Nothing Special   »   [go: up one dir, main page]

JP2012190731A - Nonaqueous electrolyte secondary battery, and method for manufacturing the same - Google Patents

Nonaqueous electrolyte secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2012190731A
JP2012190731A JP2011054928A JP2011054928A JP2012190731A JP 2012190731 A JP2012190731 A JP 2012190731A JP 2011054928 A JP2011054928 A JP 2011054928A JP 2011054928 A JP2011054928 A JP 2011054928A JP 2012190731 A JP2012190731 A JP 2012190731A
Authority
JP
Japan
Prior art keywords
positive electrode
solvent
mass
battery
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011054928A
Other languages
Japanese (ja)
Other versions
JP5734708B2 (en
Inventor
Hiroshi Hashimoto
裕志 橋本
Yoshitomo Omomo
義智 大桃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2011054928A priority Critical patent/JP5734708B2/en
Publication of JP2012190731A publication Critical patent/JP2012190731A/en
Application granted granted Critical
Publication of JP5734708B2 publication Critical patent/JP5734708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high capacity, a high level of safety, excellent high-temperature storage characteristics, and excellent cycle characteristics while using a lithium-containing complex oxide rich in Ni.SOLUTION: In a nonaqueous electrolyte secondary battery, at least a portion of a positive electrode active material contains a layered lithium/nickel/cobalt/manganese complex oxide (A) of specific composition, the titration amount of hydrochloric acid required for neutralization of an alkali in a positive electrode mixture layer is less than or equal to 14 ml, at least a portion of a binder contains 0.1-0.5 pt.mass of a polymer capable of dissolving in a solvent other than polyvinylidene fluoride with respect to 100 pts.mass of the positive electrode active material, and a nonaqueous electrolyte contains cyclohexylbenzene having a percentage of 0.2 to 1.5 mass% with respect to the total mass of the solvent in the nonaqueous electrolyte.

Description

本発明は、Ni(ニッケル)量の多い正極活物質を有しつつ、高い安全性と高温貯蔵特性を備えた非水電解液二次電池と、その製造方法に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery having high safety and high-temperature storage characteristics while having a positive electrode active material with a large amount of Ni (nickel), and a method for producing the same.

近年、二次電池は、パソコンや携帯電話などの電源として、または電気自動車や出力貯蔵用の電源として、なくてはならない重要な構成要素の一つとなっている。そして、特に、携帯電話をはじめ、携帯ゲーム機、PDAなどの小型の移動体電子機器用途において、更なる小型化、軽量化が求められている。しかしながら、これらの機器は、液晶表示パネルのバックライトや描画制御に消費される電力が高いことや、二次電池の容量が現状ではまだ不十分であることなどから、システムのコンパクト化、軽量化が難しい状況にある。そのため、電力容量、特に単電池の電圧が3.3V以上における放電容量の増大が急務となっている。   2. Description of the Related Art In recent years, secondary batteries have become one of the essential components that are indispensable as power sources for personal computers and mobile phones, and as power sources for electric vehicles and output storage. In particular, there is a demand for further miniaturization and weight reduction in small mobile electronic devices such as mobile phones, portable game machines, and PDAs. However, these devices are more compact and lighter due to the high power consumed by the backlight and drawing control of the liquid crystal display panel and the secondary battery capacity is still insufficient. Is in a difficult situation. Therefore, there is an urgent need to increase the power capacity, particularly the discharge capacity when the voltage of the unit cell is 3.3 V or higher.

リチウムイオン電池などの非水電解液二次電池で使用されている正極は、例えば、正極活物質、導電助剤および結着剤にN−メチル−2−ピロリドン(NMP)などの有機溶剤を加えて混合することにより、ペースト状などの正極合剤層形成用スラリーを調製し、この正極合剤層形成用スラリーを集電体となる導電性基体の表面に塗布し、溶剤を乾燥除去すると共にプレス処理などを施し、厚みや密度の調整された正極合剤層を形成する工程を経て作製される。   A positive electrode used in a non-aqueous electrolyte secondary battery such as a lithium ion battery includes, for example, an organic solvent such as N-methyl-2-pyrrolidone (NMP) added to a positive electrode active material, a conductive additive, and a binder. To prepare a slurry for forming a positive electrode mixture layer, such as a paste, and applying the slurry for forming a positive electrode mixture layer on the surface of a conductive substrate serving as a current collector, and drying and removing the solvent. It is manufactured through a step of forming a positive electrode mixture layer having a thickness and density adjusted by pressing or the like.

このような正極を有する非水電解液二次電池の高容量化を達成する方法としては、例えば、正極の密度(正極合剤層の密度)を高めて、正極における正極活物質の充填量を増加させる方法や、充電電圧を高める方法などがある。しかしながら、前者の方法では、正極合剤層への電解液の浸透性が低下して、電池の製造上の問題や特性面の低下など不具合が発生する。更に後者の方法では、高電圧充電を伴う電池の安全性の低下などの問題がある。   As a method for achieving a higher capacity of the non-aqueous electrolyte secondary battery having such a positive electrode, for example, the density of the positive electrode (the density of the positive electrode mixture layer) is increased and the filling amount of the positive electrode active material in the positive electrode is increased. There are a method of increasing and a method of increasing the charging voltage. However, in the former method, the permeability of the electrolyte solution into the positive electrode mixture layer is lowered, and problems such as battery manufacturing problems and characteristic deteriorations occur. Furthermore, the latter method has problems such as a decrease in battery safety associated with high voltage charging.

また、非水電解液二次電池の正極活物質には、リチウム(Li)とコバルト(Co)とを含有するリチウム・コバルト複合酸化物が汎用されているが、これよりも単位質量あたりの容量が大きいNiを添加したリチウム・ニッケル・コバルト複合酸化物を正極活物質に用いることで、電池の高容量化を図ることが検討されている。   In addition, lithium-cobalt composite oxide containing lithium (Li) and cobalt (Co) is widely used as the positive electrode active material of the non-aqueous electrolyte secondary battery, but the capacity per unit mass is more than this. The use of lithium / nickel / cobalt composite oxides with large Ni added as the positive electrode active material has been studied to increase the capacity of the battery.

しかしながら、リチウム・ニッケル・コバルト複合酸化物のようにNi量の多いリチウム含有複合酸化物は、合成時の不純物として水酸化リチウムや炭酸リチウムといったアルカリが混入しやすく、これらが電池の化成時や充電時に分解して炭酸ガスや水素ガスが発生し、電池膨れの原因となる。また、リチウム・ニッケル・コバルト複合酸化物のようなNi量の多いリチウム含有複合酸化物は、充電時のLiイオン引き抜き量が多く、そのために電池の高容量化を図り得る一方で、構造的に不安定であり、例えば電池が短絡して発熱した場合に分解し、酸素を放出してしまうため、これによる安全性の問題が生じやすい。   However, lithium-containing composite oxides with a large amount of Ni, such as lithium / nickel / cobalt composite oxides, are liable to be mixed with alkalis such as lithium hydroxide and lithium carbonate as impurities during synthesis. Sometimes it decomposes and generates carbon dioxide and hydrogen gas, which causes battery swelling. In addition, lithium-containing composite oxides with a large amount of Ni, such as lithium-nickel-cobalt composite oxides, have a large amount of Li ion extraction during charging, which can increase the capacity of the battery, but structurally It is unstable, for example, when the battery is short-circuited and generates heat, it decomposes and releases oxygen, which is likely to cause a safety problem.

こうした問題を回避する技術の検討もなされている。例えば、特許文献1には、正極活物質の一部にNi量の多いリチウム含有複合酸化物を使用しつつ、正極活物質全体のアルカリ量を低減して構成した正極や、この正極を用いた非水電解液二次電池が提案されている。   Techniques for avoiding such problems are also being studied. For example, Patent Document 1 uses a positive electrode configured by reducing the alkali amount of the entire positive electrode active material while using a lithium-containing composite oxide having a large amount of Ni as a part of the positive electrode active material, and this positive electrode. Nonaqueous electrolyte secondary batteries have been proposed.

特許文献1に記載の技術によれば、正極活物質中のアルカリに起因する電池膨れの問題を回避して高温貯蔵特性に優れ、また安全性も高めた非水電解液二次電池を得ることができる。   According to the technique described in Patent Document 1, a non-aqueous electrolyte secondary battery having excellent high-temperature storage characteristics and improved safety by avoiding the problem of battery swelling caused by alkali in the positive electrode active material is obtained. Can do.

特開2009−151959号公報JP 2009-151959 A

ところで、非水電解液二次電池の今後の用途展開の際に、従来にも増して高い安全性が要求されることも予想され、その場合に備えて、高い高温貯蔵特性とともに、より高い安全性を確保し得る技術の開発も求められる。   By the way, when future applications of non-aqueous electrolyte secondary batteries are deployed, it is expected that higher safety will be required than before, and in preparation for that, higher safety and higher safety are also required. The development of technology that can ensure safety is also required.

本発明は、前記事情に鑑みてなされたものであり、その目的は、Ni量の多いリチウム含有複合酸化物を使用しつつ、高い安全性と高温貯蔵特性とを備えた非水電解液二次電池と、その製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to use a non-aqueous electrolyte secondary solution having high safety and high-temperature storage characteristics while using a lithium-containing composite oxide with a large amount of Ni. It is in providing a battery and its manufacturing method.

前記目的を達成し得た本発明の非水電解液二次電池は、正極活物質、導電助剤および結着剤を含有する正極合剤層を集電体の片面または両面に有する正極と、負極と、セパレータと、非水電解液とを備えた非水電解液二次電池であって、前記正極活物質の少なくとも一部に、一般式LiNiCo(1−x−y−z)Mn (0.5≦x≦0.9、0.005≦y≦0.3、0.003≦z≦0.05であり、元素MはLi、Ni、CoおよびMn以外の金属元素であって、Mg、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素を含む)で表される層状リチウム・ニッケル・コバルト・マンガン複合酸化物(A)を含有しており、下記の中和滴定法により求められる前記正極合剤層中のアルカリの中和に必要な塩酸の滴定量が14ml以下であり、前記結着剤の少なくとも一部に、ポリフッ化ビニリデン以外の溶媒に溶解可能なポリマーを含有しており、前記溶媒に溶解可能なポリマーの含有量が、正極活物質100質量部に対して0.1〜0.5質量部であり、前記非水電解液に、シクロヘキシルベンゼンを非水電解液の溶媒全量中0.2〜1.5質量%の量で含有するものを用いたことを特徴とするものである。 The non-aqueous electrolyte secondary battery of the present invention that has achieved the above-mentioned object is a positive electrode having a positive electrode mixture layer containing a positive electrode active material, a conductive additive and a binder on one side or both sides of a current collector, A non-aqueous electrolyte secondary battery including a negative electrode, a separator, and a non-aqueous electrolyte, wherein at least a part of the positive electrode active material has a general formula LiNi x Co (1-xyz) Mn y M 1 z O 2 (0.5 ≦ x ≦ 0.9, 0.005 ≦ y ≦ 0.3, 0.003 ≦ z ≦ 0.05, and the element M 1 is Li, Ni, Co, and Mn. And includes at least one element selected from the group consisting of Mg, Al, Ti, Sr, Zr, Nb, Ag, and Ba). Before containing complex oxide (A) and determined by the following neutralization titration method The titration amount of hydrochloric acid necessary for neutralization of alkali in the positive electrode mixture layer is 14 ml or less, and at least a part of the binder contains a polymer soluble in a solvent other than polyvinylidene fluoride, The content of the polymer that can be dissolved in the solvent is 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the positive electrode active material, and cyclohexylbenzene is added to the nonaqueous electrolytic solution in the total amount of the solvent in the nonaqueous electrolytic solution. A medium containing 0.2 to 1.5% by mass is used.

前記中和滴定法:正極から採取し、約20.0gに計り取った正極合剤層と、イオン交換法によって精製されたpHが7で電気伝導度が2μS/cm以下の水100mlとを入れた容器内に窒素ガスを充満させてから、前記容器を密封し、マグネティックスターラで60分撹拌しながら前記容器内の水に前記正極合剤層を浸潰させる。その後、前記容器内の水と正極合剤層との混合物をろ過して得られる上澄み液25.0mlを計り取り、ここに0.1質量%濃度のメチルオレンジ溶液を数滴加えて試料溶液を調製し、マグネティックスターラで撹拌しながら前記試料溶液に0.02mol/lの塩酸を間欠滴定し、前記試料溶液の色が黄色から橙色に変わるまでに前記試料溶液に投入した塩酸の量を、前記正極合剤層中のアルカリの中和に必要な塩酸の滴定量とする。   Neutralization titration method: A positive electrode mixture layer collected from a positive electrode and weighed to about 20.0 g, and 100 ml of water having a pH of 7 and an electric conductivity of 2 μS / cm or less purified by an ion exchange method are added. After filling the container with nitrogen gas, the container is sealed, and the positive electrode mixture layer is immersed in water in the container while stirring with a magnetic stirrer for 60 minutes. Thereafter, 25.0 ml of the supernatant obtained by filtering the mixture of water and the positive electrode mixture layer in the container is weighed, and a few drops of a 0.1% by weight methyl orange solution are added to the sample solution. The sample solution was intermittently titrated with 0.02 mol / l hydrochloric acid while stirring with a magnetic stirrer, and the amount of hydrochloric acid added to the sample solution until the color of the sample solution changed from yellow to orange was measured. The titration amount of hydrochloric acid required for neutralization of alkali in the positive electrode mixture layer is used.

また、本発明の製造方法は、前記本発明の非水電解液二次電池を製造する方法であって、正極活物質、導電助剤、結着剤および溶媒を含有する正極合剤層形成用スラリーを調製し、前記正極合剤層形成用スラリーを用いて、集電体の片面または両面に正極合剤層を有する正極を作製する工程と、シクロヘキシルベンゼンの含有量が、溶媒全量中に0.1〜1.5質量%の非水電解液を調製する工程と、前記正極、負極、セパレータおよび前記非水電解液を用いて電池を組み立てる工程とを少なくとも有しており、前記正極合剤層形成用スラリーの調製にあたり、結着剤であるポリフッ化ビニリデン以外の溶媒に溶解可能なポリマーを、前記溶媒に溶解させた溶液を使用することを特徴とする。   The manufacturing method of the present invention is a method for manufacturing the non-aqueous electrolyte secondary battery of the present invention, for forming a positive electrode mixture layer containing a positive electrode active material, a conductive additive, a binder and a solvent. A step of preparing a positive electrode having a positive electrode mixture layer on one or both sides of the current collector using the positive electrode mixture layer forming slurry, and the content of cyclohexylbenzene is 0 in the total amount of the solvent The step of preparing a non-aqueous electrolyte of 1 to 1.5% by mass and the step of assembling a battery using the positive electrode, the negative electrode, the separator and the non-aqueous electrolyte, and the positive electrode mixture In preparing the layer forming slurry, a solution in which a polymer that can be dissolved in a solvent other than polyvinylidene fluoride as a binder is dissolved in the solvent is used.

本発明によれば、Ni量の多いリチウム含有複合酸化物を使用しつつ、高い安全性と高温貯蔵特性とを備えた非水電解液二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous-electrolyte secondary battery provided with high safety | security and a high temperature storage characteristic can be provided, using lithium containing complex oxide with much Ni amount.

本発明の非水電解液二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。It is a figure which shows typically an example of the nonaqueous electrolyte secondary battery of this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view. 図1に示す非水電解液二次電池の斜視図である。It is a perspective view of the nonaqueous electrolyte secondary battery shown in FIG.

本発明の非水電解液二次電池に係る非水電解液には、例えば、非水系溶媒中に、リチウム塩を溶解させた溶液を使用する。そして、前記非水電解液には、シクロヘキシルベンゼンを含有させる。これにより、電池の高温貯蔵特性および安全性を高めることができる。   For the non-aqueous electrolyte solution according to the non-aqueous electrolyte secondary battery of the present invention, for example, a solution in which a lithium salt is dissolved in a non-aqueous solvent is used. The non-aqueous electrolyte contains cyclohexylbenzene. Thereby, the high temperature storage characteristic and safety | security of a battery can be improved.

電池を充電状態で高温下に貯蔵した際には、非水電解液中のシクロヘキシルベンゼンが正極側で分解して、その分解生成物が正極表面で皮膜を形成し、これにより正極合剤層中のアルカリの分解によるガス発生を抑制でき、電池の膨れを抑えることができると考えられる。   When the battery is stored in a charged state at a high temperature, the cyclohexylbenzene in the non-aqueous electrolyte decomposes on the positive electrode side, and the decomposition product forms a film on the positive electrode surface. It is considered that gas generation due to decomposition of alkali can be suppressed and swelling of the battery can be suppressed.

また、電池が非常に高い温度に曝されたり、過充電状態となったり、釘などの金属製の異物が刺さったり、短絡したりした場合にも、内部の温度上昇によってシクロヘキシルベンゼンが分解し、その分解生成物が正極表面に皮膜を形成することで内部抵抗が増大して非水電解液との反応を抑制するため、電池の熱暴走や発火、破裂などが抑えられて、安全性が向上すると考えられる。   Also, when the battery is exposed to a very high temperature, overcharged, or a metal foreign object such as a nail is stabbed or short-circuited, the cyclohexylbenzene decomposes due to the internal temperature rise, The decomposition product forms a film on the surface of the positive electrode to increase the internal resistance and suppress the reaction with the non-aqueous electrolyte, thereby suppressing the thermal runaway, ignition, and explosion of the battery, improving safety. I think that.

電池に使用する非水電解液におけるシクロヘキシルベンゼンの含有量は、前記の各効果を良好に確保する観点から、非水電解液の溶媒全量中、0.2質量%以上、好ましくは0.3質量%以上とする。ただし、非水電解液中のシクロヘキシルベンゼンは、電池の通常の使用時においても徐々に分解して、正極の抵抗増大やセパレータの目詰まりを引き起こし、これによって電池の充放電サイクル特性や負荷特性といった電池特性を低下させる原因となることがある。よって、本発明の電池では、使用する非水電解液におけるシクロヘキシルベンゼンの含有量を、非水電解液の溶媒全量中、1.5質量%以下、好ましくは1.0質量%以下とし、更に後述するように、正極合剤層に係る結着剤の一部に、溶媒に溶解可能なポリマー(ポリフッ化ビニリデン以外のポリマー)を特定量で使用することで、シクロヘキシルベンゼンによる電池特性の低下を抑制している。   The content of cyclohexylbenzene in the nonaqueous electrolytic solution used in the battery is 0.2% by mass or more, preferably 0.3% in the total amount of the solvent of the nonaqueous electrolytic solution, from the viewpoint of ensuring the above-mentioned effects satisfactorily. % Or more. However, cyclohexylbenzene in the non-aqueous electrolyte gradually decomposes even during normal use of the battery, causing an increase in the resistance of the positive electrode and clogging of the separator, thereby causing charge / discharge cycle characteristics and load characteristics of the battery. It may cause deterioration of battery characteristics. Therefore, in the battery of the present invention, the content of cyclohexylbenzene in the nonaqueous electrolyte to be used is 1.5% by mass or less, preferably 1.0% by mass or less, based on the total amount of the solvent of the nonaqueous electrolyte, and further described below. As such, by using a specific amount of a polymer (polymer other than polyvinylidene fluoride) that can be dissolved in a solvent as a part of the binder related to the positive electrode mixture layer, the deterioration of battery characteristics due to cyclohexylbenzene is suppressed. is doing.

非水電解液に係る溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン(γ-BL)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン、ジメチルスルフォキシド(DMSO)、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド(DMF)、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。   Examples of the solvent for the non-aqueous electrolyte include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), γ -Butyrolactone (γ-BL), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethyl sulfoxide (DMSO), 1,3-dioxolane, formamide, dimethylformamide (DMF), Dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran An aprotic organic solvent such as ethylene derivatives, diethyl ether, and 1,3-propane sultone can be used singly or as a mixed solvent in which two or more are mixed.

非水電解液に係る無機イオン塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO[ここでRfはフルオロアルキル基]などのリチウム塩から選ばれる少なくとも1種が挙げられる。これらのリチウム塩の非水電解液中の濃度としては、0.6〜1.8mol/lとすることが好ましく、0.9〜1.6mol/lとすることがより好ましい。 The inorganic ion salt according to the non-aqueous electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] At least one selected from the group consisting of: The concentration of these lithium salts in the non-aqueous electrolyte is preferably 0.6 to 1.8 mol / l, and more preferably 0.9 to 1.6 mol / l.

本発明の非水電解液二次電池に係る正極は、正極活物質、導電助剤および結着剤などを含有する正極合剤層を、集電体の片面または両面に有する構造のものである。   The positive electrode according to the non-aqueous electrolyte secondary battery of the present invention has a structure having a positive electrode mixture layer containing a positive electrode active material, a conductive additive and a binder on one side or both sides of a current collector. .

本発明の電池に係る正極は、正極活物質の少なくとも一部に、下記一般式(1)で表される層状リチウム・ニッケル・コバルト・マンガン複合酸化物(A)[以下、単に化合物(A)という]を含有している。
LiNiCo(1−x−y−z)Mn (1)
[前記一般式(1)中、0.5≦x≦0.9、0.005≦y≦0.3、0.003≦z≦0.05であり、元素MはLi、Ni、CoおよびMn以外の金属元素であって、Mg、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素を含む。]
In the positive electrode according to the battery of the present invention, a layered lithium / nickel / cobalt / manganese composite oxide (A) represented by the following general formula (1) [hereinafter simply referred to as compound (A)] Contains].
LiNi x Co (1-x- y-z) Mn y M 1 z O 2 (1)
[In the general formula (1), 0.5 ≦ x ≦ 0.9, 0.005 ≦ y ≦ 0.3, 0.003 ≦ z ≦ 0.05, and the element M 1 is Li, Ni, Co And at least one element selected from the group consisting of Mg, Al, Ti, Sr, Zr, Nb, Ag, and Ba. ]

化合物(A)において、Niは容量向上に寄与する成分であり、前記一般式(1)におけるNiの量xは、Niによる容量向上効果を確保する観点から、0.5以上、好ましくは0.75以上とする。ただし、化合物(A)中のNiの量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(1)におけるNiの量xは、0.9以下、好ましくは0.88以下とする。   In the compound (A), Ni is a component that contributes to the capacity improvement, and the amount x of Ni in the general formula (1) is 0.5 or more, preferably 0. 75 or more. However, if the amount of Ni in the compound (A) is too large, the amount of other elements decreases and the effects of these cannot be ensured satisfactorily. Therefore, the amount x of Ni in the general formula (1) is , 0.9 or less, preferably 0.88 or less.

また、化合物(A)において、結晶格子中にMnを存在させることで、Niとともに層状の構造を安定化させ、化合物(A)の熱的安定性を向上させ得ることから、安全性の高い電池を構成可能な正極を得ることができる。前記一般式(1)におけるMnの量yは、前記の電池の安全性向上効果を確保する観点から、0.005以上、好ましくは0.01以上とする。化合物(A)中のMnの量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(1)におけるMnの量yは、0.3以下、好ましくは0.2以下とする。   In addition, since Mn is present in the crystal lattice in the compound (A), the layered structure can be stabilized together with Ni, and the thermal stability of the compound (A) can be improved. Can be obtained. The amount y of Mn in the general formula (1) is 0.005 or more, preferably 0.01 or more, from the viewpoint of ensuring the effect of improving the safety of the battery. If the amount of Mn in the compound (A) is too large, the amount of other elements decreases, and the effects of these cannot be secured satisfactorily. Therefore, the amount y of Mn in the general formula (1) is 0. .3 or less, preferably 0.2 or less.

更に、化合物(A)は、元素Mとして、Li、Ni、CoおよびMn以外の金属元素であって、Mg、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素を含んでおり、これらの元素を含有することによっても、その安定性を高めて、安全性の高い電池を構成可能な正極を得ることができる。元素Mによるこのような効果を良好に確保する観点から、前記一般式(1)における元素Mの量zは、0.003以上、好ましくは0.01以上とする。ただし、化合物(A)中の元素Mの量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(1)における元素Mの量zは、0.05以下、好ましくは0.04以下とする。 Further, compound (A), as the element M 1, Li, Ni, a metal element other than Co and Mn, are selected Mg, Al, Ti, Sr, Zr, Nb, from the group consisting of Ag and Ba It contains at least one element, and by containing these elements, the stability can be improved and a positive electrode capable of constituting a highly safe battery can be obtained. Such effect element M 1 from the viewpoint of satisfactorily ensuring the amount z of the element M 1 in the general formula (1) is 0.003 or higher, preferably 0.01 or more. However, if the amount of the element M 1 in the compound (A) is too large, the amount of other elements decreases, and the effects of these cannot be secured satisfactorily. Therefore, the element M 1 in the general formula (1) The amount z of is 0.05 or less, preferably 0.04 or less.

また、化合物(A)はCoを含有しているが、その結晶格子中にCoを存在させると、電池の充放電でのLiの脱離および挿入による化合物(A)の相転移から起こる不可逆反応を緩和でき、化合物(A)の結晶構造の可逆性を高めることができるため、充放電サイクル寿命の長い電池を構成可能な正極を得ることができる。前記一般式(1)において、Coの量は「1−x−y−z」で表されるが、具体的には、0.07〜0.3であることが好ましい。   Further, the compound (A) contains Co, but if Co is present in the crystal lattice, an irreversible reaction occurs from the phase transition of the compound (A) due to the detachment and insertion of Li during charge / discharge of the battery. Can be relaxed and the reversibility of the crystal structure of the compound (A) can be increased, so that a positive electrode capable of constituting a battery having a long charge / discharge cycle life can be obtained. In the general formula (1), the amount of Co is represented by “1-xyz”, and specifically, 0.07 to 0.3 is preferable.

化合物(A)のようなNi量の多いリチウム含有複合酸化物は、前記の通り、合成時の不純物として多量のアルカリを含有していることが通常であるが、本発明の電池に係る正極では、前記の中和滴定法により求められる正極合剤層中のアルカリの中和に必要な塩酸の滴定量が14ml以下となるように、正極合剤層中のアルカリ量を制限し、シクロヘキシルベンゼンを特定量で含有する前記の非水電解液の使用と合わせて、充電状態の電池の高温下での膨れを抑制し、電池の高温貯蔵特性を高めている。前記の中和滴定法により求められる正極合剤層中のアルカリの中和に必要な塩酸の滴定量は、12ml以下であることがより好ましい。   As described above, a lithium-containing composite oxide with a large amount of Ni, such as compound (A), usually contains a large amount of alkali as an impurity during synthesis. However, in the positive electrode according to the battery of the present invention, The amount of alkali in the positive electrode mixture layer is limited so that the titration amount of hydrochloric acid required for neutralization of alkali in the positive electrode mixture layer obtained by the neutralization titration method is 14 ml or less, and cyclohexylbenzene is added. Together with the use of the non-aqueous electrolyte contained in a specific amount, the battery in a charged state is prevented from being swollen at high temperature, and the high-temperature storage characteristics of the battery are enhanced. The titration amount of hydrochloric acid required for neutralization of alkali in the positive electrode mixture layer determined by the neutralization titration method is more preferably 12 ml or less.

正極合剤層中のアルカリは正極活物質に由来するものであるため、正極に使用する正極活物質中のアルカリ量を低減することで、正極合剤層中のアルカリ量を前記の値に調整することができる。   Since the alkali in the positive electrode mixture layer is derived from the positive electrode active material, the alkali amount in the positive electrode mixture layer is adjusted to the above value by reducing the alkali amount in the positive electrode active material used for the positive electrode. can do.

正極活物質中のアルカリ量は、例えば、正極活物質を水洗によって水酸化リチウムや炭酸リチウムといったアルカリを除去したり、アルカリ量の多い正極活物質[例えば化合物(A)]と、アルカリ量の少ない正極活物質とを混合したりして、低減することができる。   The amount of alkali in the positive electrode active material is such that, for example, the positive electrode active material is washed with water to remove alkali such as lithium hydroxide or lithium carbonate, or the positive electrode active material [for example, compound (A)] having a large amount of alkali and the amount of alkali is small. It can be reduced by mixing with a positive electrode active material.

例えば、化合物(A)においても、Niの量が特に多いものでは、アルカリ量も多いため、水洗を行ってアルカリを除去することが好ましいが、この場合、水洗を複数回繰り返し行わないと、アルカリ量を十分に低減できない一方で、水洗の回数を増やすと化合物(A)が失活する虞がある。よって、Niの量が特に多い化合物(A)の場合[例えば、前記一般式(1)におけるNiの量xが、0.8〜0.9程度]には、1〜2回程度水洗を繰り返して、アルカリ量をある程度減らした上で、アルカリ量の少ない別の正極活物質(リチウム含有複合酸化物)と混合し、正極活物質全量中のアルカリ量を低減して使用することが好ましい。   For example, in the compound (A), when the amount of Ni is particularly large, the amount of alkali is also large. Therefore, it is preferable to remove the alkali by rinsing with water. While the amount cannot be sufficiently reduced, the compound (A) may be deactivated when the number of washings is increased. Therefore, in the case of the compound (A) having a particularly large amount of Ni [for example, the amount x of Ni in the general formula (1) is about 0.8 to 0.9], washing with water is repeated about once or twice. Thus, it is preferable to reduce the alkali amount in the total amount of the positive electrode active material by mixing with another positive electrode active material (lithium-containing composite oxide) having a small alkali amount after reducing the alkali amount to some extent.

他方、化合物(A)のうち、Niの量の少ないもの[例えば、前記一般式(1)におけるNiの量xが、0.5〜0.7程度]は、アルカリ量も比較的少ないため、1回程度の水洗によってアルカリ量を前記の値に調整でき、失活も抑制できるため、化合物(A)のみを正極活物質として使用してもよく、また、水洗を行うことなく、アルカリ量の少ない別の正極活物質(リチウム含有複合酸化物)と混合し、正極活物質全量中のアルカリ量を低減して使用してもよい。   On the other hand, among compounds (A), those with a small amount of Ni [for example, the amount x of Ni in the general formula (1) is about 0.5 to 0.7] have a relatively small amount of alkali. The amount of alkali can be adjusted to the above value by washing once with water, and deactivation can be suppressed. Therefore, only the compound (A) may be used as the positive electrode active material, and the amount of alkali can be adjusted without washing with water. It may be used by mixing with a small amount of another positive electrode active material (lithium-containing composite oxide) and reducing the amount of alkali in the total amount of the positive electrode active material.

化合物(A)と共に別の正極活物質を使用する場合、このような正極活物質には、従来から知られている非水電解液二次電池の正極活物質として利用されているリチウム含有複合酸化物のうち、アルカリ量が少ないものであれば、特に制限なく使用できるが、下記一般式(5)で表される層状リチウム・コバルト複合酸化物(B)[以下、「化合物(B)」という]を使用することが好ましい。
LiNiCo(1−a−b−c)Mn (2)
[前記一般式(2)中、0≦a≦0.03、0≦b≦0.02、0.002≦c≦0.02であり、元素MはLi、Ni、CoおよびMn以外の金属元素であって、Mg、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素を含む。]
When another positive electrode active material is used together with the compound (A), such a positive electrode active material includes a lithium-containing composite oxide that has been used as a positive electrode active material of a conventionally known non-aqueous electrolyte secondary battery. Of these products, those having a small amount of alkali can be used without particular limitation, but the layered lithium-cobalt composite oxide (B) represented by the following general formula (5) [hereinafter referred to as “compound (B)” ] Is preferably used.
LiNi a Co (1- abc ) Mn b M 2 c O 2 (2)
[In the general formula (2), 0 ≦ a ≦ 0.03, 0 ≦ b ≦ 0.02, 0.002 ≦ c ≦ 0.02, and the element M 2 is other than Li, Ni, Co, and Mn. It is a metal element and contains at least one element selected from the group consisting of Mg, Al, Ti, Sr, Zr, Nb, Ag, and Ba. ]

化合物(B)において、NiおよびCoは容量向上に寄与する成分であるが、前記の通り、Niの量を多くしすぎると、例えば、不純物であるアルカリの量が多くなりすぎる虞があることから、前記一般式(2)におけるNiの量aは、0.03以下であることが好ましく、0.02以下であることがより好ましい。また、化合物(B)はNiを含有していなくてもよい[すなわち、前記一般式(2)におけるNiの量aが0でもよい]。   In the compound (B), Ni and Co are components that contribute to capacity improvement. However, as described above, if the amount of Ni is excessively increased, for example, the amount of alkali as an impurity may be excessively increased. The amount a of Ni in the general formula (2) is preferably 0.03 or less, and more preferably 0.02 or less. Further, the compound (B) may not contain Ni [that is, the amount a of Ni in the general formula (2) may be 0].

また、化合物(B)において、結晶格子中にMnを存在させると、Niとともに層状の構造を安定化させ、化合物(B)の熱的安定性を向上させ得ることから、より安全性の高い電池を構成可能な正極を得ることができる。前記一般式(2)におけるMnの量bは、0.02以下であることが好ましく、0.015以下であることがより好ましい。また、前記一般式(2)におけるMnの量bは、0であってもよいが、前記の効果を確保する観点からは、0.005以上であることが好ましい。   Further, in the compound (B), when Mn is present in the crystal lattice, the layered structure can be stabilized together with Ni, and the thermal stability of the compound (B) can be improved. Can be obtained. The amount b of Mn in the general formula (2) is preferably 0.02 or less, and more preferably 0.015 or less. Moreover, although the amount b of Mn in the said General formula (2) may be 0, it is preferable that it is 0.005 or more from a viewpoint of ensuring the said effect.

更に、化合物(B)は、元素Mとして、Li、Ni、CoおよびMn以外の金属元素であって、Mg、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素を含んでおり、これらの元素を含有することによっても、その安定性を高めることができるため、化合物(B)も用いて構成される電池の安全性をより高めることが可能となる。元素Mによるこのような効果を良好に確保する観点から、前記一般式(2)における元素Mの量cは、0.002以上、好ましくは0.004以上とする。ただし、化合物(B)中の元素Mの量が多すぎると、他の元素の量が少なくなって、これらによる効果を良好に確保し得ないため、前記一般式(2)における元素Mの量cは、0.02以下であることが好ましく、0.015以下であることがより好ましい。 Furthermore, compound (B), as the element M 2, Li, Ni, a metal element other than Co and Mn, are selected Mg, Al, Ti, Sr, Zr, Nb, from the group consisting of Ag and Ba Since at least one kind of element is contained, and the inclusion of these elements can increase the stability thereof, it is possible to further improve the safety of the battery constituted using the compound (B). It becomes. This effect from the viewpoint of satisfactorily ensuring by elements M 2, the amount c of the element M 2 in the formula (2) is 0.002 or more, preferably 0.004 or more. However, if the amount of the element M 2 in the compound (B) is too large, the amount of other elements decreases, and the effects of these cannot be ensured satisfactorily. Therefore, the element M 2 in the general formula (2) Is preferably 0.02 or less, more preferably 0.015 or less.

また、前記の通り、化合物(B)においてCoは容量向上に寄与する成分であり、前記一般式(2)において、Coの量は「1−a−b−c」で表されるが、具体的には、0.980〜0.998であることが好ましい。   In addition, as described above, in the compound (B), Co is a component that contributes to an increase in capacity. In the general formula (2), the amount of Co is represented by “1-abc”. Specifically, it is preferably 0.980 to 0.998.

例えば、化合物(A)と化合物(B)とを併用する場合、それらの比率は、正極合剤層中のアルカリ量を前記の値に調整できる範囲で設定すればよいが、化合物(A)の使用による効果(特に高容量化の効果)を良好に確保する観点からは、正極活物質を100質量%としたときに、化合物(A)の量を、10質量%以上とすることが好ましく、20質量%以上とすることがより好ましい。   For example, when the compound (A) and the compound (B) are used in combination, their ratio may be set within a range in which the alkali amount in the positive electrode mixture layer can be adjusted to the above value. From the viewpoint of favorably securing the effect of use (particularly the effect of increasing the capacity), when the positive electrode active material is 100% by mass, the amount of the compound (A) is preferably 10% by mass or more, More preferably, the content is 20% by mass or more.

また、前記の通り、正極活物質には、化合物(A)のみを使用してもよいが、化合物(A)と化合物(B)とを併用する場合には、正極活物質を100質量%としたときに、化合物(A)の量を、30質量%以下とすることが好ましく、25質量%以下とすることがより好ましい。   Further, as described above, only the compound (A) may be used as the positive electrode active material, but when the compound (A) and the compound (B) are used in combination, the positive electrode active material is 100% by mass. The amount of the compound (A) is preferably 30% by mass or less, and more preferably 25% by mass or less.

本発明の電池に係る正極は、正極合剤層の結着剤の少なくとも一部に、ポリフッ化ビニリデン(PVDF)以外の、溶媒(正極合剤層を形成するためのスラリーに使用する溶媒。)に溶解可能なポリマー(以下、単に「溶媒に溶解可能なポリマー」と省略する場合がある。)を含有している。   In the positive electrode according to the battery of the present invention, a solvent other than polyvinylidene fluoride (PVDF) is used in at least a part of the binder of the positive electrode mixture layer (a solvent used in the slurry for forming the positive electrode mixture layer). (Hereinafter, simply referred to as “polymer soluble in a solvent”).

前記溶媒に溶解可能なポリマーは、正極合剤層内において、正極活物質粒子の表面に皮膜を形成する。この皮膜によって、電池の通常の使用条件下(電池が通常使用される充放電条件下)における非水電解液中のシクロヘキシルベンゼンの分解反応が抑制される。その一方で、正極活物質粒子の表面に形成された溶媒に溶解可能なポリマーによる皮膜は、電池の高温貯蔵時や、安全性が求められるような条件下(電池内部が異常に高温となる条件下)において、シクロヘキシルベンゼンによる正極表面の皮膜形成は阻害しない。   The polymer soluble in the solvent forms a film on the surface of the positive electrode active material particles in the positive electrode mixture layer. This film suppresses the decomposition reaction of cyclohexylbenzene in the non-aqueous electrolyte under the normal use conditions of the battery (charge / discharge conditions under which the battery is normally used). On the other hand, the film made of a polymer that can be dissolved in the solvent formed on the surface of the positive electrode active material particles is used under high temperature storage conditions of the battery or under conditions that require safety (conditions in which the battery becomes abnormally hot). In the lower part, the film formation on the positive electrode surface by cyclohexylbenzene is not inhibited.

よって、前記特定組成の化合物(A)を正極活物質に用い、更にシクロヘキシルベンゼンを特定量で含有する非水電解液を使用することに加えて、正極合剤層に係る結着剤に、PVDF以外の溶媒に溶解可能なポリマーを用いることで、通常の使用条件下における電池特性の低下を抑制しつつ、電池の高温貯蔵特性および安全性の向上を図ることができる。   Therefore, in addition to using the compound (A) having the specific composition as the positive electrode active material and further using a nonaqueous electrolytic solution containing a specific amount of cyclohexylbenzene, the binder for the positive electrode mixture layer is used as a PVDF. By using a polymer that is soluble in a solvent other than the above, it is possible to improve the high-temperature storage characteristics and safety of the battery while suppressing deterioration of the battery characteristics under normal use conditions.

なお、本発明において、結着剤として、PVDF以外の溶媒に溶解可能なポリマーを必須成分とするのは、PVDFは結着力が大きい一方で、正極合剤層を形成するための乾燥時(詳しくは後述する)に収縮して固まりやすく、正極活物質粒子の表面を被覆する作用が小さいことから、PVDFのみを結着剤に用いて正極活物質粒子の表面を良好に被覆しようとすると、多量のPVDFを使用する必要が生じ、電池容量の低下を招くからである。   In the present invention, as a binder, a polymer that can be dissolved in a solvent other than PVDF as an essential component is that PVDF has a large binding force, while drying to form a positive electrode mixture layer (details) Is likely to shrink and harden, and the action of coating the surface of the positive electrode active material particles is small. Therefore, if only PVDF is used as a binder to coat the surface of the positive electrode active material particles well, a large amount This is because it is necessary to use the PVDF, and the battery capacity is reduced.

本発明の電池に係る正極は、化合物(A)を含む正極活物質、導電助剤および溶媒に溶解可能なポリマーを含む結着剤を、溶媒に溶解または分散させて調製した正極合剤層形成用スラリーを使用し、これを集電体の表面に塗布する工程を経て製造することが一般的である。この場合、正極合剤層形成用スラリーに使用する溶媒は、例えば、N−メチル−2−ピロリドン(NMP)のような有機溶媒が好ましい。よって、溶媒に溶解可能なポリマーとしては、前記のような溶媒に溶解可能なもの、具体的には、アクリロニトリル、アクリル酸エステルおよびメタクリル酸エステルよりなる群から選択される少なくとも1種のモノマーを含む2種以上のモノマーにより形成される共重合体;水素化ニトリルゴム;フッ化ビニリデン−クロロトリフルオロエチレン共重合体(VDF−CTFE);フッ化ビニリデン−テトラフルオロエチレン共重合体(VDF−TFE);フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体(VDF−HFP−TFE);などが好ましい。溶媒に溶解可能なポリマーは、例えば前記の例示のもののうち1種のみを用いてもよく、2種以上を併用してもよい。   The positive electrode according to the battery of the present invention is a positive electrode mixture layer formed by dissolving or dispersing a positive electrode active material containing the compound (A), a conductive additive and a binder containing a polymer soluble in the solvent in the solvent. In general, it is produced through a process of using a slurry for coating and applying it to the surface of the current collector. In this case, the solvent used for the positive electrode mixture layer forming slurry is preferably an organic solvent such as N-methyl-2-pyrrolidone (NMP). Accordingly, the polymer that can be dissolved in the solvent includes those that can be dissolved in the solvent as described above, specifically, at least one monomer selected from the group consisting of acrylonitrile, acrylic acid ester, and methacrylic acid ester. Copolymer formed by two or more monomers; Hydrogenated nitrile rubber; Vinylidene fluoride-chlorotrifluoroethylene copolymer (VDF-CTFE); Vinylidene fluoride-tetrafluoroethylene copolymer (VDF-TFE) Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer (VDF-HFP-TFE); As the polymer that can be dissolved in the solvent, for example, only one of the above-described examples may be used, or two or more may be used in combination.

なお、アクリロニトリル、アクリル酸エステルおよびメタクリル酸エステルよりなる群から選択される少なくとも1種のモノマーを含む2種以上のモノマーにより形成される共重合体には、アクリロニトリル、アクリル酸エステルおよびメタクリル酸エステルのうちの2種または3種のモノマーにより形成される共重合体と、アクリロニトリル、アクリル酸エステルおよびメタクリル酸エステルのうちの1種以上と、他のモノマー[例えば、2クロロエチルビニルエーテル、メチルビニルケトン、フッ化ビニリデン(VDF)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン(TFE)など]との共重合体とが含まれる。これらのなかでも、アクリロニトリルとアクリル酸エステルとメタクリル酸エステルとの共重合体が更に好ましく、アクリロニトリルとアクリル酸エステルとメタクリル酸エステルとの組成比(質量比)を1:2:1や1:2:2として重合されたものが特に好ましい。   The copolymer formed by two or more monomers including at least one monomer selected from the group consisting of acrylonitrile, acrylic acid ester and methacrylic acid ester includes acrylonitrile, acrylic acid ester and methacrylic acid ester. A copolymer formed by two or three of these monomers, one or more of acrylonitrile, acrylic acid ester and methacrylic acid ester, and other monomers [for example, 2 chloroethyl vinyl ether, methyl vinyl ketone, Vinylidene fluoride (VDF), chlorotrifluoroethylene (CTFE), trifluoroethylene (TFE), and the like]. Among these, a copolymer of acrylonitrile, acrylic acid ester, and methacrylic acid ester is more preferable, and the composition ratio (mass ratio) of acrylonitrile, acrylic acid ester, and methacrylic acid ester is 1: 2: 1 or 1: 2. : 2 is particularly preferred.

溶媒に溶解可能なポリマーによる前記の効果を良好に確保する観点から、溶媒に溶解可能なポリマーの量は、正極活物質100質量部に対して、0.1質量部以上、好ましくは0.2質量部以上とする。ただし、溶媒に溶解可能なポリマーの量が多すぎると、例えば、正極活物質粒子の表面に形成される前記ポリマーの皮膜が厚くなりすぎて、却って、電池特性低下の原因となる虞がある。よって、溶媒に溶解可能なポリマーの量は、正極活物質100質量部に対して、0.5質量部以下、好ましくは0.35質量部以下とする。   From the viewpoint of favorably securing the above-described effect of the polymer that can be dissolved in the solvent, the amount of the polymer that can be dissolved in the solvent is 0.1 parts by mass or more, preferably 0.2 parts by mass with respect to 100 parts by mass of the positive electrode active material. Not less than part by mass. However, if the amount of the polymer that can be dissolved in the solvent is too large, for example, the polymer film formed on the surface of the positive electrode active material particles becomes too thick, which may cause a decrease in battery characteristics. Therefore, the amount of the polymer that can be dissolved in the solvent is 0.5 parts by mass or less, preferably 0.35 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.

また、結着剤には、先に例示した溶媒に溶解可能なポリマーとともに、他の結着剤を用いてもよい。なお、本発明の電池では、電池特性を高く維持する観点から、溶媒に溶解可能なポリマーの量を前記のように制限するが、この場合、正極合剤層中における各成分の結着が不十分となる虞もあることから、正極合剤層の結着剤には、溶媒に溶解可能なポリマーと、他の結着剤とを併用することが好ましく、溶媒に溶解可能なポリマーとPVDFとを併用することがより好ましい。   In addition to the polymer that can be dissolved in the solvent exemplified above, other binders may be used as the binder. In the battery of the present invention, from the viewpoint of maintaining high battery characteristics, the amount of the polymer that can be dissolved in the solvent is limited as described above. In this case, however, the binding of each component in the positive electrode mixture layer is not possible. Since it may be sufficient, it is preferable to use a polymer that can be dissolved in a solvent and another binder in the binder of the positive electrode mixture layer. It is more preferable to use together.

溶媒に溶解可能なポリマーと、他の結着剤とを併用する場合には、溶媒に溶解可能なポリマーの量が前記の値となるようにしつつ、正極合剤層における結着剤の量(溶媒に溶解可能なポリマーと他の結着剤との合計量)を、後述する量とすることが好ましい。   In the case of using a polymer that can be dissolved in a solvent and another binder in combination, the amount of the binder in the positive electrode mixture layer ( The total amount of the polymer soluble in the solvent and the other binder is preferably set to the amount described later.

本発明の電池に係る正極に含有させる導電助剤には、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類;炭素繊維;などの炭素材料を用いることが好ましく、また、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などを用いることもできる。   Examples of the conductive additive contained in the positive electrode according to the battery of the present invention include graphites such as natural graphite (such as flake graphite) and artificial graphite; acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. It is preferable to use carbon materials such as carbon blacks; conductive fibers such as metal fibers; carbon fluorides; metal powders such as aluminum; zinc oxide; potassium titanate, etc. Conductive whiskers, conductive metal oxides such as titanium oxide, organic conductive materials such as polyphenylene derivatives, and the like can also be used.

電池に係る正極合剤層において、正極活物質の量は96.5〜98.1質量%であることが好ましく、結着剤の量は1.0〜1.5質量%であることが好ましく、導電助剤の量は0.9〜2.0質量%であることが好ましい。   In the positive electrode mixture layer according to the battery, the amount of the positive electrode active material is preferably 96.5 to 98.1% by mass, and the amount of the binder is preferably 1.0 to 1.5% by mass. The amount of the conductive auxiliary is preferably 0.9 to 2.0% by mass.

正極集電体は、構成される電池において実質上化学的に安定な電子伝導体であれば特に制限はない。例えば、集電体を構成する材料としては、アルミニウムやその合金、ステンレス鋼、ニッケルやその合金、チタンやその合金、炭素、導電性樹脂などの他に、アルミニウムまたはステンレス鋼の表面にカーボンまたはチタンを処理させたものなどが用いられる。これらの中でも、アルミニウムおよびアルミニウム合金が特に好ましい。これらの材料は表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが好ましい。集電体の形状としては、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが挙げられる。正極集電体の厚みは特に限定されないが、例えば、5〜50μmであることが好ましい。   The positive electrode current collector is not particularly limited as long as it is an electron conductor that is substantially chemically stable in the battery that is constructed. For example, as a material constituting the current collector, in addition to aluminum or its alloy, stainless steel, nickel or its alloy, titanium or its alloy, carbon, conductive resin, carbon or titanium on the surface of aluminum or stainless steel What processed this is used. Of these, aluminum and aluminum alloys are particularly preferable. These materials can also be used after oxidizing the surface. Moreover, it is preferable to give an unevenness | corrugation to the collector surface by surface treatment. Examples of the shape of the current collector include films, sheets, nets, punched materials, lath bodies, porous bodies, foamed bodies, and molded bodies of fiber groups, in addition to foils. Although the thickness of a positive electrode electrical power collector is not specifically limited, For example, it is preferable that it is 5-50 micrometers.

正極を製造するにあたっては、例えば、正極活物質、結着剤および導電助剤を溶媒に溶解または分散させた正極合剤層形成用スラリーを調製し、これを正極集電体の片面または両面に塗布し、例えば乾燥してスラリー中の溶媒を除去し、更に必要に応じてカレンダー成形などのプレス処理を施して正極合剤層を形成する方法が採用される。ただし、本発明の電池に係る正極は、他の方法により製造してもよい。   In producing the positive electrode, for example, a positive electrode mixture layer forming slurry in which a positive electrode active material, a binder and a conductive additive are dissolved or dispersed in a solvent is prepared, and this is applied to one or both sides of the positive electrode current collector. For example, a method of removing the solvent in the slurry by drying and applying a press treatment such as calendering as necessary to form a positive electrode mixture layer is employed. However, the positive electrode according to the battery of the present invention may be manufactured by other methods.

なお、正極合剤層形成用スラリーの調製に際しては、溶媒に溶解可能なゴムを前記溶媒(スラリーの溶媒)に溶解させた溶液を用いることが好ましい。すなわち、溶媒に溶解可能なポリマーの溶液を、正極活物質や導電助剤などと混合して、正極合剤層形成用スラリーを調製することが好ましい。この場合には、正極活物質粒子の表面に、溶媒に溶解可能なゴムの皮膜を、より良好に形成できるため、シクロヘキシルベンゼンによる電池特性の低下をより良好に抑制できる電池を製造することが可能となる。   In preparing the slurry for forming the positive electrode mixture layer, it is preferable to use a solution in which a rubber that can be dissolved in a solvent is dissolved in the solvent (the solvent of the slurry). That is, it is preferable to prepare a slurry for forming a positive electrode mixture layer by mixing a polymer solution that can be dissolved in a solvent with a positive electrode active material, a conductive auxiliary agent, or the like. In this case, a rubber film that can be dissolved in a solvent can be formed better on the surface of the positive electrode active material particles, so that it is possible to manufacture a battery that can better suppress the deterioration of battery characteristics due to cyclohexylbenzene. It becomes.

正極合剤層形成用スラリーにおいて、正極活物質、結着剤および導電助剤を含めた固形分(溶媒以外の成分。以下同じ。)の濃度は、例えば、72〜86質量%であることが好ましい。   In the slurry for forming the positive electrode mixture layer, the concentration of the solid content (components other than the solvent; the same shall apply hereinafter) including the positive electrode active material, the binder, and the conductive additive is, for example, 72 to 86% by mass. preferable.

正極合剤層形成用スラリーを正極集電体の表面に塗布する方法については、特に制限はなく、従来から知られている各種の塗布方法を採用することができる。また、プレス処理時の条件としては、例えば、線圧を700〜2000kgf/cmとすることが好ましい。   There is no restriction | limiting in particular about the method of apply | coating the slurry for positive mix layer formation to the surface of a positive electrode electrical power collector, The various application | coating method conventionally known is employable. Moreover, as conditions at the time of a press process, it is preferable that a linear pressure shall be 700-2000 kgf / cm, for example.

正極合剤層の厚み(集電体の両面に正極合剤層が形成されている場合には、その片面あたりの厚み)は、30〜80μmであることが好ましい。   The thickness of the positive electrode mixture layer (when the positive electrode mixture layer is formed on both surfaces of the current collector, the thickness per one surface thereof) is preferably 30 to 80 μm.

本発明の非水電解液二次電池は、正極、負極、セパレータおよび非水電解液を備えており、正極が前記の正極であり、かつ非水電解液が前記の非水電解液であればよく、その他の構成および構造については特に制限はなく、従来から知られている非水電解液二次電池で採用されている構成および構造を適用することができる。   The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode is the positive electrode and the non-aqueous electrolyte is the non-aqueous electrolyte. In addition, there is no restriction | limiting in particular about another structure and structure, The structure and structure employ | adopted by the nonaqueous electrolyte secondary battery known conventionally can be applied.

負極には、例えば、負極活物質や結着剤、更には必要に応じて導電助剤などを含有する負極合剤層を、集電体の片面または両面に有する構造のものを使用することができる。   For the negative electrode, for example, a negative electrode active material, a binder, and, if necessary, a negative electrode mixture layer containing a conductive auxiliary agent or the like may be used on one side or both sides of the current collector. it can.

負極活物質としては、例えば、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛などの黒鉛材料;ピッチをか焼して得られるコークスなどの易黒鉛化性炭素質材料;フルフリルアルコール樹脂(PFA)やポリパラフェニレン(PPP)およびフェノール樹脂を低温焼成して得られる非晶質炭素などの難黒鉛化性炭素質材料;などの炭素材料が挙げられる。また、炭素材料の他に、リチウムやリチウム含有化合物も負極活物質として用いることができる。リチウム含有化合物としては、Li−Alなどのリチウム合金や、Si、Snなどのリチウムとの合金化が可能な元素を含む合金が挙げられる。更にSn酸化物やSi酸化物などの酸化物系材料も用いることができる。負極合剤層における負極活物質の量は、例えば、97〜99質量%であることが好ましい。   Examples of the negative electrode active material include graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite; graphitizable carbonaceous materials such as coke obtained by calcining pitch; furfuryl alcohol resin ( Carbon materials such as non-graphitizable carbonaceous materials such as amorphous carbon obtained by low-temperature firing of PFA), polyparaphenylene (PPP), and phenol resins. In addition to the carbon material, lithium or a lithium-containing compound can also be used as the negative electrode active material. Examples of the lithium-containing compound include lithium alloys such as Li—Al, and alloys containing elements that can be alloyed with lithium such as Si and Sn. Furthermore, oxide-based materials such as Sn oxide and Si oxide can also be used. The amount of the negative electrode active material in the negative electrode mixture layer is preferably 97 to 99% by mass, for example.

導電助剤は、電子伝導性材料であれば特に限定されないし、使用しなくても構わない。導電助剤の具体例としては、アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;銅、ニッケルなどの金属粉末類;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用しても構わない。これらの中でも、アセチレンブラック、ケッチェンブラックや炭素繊維が特に好ましい。ただし、負極に導電助剤を使用する場合には、高容量化のために、負極合剤層における導電助剤の量を10質量%以下とすることが望ましい。   The conductive aid is not particularly limited as long as it is an electron conductive material, and may not be used. Specific examples of conductive aids include acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon materials such as carbon fibers; and conductive fibers such as metal fibers. Carbon fluoride, metal powders such as copper and nickel, organic conductive materials such as polyphenylene derivatives, and the like. These may be used alone or in combination of two or more. . Among these, acetylene black, ketjen black and carbon fiber are particularly preferable. However, when a conductive additive is used for the negative electrode, the amount of conductive additive in the negative electrode mixture layer is desirably 10% by mass or less in order to increase the capacity.

負極合剤層に係る結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、正極用の結着剤として先に例示した各種結着剤や、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体などが使用でき、それらの材料を1種単独で用いてもよく、2種以上を併用しても構わない。 As a binder concerning a negative mix layer, any of a thermoplastic resin and a thermosetting resin may be sufficient. Specifically, for example, various binders exemplified above as the binder for the positive electrode, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), ethylene-acrylic acid copolymer or the copolymer. Na + ion cross-linked product, ethylene-methacrylic acid copolymer or Na + ion cross-linked product of the copolymer, ethylene-methyl acrylate copolymer or Na + ion cross-linked product of the copolymer, ethylene-methyl methacrylate A copolymer or a Na + ion crosslinked product of the copolymer can be used, and these materials may be used alone or in combination of two or more.

前記の中でも、PVDF、SBR、エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体が特に好ましい。負極合剤層おける結着剤の量は、例えば、1〜5質量%であることが好ましい。 Among these, PVDF, SBR, ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-acrylic acid A methyl copolymer or a Na + ion crosslinked product of the copolymer, an ethylene-methyl methacrylate copolymer or a Na + ion crosslinked product of the copolymer is particularly preferable. The amount of the binder in the negative electrode mixture layer is preferably 1 to 5% by mass, for example.

負極は、例えば、負極活物質や結着剤、更には必要に応じて導電助剤などを溶媒に溶解または分散させて負極合剤層形成用スラリーを調製し、これを集電体の片面または両面に塗布し、乾燥してスラリー中の溶媒を除去し、更に必要に応じてカレンダー成形などのプレス処理を施して負極合剤層を形成する方法により製造することができる。ただし、本発明の電池に係る負極は、他の方法により製造してもよい。   The negative electrode is prepared by, for example, preparing a negative electrode mixture layer forming slurry by dissolving or dispersing a negative electrode active material, a binder, and a conductive auxiliary agent in a solvent, if necessary, on one side of the current collector or It can be produced by a method of applying to both surfaces, drying to remove the solvent in the slurry, and further applying a press treatment such as calendering as necessary to form a negative electrode mixture layer. However, the negative electrode according to the battery of the present invention may be manufactured by other methods.

負極合剤層の厚み(集電体の両面に負極合剤層が形成されている場合には、その片面あたりの厚み)は、30〜80μmであることが好ましい。   The thickness of the negative electrode mixture layer (when the negative electrode mixture layer is formed on both sides of the current collector, the thickness per one surface thereof) is preferably 30 to 80 μm.

負極に用いる集電体としては、非水電解液二次電池内において、実質上、化学的に安定な電子伝導体であれば特に限定されない。かかる集電体を構成する材料としては、例えば、ステンレス鋼、ニッケルやその合金、銅やその合金、チタンやその合金、炭素、導電性樹脂などの他に、銅またはステンレス鋼の表面にカーボンまたはチタンを処理させたものなどが用いられる。これらの中でも、銅および銅合金が特に好ましい。これらの材料は表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが好ましい。集電体の形状としては、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが挙げられる。集電体の厚みは特に限定されないが、例えば、5〜50μmであることが好ましい。   The current collector used for the negative electrode is not particularly limited as long as it is a substantially chemically stable electronic conductor in the nonaqueous electrolyte secondary battery. Examples of the material constituting the current collector include stainless steel, nickel or an alloy thereof, copper or an alloy thereof, titanium or an alloy thereof, carbon, conductive resin, carbon, or the like on the surface of copper or stainless steel. A material obtained by treating titanium is used. Among these, copper and copper alloys are particularly preferable. These materials can also be used after oxidizing the surface. Moreover, it is preferable to give an unevenness | corrugation to the collector surface by surface treatment. Examples of the shape of the current collector include films, sheets, nets, punched materials, lath bodies, porous bodies, foamed bodies, and molded bodies of fiber groups, in addition to foils. Although the thickness of a collector is not specifically limited, For example, it is preferable that it is 5-50 micrometers.

本発明の電池では、前記の正極と前記の負極とを、セパレータを介在させつつ重ねて形成した積層電極体や、更にこれを渦巻状に巻回し、必要に応じて横断面を扁平状に成形して巻回電極体を用いることができる。   In the battery of the present invention, the positive electrode and the negative electrode are laminated with the separator interposed therebetween, and the laminated electrode body is wound in a spiral shape, and the cross section is formed into a flat shape as necessary. Thus, a wound electrode body can be used.

セパレータには、例えば、大きなイオン透過度および所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、一定温度以上(例えば100〜140℃)で構成材料の溶融によって孔が閉塞し、抵抗を上げる機能を有するもの(すなわち、シャットダウン機能を有するもの)が好ましい。このようなセパレータの具体例としては、耐有機溶剤性および疎水性を有するポリエチレン、ポリプロピレンなどポリオレフィン系ポリマー、またはガラス繊維などの材料で構成されるシート(多孔質シート)、不織布若しくは織布;前記例示のポリオレフィン系ポリマーの微粒子を接着剤で固着した多孔質体;などが挙げられる。セパレータの孔径は、正負極より脱離した正負極の活物質、導電助剤および結着剤などが通過しない程度であることが好ましく、例えば、0.01〜1μmであることが望ましい。セパレータの厚みは、8〜30μmとすることが一般的であるが、本発明では、10〜20μmとすることが好ましい。また、セパレータの空孔率は、構成材料や厚みに応じて決定されるが、30〜80%であることが一般的である。   For the separator, for example, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. Moreover, what has a function which a hole is obstruct | occluded by fusion | melting of a structural material above a fixed temperature (for example, 100-140 degreeC), and raises resistance (namely, what has a shutdown function) is preferable. Specific examples of such a separator include a sheet (porous sheet), a nonwoven fabric or a woven fabric composed of a material such as polyethylene solvent, hydrophobic polymer such as polyethylene, polypropylene, or glass fiber having organic solvent resistance and hydrophobicity; And a porous material in which fine particles of the exemplified polyolefin polymer are fixed with an adhesive. The pore diameter of the separator is preferably such that the active material of the positive and negative electrodes, the conductive auxiliary agent, the binder and the like detached from the positive and negative electrodes do not pass through, and is preferably 0.01 to 1 μm, for example. The thickness of the separator is generally 8-30 μm, but is preferably 10-20 μm in the present invention. Further, the porosity of the separator is determined according to the constituent material and thickness, but is generally 30 to 80%.

電池の外装体には、スチール製やアルミニウム(アルミニウム合金)製の筒形(円筒形や角筒形など)の外装缶、金属を蒸着したラミネートフィルムからなるラミネート外装体などを用いることができる。例えば、電池の組み立てに際しては、このような外装体内に前記の電極体を収容し、外装体の有する端子と電極体に係る各電極とを常法に従って電気的に接続し、更に前記の非水電解液を外装体内に注入した後に、常法に従って外装体の封止すればよく、これにより、本発明の非水電解液二次電池を製造することができる。   As the battery outer casing, a steel or aluminum (aluminum alloy) cylindrical casing (such as a cylinder or a rectangular cylinder), a laminate outer casing made of a metal-deposited laminated film, or the like can be used. For example, when assembling the battery, the electrode body is accommodated in such an exterior body, the terminals of the exterior body and the electrodes of the electrode body are electrically connected according to a conventional method, and the nonaqueous After injecting the electrolytic solution into the outer package, the outer package may be sealed according to a conventional method, whereby the nonaqueous electrolyte secondary battery of the present invention can be manufactured.

本発明の電池では、これまでに説明してきた構成の採用によって、満充電状態での厚みをA(mm)、満充電状態で85℃の環境下に24時間貯蔵した後の厚みをB(mm)としたときに、BとAとの差B−Aを1mm以下とすることが可能であり、このように高温貯蔵時の膨れ量が小さく、良好な高温貯蔵特性を確保することができる。   In the battery of the present invention, by adopting the configuration described so far, the thickness in the fully charged state is A (mm), and the thickness after being stored in the fully charged state in an environment of 85 ° C. for 24 hours is B (mm). ), The difference B-A between B and A can be 1 mm or less, and thus the amount of swelling during high-temperature storage is small, and good high-temperature storage characteristics can be ensured.

本明細書でいう電池の「満充電状態」とは、4.2Vまで1.0Cの定電流で充電後、その後、充電時間が2.5時間になるまで定電圧充電した状態のことである。   The “full charge state” of the battery in this specification is a state in which the battery is charged at a constant voltage of 1.0 C up to 4.2 V and then charged at a constant voltage until the charging time reaches 2.5 hours. .

本発明の非水電解液二次電池は、従来から知られている非水電解液二次電池と同様の用途に用いることができる。   The nonaqueous electrolyte secondary battery of the present invention can be used in the same applications as conventionally known nonaqueous electrolyte secondary batteries.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

実施例1
<正極合剤層形成用スラリーの調製>
溶媒に溶解可能なポリマーである水素化ニトリルゴムをNMPに溶解して、水素化ニトリルゴムの濃度が3質量%のポリマー溶液を調製した。また、PVDFをNMPに溶解して、PVDFの濃度が12質量%のPVDF溶液を調製した。
Example 1
<Preparation of slurry for forming positive electrode mixture layer>
Hydrogenated nitrile rubber, which is a polymer that can be dissolved in a solvent, was dissolved in NMP to prepare a polymer solution having a hydrogenated nitrile rubber concentration of 3 mass%. Also, PVDF was dissolved in NMP to prepare a PVDF solution having a PVDF concentration of 12% by mass.

正極合剤層形成用スラリーの調製には、二軸混練押出機(栗本鉄工所製「KRCニーダ」)を使用した。二軸混練押出機の吐出口側から、前記PVDF溶液を投入したホッパー、前記ポリマー溶液を投入したホッパー、定量フィーダの順に配置されており、二軸混練押出機内には、正極活物質および導電助剤、前記ポリマー溶液、前記PVDF溶液の順に投入できるようにした。正極活物質である化合物(A):LiNi0.5Co0.17Mn0.3Mg0.03と化合物(B):LiCo0.997Al0.003とを、化合物(A)/化合物(B)=30/70の質量割合で混合した混合物:97.4質量部と、導電助剤であるアセチレンブラック:1.5質量部とを、粉体供給装置である定量フィーダ内に投入し、また、前記ポリマー溶液:6.7質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中の溶媒に溶解可能なポリマーの比率が0.2質量%)と、前記PVDF溶液:7.5質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中のPVDFの比率が0.9質量%)とを、それぞれの定量ポンプ付きホッパーに投入した。なお、粉体と前記ポリマー溶液が混練されるときのスラリーの固形分濃度(溶媒を除く成分の濃度)が93.8質量%となるようにした。また、正極活物質100質量部に対する前記溶媒に溶解可能なポリマーの含有量は0.2質量部であった。 A biaxial kneading extruder (“KRC Kneader” manufactured by Kurimoto Iron Works) was used for the preparation of the slurry for forming the positive electrode mixture layer. From the discharge port side of the twin-screw kneading extruder, the hopper charged with the PVDF solution, the hopper charged with the polymer solution, and the metering feeder are arranged in this order. The agent, the polymer solution, and the PVDF solution can be added in this order. Compound (A) which is a positive electrode active material: LiNi 0.5 Co 0.17 Mn 0.3 Mg 0.03 O 2 and compound (B): LiCo 0.997 Al 0.003 O 2 are combined with compound (A ) / Compound (B) = mixture mixed at a mass ratio of 30/70: 97.4 parts by mass and acetylene black as a conductive auxiliary agent: 1.5 parts by mass in a quantitative feeder as a powder feeder The polymer solution: 6.7 parts by mass (the ratio of the polymer that can be dissolved in the solvent in the amount of 100% by mass of all components excluding the solvent in the prepared slurry is 0.2% by mass); The PVDF solution: 7.5 parts by mass (the ratio of PVDF in 100% by mass of all components excluding the solvent in the prepared slurry was 0.9% by mass) was put into each hopper with a metering pump. The solid content concentration (concentration of components excluding the solvent) of the slurry when the powder and the polymer solution were kneaded was 93.8% by mass. Moreover, content of the polymer which can be melt | dissolved in the said solvent with respect to 100 mass parts of positive electrode active materials was 0.2 mass part.

このような所定量比に調整した材料を、単位時間あたり所定の投入量となるように制御しつつ二軸混練押出機に投入し、回転数:100rpm、温度:32℃で混練を行って、ペースト状の混練物を得た。そして、得られた混練物をプラネタリーミキサー(特殊機化工業社製「TKハイビスディスパーミックス」)内に投入し、NMPを加えて混合し、塗布に適した粘度の正極合剤層形成用スラリー(溶媒を除く固形分濃度が83質量%)を調製した。   The material adjusted to such a predetermined amount ratio is charged into a twin-screw kneading extruder while being controlled so as to have a predetermined amount per unit time, and kneaded at a rotational speed of 100 rpm and a temperature of 32 ° C., A paste-like kneaded product was obtained. Then, the obtained kneaded product is put into a planetary mixer (“TK Hibis Disper Mix” manufactured by Tokushu Kika Kogyo Co., Ltd.), mixed with NMP, and a slurry for forming a positive electrode mixture layer having a viscosity suitable for coating. (The solid content concentration excluding the solvent was 83% by mass).

<正極の作製>
前記の正極合剤層形成用スラリーを、70メッシュの厚みを通過させて粗大なものを除去した後、厚みが12μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、更にプレス処理を行って、集電体の両面に、厚み(集電体の片面あたりの厚み)が56μmの正極合剤層を有する正極を作製した。得られた正極の正極合剤層について、前記の中和滴定法により求められた塩酸の滴定量は、10.6mlであった。
<Preparation of positive electrode>
The slurry for forming a positive electrode mixture layer is passed through a thickness of 70 mesh to remove coarse particles, and then uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 12 μm and dried. Furthermore, the press process was performed and the positive electrode which has a positive mix layer whose thickness (thickness per single side | surface of a collector) is 56 micrometers on both surfaces of the collector was produced. About the positive electrode mixture layer of the obtained positive electrode, the titration amount of hydrochloric acid calculated | required by the said neutralization titration method was 10.6 ml.

<負極の作製>
天然黒鉛:97.5質量%、SBR:1.5質量%、およびカルボキシメチルセルロース(増粘剤):1質量%を、水を用いて混合して負極合剤層形成用スラリーを調製した。この負極合剤層形成用スラリーを、集電体である銅箔(厚み:8μm)の両面に塗布し、120℃で12時間真空乾燥を施し、更にプレス処理を施して、集電体の両面に、厚み(集電体の片面あたりの厚み)が62μmの負極合剤層を有する負極を作製した。
<Production of negative electrode>
Natural graphite: 97.5% by mass, SBR: 1.5% by mass, and carboxymethylcellulose (thickener): 1% by mass were mixed with water to prepare a slurry for forming a negative electrode mixture layer. This negative electrode mixture layer forming slurry was applied to both sides of a copper foil (thickness: 8 μm) as a current collector, vacuum-dried at 120 ° C. for 12 hours, and further subjected to a press treatment to obtain both sides of the current collector. In addition, a negative electrode having a negative electrode mixture layer having a thickness (thickness per one side of the current collector) of 62 μm was prepared.

<電極体の作製>
前記の正極と負極とをセパレータ(厚みが14μmで、透気度が300秒/100cmのポリエチレン製多孔膜)を介して重ね合わせ、渦巻状に巻回した後、横断面が扁平状になるように押しつぶして扁平状巻回電極体を作製した。
<Production of electrode body>
The positive electrode and the negative electrode are overlapped via a separator (a polyethylene porous film having a thickness of 14 μm and an air permeability of 300 seconds / 100 cm 3 ), wound in a spiral shape, and then the cross section becomes flat. In this way, a flat wound electrode body was produced.

<非水電解液の調製>
メチルエチルカーボネートとジエチルカーボネートとエチレンカーボネートとの混合溶媒(体積比 2:1:3)に、1.2mol/lの濃度でLiPFを溶解し、これにビニレンカーボネート(VC)2質量%とビニルエチレンカーボネート(V―EC)0.5質量%とシクロヘキシルベンゼン(CB)0.2質量%とを加えて非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved at a concentration of 1.2 mol / l in a mixed solvent of methyl ethyl carbonate, diethyl carbonate and ethylene carbonate (volume ratio 2: 1: 3), and 2% by mass of vinylene carbonate (VC) and vinyl. A nonaqueous electrolytic solution was prepared by adding 0.5% by mass of ethylene carbonate (V-EC) and 0.2% by mass of cyclohexylbenzene (CB).

<電池の組み立て>
前記の電極体および非水電解液を用いて、角形非水電解液二次電池を組み立てた。まず、前記電極体の各端面に集電板を溶接により接合した。次に、集電板のリード部を蓋体に取り付けられている電極端子集電機構と接続した。その後、外装缶の内部に電極体を収容して、外装缶の開口部に蓋体を溶接固定した。最後に蓋体に設けられた注液孔から外装缶内に非水電解液を注入して、厚さ4.6mm、幅36mm、高さ51mmとし、図1に示す構造で、図2に示す外観の角形非水電解液二次電池を作製した。
<Battery assembly>
A square nonaqueous electrolyte secondary battery was assembled using the electrode body and the nonaqueous electrolyte. First, a current collector plate was joined to each end face of the electrode body by welding. Next, the lead part of the current collecting plate was connected to an electrode terminal current collecting mechanism attached to the lid. Thereafter, the electrode body was accommodated inside the outer can, and the lid was welded and fixed to the opening of the outer can. Finally, a nonaqueous electrolytic solution is injected into the outer can through a liquid injection hole provided in the lid to obtain a thickness of 4.6 mm, a width of 36 mm, and a height of 51 mm. The structure shown in FIG. A rectangular nonaqueous electrolyte secondary battery having an external appearance was produced.

ここで図1および図2に示す電池について説明すると、図1の(a)は平面図、(b)はその部分断面図であって、図1(b)に示すように、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回電極体6として、角筒形の外装缶4に電解液と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。   Here, the battery shown in FIGS. 1 and 2 will be described. FIG. 1A is a plan view, and FIG. 1B is a partial cross-sectional view thereof. As shown in FIG. 2 is spirally wound through the separator 3 as described above, and then pressurized so as to be flattened, and is accommodated in a rectangular tube-shaped outer can 4 together with the electrolyte as a flat wound electrode body 6. ing. However, in FIG. 1, in order to avoid complication, a metal foil, a non-aqueous electrolyte, or the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated.

外装缶4はアルミニウム合金製で電池の外装体を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはポリエチレンシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の封口用蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。   The outer can 4 is made of an aluminum alloy and constitutes an outer casing of the battery. The outer can 4 also serves as a positive electrode terminal. And the insulator 5 which consists of a polyethylene sheet is arrange | positioned at the bottom part of the armored can 4, From the flat wound electrode body 6 which consists of the positive electrode 1, the negative electrode 2, and the separator 3, it connects to each one end of the positive electrode 1 and the negative electrode 2 The positive electrode lead body 7 and the negative electrode lead body 8 thus drawn are drawn out. Further, a stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the outer can 4 through a polypropylene insulating packing 10, and an insulator 12 is attached to the terminal 11. A stainless steel lead plate 13 is attached.

そして、この蓋板9は外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている(従って、図1および図2の電池では、実際には、非水電解液注入口14は、非水電解液注入口と封止部材であるが、説明を容易にするために、非水電解液注入口14として示している)。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。   And this cover plate 9 is inserted in the opening part of the armored can 4, and the opening part of the armored can 4 is sealed by welding the junction part of both, and the inside of a battery is sealed. Further, in the battery of FIG. 1, a non-aqueous electrolyte inlet 14 is provided in the cover plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, laser welding or the like. (See FIG. 1 and FIG. 2, in practice, the non-aqueous electrolyte inlet 14 is actually sealed with the non-aqueous electrolyte inlet.) Although it is a member, for ease of explanation, it is shown as a non-aqueous electrolyte inlet 14). Further, the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.

この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって外装缶4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。   In the battery of Example 1, the outer can 4 and the lid plate 9 function as a positive electrode terminal by directly welding the positive electrode lead body 7 to the lid plate 9, and the negative electrode lead body 8 is welded to the lead plate 13. The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the outer can 4, the sign may be reversed. There is also.

図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、扁平状巻回電極体の内周側の部分は断面にしていない。   FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral side portion of the flat wound electrode body is not cross-sectional.

実施例2
CBの添加量を0.5質量%に変更した以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例1と同様にして角形非水電解液二次電池を作製した。
Example 2
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the amount of CB added was changed to 0.5% by mass, and a square shape was obtained in the same manner as in Example 1 except that this non-aqueous electrolyte was used. A non-aqueous electrolyte secondary battery was produced.

実施例3
CBの添加量を1.5質量%に変更した以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例1と同様にして角形非水電解液二次電池を作製した。
Example 3
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the amount of CB added was changed to 1.5% by mass, and a rectangular shape was prepared in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used. A non-aqueous electrolyte secondary battery was produced.

実施例4
水素化ニトリルゴムの濃度が7質量%となるようにポリマー溶液を調製し、正極活物質を、化合物(A):LiNi0.876Co0.1Mn0.012Mg0.01Ba0.002と化合物(B):LiCo0.997Al0.003を化合物(A)/化合物(B)=30/70の質量割合で混合した混合物とし、前記ポリマー溶液:6.7質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中の溶媒に溶解可能なポリマーの比率が0.4質量%)と、前記PVDF溶液:5.8質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中のPVDFの比率が0.7質量%)とを、それぞれ別の定量ポンプ付きホッパーに投入し、粉体と前記ポリマー溶液とが混練されるときのスラリーの固形分濃度(溶媒を除く成分の濃度)が94.0質量%となるようにした以外は、実施例1と同様にして正極合剤層形成用スラリーを調製した。前記正極合剤層形成用スラリーにおいて、正極活物質100質量部に対する前記溶媒に溶解可能なポリマーの含有量は0.4質量部であった。そして、この正極合剤層形成用スラリーを用いた以外は、実施例1と同様にして正極を作製した。
Example 4
A polymer solution was prepared so that the concentration of the hydrogenated nitrile rubber was 7% by mass, and the positive electrode active material was compound (A): LiNi 0.876 Co 0.1 Mn 0.012 Mg 0.01 Ba 0.002. O 2 and compound (B): LiCo 0.997 Al 0.003 O 2 were mixed at a mass ratio of compound (A) / compound (B) = 30/70, and the polymer solution: 6.7 parts by mass (The ratio of the polymer that can be dissolved in the solvent in 100% by mass of the total components excluding the solvent in the prepared slurry is 0.4% by mass) and the PVDF solution: 5.8 parts by mass (in the prepared slurry) The ratio of PVDF in 100% by mass of all components excluding the solvent is 0.7% by mass) in a separate hopper with a metering pump, and the slurry when the powder and the polymer solution are kneaded. A slurry for forming a positive electrode mixture layer was prepared in the same manner as in Example 1 except that the solid content concentration of Li (concentration of components excluding the solvent) was 94.0% by mass. In the slurry for forming a positive electrode mixture layer, the content of the polymer soluble in the solvent with respect to 100 parts by mass of the positive electrode active material was 0.4 parts by mass. And the positive electrode was produced like Example 1 except having used this slurry for positive mix layer formation.

得られた正極の正極合剤層について、前記の中和滴定法により求められた塩酸の滴定量は、13.5mlであった。   About the positive electrode mixture layer of the obtained positive electrode, the titration amount of hydrochloric acid calculated | required by the said neutralization titration method was 13.5 ml.

また、CBの添加量を1.5質量%に変更した以外は、実施例1と同様にして非水電解液を調製した。   Further, a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the amount of CB added was changed to 1.5% by mass.

そして、前記の正極と前記の非水電解液とを用いた以外は、実施例1と同様にして角形非水電解液二次電池を作製した。   And the square non-aqueous electrolyte secondary battery was produced like Example 1 except having used the said positive electrode and the said non-aqueous electrolyte.

実施例5
溶媒に溶解可能なポリマーをVDF−TFE共重合体(各モノマーの組成比が、質量比で9:1)に変更した以外は、実施例4と同様にして正極合剤層形成用スラリーを調製し、この正極合剤層形成用スラリーを用いた以外は、実施例1と同様にして正極を作製した。得られた正極の正極合剤層について、前記の中和滴定法により求められた塩酸の滴定量は、11.0mlであった。
Example 5
A slurry for forming a positive electrode mixture layer was prepared in the same manner as in Example 4 except that the polymer soluble in the solvent was changed to a VDF-TFE copolymer (composition ratio of each monomer was 9: 1 by mass ratio). A positive electrode was prepared in the same manner as in Example 1 except that this positive electrode mixture layer forming slurry was used. About the positive electrode mixture layer of the obtained positive electrode, the titration amount of hydrochloric acid calculated | required by the said neutralization titration method was 11.0 ml.

そして、前記の正極を用いた以外は、実施例4と同様にして角形非水電解液二次電池を作製した。   And the square non-aqueous-electrolyte secondary battery was produced like Example 4 except having used the said positive electrode.

比較例1
CBを添加しなかった以外は実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例1と同様にして角形非水電解液二次電池を作製した。
Comparative Example 1
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that CB was not added, and a rectangular non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that this non-aqueous electrolyte was used. Produced.

比較例2
前記PVDF溶液:7.5質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中のPVDFの比率が0.9質量%)と、同じく前記PVDF溶液:1.7量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中のPVDFの比率が0.2質量%)とを、それぞれ別の定量ポンプ付きホッパーに投入し、粉体と最初に前記PVDF溶液を投入して混練されるときのスラリーの固形分濃度(溶媒を除く成分の濃度)が93.8質量%となるようにした以外は、実施例1と同様にして正極合剤層形成用スラリーを調製し、このスラリーを用いた以外は、実施例1と同様にして正極を作製した。得られた正極の正極合剤層について、前記の中和滴定法により求められた塩酸の滴定量は、12.2mlであった。
Comparative Example 2
The PVDF solution: 7.5 parts by mass (the ratio of PVDF in 100% by mass of all components excluding the solvent in the prepared slurry is 0.9% by mass), and the PVDF solution: 1.7 parts by mass ( The ratio of PVDF in 100% by mass of all components in the slurry to be prepared is 0.2% by mass) in a separate hopper with a metering pump, and the powder and the PVDF solution are first added. The slurry for forming the positive electrode mixture layer was prepared in the same manner as in Example 1 except that the solid content concentration (concentration of components excluding the solvent) of the slurry when charged and kneaded was 93.8% by mass. A positive electrode was prepared in the same manner as in Example 1 except that this slurry was prepared. About the positive electrode mixture layer of the obtained positive electrode, the titration amount of hydrochloric acid calculated | required by the said neutralization titration method was 12.2 ml.

また、CBの添加量を0.2質量%に変更した以外は、実施例1と同様にして非水電解液を調製した。   In addition, a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the amount of CB added was changed to 0.2% by mass.

そして、前記の正極と前記の非水電解液とを用いた以外は、実施例1と同様にして角形非水電解液二次電池を作製した。   And the square non-aqueous electrolyte secondary battery was produced like Example 1 except having used the said positive electrode and the said non-aqueous electrolyte.

比較例3
水素化ニトリルゴムの濃度を9質量%にした以外は実施例1と同様にして調製したポリマー溶液:7.8質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中の前記溶解可能なポリマーの比率が0.7質量%)と、前記PVDF溶液:3.3質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中のPVDFの比率が0.4質量%)とを、それぞれ別の定量ポンプ付きホッパーに投入し、粉体と前記ポリマー溶液とが混練されるときのスラリーの固形分濃度(溶媒を除く成分の濃度)が93.3質量%となるようにした以外は、実施例1と同様にして正極合剤層形成用スラリーを調製した。前記正極合剤層形成用スラリーにおいて、正極活物質100質量部に対する前記溶媒に溶解可能なポリマーの含有量は0.7質量部であった。
Comparative Example 3
Polymer solution prepared in the same manner as in Example 1 except that the concentration of the hydrogenated nitrile rubber was changed to 9% by mass: 7.8 parts by mass (the amount in 100% by mass of all components excluding the solvent in the prepared slurry) The ratio of the soluble polymer is 0.7% by mass) and the PVDF solution: 3.3 parts by mass (the amount of PVDF in 100% by mass of all components excluding the solvent in the prepared slurry is 0.4% by mass) %) In a separate hopper with a metering pump, and the solid content concentration of the slurry (concentration of components excluding the solvent) when the powder and the polymer solution are kneaded is 93.3 mass%. A positive electrode mixture layer forming slurry was prepared in the same manner as in Example 1 except for the above. In the slurry for forming a positive electrode mixture layer, the content of the polymer that can be dissolved in the solvent with respect to 100 parts by mass of the positive electrode active material was 0.7 parts by mass.

また、この正極合剤層形成用スラリーを用いた以外は、実施例1と同様にして正極を作製した。得られた正極の正極合剤層について、前記の中和滴定法により得られた塩酸の滴定量は、9.0mlであった。   Further, a positive electrode was produced in the same manner as in Example 1 except that this positive electrode mixture layer forming slurry was used. With respect to the positive electrode mixture layer of the positive electrode obtained, the titration amount of hydrochloric acid obtained by the neutralization titration method was 9.0 ml.

そして、前記の正極を用いた以外は、実施例1と同様にして角形非水電解液二次電池を作製した。   And the square non-aqueous-electrolyte secondary battery was produced like Example 1 except having used the said positive electrode.

比較例4
CBの添加量を2.0質量%に変更した以外は、実施例1と同様にして非水電解液を調製し、この非水電解液を用いた以外は、実施例4と同様にして角形非水電解液二次電池を作製した。
Comparative Example 4
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the amount of CB added was changed to 2.0% by mass, and a square shape was obtained in the same manner as in Example 4 except that this nonaqueous electrolytic solution was used. A non-aqueous electrolyte secondary battery was produced.

比較例5
水素化ニトリルゴムの濃度が7質量%となるようにポリマー溶液を調製し、正極活物質を、化合物(A):LiNi0.95Co0.038Mg0.01Ba0.002と化合物(B):LiCo0.997Al0.003とを化合物(A)/化合物(B)=30/70の質量割合で混合した混合物とし、前記ポリマー溶液:6.7質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中の溶媒に溶解可能なポリマーの比率が0.4質量%)と、前記PVDF溶液:5.8質量部(調製されるスラリーにおける溶媒を除く全成分の量100質量%中のPVDFの比率が0.7質量%)を、それぞれ別の定量ポンプ付きホッパーに投入し、粉体と前記溶媒に溶解可能なポリマー溶液とが混練されるときのスラリーの固形分濃度(溶媒を除く成分の濃度)が94.0質量%となるようにした以外は、実施例1と同様にして正極合剤層形成用組成物を調製した。前記正極合剤層形成用スラリーにおいて、正極活物質100質量部に対する前記溶媒に溶解可能なポリマーの含有量は0.4質量部であった。そして、この正極合剤層形成用スラリーを用いた以外は、実施例1と同様にして正極を作製した。
Comparative Example 5
A polymer solution is prepared so that the concentration of hydrogenated nitrile rubber is 7% by mass, and the positive electrode active material is compound (A): LiNi 0.95 Co 0.038 Mg 0.01 Ba 0.002 O 2 and a compound. (B): LiCo 0.997 Al 0.003 O 2 was mixed at a mass ratio of compound (A) / compound (B) = 30/70, and the polymer solution: 6.7 parts by mass (prepared The ratio of the polymer that can be dissolved in the solvent in 100% by mass of all components in the slurry excluding the solvent is 0.4% by mass) and the PVDF solution: 5.8 parts by mass (excluding the solvent in the prepared slurry) When the ratio of PVDF in 100% by mass of all components is 0.7% by mass), each is put into a separate hopper with a metering pump, and the powder and the polymer solution soluble in the solvent are kneaded. The solid content of slurry (concentration of the components except the solvent), except that was made to be 94.0 wt%, were prepared in to the positive electrode mixture layer-forming composition as in Example 1. In the slurry for forming a positive electrode mixture layer, the content of the polymer soluble in the solvent with respect to 100 parts by mass of the positive electrode active material was 0.4 parts by mass. And the positive electrode was produced like Example 1 except having used this slurry for positive mix layer formation.

得られた正極の正極合剤層について、前記の中和滴定法により求められた塩酸の滴定量は、15.1mlであった。   With respect to the positive electrode mixture layer of the obtained positive electrode, the titration amount of hydrochloric acid obtained by the neutralization titration method was 15.1 ml.

また、CBの添加量を1.5質量%に変更した以外は、実施例1と同様にして非水電解液を調製した。   Further, a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the amount of CB added was changed to 1.5% by mass.

そして、前記の正極と前記の非水電解液とを用いた以外は、実施例1と同様にして角形非水電解液二次電池を作製した。   And the square non-aqueous electrolyte secondary battery was produced like Example 1 except having used the said positive electrode and the said non-aqueous electrolyte.

実施例および比較例の電池に用いた正極活物質の構成を表1に、正極合剤層に係る結着剤の構成を表2に、正極合剤層に係るアルカリの中和に用いた塩酸の滴定量および非水電解液におけるCBの量を表3に、それぞれ示す。   Table 1 shows the configuration of the positive electrode active material used in the batteries of Examples and Comparative Examples, Table 2 shows the configuration of the binder related to the positive electrode mixture layer, and hydrochloric acid used for neutralization of the alkali related to the positive electrode mixture layer Table 3 shows the titration amount and the amount of CB in the non-aqueous electrolyte.

Figure 2012190731
Figure 2012190731

Figure 2012190731
Figure 2012190731

Figure 2012190731
Figure 2012190731

実施例1〜5および比較例1〜5の非水電解質二次電池について、下記の特性評価を行った。これらの評価結果を表4に示す。   The following characteristic evaluation was performed about the nonaqueous electrolyte secondary battery of Examples 1-5 and Comparative Examples 1-5. These evaluation results are shown in Table 4.

<放電容量>
実施例1〜5および比較例1〜5の各電池について、4.2Vまで1.0Cの定電流で充電後、その後、充電時間が2.5時間になるまで定電圧充電し、続いて1.0Cで電池電圧が3.0Vまで定電流放電を行って、そのときの放電容量を求めた(なお、前記定電流充電時のリチウム基準の電池電圧は4.3Vを意味している)。表4では、各電池について得られた放電容量を、実施例1の放電容量を100としたときの相対値で示す。
<Discharge capacity>
For each of the batteries of Examples 1 to 5 and Comparative Examples 1 to 5, after charging at a constant current of 1.0 C up to 4.2 V, the battery was then charged at a constant voltage until the charging time reached 2.5 hours. A constant current discharge was performed until the battery voltage was 3.0 V at 0.0 C, and the discharge capacity at that time was determined (note that the lithium-based battery voltage at the time of the constant current charge is 4.3 V). In Table 4, the discharge capacity obtained for each battery is shown as a relative value when the discharge capacity of Example 1 is taken as 100.

<高温貯蔵後の電池膨れ測定>
実施例1〜5および比較例1〜5の各電池について、前記の放電容量測定と同じ条件で4.2Vまで定電流−定電圧充電を行った後に、85℃の環境下で24h貯蔵し、取り出した後の電池の厚み(B)を測定して、貯蔵前の電池の厚み(A)からの変化(膨れ;B−A)を求めた。
<Battery swelling measurement after high temperature storage>
About each battery of Examples 1-5 and Comparative Examples 1-5, after performing constant current-constant voltage charge to 4.2V on the same conditions as the said discharge capacity measurement, it stores for 24 hours in an environment of 85 degreeC, The thickness (B) of the battery after taking out was measured, and the change (swelling; B-A) from the thickness (A) of the battery before storage was determined.

<釘刺し試験>
実施例1〜5および比較例1〜5の各電池について、4.25Vまで1.0Cの定電流で充電後、その後、充電時間が2.5時間になるまで定電圧充電を行った。充電後の各電池に、25℃の環境下で2.5mmφの釘を0.1mm/秒の速さで突き刺し、電池の電圧が4.1Vなった時点で釘を止めると同時に電池温度を測定し、電池の電圧が4.1Vになった時点から電池温度が150℃に達するまでの時間を調べた。
<Nail penetration test>
About each battery of Examples 1-5 and Comparative Examples 1-5, after charging with a constant current of 1.0C to 4.25V, after that, constant voltage charge was performed until charge time became 2.5 hours. Each battery after charging was pierced with a 2.5 mmφ nail at a speed of 0.1 mm / second in an environment of 25 ° C., and when the battery voltage reached 4.1 V, the nail was stopped and the battery temperature was measured. Then, the time from when the battery voltage reached 4.1 V until the battery temperature reached 150 ° C. was examined.

<充放電サイクル特性評価>
実施例1〜5および比較例1〜5の各電池について、4.2Vまで1.0Cの定電流で充電後、その後、充電時間が2.5時間になるまで定電圧充電し、続いて1.0Cで電池電圧が3.0Vまで定電流放電する一連の操作を1サイクルとして、これを繰り返し行った(なお、前記定電流充電時のリチウム基準の電池電圧は4.3Vを意味している。)。表4では、各電池について得られた500サイクル目の放電容量の、1サイクル目の放電容量に対する維持率(%)で示す。
<Charge / discharge cycle characteristics evaluation>
For each of the batteries of Examples 1 to 5 and Comparative Examples 1 to 5, after charging at a constant current of 1.0 C up to 4.2 V, the battery was then charged at a constant voltage until the charging time reached 2.5 hours. A series of operations in which the battery voltage was discharged at a constant current to 3.0 V at 0.0 C was taken as one cycle, and this was repeated (the lithium-based battery voltage at the time of constant current charging was 4.3 V) .) In Table 4, it shows by the maintenance factor (%) with respect to the discharge capacity of the 1st cycle of the discharge capacity of the 500th cycle obtained about each battery.

Figure 2012190731
Figure 2012190731

表4に示す結果から明らかなように、適正な構成の正極と、適正な量のCBを含有する非水電解液とを用いた実施例1〜5の電池は、高温貯蔵後の電池膨れが良好に抑制されており、また、釘刺し試験時の温度が150℃に達するまでの時間が長く、高い安全性が確保されていると共に、放電容量が大きく、充放電サイクル特性も良好である。   As is clear from the results shown in Table 4, the batteries of Examples 1 to 5 using the positive electrode having a proper configuration and the nonaqueous electrolytic solution containing an appropriate amount of CB show battery swelling after high-temperature storage. In addition, the time until the temperature during the nail penetration test reaches 150 ° C. is long, high safety is ensured, the discharge capacity is large, and the charge / discharge cycle characteristics are also good.

これに対し、CBを含有しない非水電解液を用いた比較例1の電池は、高温貯蔵時の電池膨れが大きく、釘刺し試験時においても電池温度が150℃に達するまでの時間が短い。実施例の電池において、高温貯蔵時の電池膨れの抑制効果や、釘刺し試験時の安全性が優れていた理由であるが、高温貯蔵時では非水電解液中のCBが正極側で分解して、その分解生成物が正極表面で皮膜を形成し、これにより正極合剤層中のアルカリの分解によるガス発生を抑制でき、電池の膨れを抑えることができたと考えられる。釘刺し試験時においても、高温貯蔵時同様、電池内部の温度上昇によりCBが正極側で分解して、その分解生成物が正極表面で皮膜を形成することで内部抵抗が増大して、非水電解液との反応を抑えることができたと考えられる。   On the other hand, the battery of Comparative Example 1 using the non-aqueous electrolyte containing no CB has a large battery swelling during high temperature storage, and the time until the battery temperature reaches 150 ° C. is short even during the nail penetration test. In the battery of the example, this is the reason why the battery swelling suppression effect during high temperature storage and the safety during the nail penetration test were excellent, but CB in the non-aqueous electrolyte decomposed on the positive electrode side during high temperature storage. Thus, it is considered that the decomposition product formed a film on the surface of the positive electrode, thereby suppressing gas generation due to decomposition of alkali in the positive electrode mixture layer and suppressing swelling of the battery. Even during the nail penetration test, as with high temperature storage, CB decomposes on the positive electrode side due to the temperature rise inside the battery, and the decomposition product forms a film on the positive electrode surface, thereby increasing the internal resistance. It is thought that the reaction with the electrolytic solution could be suppressed.

CBの添加量を2.0質量%とした非水電解液を用いた比較例4の電池は、釘刺し試験時の温度が150℃に達するまでの時間が長く、安全性は良好であったものの、放電容量、高温貯蔵時の電池膨れ抑制効果および充放電サイクル特性が劣っている。これは電池内のCB量が多すぎたために、高温貯蔵時では正極のガス発生の抑制以上にCB自身の分解によるガス発生が多くなったことで、高温貯蔵時の膨れが悪化したものと考えられる。また、放電容量や充放電サイクル特性についても、電池内のCB量が多すぎたために、正極の抵抗が増大し、更に、充放電サイクルで生じたCBの分解生成物によってセパレータの目詰まりが起こり、これらによって放電容量や充放電サイクル特性を悪化したものと考えられる。   The battery of Comparative Example 4 using the non-aqueous electrolyte in which the amount of CB added was 2.0% by mass had a long time until the temperature during the nail penetration test reached 150 ° C., and the safety was good. However, the discharge capacity, the effect of suppressing battery swelling during high temperature storage, and the charge / discharge cycle characteristics are inferior. This is because the amount of CB in the battery was too large, and during high-temperature storage, the generation of gas due to the decomposition of CB itself increased more than the suppression of gas generation at the positive electrode, which caused the swelling during high-temperature storage to deteriorate. It is done. In addition, regarding the discharge capacity and charge / discharge cycle characteristics, since the amount of CB in the battery was too large, the resistance of the positive electrode increased, and the CB decomposition products generated in the charge / discharge cycle caused clogging of the separator. It is considered that the discharge capacity and charge / discharge cycle characteristics were deteriorated by these.

また、正極合剤層の結着剤にPVDFのみを用いた比較例2の電池は、高温貯蔵時の電池膨れ抑制効果や釘刺し試験の安全性が劣っている。よって、正極合剤層の結着剤に、PVDF以外の溶媒に溶解可能なポリマーを使用することで、CBを適正量で含有する非水電解液の使用と同様に、正極の反応性を抑制する効果があると考えられる。一方、正極活物質の量に対する前記溶媒に溶解可能なポリマーの使用量が多すぎる比較例3の電池は、放電容量が劣っている。   Further, the battery of Comparative Example 2 using only PVDF as the binder of the positive electrode mixture layer is inferior in the effect of suppressing the battery swelling during high-temperature storage and the safety of the nail penetration test. Therefore, by using a polymer that can be dissolved in a solvent other than PVDF for the binder of the positive electrode mixture layer, the reactivity of the positive electrode is suppressed as in the case of using a non-aqueous electrolyte containing an appropriate amount of CB. It is thought that there is an effect to do. On the other hand, the battery of Comparative Example 3 in which the amount of the polymer that can be dissolved in the solvent with respect to the amount of the positive electrode active material is too large is inferior in discharge capacity.

更に、層状型リチウム・ニッケル・コバルト・マンガン複合酸化物(A)に代えて、Mnを含まないLiNi0.95Co0.038Mg0.01Ba0.002を使用した比較例5の電池は、Ni比率の増加により放電容量が大きくなったものの、高温貯蔵時の電池膨れが大きく、また釘刺し試験の安全性についても悪化している。このうち、高温貯蔵時の電池膨れ抑制効果の低下は、正極合剤層の残存アルカリ量が多かったために、高温貯蔵時のガス発生が多くなったことによるものと考えられる。また、比較例5の電池における安全性の低下は、Ni量の多いリチウム含有複合酸化物は充電状態で構造的な不安定なために、短絡時の発熱が早くなったためであると考えられる。 Further, instead of the layered lithium / nickel / cobalt / manganese composite oxide (A), the LiN 0.95 Co 0.038 Mg 0.01 Ba 0.002 O 2 containing no Mn was used. Although the battery has an increased discharge capacity due to an increase in the Ni ratio, the battery swells during high-temperature storage and the safety of the nail penetration test is also deteriorated. Among these, the decrease in the effect of suppressing battery swelling during high-temperature storage is thought to be due to an increase in gas generation during high-temperature storage due to the large amount of residual alkali in the positive electrode mixture layer. Moreover, it is thought that the safety | security fall in the battery of the comparative example 5 was because the heat_generation | fever at the time of a short circuit became quick because the lithium containing complex oxide with much Ni amount was structurally unstable in the charging state.

1 正極
2 負極
3 セパレータ
1 Positive electrode 2 Negative electrode 3 Separator

Claims (6)

正極活物質、導電助剤および結着剤を含有する正極合剤層を集電体の片面または両面に有する正極と、負極と、セパレータと、非水電解液とを備えた非水電解液二次電池であって、
前記正極活物質の少なくとも一部に、一般式LiNiCo(1−x−y−z)Mn (0.5≦x≦0.9、0.005≦y≦0.3、0.003≦z≦0.05であり、元素MはLi、Ni、CoおよびMn以外の金属元素であって、Mg、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素を含む)で表される層状リチウム・ニッケル・コバルト・マンガン複合酸化物(A)を含有しており、
下記の中和滴定法により求められる前記正極合剤層中のアルカリの中和に必要な塩酸の滴定量が14ml以下であり、
前記結着剤の少なくとも一部に、ポリフッ化ビニリデン以外の溶媒に溶解可能なポリマーを含有しており、前記溶媒に溶解可能なポリマーの含有量が、正極活物質100質量部に対して0.1〜0.5質量部であり、
前記非水電解液に、シクロヘキシルベンゼンを非水電解液の溶媒全量中0.2〜1.5質量%の量で含有するものを用いたことを特徴とする非水電解液二次電池。
前記中和滴定法:
正極から採取し、約20.0gに計り取った正極合剤層と、イオン交換法によって精製されたpHが7で電気伝導度が2μS/cm以下の水100mlとを入れた容器内に窒素ガスを充満させてから、前記容器を密封し、マグネティックスターラで60分撹拌しながら前記容器内の水に前記正極合剤層を浸潰させる。その後、前記容器内の水と正極合剤層との混合物をろ過して得られる上澄み液25.0mlを計り取り、ここに0.1質量%濃度のメチルオレンジ溶液を数滴加えて試料溶液を調製し、マグネティックスターラで撹拌しながら前記試料溶液に0.02mol/lの塩酸を間欠滴定し、前記試料溶液の色が黄色から橙色に変わるまでに前記試料溶液に投入した塩酸の量を、前記正極合剤層中のアルカリの中和に必要な塩酸の滴定量とする。
A nonaqueous electrolyte solution comprising a positive electrode having a positive electrode mixture layer containing a positive electrode active material, a conductive additive and a binder on one or both sides of a current collector, a negative electrode, a separator, and a nonaqueous electrolyte solution A secondary battery,
At least a part of the positive electrode active material has a general formula of LiNi x Co (1-xyz) Mny y M 1 z O 2 (0.5 ≦ x ≦ 0.9, 0.005 ≦ y ≦ 0. 3, 0.003 ≦ z ≦ 0.05, and the element M 1 is a metal element other than Li, Ni, Co, and Mn, and is made of Mg, Al, Ti, Sr, Zr, Nb, Ag, and Ba. A layered lithium-nickel-cobalt-manganese composite oxide (A) represented by (including at least one element selected from the group),
The titration amount of hydrochloric acid required for neutralization of alkali in the positive electrode mixture layer obtained by the following neutralization titration method is 14 ml or less,
At least a part of the binder contains a polymer that can be dissolved in a solvent other than polyvinylidene fluoride, and the content of the polymer that can be dissolved in the solvent is 0.000 parts by mass with respect to 100 parts by mass of the positive electrode active material. 1 to 0.5 parts by mass,
A non-aqueous electrolyte secondary battery in which cyclohexylbenzene is contained in an amount of 0.2 to 1.5 mass% in the total amount of the solvent of the non-aqueous electrolyte is used as the non-aqueous electrolyte.
The neutralization titration method:
Nitrogen gas in a container containing a positive electrode mixture layer collected from the positive electrode and weighed to about 20.0 g, and 100 ml of water having a pH of 7 and an electric conductivity of 2 μS / cm or less purified by an ion exchange method. Then, the container is sealed, and the positive electrode mixture layer is immersed in water in the container while stirring with a magnetic stirrer for 60 minutes. Thereafter, 25.0 ml of the supernatant obtained by filtering the mixture of water and the positive electrode mixture layer in the container is weighed, and a few drops of a 0.1% by weight methyl orange solution are added to the sample solution. The sample solution was intermittently titrated with 0.02 mol / l hydrochloric acid while stirring with a magnetic stirrer, and the amount of hydrochloric acid added to the sample solution until the color of the sample solution changed from yellow to orange was measured. The titration amount of hydrochloric acid required for neutralization of alkali in the positive electrode mixture layer is used.
正極活物質として、一般式LiNiCo(1−a−b−c)Mn (0≦a≦0.03、0≦b≦0.02、0.002≦c≦0.02であり、元素MはLi、Ni、CoおよびMn以外の金属元素であって、Mg、Al、Ti、Sr、Zr、Nb、AgおよびBaよりなる群から選択される少なくとも1種の元素を含む)で表される層状リチウム・コバルト複合酸化物(B)を、層状リチウム・ニッケル・コバルト・マンガン複合酸化物(A)とともに含有している請求項1に記載の非水電解液二次電池。 As the positive electrode active material, the general formula LiNi a Co (1- abc ) Mn b M 2 c O 2 (0 ≦ a ≦ 0.03, 0 ≦ b ≦ 0.02, 0.002 ≦ c ≦ 0) is .02, the element M 2 is Li, Ni, a metal element other than Co and Mn, Mg, Al, Ti, Sr, Zr, Nb, at least one selected from the group consisting of Ag and Ba 2. The non-aqueous electrolyte 2 according to claim 1, wherein the layered lithium / cobalt composite oxide (B) represented by (including the element) is contained together with the layered lithium / nickel / cobalt / manganese composite oxide (A). Next battery. ポリフッ化ビニリデン以外の溶媒に溶解可能なポリマーが、アクリロニトリル、アクリル酸エステルおよびメタクリル酸エステルよりなる群から選択される少なくとも1種のモノマーを含む2種以上のモノマーにより形成される共重合体、水素化ニトリルゴム、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、またはフッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体である請求項1または2に記載の非水電解液二次電池。   A copolymer formed by two or more monomers including at least one monomer selected from the group consisting of acrylonitrile, acrylic acid esters and methacrylic acid esters, wherein the polymer soluble in a solvent other than polyvinylidene fluoride, hydrogen A nitrile rubber, a vinylidene fluoride-chlorotrifluoroethylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, or a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer. The nonaqueous electrolyte secondary battery as described. 結着剤として、ポリフッ化ビニリデンを、ポリフッ化ビニリデン以外の溶媒に溶解可能なポリマーとともに含有している請求項1〜3のいずれかに記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, comprising polyvinylidene fluoride as a binder together with a polymer that can be dissolved in a solvent other than polyvinylidene fluoride. 満充電状態での電池の厚みをA(mm)とし、満充電状態で85℃の環境下に24時間貯蔵した後の電池の厚みをB(mm)としたとき、BとAとの差B−Aが1mm以下である請求項1〜4のいずれかに記載の非水電解液二次電池。   The difference between B and A when the thickness of the battery in a fully charged state is A (mm) and the thickness of the battery after being stored in an environment of 85 ° C. for 24 hours in a fully charged state is B (mm) B -A is 1 mm or less, The nonaqueous electrolyte secondary battery in any one of Claims 1-4. 請求項1〜5のいずれかに記載の非水電解液二次電池を製造する方法であって、
正極活物質、導電助剤、結着剤および溶媒を含有する正極合剤層形成用スラリーを調製し、前記正極合剤層形成用スラリーを用いて、集電体の片面または両面に正極合剤層を有する正極を作製する工程と、
シクロヘキシルベンゼンの含有量が、溶媒全量中に0.2〜1.5質量%の非水電解液を調製する工程と、
前記正極、負極、セパレータおよび前記非水電解液を用いて電池を組み立てる工程とを少なくとも有しており、
前記正極合剤層形成用スラリーの調製にあたり、結着剤であるポリフッ化ビニリデン以外の溶媒に溶解可能なポリマーを、前記溶媒に溶解させた溶液を使用することを特徴とする非水電解液二次電池の製造方法。
A method for producing the non-aqueous electrolyte secondary battery according to claim 1,
A positive electrode mixture layer forming slurry containing a positive electrode active material, a conductive additive, a binder and a solvent is prepared, and the positive electrode mixture is formed on one or both surfaces of the current collector using the positive electrode mixture layer forming slurry. Producing a positive electrode having a layer;
A step of preparing a nonaqueous electrolytic solution having a cyclohexylbenzene content of 0.2 to 1.5 mass% in the total amount of the solvent;
And assembling a battery using the positive electrode, the negative electrode, the separator and the non-aqueous electrolyte,
In preparing the slurry for forming the positive electrode mixture layer, a non-aqueous electrolyte solution is used in which a polymer that can be dissolved in a solvent other than polyvinylidene fluoride as a binder is dissolved in the solvent. A method for manufacturing a secondary battery.
JP2011054928A 2011-03-14 2011-03-14 Nonaqueous electrolyte secondary battery and manufacturing method thereof Active JP5734708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054928A JP5734708B2 (en) 2011-03-14 2011-03-14 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054928A JP5734708B2 (en) 2011-03-14 2011-03-14 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012190731A true JP2012190731A (en) 2012-10-04
JP5734708B2 JP5734708B2 (en) 2015-06-17

Family

ID=47083671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054928A Active JP5734708B2 (en) 2011-03-14 2011-03-14 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5734708B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005454A (en) * 2013-06-21 2015-01-08 株式会社豊田自動織機 Lithium ion secondary battery
KR20150092115A (en) * 2012-12-05 2015-08-12 제온 코포레이션 Lithium ion secondary battery
KR20150114463A (en) * 2013-02-04 2015-10-12 제온 코포레이션 Slurry for lithium ion secondary battery positive electrodes
WO2016181927A1 (en) * 2015-05-11 2016-11-17 日本電気株式会社 Lithium-ion battery
WO2017068985A1 (en) * 2015-10-22 2017-04-27 日立化成株式会社 Lithium-ion cell
WO2017155240A1 (en) * 2016-03-09 2017-09-14 주식회사 엘 앤 에프 Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
US10985426B2 (en) 2016-08-30 2021-04-20 Samsung Sdi Co., Ltd Separator for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
CN114447307A (en) * 2022-02-10 2022-05-06 湖北亿纬动力有限公司 Composite positive electrode material, preparation method thereof and electrochemical energy storage device
KR20230137891A (en) 2021-01-29 2023-10-05 니폰 제온 가부시키가이샤 Non-aqueous electrochemical devices

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963590A (en) * 1995-08-28 1997-03-07 Sony Corp Nonaqueous electrolyte secondary battery
JP2003163006A (en) * 2001-09-14 2003-06-06 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and its manufacturing method
JP2004533104A (en) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 Graded positive electrode material for lithium secondary batteries
JP2006164934A (en) * 2004-11-12 2006-06-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006236725A (en) * 2005-02-24 2006-09-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006324235A (en) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007005148A (en) * 2005-06-24 2007-01-11 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2007042302A (en) * 2005-07-29 2007-02-15 Sony Corp Battery
JP2007265731A (en) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd Lithium ion secondary battery
JP2009151959A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electronic apparatus
WO2011002097A1 (en) * 2009-07-03 2011-01-06 ダイキン工業株式会社 Slurry for electrode mixture of lithium secondary cell, electrode using the slurry, and lithium secondary cell
JP2012505514A (en) * 2008-11-11 2012-03-01 エルジー・ケム・リミテッド Nonaqueous electrolyte lithium secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963590A (en) * 1995-08-28 1997-03-07 Sony Corp Nonaqueous electrolyte secondary battery
JP2004533104A (en) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 Graded positive electrode material for lithium secondary batteries
JP2003163006A (en) * 2001-09-14 2003-06-06 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and its manufacturing method
JP2006164934A (en) * 2004-11-12 2006-06-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006236725A (en) * 2005-02-24 2006-09-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006324235A (en) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007005148A (en) * 2005-06-24 2007-01-11 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2007042302A (en) * 2005-07-29 2007-02-15 Sony Corp Battery
JP2007265731A (en) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd Lithium ion secondary battery
JP2009151959A (en) * 2007-12-19 2009-07-09 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electronic apparatus
JP2012505514A (en) * 2008-11-11 2012-03-01 エルジー・ケム・リミテッド Nonaqueous electrolyte lithium secondary battery
WO2011002097A1 (en) * 2009-07-03 2011-01-06 ダイキン工業株式会社 Slurry for electrode mixture of lithium secondary cell, electrode using the slurry, and lithium secondary cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184050B1 (en) * 2012-12-05 2020-11-27 제온 코포레이션 Lithium ion secondary battery
KR20150092115A (en) * 2012-12-05 2015-08-12 제온 코포레이션 Lithium ion secondary battery
KR102219706B1 (en) * 2013-02-04 2021-02-23 제온 코포레이션 Slurry for lithium ion secondary battery positive electrodes
EP2953193A4 (en) * 2013-02-04 2016-08-10 Zeon Corp Slurry for lithium ion secondary battery positive electrodes
CN104904042B (en) * 2013-02-04 2017-03-15 日本瑞翁株式会社 Lithium ion secondary battery positive electrode slurry
KR20150114463A (en) * 2013-02-04 2015-10-12 제온 코포레이션 Slurry for lithium ion secondary battery positive electrodes
US10559828B2 (en) 2013-02-04 2020-02-11 Zeon Corporation Slurry for lithium ion secondary battery positive electrodes
JP2015005454A (en) * 2013-06-21 2015-01-08 株式会社豊田自動織機 Lithium ion secondary battery
EP3297084A4 (en) * 2015-05-11 2019-04-24 Nec Corporation Lithium-ion battery
US20180159105A1 (en) * 2015-05-11 2018-06-07 Nec Corporation Lithium-ion battery
JPWO2016181927A1 (en) * 2015-05-11 2018-03-01 日本電気株式会社 Lithium ion battery
WO2016181927A1 (en) * 2015-05-11 2016-11-17 日本電気株式会社 Lithium-ion battery
JPWO2017068985A1 (en) * 2015-10-22 2018-08-02 日立化成株式会社 Lithium ion battery
WO2017068985A1 (en) * 2015-10-22 2017-04-27 日立化成株式会社 Lithium-ion cell
WO2017155240A1 (en) * 2016-03-09 2017-09-14 주식회사 엘 앤 에프 Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
US10673071B2 (en) 2016-03-09 2020-06-02 L&F Co., Ltd. Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
US10985426B2 (en) 2016-08-30 2021-04-20 Samsung Sdi Co., Ltd Separator for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
KR20230137891A (en) 2021-01-29 2023-10-05 니폰 제온 가부시키가이샤 Non-aqueous electrochemical devices
CN114447307A (en) * 2022-02-10 2022-05-06 湖北亿纬动力有限公司 Composite positive electrode material, preparation method thereof and electrochemical energy storage device
CN114447307B (en) * 2022-02-10 2024-03-15 湖北亿纬动力有限公司 Composite positive electrode material, preparation method thereof and electrochemical energy storage device

Also Published As

Publication number Publication date
JP5734708B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5734708B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP5358905B2 (en) Negative electrode for secondary battery, secondary battery, and production method thereof
JP5263954B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2008097879A (en) Lithium ion secondary battery
JP2007265731A (en) Lithium ion secondary battery
JP2008147117A (en) Electrolyte and battery
US20040126668A1 (en) Lithium polymer secondary cell
JP2016048624A (en) Lithium secondary battery
WO2015079893A1 (en) Lithium secondary battery
JP7432607B2 (en) Positive electrode piece, electrochemical device and electronic device including the positive electrode piece
JP2010118179A (en) Lithium-ion secondary battery
JP2006294393A (en) Lithium ion secondary battery
JP4222519B2 (en) Lithium ion secondary battery and equipment using the same
JP6345659B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP2011192580A (en) Nonaqueous secondary battery
JP2016072119A (en) Lithium secondary battery
JP2015201283A (en) Manufacturing method of cathode for nonaqueous secondary battery, and cathode for nonaqueous secondary battery
JP6392566B2 (en) Nonaqueous electrolyte secondary battery
KR20180058633A (en) Nonaqueous liquid electrolyte and lithium secondary battery including the same
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
JP2007134245A (en) Electrolyte solution and battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R150 Certificate of patent or registration of utility model

Ref document number: 5734708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250