含む)であってもよく、複数の芳香環が単結合で繋がったものであってもよい。アリール基は置換基を有していてもよい。アリール基が有する置換基としては、ハロゲン基、C1-6アルキル基、C1-6ハロゲン化アルキル基およびC1-6アルコキシ基よりなる群から選ばれる少なくとも1種であることが好ましい。このようなアリール基を有するイソシアネート化合物であれば、比較的容易に入手または製造できる。アリール基の炭素数としては、6〜10がより好ましい。なおアリール基の炭素数には、アリール基に結合した置換基の炭素数も含まれる。炭素数6〜12のアリール基としては、フェニル基、ナフチル基、ビフェニル基等が挙げられる。 The aryl group may be monocyclic, polycyclic (including fused cyclic), or a plurality of aromatic rings connected by a single bond. The aryl group may have a substituent. The substituent that the aryl group has is preferably at least one selected from the group consisting of a halogen group, a C 1-6 alkyl group, a C 1-6 halogenated alkyl group, and a C 1-6 alkoxy group. Any isocyanate compound having such an aryl group can be obtained or produced relatively easily. As carbon number of an aryl group, 6-10 are more preferable. The carbon number of the aryl group includes the carbon number of the substituent bonded to the aryl group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a naphthyl group, and a biphenyl group.

アセンジカルボン酸化合物(3)は、遊離カルボン酸の形態で用いてもよく、酸無水物や酸ハロゲン化物等のカルボン酸誘導体として用いてもよい。なお、カルボン酸誘導体には、アシル誘導体も含まれる。遊離カルボン酸とカルボン酸誘導体は、公知の方法により相互に任意の形態に変換すればよい。   The acene dicarboxylic acid compound (3) may be used in the form of a free carboxylic acid, or may be used as a carboxylic acid derivative such as an acid anhydride or an acid halide. The carboxylic acid derivative includes an acyl derivative. What is necessary is just to convert a free carboxylic acid and a carboxylic acid derivative into arbitrary forms mutually by a well-known method.

アセンジカルボン酸化合物(3)は、カルボン酸とイソシアネートとの反応性を高めるために、カルボン酸ハロゲン化物(酸ハロゲン化物)にして用いることが好ましい。カルボン酸ハロゲン化物としては、カルボン酸フッ化物、カルボン酸塩化物、カルボン酸臭化物、カルボン酸ヨウ化物等が挙げられるが、簡便に得られ、得られたカルボン酸ハロゲン化物の反応性の点から、カルボン酸ハロゲン化物としてはカルボン酸塩化物を用いることが好ましい。アセンジカルボン酸化合物(3)をカルボン酸ハロゲン化物にするためには、アセンジカルボン酸化合物を、塩化チオニル、塩化オキサリル、塩化スルフリル、三塩化リン等のハロゲン化剤と反応させればよい。すなわち、アセンジカルボン酸化合物(3)とハロゲン化剤とを反応させて、アセンジカルボン酸ハロゲン化物を得ればよい。   The acene dicarboxylic acid compound (3) is preferably used as a carboxylic acid halide (acid halide) in order to increase the reactivity between the carboxylic acid and the isocyanate. Examples of carboxylic acid halides include carboxylic acid fluorides, carboxylic acid chlorides, carboxylic acid bromides, carboxylic acid iodides, and the like, which are obtained easily and from the point of reactivity of the obtained carboxylic acid halides. As the carboxylic acid halide, a carboxylic acid chloride is preferably used. In order to make the acene dicarboxylic acid compound (3) into a carboxylic acid halide, the acene dicarboxylic acid compound may be reacted with a halogenating agent such as thionyl chloride, oxalyl chloride, sulfuryl chloride, or phosphorus trichloride. That is, the acene dicarboxylic acid halide (3) may be obtained by reacting the acene dicarboxylic acid compound (3) with the halogenating agent.

式(3)で示されるアセンジカルボン酸化合物またはそのカルボン酸誘導体を、式(4)で示されるイソシアネート化合物と触媒存在下で反応させることにより、下記式(1)または下記式(2)で示されるアセンジイミド化合物が生成する。   By reacting an acene dicarboxylic acid compound represented by the formula (3) or a carboxylic acid derivative thereof with an isocyanate compound represented by the formula (4) in the presence of a catalyst, it is represented by the following formula (1) or the following formula (2). An acenediimide compound is produced.

上記式(1)および式(2)中、m,n,Rは、上記式(3)および式(4)と同じ意味を表す。すなわち、mは0以上の整数を表し、nも0以上の整数を表し、Rは炭素数1〜20のアルキル基または炭素数6〜12のアリール基を表す。なお、式(2)で示されるアセンジイミド化合物を得る場合は、nが1以上であることが必要となる。つまり、nが0の場合、式(2)で示されるアセンジイミド化合物は得られない。   In the above formulas (1) and (2), m, n, and R represent the same meaning as in the above formulas (3) and (4). That is, m represents an integer of 0 or more, n also represents an integer of 0 or more, and R represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms. In addition, when obtaining the acene diimide compound shown by Formula (2), n needs to be 1 or more. That is, when n is 0, the acene diimide compound represented by the formula (2) cannot be obtained.

アセンジカルボン酸化合物(3)またはそのカルボン酸誘導体とイソシアネート化合物(4)とを反応させる際に用いる触媒(以下、「イミド化触媒」と称する場合がある)としては、ルイス酸触媒を用いることが好ましい。イミド化触媒としてルイス酸触媒を用いることにより、イソシアネート化合物によるイミド化反応が効率的に進むようになる。   As the catalyst used when the acene dicarboxylic acid compound (3) or a carboxylic acid derivative thereof and the isocyanate compound (4) are reacted (hereinafter, sometimes referred to as “imidation catalyst”), a Lewis acid catalyst may be used. preferable. By using a Lewis acid catalyst as an imidation catalyst, an imidization reaction with an isocyanate compound can proceed efficiently.

ルイス酸触媒としては公知の触媒を用いればよく、例えば、Ag(I),B(III),Al(III),Sn(IV),Bi(III),Yb(III),Sc(III),V(IV),Ti(IV)等の錯体を用いればよい。なかでも、イミド化反応が効率よく進む点で、ビスマス触媒を用いることが好ましい。前記錯体の配位子は公知のものを用いればよく、例えば、塩素、臭素、ヨウ素等のハロゲン;ビストリフルオロメタンスルホニルイミド(NTf2);トリフルオロメタンスルホニル(OTf)等が示される。 A known catalyst may be used as the Lewis acid catalyst. For example, Ag (I), B (III), Al (III), Sn (IV), Bi (III), Yb (III), Sc (III), A complex such as V (IV) or Ti (IV) may be used. Especially, it is preferable to use a bismuth catalyst from the point which an imidation reaction advances efficiently. Known ligands may be used as the ligand of the complex, and examples thereof include halogen such as chlorine, bromine and iodine; bistrifluoromethanesulfonylimide (NTf 2 ); trifluoromethanesulfonyl (OTf) and the like.

アセンジカルボン酸化合物(3)またはそのカルボン酸誘導体とイソシアネート化合物(4)とを触媒下で反応させることにより、イソシアネート化合物(4)のイソシアネート基がアセンジカルボン酸化合物(3)のカルボキシ基と反応して、イソシアネート化合物(4)がアセンジカルボン酸化合物(3)に導入され、その後イソシアネート基由来の構造部分がアセンジカルボン酸化合物(3)の芳香環の一部と協同して環形成し、式(1)または式(2)で示されるアセンジイミド化合物が得られると考えられる。従って、効率良く式(1)または式(2)で示されるアセンジイミド化合物が得られるようになる。   By reacting the acene dicarboxylic acid compound (3) or its carboxylic acid derivative with the isocyanate compound (4) under a catalyst, the isocyanate group of the isocyanate compound (4) reacts with the carboxy group of the acene dicarboxylic acid compound (3). Then, the isocyanate compound (4) is introduced into the acene dicarboxylic acid compound (3), and then the structural portion derived from the isocyanate group forms a ring in cooperation with a part of the aromatic ring of the acene dicarboxylic acid compound (3), It is considered that an acenediimide compound represented by 1) or formula (2) is obtained. Therefore, the acene diimide compound represented by the formula (1) or the formula (2) can be obtained efficiently.

アセンジカルボン酸化合物(3)またはそのカルボン酸誘導体と、イソシアネート化合物(4)は、次の比率の範囲となるように用いることが好ましい。すなわち、[イソシアネート化合物(4)のモル量]/[アセンジカルボン酸化合物(3)またはそのカルボン酸誘導体のモル量]で規定されるモル比が1.5以上となることが好ましく、2.0以上となることがより好ましく、また4.0以下となることが好ましく、3.5以下となることがより好ましく、3.0以下となることがさらに好ましい。   The acene dicarboxylic acid compound (3) or a carboxylic acid derivative thereof and the isocyanate compound (4) are preferably used in the following ratio range. That is, the molar ratio defined by [molar amount of isocyanate compound (4)] / [molar amount of acene dicarboxylic acid compound (3) or its carboxylic acid derivative] is preferably 1.5 or more. More preferably, it is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.

アセンジカルボン酸化合物(3)またはそのカルボン酸誘導体と式(4)で示されるイソシアネート化合物(4)との反応(以下、「イミド化反応」と称する場合がある)は、溶媒中で行うことが好ましい。溶媒としては、例えば、ベンゼン、トルエン、p−キシレン、m−キシレン、オクタン、デカン等の炭化水素類;クロロベンゼン、ジクロロベンゼン、ジクロロエタン等の含ハロゲン炭化水素類等が挙げられる。さらに、前記反応は、窒素ガスやアルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。   The reaction of the acene dicarboxylic acid compound (3) or its carboxylic acid derivative and the isocyanate compound (4) represented by the formula (4) (hereinafter sometimes referred to as “imidation reaction”) may be carried out in a solvent. preferable. Examples of the solvent include hydrocarbons such as benzene, toluene, p-xylene, m-xylene, octane and decane; halogen-containing hydrocarbons such as chlorobenzene, dichlorobenzene and dichloroethane. Furthermore, the reaction is preferably performed in an inert gas atmosphere such as nitrogen gas or argon gas.

イミド化反応は、例えば、20℃〜200℃の温度範囲で、10分〜24時間行えばよい。イミド化反応の反応温度や反応時間は、出発原料や反応生成物の熱的安定性や反応の進行状況に応じて、適宜調整すればよい。   The imidization reaction may be performed, for example, in a temperature range of 20 ° C. to 200 ° C. for 10 minutes to 24 hours. What is necessary is just to adjust suitably the reaction temperature and reaction time of imidation reaction according to the thermal stability of a starting material or a reaction product, and the progress of reaction.

イミド化反応において、得られるアセンジイミド化合物が式(1)で示される化合物と式(2)で示される化合物のどちらが優勢となるかは、アセンジカルボン酸(3)の環の数(すなわち、m+nの値)により変わりうる。また、イミド化触媒の種類やイミド化反応の反応条件(温度や溶媒等)によっても、優先的に得られるアセンジイミド化合物の種類が変わると考えられる。   In the imidization reaction, which of the compound represented by formula (1) and the compound represented by formula (2) is dominant in the resulting acenediimide compound depends on the number of rings of the acenedicarboxylic acid (3) (that is, m + n Value). Moreover, it is thought that the kind of acene diimide compound obtained preferentially changes also with the kind of imidation catalyst and reaction conditions (temperature, solvent, etc.) of imidation reaction.

イミド化反応後は、蒸留等の適当な分離手段により、反応生成物と溶媒とを分離してもよい。また、反応生成物をカラムクロマトグラフィーや再結晶等の適当な精製手段を用いて精製し、式(1)または式(2)で示されるアセンジイミド化合物を得てもよい。   After the imidation reaction, the reaction product and the solvent may be separated by an appropriate separation means such as distillation. Further, the reaction product may be purified using an appropriate purification means such as column chromatography or recrystallization to obtain an acene diimide compound represented by formula (1) or formula (2).

本発明の製造方法によれば、上記説明したように、アセンジカルボン酸化合物(3)またはそのカルボン酸誘導体をイソシアネート化合物(4)と触媒存在下で反応させることにより、簡便に式(1)または式(2)で示されるアセンジイミド化合物を得ることができる。上記アセンジイミド化合物は、例えば、有機半導体の材料として有用である。   According to the production method of the present invention, as described above, by reacting the acene dicarboxylic acid compound (3) or its carboxylic acid derivative with the isocyanate compound (4) in the presence of a catalyst, the formula (1) or An acene diimide compound represented by the formula (2) can be obtained. The acene diimide compound is useful as an organic semiconductor material, for example.

以下に、実施例を示すことにより本発明を更に詳細に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited thereto.

実施例1
(1) 1,2−ジオール化合物の製造
テトラセン(ナフタセン)4000mg(17.2mmol)をキシレン80mLに溶解させ、そこにビニレンカーボネート4100mg(47.4mmol)を加え、アルゴン雰囲気下、180℃で3日間保持し、Diels−Alder反応を進行させた。その後、4mol/LのKOHを44mL加え、加水分解処理することにより1,2−ジオール化合物4340mg(15.1mmol)を得た。Diels−Alder反応における収率は88%であった。
Example 1
(1) Production of 1,2-diol compound 4000 mg (17.2 mmol) of tetracene (naphthacene) was dissolved in 80 mL of xylene, 4100 mg (47.4 mmol) of vinylene carbonate was added thereto, and the mixture was stirred at 180 ° C. for 3 days under an argon atmosphere. The Diels-Alder reaction was allowed to proceed. Then, 44 mL of 4 mol / L KOH was added and hydrolyzed to obtain 4340 mg (15.1 mmol) of a 1,2-diol compound. The yield in the Diels-Alder reaction was 88%.

(2) テトラセンジアルデヒドの製造
得られた1,2−ジオール化合物50.0mg(0.173mmol)を脱水DMSO 3.0mLに溶解させて80℃に昇温した後、そこに2−ヨードキシ安息香酸(IBX)72.5mg(0.259mmol)を加え、80℃で2時間保持し、1,2−ジオール構造部分の酸化的開裂反応を進行させた。その後、溶媒を除去し残渣をメタノールで洗浄することで、テトラセンジアルデヒド35.7mg(0.126mmol)を得た。酸化的開裂反応における収率は72%であった。
(2) Production of tetracenedialdehyde 50.0 mg (0.173 mmol) of the obtained 1,2-diol compound was dissolved in 3.0 mL of dehydrated DMSO and heated to 80 ° C., and then 2-iodoxybenzoic acid was added thereto. 72.5 mg (0.259 mmol) of (IBX) was added and held at 80 ° C. for 2 hours to proceed the oxidative cleavage reaction of the 1,2-diol structure portion. Thereafter, the solvent was removed and the residue was washed with methanol to obtain 35.7 mg (0.126 mmol) of tetracenedialdehyde. The yield in the oxidative cleavage reaction was 72%.

(3) テトラセンジカルボン酸の製造
得られたテトラセンジアルデヒド1.176g(4.136mmol)を2−メチル−2−ブテン 10.0mLとともに、アルゴンガス雰囲気下、テトラヒドロフラン(THF)250mLに懸濁させて、0℃に冷却した。そこに、NaClO2 1.190g(13.16mmol)とNaH2PO4 1.579g(13.16mmol)を40mLの水に溶解させた溶液を加え、混合溶液を得た。得られた混合溶液を室温まで昇温させ、室温で16時間撹拌して、アルデヒドの酸化反応を進行させた。その後、THFを除去して1M HClを加え、析出した固体を濾別して水で洗浄し、さらにCHCl3で洗浄することで、下記式(11)に示すテトラセンジカルボン酸1.00g(3.16mmol)を得た。アルデヒド酸化反応における収率は76%であった。
(3) Production of tetracenedicarboxylic acid 1.176 g (4.136 mmol) of the obtained tetracenedialdehyde was suspended in 250 mL of tetrahydrofuran (THF) under argon gas atmosphere together with 10.0 mL of 2-methyl-2-butene. And cooled to 0 ° C. A solution prepared by dissolving 1.190 g (13.16 mmol) of NaClO 2 and 1.579 g (13.16 mmol) of NaH 2 PO 4 in 40 mL of water was added thereto to obtain a mixed solution. The resulting mixed solution was allowed to warm to room temperature and stirred at room temperature for 16 hours to advance the aldehyde oxidation reaction. Thereafter, THF was removed, 1M HCl was added, and the precipitated solid was separated by filtration, washed with water, and further washed with CHCl 3 to obtain 1.00 g (3.16 mmol) of tetracene dicarboxylic acid represented by the following formula (11). Got. The yield in the aldehyde oxidation reaction was 76%.

(4) テトラセンジイミドの製造
得られたテトラセンジカルボン酸30.0mg(0.0945mmol)をSOCl2 0.3mLとともに、アルゴンガス雰囲気下、CH2Cl2 2.0mLに懸濁させて、0℃に冷却した。そこにN,N−ジメチルホルムアミド(DMF)を3滴加えて、0℃で60分撹拌した後、溶媒を除去することでテトラセンジカルボン酸塩化物を得た。得られたテトラセンジカルボン酸塩化物(0.0945mmol)をイソプロピルイソシアネート0.5mLとともに、アルゴンガス雰囲気下、o−ジクロロベンゼン 2mLに溶解させて、80℃に昇温した後、さらにそこにBi(OTf)3 0.125gを加え、120℃で2時間保持し、イミド化反応を進行させた。その後、溶媒を除去し、残渣をカラムクロマトグラフィーで精製し、さらに得られた精製物をメタノールで洗浄することにより、下記式(12)に示すテトラセンジイミド化合物19.9mg(0.0442mmol)を得た。イミド化反応における収率は47%であった。
(4) Production of tetracenediimide 30.0 mg (0.0945 mmol) of the obtained tetracenedicarboxylic acid was suspended in 2.0 mL of CH 2 Cl 2 in an argon gas atmosphere together with 0.3 mL of SOCl 2 , and the mixture was brought to 0 ° C. Cooled down. Three drops of N, N-dimethylformamide (DMF) was added thereto and stirred at 0 ° C. for 60 minutes, and then the solvent was removed to obtain a tetracene dicarboxylic acid chloride. The obtained tetracene dicarboxylic acid chloride (0.0945 mmol) was dissolved in 2 mL of o-dichlorobenzene in an argon gas atmosphere together with 0.5 mL of isopropyl isocyanate, heated to 80 ° C., and further Bi (OTf). 3 ) 0.125 g was added and held at 120 ° C. for 2 hours to advance the imidization reaction. Thereafter, the solvent was removed, the residue was purified by column chromatography, and the purified product thus obtained was washed with methanol to obtain 19.9 mg (0.0442 mmol) of a tetracene diimide compound represented by the following formula (12). It was. The yield in the imidization reaction was 47%.

1H−NMR(400MHz,CDCl3) δ9.72(m,4H),7.78(m,4H),5.59−5.52(m,2H),1.76(d,J=6.9Hz,12H) 1 H-NMR (400 MHz, CDCl 3 ) δ 9.72 (m, 4H), 7.78 (m, 4H), 5.59-5.52 (m, 2H), 1.76 (d, J = 6 .9Hz, 12H)

実施例2
上記実施例1において、イミド化反応に用いるイソシアネート化合物として、イソプロピルイソシアネートの代わりにn−ヘキシルイソシアネートを0.5mL用いた以外は同様にして、下記式(13)に示すテトラセンジイミド化合物21.0mg(0.0392mmol)を得た。イミド化反応における収率は42%であった。
Example 2
In Example 1 above, 21.0 mg of a tetracene diimide compound represented by the following formula (13) was similarly used except that 0.5 mL of n-hexyl isocyanate was used instead of isopropyl isocyanate as an isocyanate compound used in the imidization reaction. 0.0392 mmol) was obtained. The yield in the imidization reaction was 42%.

1H−NMR(400MHz,CDCl3) δ9.82(m,4H),7.81(m,4H),4.36(t,J=7.7Hz,4H),1.92−1.84(m,4H),1.46−1.34(m,12H),0.92(t,J=7.0Hz,6H) 1 H-NMR (400 MHz, CDCl 3 ) δ 9.82 (m, 4H), 7.81 (m, 4H), 4.36 (t, J = 7.7 Hz, 4H), 1.92-1.84 (M, 4H), 1.46-1.34 (m, 12H), 0.92 (t, J = 7.0 Hz, 6H)

実施例3
上記実施例1において、イミド化反応に用いるイソシアネート化合物として、イソプロピルイソシアネートの代わりにシクロヘキシルイソシアネートを0.3mL用い、Bi(OTf)3を0.290mg用いた以外は同様にして下記式(14)に示すテトラセンジイミド化合物14.4mg(0.0271mmol)を得た。イミド化反応における収率は29%であった。
Example 3
In Example 1 above, as the isocyanate compound used in the imidization reaction, 0.3 mL of cyclohexyl isocyanate was used instead of isopropyl isocyanate, and 0.290 mg of Bi (OTf) 3 was used. 14.4 mg (0.0271 mmol) of the tetracenediimide compound shown were obtained. The yield in the imidization reaction was 29%.

実施例4
(1) アントラセンジカルボン酸の製造
反応容器中、アルゴンガス雰囲気下で、9,10−ジブロモアントラセン(東京化成工業株式会社より購入)25g(74.4mmol)をジエチルエーテル 150mLに懸濁させて、0℃に冷却した。そこにn−ブチルリチウム 0.24molを滴下した後、室温まで昇温させ、1時間撹拌した。反応容器に二酸化炭素ガスを室温で15分吹き込み、その後、反応溶液にジエチルエーテルと水を加え、水層を分離した。分離した水層に6MHClを加えて、下記式(15)に示すアントラセンジカルボン酸を析出させ、さらに水とエタノールで洗浄することでこれを精製した。アントラセンジカルボン酸は9.1g(34.7mmol)得られ、収率は46%であった。
Example 4
(1) Production of anthracene dicarboxylic acid In a reaction vessel, 25 g (74.4 mmol) of 9,10-dibromoanthracene (purchased from Tokyo Chemical Industry Co., Ltd.) was suspended in 150 mL of diethyl ether under an argon gas atmosphere. Cooled to ° C. Thereto was added dropwise 0.24 mol of n-butyllithium, and the mixture was warmed to room temperature and stirred for 1 hour. Carbon dioxide gas was blown into the reaction vessel at room temperature for 15 minutes, and then diethyl ether and water were added to the reaction solution to separate the aqueous layer. 6M HCl was added to the separated aqueous layer to precipitate the anthracene dicarboxylic acid represented by the following formula (15), which was further purified by washing with water and ethanol. 9.1 g (34.7 mmol) of anthracene dicarboxylic acid was obtained, and the yield was 46%.

(2) アントラセンジイミドの製造
得られたアントラセンジカルボン酸3000mg(1.126mmol)をSOCl2 3.5mLとともに、窒素ガス雰囲気下、CH2Cl2 15mLに懸濁させて、0℃に冷却した。そこにDMFを3滴加えて、0℃に保持したまま60分撹拌した後、溶媒を除去することでアントラセンジカルボン酸塩化物を得た。得られたアントラセンジカルボン酸塩化物(1.126mmol)をイソプロピルイソシアネート 5mLとともに、窒素ガス雰囲気下、o−ジクロロベンゼン15mLに溶解させて、80℃に昇温した後、さらにそこにBi(OTf)3 1.7gを加え、120℃で2時間保持し、イミド化反応を進行させた。その後、溶媒を除去し、残渣をカラムクロマトグラフィーで精製し、さらに得られた精製物をメタノールで洗浄することにより、下記式(16)に示すアントラセンジイミド化合物83.3mg(0.208mmol)を得た。イミド化反応における収率は18%であった。
(2) Production of anthracene diimide 3000 mg (1.126 mmol) of the obtained anthracene dicarboxylic acid was suspended in 15 mL of CH 2 Cl 2 together with 3.5 mL of SOCl 2 in a nitrogen gas atmosphere and cooled to 0 ° C. Three drops of DMF were added thereto, and the mixture was stirred for 60 minutes while maintaining at 0 ° C., and then the anthracene dicarboxylic acid chloride was obtained by removing the solvent. The obtained anthracene dicarboxylic acid chloride (1.126 mmol) was dissolved in 15 mL of o-dichlorobenzene together with 5 mL of isopropyl isocyanate in a nitrogen gas atmosphere, heated to 80 ° C., and further Bi (OTf) 3 there. 1.7g was added and it hold | maintained at 120 degreeC for 2 hours, and imidation reaction was advanced. Thereafter, the solvent was removed, the residue was purified by column chromatography, and the obtained purified product was washed with methanol to obtain 83.3 mg (0.208 mmol) of an anthracene diimide compound represented by the following formula (16). It was. The yield in the imidization reaction was 18%.

1H−NMR(400MHz,CDCl3) δ10.21(m,J=9.1,1.2Hz,2H),8.81(m,J=7.0,1.2Hz,2H),7.99(m,J=9.1,7.0Hz,2H),5.49(quintet,J=6.9Hz,2H),1.68(d,J=7.0Hz,12H) 1 H-NMR (400 MHz, CDCl 3 ) δ 10.21 (m, J = 9.1, 1.2 Hz, 2H), 8.81 (m, J = 7.0, 1.2 Hz, 2H), 7. 99 (m, J = 9.1, 7.0 Hz, 2H), 5.49 (quintet, J = 6.9 Hz, 2H), 1.68 (d, J = 7.0 Hz, 12H)

実施例5
上記実施例4において、イミド化反応に用いるイソシアネート化合物として、イソプロピルイソシアネートの代わりにn−ヘキシルイソシアネートを2mL用いた以外は、実施例4と同様にして下記式(17)に示すアントラセンジイミド化合物100mg(0.2mmol)を得た。イミド化反応における収率は18%であった。
Example 5
In Example 4 above, 100 mg of the anthracene diimide compound represented by the following formula (17) was obtained in the same manner as in Example 4 except that 2 mL of n-hexyl isocyanate was used instead of isopropyl isocyanate as the isocyanate compound used in the imidization reaction. 0.2 mmol) was obtained. The yield in the imidization reaction was 18%.

1H−NMR(400MHz,CDCl3) δ10.23(m,2H),8.77−8.75(m,2H),7.94(m,J=1.6Hz,2H),4.24(t,J=7.7Hz,4H),1.84−1.76(m,4H),1.51−1.30(m,12H),0.92(t,J=7.1Hz,6H) 1 H-NMR (400 MHz, CDCl 3 ) δ 10.23 (m, 2H), 8.77-8.75 (m, 2H), 7.94 (m, J = 1.6 Hz, 2H), 4.24 (T, J = 7.7 Hz, 4H), 1.84-1.76 (m, 4H), 1.51-1.30 (m, 12H), 0.92 (t, J = 7.1 Hz, 6H)

実施例6
上記実施例4において、イミド化反応に用いるイソシアネート化合物として、イソプロピルイソシアネートの代わりにシクロヘキシルイソシアネートを5mL用いた以外は、実施例4と同様にして下記式(18)に示すアントラセンジイミド化合物 30mg(0.062mmol)を得た。イミド化反応における収率は6%であった。
Example 6
In Example 4, 30 mg of anthracene diimide compound represented by the following formula (18) was used in the same manner as in Example 4 except that 5 mL of cyclohexyl isocyanate was used instead of isopropyl isocyanate as the isocyanate compound used in the imidization reaction. 062 mmol) was obtained. The yield in the imidization reaction was 6%.

1H−NMR(400MHz,CDCl3) δ10.18(m,2H),8.80(m,2H),7.98(m,2H),5.07(m,2H),2.66−2.56(m,4H),1.96−1.74(m,10H),1.49−1.32(m,6H) 1 H-NMR (400 MHz, CDCl 3 ) δ 10.18 (m, 2H), 8.80 (m, 2H), 7.98 (m, 2H), 5.07 (m, 2H), 2.66- 2.56 (m, 4H), 1.96-1.74 (m, 10H), 1.49-1.32 (m, 6H)

実施例7
(1) 1,2−ジオール化合物の製造
ペンタセン6070mg(21.8mmol)をキシレン 150mLに溶解させ、そこにビニレンカーボネート4743mg(55.1mmol)を加え、アルゴン雰囲気下、180℃で3日間保持し、Diels−Alder反応を進行させた。その後、4mol/LのKOHを60mL加え、加水分解処理することにより1,2−ジオール化合物3000mg(8.88mmol)を得た。Diels−Alder反応における収率は41%であった。
Example 7
(1) Production of 1,2-diol compound 6070 mg (21.8 mmol) of pentacene was dissolved in 150 mL of xylene, 4743 mg (55.1 mmol) of vinylene carbonate was added thereto, and kept at 180 ° C. for 3 days under an argon atmosphere. The Diels-Alder reaction was allowed to proceed. Thereafter, 60 mL of 4 mol / L KOH was added and subjected to a hydrolysis treatment to obtain 3000 mg (8.88 mmol) of a 1,2-diol compound. The yield in the Diels-Alder reaction was 41%.

(2) ペンタセンジアルデヒドの製造
得られた1,2−ジオール化合物130mg(0.385mmol)を脱水DMSO 4.0mLに溶解させて160℃に昇温した後、そこに2−ヨードキシ安息香酸(IBX)102mg(0.365mmol)を加え、160℃で10分間保持し、1,2−ジオール構造部分の酸化的開裂反応を進行させた。その後、溶媒を除去し残渣をメタノールで洗浄することで、ペンタセンジアルデヒド80mg(0.240mmol)を得た。酸化的開裂反応における収率は62%であった。
(2) Production of pentacenedialdehyde 130 mg (0.385 mmol) of the obtained 1,2-diol compound was dissolved in 4.0 mL of dehydrated DMSO and heated to 160 ° C., and then 2-iodoxybenzoic acid (IBX) was added thereto. ) 102 mg (0.365 mmol) was added and held at 160 ° C. for 10 minutes to allow the oxidative cleavage reaction of the 1,2-diol structure portion to proceed. Then, 80 mg (0.240 mmol) of pentacenedialdehyde was obtained by removing the solvent and washing the residue with methanol. The yield in the oxidative cleavage reaction was 62%.

(3) ペンタセンジカルボン酸の製造
得られたペンタセンジアルデヒド80mg(0.240mmol)を2−メチル−2−ブテン0.37mLとともに、アルゴンガス雰囲気下、テトラヒドロフラン(THF)15mLに懸濁させて、0℃に冷却した。そこに、NaClO2 44mg(0.486mmol)とNaH2PO487.5mg(0.729mmol)を5.0mLの水に溶解させた溶液を加え、混合溶液を得た。得られた混合溶液を室温まで昇温させ、室温で11時間撹拌して、アルデヒドの酸化反応を進行させた。その後、THFを除去して1M HClを加え、析出した固体を濾別して水で洗浄し、さらにCHCl3で洗浄することで、下記式(19)に示すペンタセンジカルボン酸30.4mg(0.083mmol)を得た。アルデヒド酸化反応における収率は34%であった。
(3) Production of pentacenedicarboxylic acid 80 mg (0.240 mmol) of the obtained pentacenedialdehyde was suspended in 15 mL of tetrahydrofuran (THF) in an argon gas atmosphere together with 0.37 mL of 2-methyl-2-butene. Cooled to ° C. A solution prepared by dissolving 44 mg (0.486 mmol) of NaClO 2 and 87.5 mg (0.729 mmol) of NaH 2 PO 4 in 5.0 mL of water was added thereto to obtain a mixed solution. The resulting mixed solution was allowed to warm to room temperature and stirred at room temperature for 11 hours to advance the aldehyde oxidation reaction. Thereafter, THF was removed, 1M HCl was added, and the precipitated solid was separated by filtration, washed with water, and further washed with CHCl 3 , whereby 30.4 mg (0.083 mmol) of pentacenedicarboxylic acid represented by the following formula (19) was obtained. Got. The yield in the aldehyde oxidation reaction was 34%.

(4) ペンタセンジイミドの製造
得られたペンタセンジカルボン酸30.0mg(0.0893mmol)をSOCl2 0.3mLとともに、アルゴンガス雰囲気下、CH2Cl2 2.0mLに懸濁させて、0℃に冷却した。そこにN,N−ジメチルホルムアミド(DMF)を3滴加えて、0℃で10分撹拌した後、溶媒を除去することでペンタセンジカルボン酸塩化物を得た。得られたペンタセンジカルボン酸塩化物(0.0893mmol)をイソプロピルイソシアネート 0.5mLとともに、アルゴンガス雰囲気下、o−ジクロロベンゼン 3mLに溶解させて、80℃に昇温した後、さらにそこにBi(OTf)3 0.125gを加え、120℃で1時間保持し、イミド化反応を進行させた。その後、溶媒を除去し、残渣をカラムクロマトグラフィーで精製し、さらに得られた精製物をCHCl3で再結晶することにより、下記式(20)に示すペンタセンジイミド化合物 5.0mg(0.01mmol)を得た。イミド化反応における収率は11%であった。
(4) Production of pentacenediimide 30.0 mg (0.0893 mmol) of the obtained pentacenedicarboxylic acid was suspended in 2.0 mL of CH 2 Cl 2 in an argon gas atmosphere together with 0.3 mL of SOCl 2, and the temperature was adjusted to 0 ° C. Cooled down. Three drops of N, N-dimethylformamide (DMF) were added thereto, and the mixture was stirred at 0 ° C. for 10 minutes, and then the solvent was removed to obtain pentacene dicarboxylic acid chloride. The obtained pentacene dicarboxylic acid chloride (0.0893 mmol) was dissolved in 3 mL of o-dichlorobenzene in an argon gas atmosphere together with 0.5 mL of isopropyl isocyanate, heated to 80 ° C., and further Bi (OTf). 3 ) 0.125 g was added and held at 120 ° C. for 1 hour to advance the imidization reaction. Thereafter, the solvent was removed, the residue was purified by column chromatography, and the purified product obtained was further recrystallized from CHCl 3 to give 5.0 mg (0.01 mmol) of a pentacene diimide compound represented by the following formula (20). Got. The yield in the imidization reaction was 11%.

1H−NMR(400MHz,CDCl3) δ10.90(s,2H),9.82(m,2H),8.23(m,2H),7.83−7.80(m,2H),7.63−7.60(m,2H),5.68−5.64(m,2H),1.80(d,12H) 1 H-NMR (400 MHz, CDCl 3 ) δ 10.90 (s, 2H), 9.82 (m, 2H), 8.23 (m, 2H), 7.83-7.80 (m, 2H), 7.63-7.60 (m, 2H), 5.68-5.64 (m, 2H), 1.80 (d, 12H)

本発明によれば、種々のアセンジイミド化合物を容易に得ることができる。得られたアセンジイミド化合物は、有機太陽電池や有機EL等への適用が見込まれる。   According to the present invention, various acene diimide compounds can be easily obtained. The obtained acenediimide compound is expected to be applied to organic solar cells, organic EL, and the like.

Claims (4)

下記式(3)で示されるアセンジカルボン酸化合物またはそのカルボン酸誘導体を、下記式(4)で示されるイソシアネート化合物と触媒存在下で反応させて、下記式(1)または下記式(2)で示されるアセンジイミド化合物を得る工程を有することを特徴とするアセンジイミド化合物の製造方法。




[式(1)〜(3)中、mは0以上の整数を表し、nは0以上の整数を表し、式(1),(2),(4)中、Rは炭素数1〜20のアルキル基または炭素数6〜12のアリール基を表す。]
An acene dicarboxylic acid compound represented by the following formula (3) or a carboxylic acid derivative thereof is reacted with an isocyanate compound represented by the following formula (4) in the presence of a catalyst, and the following formula (1) or the following formula (2): A method for producing an acenediimide compound, comprising a step of obtaining the acenediimide compound shown.




[In Formula (1)-(3), m represents an integer greater than or equal to 0, n represents an integer greater than or equal to 0, and in Formula (1), (2), (4), R is C1-C20. Or an aryl group having 6 to 12 carbon atoms. ]
前記触媒としてルイス酸触媒を用いる請求項1に記載のアセンジイミド化合物の製造方法。   The method for producing an acenediimide compound according to claim 1, wherein a Lewis acid catalyst is used as the catalyst. さらに、下記式(5)で示されるアセン化合物とビニレンカーボネートとをDiels−Alder反応させて1,2−ジオールを得る工程と、
得られた1,2−ジオールを酸化的開裂させて、前記式(3)で示されるアセンジカルボン酸化合物を得る工程を有する請求項1または2に記載のアセンジイミド化合物の製造方法。

[式(5)中、mおよびnは上記式(1)〜式(3)と同じである。]
Furthermore, a process of obtaining 1,2-diol by Diels-Alder reaction of an acene compound represented by the following formula (5) and vinylene carbonate;
The method for producing an acene diimide compound according to claim 1 or 2, further comprising a step of oxidative cleavage of the obtained 1,2-diol to obtain an acene dicarboxylic acid compound represented by the formula (3).

[In Formula (5), m and n are the same as said Formula (1)-Formula (3). ]
前記酸化的開裂を、過ヨウ素酸、過ヨウ素酸ナトリウム、2−ヨードキシ安息香酸、デス・マーチン・ペルヨージナン、または四酢酸鉛の存在下で行う請求項3に記載のアセンジイミド化合物の製造方法。   The method for producing an acenediimide compound according to claim 3, wherein the oxidative cleavage is performed in the presence of periodic acid, sodium periodate, 2-iodoxybenzoic acid, Dess-Martin periodinane, or lead tetraacetate.
JP2011048301A 2010-11-11 2011-03-04 Method for producing acene diimide compound Withdrawn JP2012116825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048301A JP2012116825A (en) 2010-11-11 2011-03-04 Method for producing acene diimide compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010253134 2010-11-11
JP2010253134 2010-11-11
JP2011048301A JP2012116825A (en) 2010-11-11 2011-03-04 Method for producing acene diimide compound

Publications (1)

Publication Number Publication Date
JP2012116825A true JP2012116825A (en) 2012-06-21

Family

ID=46500106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048301A Withdrawn JP2012116825A (en) 2010-11-11 2011-03-04 Method for producing acene diimide compound

Country Status (1)

Country Link
JP (1) JP2012116825A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114060A (en) * 2011-11-29 2013-06-10 Kyocera Document Solutions Inc Electrophotographic photoreceptor, and image forming apparatus
JP2014238610A (en) * 2014-08-22 2014-12-18 京セラドキュメントソリューションズ株式会社 Manufacturing method of electrophotographic photoreceptor
JP2015018263A (en) * 2014-08-22 2015-01-29 京セラドキュメントソリューションズ株式会社 Electron transporting agent and production method of electron transporting agent
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
CN110713589A (en) * 2018-07-13 2020-01-21 中国科学院大连化学物理研究所 Preparation and application of two anthracene diimide bromides and polymers thereof
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
CN113387793A (en) * 2021-07-16 2021-09-14 玉林师范学院 Synthesis method of 9, 10-anthracenedicarboxylic acid
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
CN113831237A (en) * 2021-08-02 2021-12-24 辽宁靖帆新材料有限公司 Synthesis method of 9-anthracenecarboxylic acid
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US12122767B2 (en) 2019-10-01 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
JP2013114060A (en) * 2011-11-29 2013-06-10 Kyocera Document Solutions Inc Electrophotographic photoreceptor, and image forming apparatus
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
JP2015018263A (en) * 2014-08-22 2015-01-29 京セラドキュメントソリューションズ株式会社 Electron transporting agent and production method of electron transporting agent
JP2014238610A (en) * 2014-08-22 2014-12-18 京セラドキュメントソリューションズ株式会社 Manufacturing method of electrophotographic photoreceptor
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US12024517B2 (en) 2018-05-04 2024-07-02 Incyte Corporation Salts of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
CN110713589A (en) * 2018-07-13 2020-01-21 中国科学院大连化学物理研究所 Preparation and application of two anthracene diimide bromides and polymers thereof
CN110713589B (en) * 2018-07-13 2021-06-01 中国科学院大连化学物理研究所 Anthracene diimide bromide and preparation and application of polymer thereof
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12122767B2 (en) 2019-10-01 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12083124B2 (en) 2019-10-14 2024-09-10 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
CN113387793A (en) * 2021-07-16 2021-09-14 玉林师范学院 Synthesis method of 9, 10-anthracenedicarboxylic acid
CN113831237A (en) * 2021-08-02 2021-12-24 辽宁靖帆新材料有限公司 Synthesis method of 9-anthracenecarboxylic acid

Similar Documents

Publication Publication Date Title
JP2012116825A (en) Method for producing acene diimide compound
JP2006335737A (en) METHOD FOR PRODUCING BENZO[c]HETEROCYCLIC 5-MEMBERED RING COMPOUND
JPH0314025B2 (en)
JP5485890B2 (en) Method for producing phthalic anhydride derivative
JP5578809B2 (en) Method for producing 3-methyl-2-thiophenecarboxylic acid
JP2011057636A (en) Method for producing anthraquinone derivative
JP2009275003A (en) Method for producing dicyanomethylene derivative
JP2006104200A (en) Synthesis of pentafluorosulfanylnaphthalene
WO2024031753A1 (en) Indoline compound and preparation method therefor
JP2006076991A (en) Arylethynylphthalic acid derivative and method for producing the same
JPH0256478A (en) 2, 3, 4, 5-tetrahydro-1-benzoxepine-3, 5-dione derivative and production thereof
CN112321536B (en) Compound containing halogen atom chiral center, preparation method and application thereof, and preparation method of natural product containing halogen atom chiral center
JPS5821626B2 (en) The best way to get started
JP4635251B2 (en) Organic bismuth compound and process for producing the same
JP2008231042A (en) Isoquinoline compound and its production method
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JPH0427986B2 (en)
JP4516831B2 (en) Method for producing cis-jasmon
JP4569002B2 (en) Process for producing bromoaromatic condensed ring compound
CN118184649A (en) Synthesis method of indolo [2,1-a ] isoquinoline
KR100763771B1 (en) Process for preparing alkyl 2-[3-[3-[(2e)-(7-chloro-quinolin-2-yl)vinyl]phenyl]-3(s)-hydroxypropyl]benzoate
JP4324431B2 (en) Method for producing 3-methylhexadecanedioic acid and esters thereof
JP2018165257A (en) Method for producing and purifying monobromine-substitution product of perylenetetracarboxylic acid dianhydride
WO2023179351A1 (en) Asymmetric synthesis method of 7-oxotriptophenolide and use thereof
JP2538335B2 (en) Process for producing aromatic amines

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513