Nothing Special   »   [go: up one dir, main page]

JP2012058028A - Battery capacity calculation apparatus and battery capacity calculation method - Google Patents

Battery capacity calculation apparatus and battery capacity calculation method Download PDF

Info

Publication number
JP2012058028A
JP2012058028A JP2010200186A JP2010200186A JP2012058028A JP 2012058028 A JP2012058028 A JP 2012058028A JP 2010200186 A JP2010200186 A JP 2010200186A JP 2010200186 A JP2010200186 A JP 2010200186A JP 2012058028 A JP2012058028 A JP 2012058028A
Authority
JP
Japan
Prior art keywords
current
open
circuit voltage
change amount
charge rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010200186A
Other languages
Japanese (ja)
Other versions
JP5419832B2 (en
Inventor
Nozomi Teranishi
望 寺西
Kinnosuke Itabashi
欣之介 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2010200186A priority Critical patent/JP5419832B2/en
Publication of JP2012058028A publication Critical patent/JP2012058028A/en
Application granted granted Critical
Publication of JP5419832B2 publication Critical patent/JP5419832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery capacity calculation apparatus capable of highly accurately calculating a battery capacity, and a battery capacity calculation method.SOLUTION: A battery capacity calculation apparatus includes: a current integration SOC calculator 13 for calculating a current integration charge rate by integrating sensor currents with a period from a time when an absolute value of a sensor current value exceeds a threshold value to a time when the absolute value becomes lower than or equal to the threshold value as a current integration period; a ΔSOC-i calculator 15 for calculating a current integration charge rate change amount during the current integration period; an open-circuit voltage estimator 11 for estimating an open-circuit voltage in the start and the end of the current integration period; an OCV-SOC converter 12 for calculating an open-circuit voltage charge rate in the start and the end of the current integration period; a ΔSOC-v calculator 14 for calculating an open-circuit voltage charge rate change amount that is a differential between the open-circuit voltage charge rate in the end of the current integration period and the open-circuit voltage charge rate in the start of the current integration period; and a deterioration estimator 16 for calculating a capacity maintenance rate SOH that is a ratio of the current integration charge rate change amount with respect to the open-circuit voltage charge rate change amount and calculating a battery capacity on the basis of the calculated capacity maintenance rate SOH.

Description

本発明は、電池容量算出装置および電池容量算出方法に関する。   The present invention relates to a battery capacity calculation device and a battery capacity calculation method.

特許文献1には、二次電池を一定電流で放電したときの電流センサの検出値を積算して電池容量を算出することが開示されている。   Patent Document 1 discloses that the battery capacity is calculated by integrating the detection values of the current sensor when the secondary battery is discharged at a constant current.

特開平10−54869号公報JP-A-10-54869

電気自動車やハイブリッド車両の強電バッテリに用いられる二次電池は、常用される電流レンジが大きいため、電流センサの誤差が大きくなる。よって、上記従来技術を強電バッテリに適用した場合、電流積算誤差が大きくなり、電池容量の算出精度が低下するという問題があった。
本発明の目的は、電池容量を高精度に算出できる電池容量算出装置および電池容量算出方法を提供することにある。
A secondary battery used for a high-power battery of an electric vehicle or a hybrid vehicle has a large current range, so that an error of a current sensor becomes large. Therefore, when the above prior art is applied to a high-power battery, there is a problem that a current integration error increases and the calculation accuracy of the battery capacity decreases.
An object of the present invention is to provide a battery capacity calculation device and a battery capacity calculation method that can calculate the battery capacity with high accuracy.

上記課題を解決するため、本発明では、二次電池の充放電電流の大きさが所定の閾値を超える期間を電流積算期間として電流積算に基づく充電率変化量を算出すると共に、電流積算期間の開始時および終了時に推定した開放電圧から開放電圧に基づく充電率変化量を算出し、開放電圧に基づく充電率変化量に対する電流積算に基づく充電率変化量の比である容量維持率を算出し、算出した容量維持率に基づき二次電池の電池容量を算出する。   In order to solve the above problems, in the present invention, a charging rate change amount based on current integration is calculated with a period in which the magnitude of the charge / discharge current of the secondary battery exceeds a predetermined threshold as a current integration period. Calculate the charge rate change amount based on the open circuit voltage from the open circuit voltage estimated at the start and end, calculate the capacity maintenance rate that is the ratio of the charge rate change amount based on the current integration to the charge rate change amount based on the open circuit voltage, The battery capacity of the secondary battery is calculated based on the calculated capacity maintenance rate.

二次電池の充放電電流が閾値を超える期間は電流積算に基づく充電率変化量に対して電流積算誤差の占める割合が小さくなる。つまり、電流積算に基づく充電率変化量と実際の充電率変化量との差が小さいため、センサ誤差の影響を小さくでき、電流積算に基づく充電率変化量を精度良く算出できる。よって、電流積算に基づく充電率変化量と開放電圧に基づく充電率変化量とから求まる容量維持率の算出精度を高めることができ、この結果、容量維持率から求まる電池容量を高精度に算出できる。   During the period when the charge / discharge current of the secondary battery exceeds the threshold, the ratio of the current integration error to the amount of change in the charging rate based on the current integration is small. That is, since the difference between the charge rate change amount based on current integration and the actual charge rate change amount is small, the influence of sensor error can be reduced, and the charge rate change amount based on current integration can be calculated accurately. Therefore, it is possible to increase the calculation accuracy of the capacity maintenance rate obtained from the charge rate change amount based on the current integration and the charge rate change amount based on the open circuit voltage, and as a result, it is possible to calculate the battery capacity obtained from the capacity maintenance rate with high accuracy. .

実施例1のバッテリシステム1の構成図である。1 is a configuration diagram of a battery system 1 of Example 1. FIG. 実施例1のコントローラ2の制御ブロック図である。FIG. 3 is a control block diagram of a controller 2 according to the first embodiment. バッテリ6の内部抵抗等価回路を示すバッテリモデルである。3 is a battery model showing an internal resistance equivalent circuit of a battery 6. 逐次パラメータ推定の制御ブロック図である。It is a control block diagram of sequential parameter estimation. バッテリ6のバッテリ6のOCV-SOC特性図である。6 is an OCV-SOC characteristic diagram of the battery 6 of the battery 6. FIG. 実施例1の電流積算充電率変化量ΔSOC-iおよび開放電圧充電率変化量ΔSOC-vの算出方法を示すセンサ電流Iおよび開放電圧充電率SOC-vのタイムチャートである。6 is a time chart of the sensor current I and the open-circuit voltage charging rate SOC-v showing a calculation method of the current integrated charging rate change amount ΔSOC-i and the open-circuit voltage charging rate change amount ΔSOC-v according to the first embodiment. 実施例1のコントローラ2で実行されるバッテリ容量算出処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of a battery capacity calculation process executed by a controller 2 according to the first embodiment. 電流センサのオフセット誤差による充電率変化量の電流積算誤差を示す図である。It is a figure which shows the electric current integration error of the charging rate change amount by the offset error of a current sensor. センサ電流の絶対値が閾値以下の一定値である場合の電流積算に基づく充電率変化量である。This is a change in charging rate based on current integration when the absolute value of the sensor current is a constant value equal to or less than a threshold value. センサ電流の絶対値が閾値を超える一定値である場合の電流積算に基づく充電率変化量である。This is the charge rate change amount based on the current integration when the absolute value of the sensor current is a constant value exceeding the threshold value. 実施例2のコントローラ2の制御ブロック図である。FIG. 6 is a control block diagram of a controller 2 according to a second embodiment.

以下、本発明の電池容量算出装置および電池容量算出方法を実施するための形態を、実施例に基づいて説明する。
〔実施例1〕
まず、実施例1の構成を説明する。
図1は、実施例1のバッテリシステム1の構成図であり、実施例1のバッテリシステム1は、電気自動車に搭載されている。
バッテリシステム1は、コントローラ2、電圧センサ3、電流センサ4、温度センサ5、強電バッテリ(二次電池)6、負荷7および充電器8を備える。
電圧センサ3は、バッテリ6の端子電圧を検出し、対応するセンサ電圧Vを出力する。
電流センサ4は、バッテリ6の充放電電流を検出し、対応するセンサ電流Iを出力する。
温度センサ5は、バッテリ6の温度を検出し、対応するセンサ温度Tを出力する。
強電バッテリ(以下、バッテリ)6は、例えばリチウムイオン電池である。
負荷7は、駆動輪を駆動するモータジェネレータに電力を供給するインバータである。
充電器8は、車載に限らず、充電スタンド等の急速充電器としてもよい。
コントローラ2は、電圧センサ3で検出されたセンサ電圧Vと、電流センサ4で検出されたセンサ電流Iと、温度センサ5で検出されたセンサ温度Tとに基づいてバッテリ6の充電率SOC(State of charge)等を演算し、バッテリ6の充放電を制御する。また、コントローラ2は、各センサ値に基づいて現在のバッテリ6のバッテリ容量(電池容量)Chを算出し、バッテリ容量Chから予測される走行可能距離をドライバに提示する。
Hereinafter, the form for implementing the battery capacity calculation apparatus and battery capacity calculation method of this invention is demonstrated based on an Example.
[Example 1]
First, the configuration of the first embodiment will be described.
FIG. 1 is a configuration diagram of a battery system 1 according to a first embodiment. The battery system 1 according to the first embodiment is mounted on an electric vehicle.
The battery system 1 includes a controller 2, a voltage sensor 3, a current sensor 4, a temperature sensor 5, a high-power battery (secondary battery) 6, a load 7, and a charger 8.
The voltage sensor 3 detects the terminal voltage of the battery 6 and outputs a corresponding sensor voltage V.
The current sensor 4 detects the charge / discharge current of the battery 6 and outputs a corresponding sensor current I.
The temperature sensor 5 detects the temperature of the battery 6 and outputs a corresponding sensor temperature T.
The high-power battery (hereinafter referred to as battery) 6 is, for example, a lithium ion battery.
The load 7 is an inverter that supplies electric power to a motor generator that drives the drive wheels.
The charger 8 is not limited to being mounted on the vehicle, but may be a quick charger such as a charging stand.
Based on the sensor voltage V detected by the voltage sensor 3, the sensor current I detected by the current sensor 4, and the sensor temperature T detected by the temperature sensor 5, the controller 2 determines the state of charge SOC (State of charge) and the like, and the charging / discharging of the battery 6 is controlled. Further, the controller 2 calculates the current battery capacity (battery capacity) Ch of the battery 6 based on each sensor value, and presents the possible travel distance predicted from the battery capacity Ch to the driver.

図2は、実施例1のコントローラ2の制御ブロック図である。
開放電圧推定部(開放電圧推定手段)11は、電圧センサ3および電流センサ4により検出されたバッテリ6の状態量(センサ電圧V、センサ電流I)に基づいてバッテリモデル(電池モデル)の各パラメータを逐次推定する。また、センサ電流Iの絶対値(大きさ)が閾値Ithを超えたとき、および閾値Ith以下となったとき、推定した各パラメータに基づいて開放電圧OCV(Open Circuit Voltage)を推定する。ここで、閾値Ithは、電流センサ4の検出誤差に対して十分に大きな電流値とする。
図3は、バッテリ6の内部抵抗等価回路を示すバッテリモデル18であり、バッテリモデル18は、電解液抵抗とオーム抵抗等の直流成分を設定する抵抗R0と、電荷移動過程における動的な振る舞いを表す反応抵抗として設定する抵抗R1と、電気二重層として設定するC1と、拡散過程における動的な振る舞いを表すものとして設定するR2,C2とにより構成される。ここでは、電荷移動過程で一次の並列回路、拡散過程で二次の並列回路の等価回路モデルで表しているが、状況に応じてそれぞれの次数は変化する。
FIG. 2 is a control block diagram of the controller 2 according to the first embodiment.
The open-circuit voltage estimating unit (open-circuit voltage estimating means) 11 is a parameter of the battery model (battery model) based on the state quantities (sensor voltage V, sensor current I) of the battery 6 detected by the voltage sensor 3 and the current sensor 4. Are estimated sequentially. Further, when the absolute value (magnitude) of the sensor current I exceeds the threshold value Ith and becomes equal to or less than the threshold value Ith, an open circuit voltage OCV (Open Circuit Voltage) is estimated based on each estimated parameter. Here, the threshold value Ith is set to a sufficiently large current value with respect to the detection error of the current sensor 4.
FIG. 3 shows a battery model 18 showing an internal resistance equivalent circuit of the battery 6. The battery model 18 shows a resistance R0 for setting a direct current component such as an electrolyte resistance and an ohmic resistance, and a dynamic behavior in a charge transfer process. The resistor R1 is set as a reaction resistance to be expressed, C1 is set as an electric double layer, and R2 and C2 are set as those representing dynamic behavior in the diffusion process. Here, an equivalent circuit model of a primary parallel circuit in the charge transfer process and a secondary parallel circuit in the diffusion process is shown, but the respective orders change depending on the situation.

図4は、逐次パラメータ推定の制御ブロック図であり、センサ電流Iをバッテリモデル18に入力したとき、バッテリ6の端子電圧とバッテリモデル18の端子電圧推定値V^との差分がなくなるように適応機構10によってバッテリモデル18の各パラメータR0,R1,R2,C1,C2を逐次修正することで、現在のバッテリ6の状態に合致したバッテリモデルを得ることができる。
開放電圧推定部11は、推定した各パラメータR0,R1,R2,C1,C2とセンサ電流Iから過電圧VRを算出し、センサ電圧(端子電圧)Vから過電圧VRを減算して開放電圧OCVを計算する。
FIG. 4 is a control block diagram of the sequential parameter estimation, and is adapted so that the difference between the terminal voltage of the battery 6 and the estimated terminal voltage V ^ of the battery model 18 disappears when the sensor current I is input to the battery model 18. By sequentially correcting the parameters R0, R1, R2, C1, and C2 of the battery model 18 by the mechanism 10, a battery model that matches the current state of the battery 6 can be obtained.
The open-circuit voltage estimation unit 11 calculates the overvoltage VR from the estimated parameters R0, R1, R2, C1, and C2 and the sensor current I, and subtracts the overvoltage VR from the sensor voltage (terminal voltage) V to calculate the open-circuit voltage OCV. To do.

OCV-SOC変換部(開放電圧充電率算出手段)12は、あらかじめ設定されたOCV-SOC変換テーブルを用いて開放電圧OCVを開放電圧に基づく充電率(以下、開放電圧充電率)SOC-vに変換する。図5は、バッテリ6のOCV-SOC特性図であり、開放電圧OCVと充電率SOCとの関係は、温度や劣化に依らず常に一定に保たれるため、あらかじめ実験によりバッテリ6のOCV-SOC特性を測定し、OCV-SOC変換テーブルを作成しておく。
電流積算SOC算出部(電流積算充電率算出手段)13は、センサ電流Iの絶対値が閾値Ithを超えてから閾値Ith以下となるまでの期間(電流積算期間)でセンサ電流Iを積算し、積算値を初期バッテリ容量(初期電池容量)Ahで除算することにより電流積算に基づく充電率(以下、電流積算充電率)SOC-iを算出する。
ΔSOC-v算出部(開放電圧充電率変化量算出手段)14は、電流積算期間の終了時に推定された開放電圧充電率SOC-v2と、電流積算期間の開始時に推定された開放電圧充電率SOC-v1との差分から開放電圧に基づく充電率変化量(以下、開放電圧充電率変化量)ΔSOC-vを算出する。ΔSOC-v算出部14は、図6(b)に示すように、車両の走行開始から走行終了までの間、センサ電流Iの絶対値が閾値Ithを超える電流積算期間で開放電圧充電率変化量ΔSOC-vxを算出する。そして、走行終了時、算出した各開放電圧充電率変化量ΔSOC-v1,ΔSOC-v2,ΔSOC-v3,…,ΔSOC-vn(nは正の整数)の絶対値|ΔSOC-v1|,|ΔSOC-v2|,|ΔSOC-v3|,…,|ΔSOC-vn|を加算して最終的な開放電圧充電率変化量ΔSOC-vとする。
The OCV-SOC converter (open-circuit voltage charge rate calculation means) 12 converts the open-circuit voltage OCV into a charge rate based on open-circuit voltage (hereinafter referred to as open-circuit voltage charge rate) SOC-v using a preset OCV-SOC conversion table. Convert. FIG. 5 is an OCV-SOC characteristic diagram of the battery 6. Since the relationship between the open circuit voltage OCV and the charging rate SOC is always kept constant regardless of temperature and deterioration, the OCV-SOC of the battery 6 is experimentally determined beforehand. Measure the characteristics and create an OCV-SOC conversion table.
The current integration SOC calculation unit (current integration charging rate calculation means) 13 integrates the sensor current I in a period (current integration period) from when the absolute value of the sensor current I exceeds the threshold value Ith to below the threshold value Ith, By dividing the integrated value by the initial battery capacity (initial battery capacity) Ah, a charging rate based on current integration (hereinafter referred to as current integrated charging rate) SOC-i is calculated.
The ΔSOC-v calculation unit (open-circuit voltage charge rate change amount calculation means) 14 includes an open-circuit voltage charge rate SOC-v2 estimated at the end of the current integration period, and an open-circuit voltage charge rate SOC estimated at the start of the current integration period. The amount of change in charging rate based on the open-circuit voltage (hereinafter referred to as the amount of change in open-circuit voltage charging rate) ΔSOC-v is calculated from the difference from −v1. As shown in FIG. 6 (b), the ΔSOC-v calculation unit 14 changes the open-circuit voltage charging rate change amount during the current integration period in which the absolute value of the sensor current I exceeds the threshold value Ith from the start of travel of the vehicle to the end of travel. ΔSOC-vx is calculated. At the end of travel, the absolute value of each calculated open circuit voltage charge rate change amount ΔSOC-v1, ΔSOC-v2, ΔSOC-v3,..., ΔSOC-vn (n is a positive integer) | ΔSOC-v1 |, | ΔSOC -v2 |, | ΔSOC-v3 |,..., | ΔSOC-vn | are added to obtain a final change amount ΔSOC-v of open-circuit voltage charging rate.

ΔSOC-i算出部(電流積算充電率変化量算出手段)15は、電流積算期間における電流積算に基づく充電率変化量(以下、電流積算充電率変化量)ΔSOC-ixを算出する。ΔSOC-i算出部15は、図6(a)に示すように、車両の走行開始から走行終了までの間、センサ電流Iの絶対値が閾値Ithを超える電流積算期間で電流積算充電率変化量ΔSOC-ixを算出する。そして、走行終了時、算出した各電流積算充電率変化量ΔSOC-i1,ΔSOC-i2,ΔSOC-i3,…,ΔSOC-inの絶対値|ΔSOC-i1|,|ΔSOC-i2|,|ΔSOC-i3|,…,|ΔSOC-in|を加算して最終的な電流積算充電率変化量ΔSOC-iとする。なお、図6(a)では、図面作成の便宜上、センサ電流Iが充電側から放電側、および放電側から充電側へ瞬時に変化しているような形状としているが、実際は所定の時間を経過して充電側から放電側、および放電側から充電側へと変化している。
劣化推定部(電池容量算出手段)16は、走行終了時に算出された最終的な開放電圧充電率変化量ΔSOC-vと最終的な電流積算充電率変化量ΔSOC-iとに基づいて、初期バッテリ容量Ahに対する現在のバッテリ容量Chの比である容量維持率SOH(State of health)を算出し、算出した容量維持率SOHから現在のバッテリ容量Chを求める。容量維持率SOHは、電流積算充電率変化量ΔSOC-iを開放電圧充電率変化量ΔSOC-vで除算することで得られる。また、現在のバッテリ容量Chは、初期バッテリ容量Ahに対し、容量維持率SOHを乗算することで求まる。初期バッテリ容量Ahは、あらかじめ実験により測定した値を用いる。
The ΔSOC-i calculating unit (current integrated charging rate change amount calculating means) 15 calculates a charging rate change amount (hereinafter referred to as current integrated charging rate change amount) ΔSOC-ix based on current integration in the current integration period. As shown in FIG. 6 (a), the ΔSOC-i calculation unit 15 changes the current integration charge rate change amount during the current integration period in which the absolute value of the sensor current I exceeds the threshold value Ith from the start of travel of the vehicle to the end of travel. ΔSOC-ix is calculated. Then, at the end of traveling, the calculated absolute value of each current charging rate ΔSOC-i1, ΔSOC-i2, ΔSOC-i3,..., ΔSOC-in | ΔSOC-i1 |, | ΔSOC-i2 |, | ΔSOC- i3 |,..., | ΔSOC-in | are added to obtain a final current integrated charging rate change amount ΔSOC-i. In FIG. 6 (a), for convenience of drawing, the sensor current I is configured to change instantaneously from the charge side to the discharge side and from the discharge side to the charge side. Thus, the charging side changes to the discharging side, and the discharging side to the charging side.
The deterioration estimation unit (battery capacity calculation means) 16 determines the initial battery based on the final open-circuit voltage charge rate change amount ΔSOC-v and the final current integrated charge rate change amount ΔSOC-i calculated at the end of traveling. A capacity maintenance rate SOH (State of health) that is a ratio of the current battery capacity Ch to the capacity Ah is calculated, and the current battery capacity Ch is obtained from the calculated capacity maintenance ratio SOH. The capacity maintenance rate SOH is obtained by dividing the current integrated charging rate change amount ΔSOC-i by the open-circuit voltage charging rate change amount ΔSOC-v. Also, the current battery capacity Ch is obtained by multiplying the initial battery capacity Ah by the capacity maintenance rate SOH. As the initial battery capacity Ah, a value measured in advance by experiment is used.

[バッテリ容量算出処理]
図7は、実施例1のコントローラ2で実行されるバッテリ容量算出処理の流れを示すフローチャートであり、以下、各ステップについて説明する。この処理は、車両のイグニッションスイッチがONされている間、繰り返し実行される。
ステップS1では、開放電圧推定部11において、車両の走行開始を判定し、YESの場合にはステップS2へ進み、NOの場合にはリターンへ進む。車両の走行開始は、例えば車速により判定する。
ステップS2では、開放電圧推定部11において、電圧センサ3、電流センサ4からセンサ電圧V、センサ電流Iを読み込む。
ステップS3では、開放電圧推定部11において、センサ電流Iの絶対値が閾値Ithを超えたか否かを判定し、YESの場合にはステップS4へ進み、NOの場合にはステップS3を繰り返す。
ステップS4では、開放電圧推定部11において、センサ電圧V、センサ電流Iに基づいてバッテリモデル18の各パラメータR0,R1,R2,C1,C2を推定し、推定した各パラメータR0,R1,R2,C1,C2とセンサ電流I、センサ電圧Vから開放電圧OCVを推定し、開放電圧OCVと充電率SOCの関係(図5)から開放電圧充電率SOC-v1を算出する。なお、パラメータ推定方法については後述する。
[Battery capacity calculation processing]
FIG. 7 is a flowchart showing the flow of the battery capacity calculation process executed by the controller 2 of the first embodiment. Each step will be described below. This process is repeatedly executed while the ignition switch of the vehicle is turned on.
In step S1, the open-circuit voltage estimation unit 11 determines the start of vehicle travel. If YES, the process proceeds to step S2, and if NO, the process proceeds to return. The start of vehicle travel is determined by, for example, the vehicle speed.
In step S2, the open-circuit voltage estimation unit 11 reads the sensor voltage V and the sensor current I from the voltage sensor 3 and the current sensor 4.
In step S3, the open circuit voltage estimation unit 11 determines whether or not the absolute value of the sensor current I exceeds the threshold value Ith. If YES, the process proceeds to step S4. If NO, step S3 is repeated.
In step S4, the open-circuit voltage estimation unit 11 estimates the parameters R0, R1, R2, C1, C2 of the battery model 18 based on the sensor voltage V and the sensor current I, and the estimated parameters R0, R1, R2, The open circuit voltage OCV is estimated from C1, C2, the sensor current I, and the sensor voltage V, and the open circuit voltage charging rate SOC-v1 is calculated from the relationship between the open circuit voltage OCV and the charging rate SOC (FIG. 5). The parameter estimation method will be described later.

ステップS5では、電流積算SOC算出部13において、センサ電流Iに基づいて電流積算を開始する。
ステップS6では、開放電圧推定部11において、電圧センサ3、電流センサ4からセンサ電圧V、センサ電流Iを読み込む。
ステップS7では、センサ電流Iの絶対値が閾値Ith以下であるか、またはセンサ電流Iの符号が反転したか否かを判定し、少なくとも一方がYESの場合にはステップS8へ進み、NOの場合にはステップS6へ進む。
ステップS8では、開放電圧推定部11において、センサ電圧V、センサ電流Iに基づいてバッテリモデル18の各パラメータR0,R1,R2,C1,C2を推定し、推定した各パラメータR0,R1,R2,C1,C2とセンサ電流I、センサ電圧Vから開放電圧OCVを推定し、開放電圧OCVと充電率SOCの関係(図5)から開放電圧充電率SOC-v2を算出する。なお、パラメータ推定方法については後述する。
In step S5, the current integration SOC calculation unit 13 starts current integration based on the sensor current I.
In step S6, the open-circuit voltage estimation unit 11 reads the sensor voltage V and the sensor current I from the voltage sensor 3 and the current sensor 4.
In step S7, it is determined whether the absolute value of the sensor current I is equal to or less than the threshold value Ith, or whether the sign of the sensor current I is reversed. If at least one of the determination values is YES, the process proceeds to step S8. Proceed to step S6.
In step S8, the open-circuit voltage estimation unit 11 estimates the parameters R0, R1, R2, C1, C2 of the battery model 18 based on the sensor voltage V and the sensor current I, and the estimated parameters R0, R1, R2, The open circuit voltage OCV is estimated from C1, C2, the sensor current I, and the sensor voltage V, and the open circuit voltage charge rate SOC-v2 is calculated from the relationship between the open circuit voltage OCV and the charge rate SOC (FIG. 5). The parameter estimation method will be described later.

ステップS9では、電流積算SOC算出部13において、電流積算を終了する。
ステップS10では、ΔSOC-v算出部14において、開放電圧充電率SOC-v2から開放電圧充電率SOC-v1を減算してΔSOC-vnを算出する。また、ΔSOC-i算出部15において、センサ電流Iが閾値Ithを超えてから閾値Ith以下となった電流積算期間のΔSOC-inを算出する。
ステップS11では、開放電圧推定部11において、車両の走行終了を判定し、YESの場合にはステップS13へ進み、NOの場合にはステップS12へ進む。
ステップS12では、nをインクリメント(+1)する。
ステップS13では、ΔSOC-i算出部15において、算出した各電流積算充電率変化量ΔSOC-i1,ΔSOC-i2,ΔSOC-i3,…,ΔSOC-inの絶対値|ΔSOC-i1|,|ΔSOC-i2|,|ΔSOC-i3|,…,|ΔSOC-in|を加算して最終的な電流積算充電率変化量ΔSOC-iを算出する。
In step S9, the current integration SOC calculation unit 13 ends the current integration.
In step S10, ΔSOC-v calculation unit 14 calculates ΔSOC-vn by subtracting open-circuit voltage charge rate SOC-v1 from open-circuit voltage charge rate SOC-v2. In addition, the ΔSOC-i calculation unit 15 calculates ΔSOC-in for the current integration period when the sensor current I has exceeded the threshold value Ith and has become the threshold value Ith or less.
In step S11, the open-circuit voltage estimation unit 11 determines whether the vehicle has finished traveling. If YES, the process proceeds to step S13, and if NO, the process proceeds to step S12.
In step S12, n is incremented (+1).
In step S13, the ΔSOC-i calculating unit 15 calculates the absolute value of each calculated current integrated charging rate change ΔSOC-i1, ΔSOC-i2, ΔSOC-i3,..., ΔSOC-in | ΔSOC-i1 |, | ΔSOC- i2 |, | ΔSOC-i3 |,..., | ΔSOC-in | are added to calculate a final current integrated charging rate change amount ΔSOC-i.

ステップS14では、ΔSOC-v算出部14において、算出した各開放電圧充電率変化量ΔSOC-v1,ΔSOC-v2,ΔSOC-v3,…,ΔSOC-vnの絶対値|ΔSOC-v1|,|ΔSOC-v2|,|ΔSOC-v3|,…,|ΔSOC-vn|を加算して最終的な開放電圧充電率変化量ΔSOC-vを算出する。
ステップS15では、劣化推定部16において、容量維持率SOHをΔSOC-i/ΔSOC-vから計算する。
ステップS16では、劣化推定部16において、前回の充電時で算出した容量維持率SOH、または別の方法で算出した容量維持率SOHとの平均化処理を行い、最終的な容量維持率SOHとする。
ステップS17では、劣化推定部16において、初期バッテリ容量Ahに容量維持率SOHを乗算して現在のバッテリ容量Chを算出する。
In step S14, the ΔSOC-v calculating unit 14 calculates the absolute value of each calculated open-circuit voltage charging rate change ΔSOC-v1, ΔSOC-v2, ΔSOC-v3,..., ΔSOC-vn | ΔSOC-v1 |, | ΔSOC- v2 |, | ΔSOC-v3 |,..., | ΔSOC-vn | are added to calculate the final open-circuit voltage charging rate change amount ΔSOC-v.
In step S15, the deterioration estimation unit 16 calculates the capacity maintenance rate SOH from ΔSOC-i / ΔSOC-v.
In step S16, the deterioration estimation unit 16 performs an averaging process with the capacity maintenance rate SOH calculated at the time of the previous charging or the capacity maintenance rate SOH calculated by another method to obtain a final capacity maintenance rate SOH. .
In step S17, the deterioration estimating unit 16 calculates the current battery capacity Ch by multiplying the initial battery capacity Ah by the capacity maintenance rate SOH.

[パラメータ推定処理]
次に等価回路パラメータ推定部S4,S8の詳細について説明する。
図4は実施例1の等価回路パラメータ推定部の制御ブロック図で、バッテリ6、バッテリモデル18、適応機構10を備えている。適応機構10の1つとして、カルマンフィルタがあり、内部のパラメータを自己修正するためのフィルタで、逐次パラメータ推定に用いられる。
バッテリ6は、この制御系への入力となる測定される電流を入力とし、測定されるバッテリ電圧Vを出力する。このバッテリ6は実際のバッテリを扱うものとして設定されたものである。
[Parameter estimation processing]
Next, details of the equivalent circuit parameter estimation units S4 and S8 will be described.
FIG. 4 is a control block diagram of the equivalent circuit parameter estimation unit of the first embodiment, which includes a battery 6, a battery model 18, and an adaptive mechanism 10. One of the adaptive mechanisms 10 is a Kalman filter, which is a filter for self-correcting internal parameters and is used for sequential parameter estimation.
The battery 6 receives a measured current as an input to the control system and outputs a measured battery voltage V. This battery 6 is set to handle an actual battery.

バッテリモデル18は、バッテリ6のモデルとなる等価回路であり、適応機構10による修正出力で等価回路のパラメータを調整し、電圧モデル推定値であるV^を出力する。さらに、等価回路のパラメータを等価回路パラメータ推定部S4,S9の出力として出力する。例えば抵抗値R0〜R2、コンデンサ容量C1,C2である。なお、抵抗値R1,R2は、説明上、抵抗を示す符号と、抵抗値を示す記号の両方で用いる。
適応機構10は、VとV^で演算される偏差に応じて、バッテリモデル18の演算内容を修正する出力を行う(V^は、Vの推定値を表し、実際はVの上に^がある表記になる)。
The battery model 18 is an equivalent circuit that is a model of the battery 6, adjusts the parameters of the equivalent circuit with the corrected output from the adaptive mechanism 10, and outputs V ^ that is a voltage model estimated value. Further, the parameters of the equivalent circuit are output as the outputs of the equivalent circuit parameter estimation units S4 and S9. For example, resistance values R0 to R2 and capacitor capacitances C1 and C2. Note that the resistance values R1 and R2 are used for both the symbol indicating resistance and the symbol indicating resistance value for the sake of explanation.
The adaptive mechanism 10 performs output to correct the calculation contents of the battery model 18 according to the deviation calculated by V and V ^ (V ^ represents an estimated value of V, and actually ^ is on V Notation).

[SOH算出ロジック]
所定の電流積算期間におけるバッテリ6の充放電容量は、∫idt(iはバッテリ6の充放電電流であり、放電の符号は負(-)、充電の符号は正(+)とする。)であるから、∫idtから求まる電流積算期間の充電率SOCの変化量ΔSOC-inは、下記の式(1)で表すことができる。
ΔSOC-in = ∫idt/Ah …(1)
一方、図5に示したバッテリ6の開放電圧OCVと充電率SOCとの関係を用い、電流積算開始時における開放電圧OCVから求まる充電率SOC-v2と、電流積算終了時における開放電圧OCVから求まる充電率SOC-v1とから求まる電流積算期間の充電率SOCの変化量ΔSOC-vnは、下記の式(2)で表すことができる。
ΔSOC-vn = SOC-v2 - SOC-v1 …(2)
[SOH calculation logic]
The charge / discharge capacity of the battery 6 during a predetermined current integration period is ∫idt (i is the charge / discharge current of the battery 6, the sign of discharge is negative (−), and the sign of charge is positive (+)). Therefore, the change amount ΔSOC-in of the charging rate SOC in the current integration period obtained from ∫idt can be expressed by the following equation (1).
ΔSOC-in = ∫idt / Ah… (1)
On the other hand, using the relationship between the open circuit voltage OCV and the charge rate SOC of the battery 6 shown in FIG. 5, the charge rate SOC-v2 obtained from the open circuit voltage OCV at the start of current integration and the open circuit voltage OCV at the end of current integration are obtained. The amount of change ΔSOC-vn of the charging rate SOC in the current integration period obtained from the charging rate SOC-v1 can be expressed by the following equation (2).
ΔSOC-vn = SOC-v2-SOC-v1… (2)

ここで、
ΔSOC-vn = ∫idt/(Ah×SOH) …(3)
であるから、電流積算期間の容量維持率SOHは、
SOH = {∫idt/Ah×100}
/(電流積算開始時SOC - 電流積算終了時SOC) …(4)
となり、式(4)に式(1),(2)を代入することで、下記の式(5)を得る。
SOH = ΔSOC-in/ΔSOC-vn …(5)
式(5)により、電流積算期間の容量維持率SOHは、電流積算充電率変化量ΔSOC-inを開放電圧充電率変化量ΔSOC-vnで除算することで求まることがわかる。
here,
ΔSOC-vn = ∫idt / (Ah × SOH)… (3)
Therefore, the capacity maintenance rate SOH during the current integration period is
SOH = {∫idt / Ah × 100}
/ (SOC at the start of current integration-SOC at the end of current integration)… (4)
Thus, the following formula (5) is obtained by substituting the formulas (1) and (2) into the formula (4).
SOH = ΔSOC-in / ΔSOC-vn (5)
From equation (5), it can be seen that the capacity maintenance rate SOH during the current integration period is obtained by dividing the current integration charge rate change amount ΔSOC-in by the open-circuit voltage charge rate change amount ΔSOC-vn.

次に、実施例1の作用を説明する。
[バッテリ容量算出作用]
図8(a)のようにバッテリの実際の充放電電流値(電流真値)に対して電流センサから得られるセンサ電流にオフセット誤差がある場合、電流積算から算出されるSOC(SOC算出値)には、図8(b)に示すように、積算時間が長くなるほどオフセット誤差により生じる誤差分が累積され、実際のSOC(SOC真値)との乖離が大きくなる。なお、図8(a)では、図面作成の便宜上、センサ電流Iが充電側から放電側、および放電側から充電側へ瞬時に変化しているような形状としているが、実際は所定の時間を経過して充電側から放電側、および放電側から充電側へと変化している。
ここで、高精度の電流センサを用いることで、オフセット誤差を小さく抑え、SOCの算出精度を高めることは可能であるが、電気自動車やハイブリッド車両の電流変化に対応可能な高精度の電流センサは非常に高価であるため、コスト面から採用が難しい。一方、シャント抵抗は安価かつ高精度な電流センサであるが、電気自動車の大きな電流レンジに対応できるものは開発されてない。
Next, the operation of the first embodiment will be described.
[Battery capacity calculation]
When the sensor current obtained from the current sensor has an offset error with respect to the actual charge / discharge current value (current true value) of the battery as shown in FIG. As shown in FIG. 8B, as the integration time becomes longer, the error caused by the offset error is accumulated, and the deviation from the actual SOC (SOC true value) increases. In FIG. 8 (a), the sensor current I is shaped so as to change instantaneously from the charge side to the discharge side and from the discharge side to the charge side for the convenience of drawing, but in practice, a predetermined time has elapsed. Thus, the charging side changes to the discharging side, and the discharging side to the charging side.
Here, it is possible to reduce the offset error and increase the SOC calculation accuracy by using a high-accuracy current sensor, but a high-accuracy current sensor that can handle current changes in electric vehicles and hybrid vehicles is Since it is very expensive, it is difficult to adopt it from the viewpoint of cost. On the other hand, the shunt resistor is an inexpensive and high-accuracy current sensor, but one that can handle the large current range of an electric vehicle has not been developed.

これに対し、実施例1では、車両の走行時、電流センサ4により検出されたセンサ電流Iの絶対値が閾値Ithを超えてから閾値Ith以下となるまでの期間、つまり、センサ電流Iが閾値Ithを超えた期間を電流積算期間とし、この電流積算期間におけるセンサ電流Iの積算値から電流積算充電率変化量ΔSOC-inを算出している。
図9は、センサ電流の絶対値が閾値以下の一定値である場合の電流積算に基づく充電率変化量である。センサ電流が閾値よりも小さいと、充電率変化量は小さくなり、算出した充電率変化量(ΔSOC算出値)に対してセンサ誤差分の占める割合が大きいため、センサ誤差の影響が大きい。
On the other hand, in the first embodiment, when the vehicle travels, a period from when the absolute value of the sensor current I detected by the current sensor 4 exceeds the threshold value Ith to below the threshold value Ith, that is, the sensor current I is the threshold value. The period exceeding Ith is defined as a current integration period, and the current integration charging rate change amount ΔSOC-in is calculated from the integration value of the sensor current I in this current integration period.
FIG. 9 shows the charging rate variation based on current integration when the absolute value of the sensor current is a constant value equal to or less than the threshold value. When the sensor current is smaller than the threshold value, the change rate of the charge rate is small, and the ratio of the sensor error to the calculated charge rate change amount (ΔSOC calculation value) is large, so the influence of the sensor error is large.

一方、図10は、センサ電流の絶対値が閾値を超える一定値である場合の電流積算に基づく充電率変化量である。センサ電流が閾値よりも大きいと、充電率変化量は大きくなり、ΔSOC算出値に対してセンサ誤差分の占める割合が小さいため、センサ誤差の影響を受けにくくなることがわかる。
つまり、センサ電流Iの絶対値が閾値Ithを超える範囲のみで電流積算を行う実施例1の手法を用いることで、電流積算誤差の少ない電流積算充電率変化量ΔSOC-inを算出できる。
よって、実施例1では、電流積算誤差による影響の少ない電流積算充電率変化量ΔSOC-iを算出できるため、電流積算充電率変化量ΔSOC-iから求める容量維持率SOHおよび容量維持率SOHから求まるバッテリ容量Chを高精度に算出できる。特に、電気自動車の走行時は、家庭用電源を用いてバッテリ6を充電する際の充電電流の最大値(5A程度)と比較してバッテリ6の充放電電流が大きいため、電流センサ4のセンサ誤差の影響をより小さくでき、顕著な効果を得ることができる。加えて、走行中はセンサ電流Iおよびセンサ電圧Vの変化が大きいため、バッテリモデル18の各パラメータR0,R1,R2,C1,C2の推定精度が高く、各パラメータR0,R1,R2,C1,C2から推定される開放電圧SOCの推定精度が高まることから、開放電圧充電率変化量ΔSOC-vの算出精度を高めることができる。
また、センサ誤差の影響を受けにくくしたことで、常用される電流レンジが大きく電流積算誤差が問題となる電気自動車のバッテリシステム1において、高精度の電流センサが不要であるため、安価な電流センサを採用でき、バッテリシステム1のコストを抑制できる。
On the other hand, FIG. 10 shows the charging rate change amount based on current integration when the absolute value of the sensor current is a constant value exceeding the threshold value. When the sensor current is larger than the threshold value, the amount of change in the charging rate is increased, and the ratio of the sensor error to the calculated ΔSOC is small, so that it is difficult to be affected by the sensor error.
That is, by using the method of the first embodiment in which current integration is performed only in a range where the absolute value of the sensor current I exceeds the threshold value Ith, the current integration charging rate change amount ΔSOC-in with a small current integration error can be calculated.
Therefore, in Example 1, since the current integrated charging rate change amount ΔSOC-i that is less influenced by the current integrating error can be calculated, it can be obtained from the capacity maintenance rate SOH and the capacity maintenance rate SOH obtained from the current integrated charging rate change amount ΔSOC-i. Battery capacity Ch can be calculated with high accuracy. In particular, when the electric vehicle is running, the charge / discharge current of the battery 6 is larger than the maximum charging current (about 5A) when charging the battery 6 using a household power supply. The influence of the error can be made smaller, and a remarkable effect can be obtained. In addition, since the sensor current I and sensor voltage V change greatly during traveling, the estimation accuracy of each parameter R0, R1, R2, C1, C2 of the battery model 18 is high, and each parameter R0, R1, R2, C1, Since the estimation accuracy of the open-circuit voltage SOC estimated from C2 increases, the calculation accuracy of the open-circuit voltage charge rate change amount ΔSOC-v can be increased.
In addition, since it is less susceptible to sensor error, a highly accurate current sensor is unnecessary in the battery system 1 of an electric vehicle in which the current range that is commonly used is large and current integration error is a problem. The cost of the battery system 1 can be suppressed.

実施例1では、車両の走行開始から走行終了までの間の複数の電流積算期間で算出された各電流積算充電率変化量ΔSOC-i1,ΔSOC-i2,ΔSOC-i3,…,ΔSOC-inを加算して最終的な電流積算充電率変化量ΔSOC-iを求め、車両の走行開始から走行終了までの間の複数の電流積算期間で算出された各開放電圧充電率変化量ΔSOC-v1,ΔSOC-v2,ΔSOC-v3,…,ΔSOC-vnを加算して最終的な開放電圧充電率変化量ΔSOC-vを求めている。
つまり、トータルの電流積算期間を長くすることで、センサ電流Iの積算量を多くできるため、電流積算充電率変化量ΔSOC-iに対してセンサ誤差分の占める割合を小さくでき、電流積算誤差の少ない電流積算充電率変化量SOC-iが得られる。
In the first embodiment, each current integrated charging rate change amount ΔSOC-i1, ΔSOC-i2, ΔSOC-i3,..., ΔSOC-in calculated in a plurality of current integration periods from the start of travel of the vehicle to the end of travel is calculated. Addition to obtain a final current integrated charging rate change amount ΔSOC-i, and each open-circuit voltage charging rate change amount ΔSOC-v1, ΔSOC calculated in a plurality of current integration periods from the start to the end of travel of the vehicle -v2, ΔSOC-v3,..., ΔSOC-vn are added to obtain the final open-circuit voltage charge rate change amount ΔSOC-v.
In other words, by increasing the total current integration period, the integration amount of the sensor current I can be increased, so that the ratio of the sensor error to the current integration charging rate change amount ΔSOC-i can be reduced, and the current integration error can be reduced. A small amount of current integrated charging rate change SOC-i can be obtained.

さらに、実施例1では、各電流積算充電率変化量ΔSOC-i1,ΔSOC-i2,ΔSOC-i3,…,ΔSOC-inの絶対値|ΔSOC-i1|,|ΔSOC-i2|,|ΔSOC-i3|,…, |ΔSOC-in|を加算して最終的な電流積算充電率変化量ΔSOC-iを算出すると共に、これに対応して各開放電圧充電率変化量ΔSOC-v1,ΔSOC-v2,ΔSOC-v3,…,ΔSOC-vnの絶対値|ΔSOC-v1|,|ΔSOC-v2|,|ΔSOC-v3|,…, |ΔSOC-vn|を加算して最終的な開放電圧充電率変化量ΔSOC-vを算出している。
これにより、各SOC-in,SOC-ivを加算した際に充電側(符号+)のΔSOC-in,ΔSOC-vnと放電側(符号-)のΔSOC-in,ΔSOC-vnとが打ち消し合うことなく、ΔSOC-iおよびΔSOC-vを大きくできるため、センサ誤差の影響をより小さくできる。
Further, in the first embodiment, the absolute value of each current integrated charging rate change amount ΔSOC-i1, ΔSOC-i2, ΔSOC-i3,..., ΔSOC-in | ΔSOC-i1 |, | ΔSOC-i2 |, | ΔSOC-i3 |, ..., | ΔSOC-in | is added to calculate the final current integrated charging rate change amount ΔSOC-i, and correspondingly, each open-circuit voltage charging rate change amount ΔSOC-v1, ΔSOC-v2, Absolute value of ΔSOC-v3, ..., ΔSOC-vn | ΔSOC-v1 |, | ΔSOC-v2 |, | ΔSOC-v3 |, ..., | ΔSOC-vn | ΔSOC-v is calculated.
As a result, when each SOC-in, SOC-iv is added, ΔSOC-in, ΔSOC-vn on the charge side (sign +) and ΔSOC-in, ΔSOC-vn on the discharge side (sign-) cancel each other. In addition, since ΔSOC-i and ΔSOC-v can be increased, the influence of sensor error can be further reduced.

実施例1では、以下に列挙する効果を奏する。
(1) コントローラ2は、バッテリ6のセンサ電流値Iの絶対値が閾値Ithを超えてから閾値Ith以下となるまでの期間を電流積算期間としてセンサ電流Iを積算し、電流積算充電率SOC-iを算出する電流積算SOC算出部13と、電流積算期間における電流積算充電率変化量ΔSOC-iを算出するΔSOC-i算出部15と、バッテリ6の状態量(センサ電流I、センサ電圧V)に基づいて電流積算期間の開始時および終了時の開放電圧OCVを推定する開放電圧推定部11と、電流積算期間の開始時および終了時の開放電圧充電率SOC-v1,SOC-v2を算出するOCV-SOC変換部12と、電流積算期間の終了時の開放電圧充電率SOC-v2と電流積算期間の開始時の開放電圧充電率SOC-v1との差分である開放電圧充電率変化量ΔSOC-vを算出するΔSOC-v算出部14と、開放電圧充電率変化量ΔSOC-vに対する電流積算充電率変化量ΔSOC-iの比である容量維持率SOHを算出し、算出した容量維持率SOHに基づきバッテリ容量Chを算出する劣化推定部16と、を備える。
センサ電流Iが閾値Ithを超える期間は電流積算充電率変化量ΔSOC-iに対して電流積算誤差の占める割合が小さくなる。つまり、電流積算充電率変化量ΔSOC-iと実際の充電率変化量との差が小さいため、センサ誤差の影響を小さくでき、電流積算充電率変化量ΔSOC-iを精度良く算出できる。よって、電流積算充電率変化量ΔSOC-iと開放電圧充電率変化量ΔSOC-vとから求まる容量維持率SOHの算出精度を高めることができ、この結果、容量維持率SOHから求まるバッテリ容量Chを高精度に算出できる。
Example 1 has the following effects.
(1) The controller 2 integrates the sensor current I as a current integration period from the time when the absolute value of the sensor current value I of the battery 6 exceeds the threshold Ith to the threshold Ith or less, and the current integration charging rate SOC− The current integration SOC calculation unit 13 that calculates i, the ΔSOC-i calculation unit 15 that calculates the current integration charge rate change amount ΔSOC-i during the current integration period, and the state quantity of the battery 6 (sensor current I, sensor voltage V) The open circuit voltage estimation unit 11 that estimates the open circuit voltage OCV at the start and end of the current integration period based on the above, and the open circuit voltage charge rates SOC-v1 and SOC-v2 at the start and end of the current integration period are calculated. OCV-SOC converter 12 and the open-circuit voltage charge rate change amount ΔSOC− which is the difference between the open-circuit voltage charge rate SOC-v2 at the end of the current integration period and the open-circuit voltage charge rate SOC-v1 at the start of the current integration period ΔSOC-v calculation unit 14 for calculating v, and current integrated charging rate change amount with respect to open-circuit voltage charging rate change amount ΔSOC-v It includes a degradation estimation unit 16 calculates the capacity retention rate SOH is the ratio of SOC-i, and calculates the battery capacity Ch based on the calculated capacity retention rate SOH, a.
During the period when the sensor current I exceeds the threshold value Ith, the ratio of the current integration error to the current integration charge rate change amount ΔSOC-i is small. That is, since the difference between the current integrated charging rate change amount ΔSOC-i and the actual charging rate change amount is small, the influence of the sensor error can be reduced, and the current integrated charging rate change amount ΔSOC-i can be accurately calculated. Therefore, the calculation accuracy of the capacity maintenance rate SOH obtained from the current integrated charge rate change amount ΔSOC-i and the open-circuit voltage charge rate change amount ΔSOC-v can be increased, and as a result, the battery capacity Ch obtained from the capacity maintenance rate SOH can be calculated. It can be calculated with high accuracy.

(2) バッテリ6は、車両の駆動輪を駆動するモータジェネレータの電源となる強電バッテリである。
電気自動車やハイブリッド車両に搭載される強電バッテリは、充放電電流が大きいため、センサ誤差の影響をより小さくでき、電流積算充電率変化量ΔSOC-iを精度良く算出できる。また、高精度の電流センサが不要であるため、安価な電流センサ4を採用でき、バッテリシステム1のコストを抑制できる。
(2) The battery 6 is a high-power battery that serves as a power source for the motor generator that drives the drive wheels of the vehicle.
Since a high-power battery mounted on an electric vehicle or a hybrid vehicle has a large charge / discharge current, the influence of the sensor error can be reduced, and the current integrated charging rate change amount ΔSOC-i can be accurately calculated. In addition, since a highly accurate current sensor is unnecessary, an inexpensive current sensor 4 can be employed, and the cost of the battery system 1 can be suppressed.

(3) 電流積算期間は、車両の走行中にセンサ電流Iの絶対値が閾値Ithを超えてから閾値Ith以下となるまでの期間である。
電気自動車の走行時は、家庭用電源を用いてバッテリ6を充電する際の充電電流の最大値と比較してバッテリ6の充放電電流が大きいため、電流センサ4のセンサ誤差の影響を小さくして電流積算充電率変化量ΔSOC-iを高精度に算出できる。また、走行中はセンサ電流Iおよびセンサ電圧Vの変化が大きいため、バッテリモデル18の各パラメータR0,R1,R2,C1,C2の推定精度が高く、各パラメータR0,R1,R2,C1,C2から推定される開放電圧SOCの推定精度が高まることから、開放電圧充電率変化量ΔSOC-vの算出精度も高めることができる。
(3) The current integration period is a period from when the absolute value of the sensor current I exceeds the threshold value Ith to the threshold value Ith or less during traveling of the vehicle.
When driving an electric vehicle, the charging / discharging current of the battery 6 is larger than the maximum charging current when the battery 6 is charged using a household power supply, so the effect of the sensor error of the current sensor 4 is reduced. Thus, the current integrated charging rate change amount ΔSOC-i can be calculated with high accuracy. Also, since the sensor current I and sensor voltage V change greatly during traveling, the estimation accuracy of each parameter R0, R1, R2, C1, C2 of the battery model 18 is high, and each parameter R0, R1, R2, C1, C2 Since the estimation accuracy of the open-circuit voltage SOC estimated from the above increases, the calculation accuracy of the open-circuit voltage charge rate change amount ΔSOC-v can also be increased.

(4) ΔSOC-i算出部15は、走行開始から終了までの間の各電流積算期間で算出した各電流積算充電率変化量ΔSOC-i1,ΔSOC-i2,ΔSOC-i3,…,ΔSOC-inを加算して最終的な電流積算充電率変化量ΔSOC-iを算出し、ΔSOC-v算出部14は、各電流積算期間で算出した各開放電圧充電率変化量ΔSOC-v1,ΔSOC-v2,ΔSOC-v3,…,ΔSOC-vn(nは正の整数)を加算して最終的な開放電圧充電率変化量ΔSOC-vを算出し、劣化推定部16は、最終的な電流積算充電率変化量ΔSOC-iと最終的な開放電圧充電率変化量ΔSOC-vとから容量維持率SOHを算出する。
トータルの電流積算期間を長くすることで、センサ電流Iの積算量を多くできるため、電流積算充電率変化量ΔSOC-iに対してセンサ誤差分の占める割合を小さくでき、電流積算誤差の少ない電流積算充電率変化量ΔSOC-iが得られる。
(4) The ΔSOC-i calculating unit 15 is configured to calculate each current integrated charging rate change amount ΔSOC-i1, ΔSOC-i2, ΔSOC-i3,..., ΔSOC-in calculated in each current integration period from the start to the end of travel. To calculate the final current integrated charging rate change amount ΔSOC-i, and the ΔSOC-v calculating unit 14 calculates each open-circuit voltage charging rate change amount ΔSOC-v1, ΔSOC-v2, calculated in each current integrating period. ΔSOC-v3,..., ΔSOC-vn (n is a positive integer) are added to calculate the final open-circuit voltage charge rate change amount ΔSOC-v, and the deterioration estimation unit 16 determines the final current accumulated charge rate change The capacity maintenance rate SOH is calculated from the amount ΔSOC-i and the final open-circuit voltage charging rate change amount ΔSOC-v.
Since the total amount of sensor current I can be increased by extending the total current integration period, the ratio of sensor error to the current integration charge rate change amount ΔSOC-i can be reduced, and current with little current integration error. An accumulated charging rate change amount ΔSOC-i is obtained.

(5) ΔSOC-i算出部15は、走行開始から終了までの間の各電流積算期間で算出した各電流積算充電率変化量ΔSOC-i1,ΔSOC-i2,ΔSOC-i3,…,ΔSOC-inの絶対値|ΔSOC-i1|,|ΔSOC-i2|,|ΔSOC-i3|,…,|ΔSOC-in|を加算して最終的な電流積算充電率変化量ΔSOC-iを算出し、ΔSOC-v算出部14は、各開放電圧充電率変化量ΔSOC-v1,ΔSOC-v2,ΔSOC-v3,…,ΔSOC-vnの絶対値|ΔSOC-v1|,|ΔSOC-v2|,|ΔSOC-v3|,…,|ΔSOC-vn|を加算して最終的な開放電圧充電率変化量ΔSOC-vを算出し、劣化推定部16は、最終的な電流積算充電率変化量ΔSOC-iと最終的な開放電圧充電率変化量ΔSOC-vとから容量維持率SOHを算出する。
これにより、電流積算充電率変化量ΔSOC-iおよび開放電圧充電率変化量ΔSOC-vを大きくできるため、センサ誤差の影響をより小さくできる。
(5) The ΔSOC-i calculating unit 15 calculates each current integrated charging rate change amount ΔSOC-i1, ΔSOC-i2, ΔSOC-i3,..., ΔSOC-in calculated in each current integration period from the start to the end of travel. Absolute value | ΔSOC-i1 |, | ΔSOC-i2 |, | ΔSOC-i3 |, ..., | ΔSOC-in | are added to calculate the final current integrated charging rate variation ΔSOC-i, and ΔSOC− v The calculation unit 14 calculates the absolute value of each open-circuit voltage charging rate variation ΔSOC-v1, ΔSOC-v2, ΔSOC-v3,..., ΔSOC-vn | ΔSOC-v1 |, | ΔSOC-v2 |, | ΔSOC-v3 | , ..., | ΔSOC-vn | is added to calculate the final open-circuit voltage charging rate change amount ΔSOC-v, and the deterioration estimation unit 16 determines the final current integrated charging rate change amount ΔSOC-i and the final amount. The capacity maintenance rate SOH is calculated from the open-circuit voltage charge rate change amount ΔSOC-v.
Thereby, the current integrated charging rate change amount ΔSOC-i and the open-circuit voltage charging rate change amount ΔSOC-v can be increased, so that the influence of the sensor error can be further reduced.

(6) センサ電流Iの絶対値が閾値Ithを超える期間を電流積算期間として電流積算充電率変化量ΔSOC-iを算出すると共に、電流積算期間の開始時および終了時に推定した開放電圧OCVから開放電圧充電率変化量ΔSOC-vを算出し、開放電圧充電率変化量ΔSOC-vに対する電流積算充電率変化量ΔSOC-iの比である容量維持率SOHを算出し、算出した容量維持率SOHに基づきバッテリ容量Chを算出する。
センサ電流Iが閾値Ithを超える期間は電流積算充電率変化量ΔSOC-iに対して電流積算誤差の占める割合が小さくなる。つまり、電流積算充電率変化量ΔSOC-iと実際の充電率変化量との差が小さいため、センサ誤差の影響を小さくでき、電流積算充電率変化量ΔSOC-iを精度良く算出できる。よって、電流積算充電率変化量ΔSOC-iと開放電圧充電率変化量ΔSOC-vとから求まる容量維持率SOHの算出精度を高めることができ、この結果、容量維持率SOHから求まるバッテリ容量Chを高精度に算出できる。
(6) Calculate the current integrated charging rate change ΔSOC-i with the period when the absolute value of the sensor current I exceeds the threshold Ith as the current integration period, and open the circuit from the open circuit voltage OCV estimated at the start and end of the current integration period The voltage charge rate change amount ΔSOC-v is calculated, and the capacity maintenance rate SOH, which is the ratio of the current integrated charge rate change amount ΔSOC-i to the open-circuit voltage charge rate change amount ΔSOC-v, is calculated. Based on this, the battery capacity Ch is calculated.
During the period when the sensor current I exceeds the threshold value Ith, the ratio of the current integration error to the current integration charge rate change amount ΔSOC-i is small. That is, since the difference between the current integrated charging rate change amount ΔSOC-i and the actual charging rate change amount is small, the influence of the sensor error can be reduced, and the current integrated charging rate change amount ΔSOC-i can be accurately calculated. Therefore, the calculation accuracy of the capacity maintenance rate SOH obtained from the current integrated charge rate change amount ΔSOC-i and the open-circuit voltage charge rate change amount ΔSOC-v can be increased, and as a result, the battery capacity Ch obtained from the capacity maintenance rate SOH can be calculated. It can be calculated with high accuracy.

〔実施例2〕
図11は、実施例2のコントローラ2の制御ブロック図である。
実施例2では、図2の電流積算SOC算出部13に代えて、電流積算部(電流積算手段)20を備えた点で実施例1と異なる。
電流積算部20は、センサ電流Iの絶対値が閾値Ithを超えてから閾値Ith以下となるまでの期間を電流積算期間としてセンサ電流Iの絶対値の積算値∫|I|dtを算出する。
ΔSOC-i算出部(電流積算充電率変化量算出手段)15は、車両の走行開始から走行終了までの間に算出した各電流積算期間の積算値∫|I|dtの和を初期バッテリ容量Ahで除算して最終的な電流積算充電率変化量ΔSOC-iとする。
他の構成は実施例1と同様であるため、説明を省略する。
次に、作用を説明すると、実施例2では、各電流積算期間のセンサ電流Iの絶対値の積算値∫|I|dtを算出し、各積算値∫|I|dtの和を初期バッテリ容量Ahで除算することで最終的な電流積算充電率変化量ΔSOC-iを算出しているため、各電流積算期間で電流積算充電率SOC-iおよび電流積算充電率変化量ΔSOC-inを求める必要がなく、実施例1と比較して演算負荷を小さくできる。
[Example 2]
FIG. 11 is a control block diagram of the controller 2 according to the second embodiment.
The second embodiment is different from the first embodiment in that a current integrating section (current integrating means) 20 is provided instead of the current integrated SOC calculating section 13 of FIG.
The current integrating unit 20 calculates the integrated value ∫ | I | dt of the absolute value of the sensor current I, with the period from when the absolute value of the sensor current I exceeds the threshold value Ith to when it is equal to or less than the threshold value Ith as the current integration period.
The ΔSOC-i calculation unit (current integrated charging rate change amount calculation means) 15 calculates the sum of the integrated values ∫ | I | dt of each current integration period calculated from the start of travel of the vehicle to the end of travel. To obtain the final current integrated charging rate change amount ΔSOC-i.
Since other configurations are the same as those of the first embodiment, the description thereof is omitted.
Next, the operation will be described. In the second embodiment, the integrated value ∫ | I | dt of the absolute value of the sensor current I in each current integration period is calculated, and the sum of the integrated values ∫ | I | dt is calculated as the initial battery capacity. Since the final current integrated charge rate change amount ΔSOC-i is calculated by dividing by Ah, it is necessary to obtain the current integrated charge rate SOC-i and the current integrated charge rate change amount ΔSOC-in in each current integration period. Therefore, the calculation load can be reduced as compared with the first embodiment.

実施例2では、実施例1の効果(1)〜(6)に加え以下の効果を奏する。
(7) コントローラ2は、車両の走行中に車両に搭載されたバッテリ6のセンサ電流Iの絶対値が所定の閾値Ithを超えてから閾値Ith以下となるまでの期間を電流積算期間としてセンサ電流Iの絶対値の積算値∫|I|dtを算出する電流積算部20と、バッテリ6の状態量(センサ電流I、センサ電圧V)に基づいて電流積算期間の開始時および終了時の開放電圧OCVを推定する開放電圧推定部11と、電流積算期間の開始時および終了時の開放電圧充電率SOC-v1,SOC-v2を算出するOCV-SOC変換部12と、複数の電流積算期間で算出した各積算値∫|I|dtの和を初期バッテリ容量Ahで除算して電流積算充電率変化量ΔSOC-iを算出するΔSOC-i算出部15と、複数の電流積算期間における各電流積算期間の終了時の開放電圧充電率SOC-v2と当該電流積算期間の開始時の開放電圧充電率SOC-v1との差分である開放電圧充電率変化量ΔSOC-vnをそれぞれ算出し、各開放電圧充電率変化量ΔSOC-v1,ΔSOC-v2,ΔSOC-v3,…,ΔSOC-vnの絶対値|ΔSOC-v1|,|ΔSOC-v2|,|ΔSOC-v3|,…,|ΔSOC-vn|を加算して最終的な開放電圧充電率変化量を算出するΔSOC-v算出部14と、開放電圧充電率変化量ΔSOC-vに対する電流積算充電率変化量ΔSOC-iの比である容量維持率SOHを算出し、算出した容量維持率SOHに基づきバッテリ容量Chを算出する劣化推定部16と、を備える。
よって、バッテリ容量Chを算出する際の演算負荷を小さくできる。
In the second embodiment, the following effects are obtained in addition to the effects (1) to (6) of the first embodiment.
(7) The controller 2 determines the sensor current as a current integration period from the time when the absolute value of the sensor current I of the battery 6 mounted on the vehicle while the vehicle is running exceeds the predetermined threshold value Ith to the threshold value Ith or less. Open current voltage at the start and end of the current integration period based on the current integration unit 20 that calculates the integrated value ∫ | I | dt of the absolute value of I and the state quantity (sensor current I, sensor voltage V) of the battery 6 Open-circuit voltage estimation unit 11 that estimates OCV, OCV-SOC conversion unit 12 that calculates open-circuit voltage charge rates SOC-v1 and SOC-v2 at the start and end of the current integration period, and multiple current integration periods ΔSOC-i calculation unit 15 for calculating current integrated charging rate change amount ΔSOC-i by dividing the sum of each integrated value ∫ | I | dt by initial battery capacity Ah, and each current integration period in a plurality of current integration periods Between the open-circuit voltage charging rate SOC-v2 at the end of the current and the open-circuit voltage charging rate SOC-v1 at the start of the current integration period A certain open-circuit voltage charge rate change amount ΔSOC-vn is calculated, and each open-circuit voltage charge rate change amount ΔSOC-v1, ΔSOC-v2, ΔSOC-v3, ..., absolute value of ΔSOC-vn | ΔSOC-v1 |, | ΔSOC -v2 |, | ΔSOC-v3 |, ..., | ΔSOC-vn | are added to calculate ΔSOC-v calculating unit 14 for final change in open-circuit voltage charging rate, and open-circuit voltage charging rate change ΔSOC-v A deterioration estimating unit 16 that calculates a capacity maintenance rate SOH that is a ratio of the current integrated charging rate change amount ΔSOC-i to the battery capacity and calculates the battery capacity Ch based on the calculated capacity maintenance rate SOH.
Therefore, the calculation load when calculating the battery capacity Ch can be reduced.

〔実施例3〕
実施例3は実施例2の変形例であり、実施例2と異なる部分について図11を用いて説明する。
電流積算部(電流積算手段)20は、センサ電流Iの絶対値が閾値Ithを超えてから閾値Ith以下となるまでの期間を電流積算期間とし、車両の走行開始から走行終了までの複数の電流積算期間におけるセンサ電流Iの絶対値の積算値∫|I|dtを算出する。
ΔSOC-i算出部(電流積算充電率変化量算出手段)15は、複数の電流積算期間の積算値∫|I|dtを初期バッテリ容量Ahで除算して最終的な電流積算充電率変化量ΔSOC-iとする。
他の構成は実施例1と同様であるため、説明を省略する。
次に、作用を説明すると、実施例3では、複数の電流積算期間におけるセンサ電流Iの絶対値の積算値∫|I|dtを算出し、積算値∫|I|dtを初期バッテリ容量Ahで除算することで最終的な電流積算充電率変化量ΔSOC-iを算出しているため、電流積算充電率SOC-iおよび電流積算充電率変化量ΔSOC-inを求める必要がなく、実施例1と比較して演算負荷を小さくできる。
Example 3
The third embodiment is a modification of the second embodiment, and different portions from the second embodiment will be described with reference to FIG.
The current integration unit (current integration means) 20 uses a period from when the absolute value of the sensor current I exceeds the threshold value Ith to the threshold value Ith as a current integration period, and a plurality of currents from the start of travel of the vehicle to the end of travel An absolute integrated value ∫ | I | dt of the absolute value of the sensor current I during the integration period is calculated.
The ΔSOC-i calculation unit (current integrated charging rate change amount calculation means) 15 divides the integrated value ∫ | I | dt of the plurality of current integration periods by the initial battery capacity Ah to obtain the final current integrated charging rate change amount ΔSOC. -i.
Since other configurations are the same as those of the first embodiment, the description thereof is omitted.
Next, the operation will be described. In Example 3, the integrated value ∫ | I | dt of the absolute value of the sensor current I in a plurality of current integration periods is calculated, and the integrated value ∫ | I | dt is calculated as the initial battery capacity Ah. Since the final current integrated charging rate change ΔSOC-i is calculated by dividing, it is not necessary to obtain the current integrated charging rate SOC-i and the current integrated charging rate change ΔSOC-in. In comparison, the calculation load can be reduced.

実施例3では、実施例1の効果(1)〜(6)に加え以下の効果を奏する。
(8) コントローラ2は、車両の走行中に車両に搭載されたバッテリ6のセンサ電流Iの絶対値が所定の閾値Ithを超えてから閾値Ith以下となるまでの期間を電流積算期間とし、複数の電流積算期間におけるセンサ電流Iの絶対値の積算値∫|I|dtを算出する電流積算部20と、バッテリ6の状態量(センサ電流I、センサ電圧V)に基づいて電流積算期間の開始時および終了時の開放電圧OCVを推定する開放電圧推定部11と、電流積算期間の開始時および終了時の開放電圧充電率SOC-v1,SOC-v2を算出するOCV-SOC変換部12と、積算値∫|I|dtを初期バッテリ容量Ahで除算して電流積算充電率変化量ΔSOC-iを算出するΔSOC-i算出部15と、複数の電流積算期間における各電流積算期間の終了時の開放電圧充電率SOC-v2と当該電流積算期間の開始時の開放電圧充電率SOC-v1との差分である開放電圧充電率変化量ΔSOC-vnをそれぞれ算出し、各開放電圧充電率変化量ΔSOC-v1,ΔSOC-v2,ΔSOC-v3,…,ΔSOC-vnの絶対値|ΔSOC-v1|,|ΔSOC-v2|,|ΔSOC-v3|,…,|ΔSOC-vn|を加算して最終的な開放電圧充電率変化量を算出するΔSOC-v算出部14と、開放電圧充電率変化量ΔSOC-vに対する電流積算充電率変化量ΔSOC-iの比である容量維持率SOHを算出し、算出した容量維持率SOHに基づきバッテリ容量Chを算出する劣化推定部16と、を備える。
よって、バッテリ容量Chを算出する際の演算負荷を小さくできる。
In Example 3, in addition to the effects (1) to (6) of Example 1, the following effects are obtained.
(8) The controller 2 sets, as a current integration period, a period from when the absolute value of the sensor current I of the battery 6 mounted on the vehicle during traveling of the vehicle exceeds a predetermined threshold value Ith to a threshold value Ith or less. Current integration unit 20 that calculates the integrated value 絶 対 | I | dt of the absolute value of the sensor current I during the current integration period and the start of the current integration period based on the state quantities of the battery 6 (sensor current I, sensor voltage V) An open-circuit voltage estimation unit 11 for estimating the open-circuit voltage OCV at the time and end, an OCV-SOC conversion unit 12 for calculating the open-circuit voltage charge rates SOC-v1, SOC-v2 at the start and end of the current integration period, ΔSOC-i calculation unit 15 for calculating current integrated charging rate change amount ΔSOC-i by dividing integrated value ∫ | I | dt by initial battery capacity Ah, and at the end of each current integration period in a plurality of current integration periods Open-circuit voltage charge rate SOC-v2 is the difference between open-circuit voltage charge rate SOC-v1 at the start of the current integration period. Voltage charge rate change amount ΔSOC-vn is calculated respectively, and each open circuit voltage charge rate change amount ΔSOC-v1, ΔSOC-v2, ΔSOC-v3, ..., absolute value of ΔSOC-vn | ΔSOC-v1 |, | ΔSOC-v2 |, | ΔSOC-v3 |, ..., | ΔSOC-vn | are added to calculate ΔSOC-v calculation unit 14 for calculating the final change in open-circuit voltage charging rate, and the current for open-circuit voltage charging rate change ΔSOC-v A deterioration estimation unit 16 that calculates a capacity maintenance rate SOH that is a ratio of the accumulated charge rate change amount ΔSOC-i and calculates a battery capacity Ch based on the calculated capacity maintenance rate SOH.
Therefore, the calculation load when calculating the battery capacity Ch can be reduced.

(他の実施例)
以上、本発明の電池容量算出装置および電池容量算出方法を実施例に基づいて説明したが、具体的な構成については、実施例に限られるものではなく、特許請求の範囲に記載の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加は許容される。
例えば、実施例では、逐次パラメータ推定にカルマンフィルタを用いたが、他の推定方法を用いてもよい。
本発明の電池容量算出装置は、電気自動車やハイブリッド車両の強電バッテリのように充放電電流の大きな二次電池に適用することで顕著な作用効果を奏するが、本発明は、強電バッテリ以外の二次電池にも適用でき、電池容量の算出精度を高めることができる。
充放電電流と比較する閾値は、電流センサの検出誤差に対して十分に大きな電流値であればよく、例えば、充電側と放電側とで異なる大きさとしてもよい。
(Other examples)
The battery capacity calculation device and the battery capacity calculation method of the present invention have been described based on the embodiments. However, the specific configuration is not limited to the embodiments, and each claim described in the claims. Design changes and additions are allowed without departing from the spirit of the invention.
For example, in the embodiment, the Kalman filter is used for successive parameter estimation, but other estimation methods may be used.
The battery capacity calculation device according to the present invention has a remarkable effect when applied to a secondary battery having a large charge / discharge current, such as a high-power battery of an electric vehicle or a hybrid vehicle. It can also be applied to secondary batteries, and the battery capacity calculation accuracy can be increased.
The threshold value to be compared with the charge / discharge current may be a current value that is sufficiently large with respect to the detection error of the current sensor, and may be, for example, different magnitudes on the charge side and the discharge side.

6 バッテリ(二次電池)
11 開放電圧推定部(開放電圧推定手段)
12 OCV-SOC変換部(開放電圧充電率算出手段)
13 電流積算SOC算出部(電流積算充電率算出手段)
14 ΔSOC-v算出部(開放電圧充電率変化量算出手段)
15 ΔSOC-i算出部(電流積算充電率変化量算出手段)
16 劣化推定部(電池容量算出手段)
20 電流積算部(電流積算手段)
6 Battery (secondary battery)
11 Open-circuit voltage estimation unit (open-circuit voltage estimation means)
12 OCV-SOC converter (open voltage charging rate calculation means)
13 Current integration SOC calculation unit (Current integration charge rate calculation means)
14 ΔSOC-v calculation unit (open-circuit voltage charge rate change amount calculation means)
15 ΔSOC-i calculation part (current integrated charging rate change calculation means)
16 Degradation estimation part (battery capacity calculation means)
20 Current integration unit (current integration means)

Claims (8)

二次電池の充放電電流の大きさが所定の閾値を超えてから前記閾値以下となるまでの期間を電流積算期間として前記二次電池の充放電電流を積算し、電流積算に基づく前記二次電池の充電率である電流積算充電率を算出する電流積算充電率算出手段と、
前記電流積算期間における前記電流積算充電率の変化量である電流積算充電率変化量を算出する電流積算充電率変化量算出手段と、
前記二次電池の状態量に基づいて前記電流積算期間の開始時および終了時の開放電圧を推定する開放電圧推定手段と、
前記電流積算期間の開始時および終了時の前記開放電圧に基づく前記二次電池の充電率である開放電圧充電率を算出する開放電圧充電率算出手段と、
前記電流積算期間の終了時の開放電圧充電率と前記電流積算期間の開始時の開放電圧充電率との差分である開放電圧充電率変化量を算出する開放電圧充電率変化量算出手段と、
前記開放電圧充電率変化量に対する前記電流積算充電率変化量の比である容量維持率を算出し、算出した容量維持率に基づき前記二次電池の電池容量を算出する電池容量算出手段と、
を備えたことを特徴とする電池容量算出装置。
The charging / discharging current of the secondary battery is integrated as a current integration period from the time the charge / discharge current of the secondary battery exceeds a predetermined threshold to the threshold or less, and the secondary based on the current integration is integrated. A current integrated charge rate calculating means for calculating a current integrated charge rate that is a charge rate of the battery;
Current integrated charge rate change amount calculating means for calculating a current integrated charge rate change amount which is a change amount of the current integrated charge rate in the current integration period;
An open-circuit voltage estimating means for estimating an open-circuit voltage at the start and end of the current integration period based on a state quantity of the secondary battery;
An open-circuit voltage charge rate calculating means for calculating an open-circuit voltage charge rate that is a charge rate of the secondary battery based on the open-circuit voltage at the start and end of the current integration period;
An open-circuit voltage charge rate change amount calculating means for calculating an open-circuit voltage charge rate change amount that is a difference between an open-circuit voltage charge rate at the end of the current integration period and an open-circuit voltage charge rate at the start of the current integration period;
Battery capacity calculation means for calculating a capacity maintenance rate that is a ratio of the current integrated charging rate change amount to the open-circuit voltage charging rate change amount, and calculating a battery capacity of the secondary battery based on the calculated capacity maintenance rate;
A battery capacity calculation device comprising:
請求項1に記載に電池容量算出装置において、
前記二次電池は、車両の駆動輪を駆動するモータジェネレータの電源となる強電バッテリであることを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 1,
The secondary battery is a high-power battery serving as a power source for a motor generator that drives a drive wheel of a vehicle.
請求項2に記載の電池容量算出装置において、
前記電流積算期間は、車両の走行中に前記充放電電流の大きさが前記閾値を超えてから前記閾値以下となるまでの期間であることを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 2,
The battery capacity calculation device according to claim 1, wherein the current integration period is a period from when the magnitude of the charging / discharging current exceeds the threshold value to become equal to or less than the threshold value while the vehicle is running.
請求項3に記載の電池容量算出装置において、
前記電流積算充電率変化量算出手段は、複数の電流積算期間で算出した電流積算充電率変化量を加算して最終的な電流積算充電率変化量を算出し、
前記開放電圧充電率変化量算出手段は、前記複数の電流積算期間で算出した開放電圧充電率変化量を加算して最終的な開放電圧充電率変化量を算出し、
前記電池容量算出手段は、前記最終的な電流積算充電率変化量と前記最終的な開放電圧充電率変化量とから前記容量維持率を算出することを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 3,
The current integrated charging rate change amount calculating means adds the current integrated charging rate change amount calculated in a plurality of current integrating periods to calculate a final current integrated charging rate change amount,
The open-circuit voltage charge rate change amount calculating means calculates a final open-circuit voltage charge rate change amount by adding the open-circuit voltage charge rate change amount calculated in the plurality of current integration periods,
The battery capacity calculation unit calculates the capacity maintenance rate from the final current integrated charge rate change amount and the final open-circuit voltage charge rate change amount.
請求項3に記載の電池容量算出装置において、
前記電流積算充電率変化量算出手段は、前記複数の電流積算期間で算出した電流積算充電率変化量の絶対値を加算して最終的な電流積算充電率変化量を算出し、
前記開放電圧充電率変化量算出手段は、前記複数の電流積算期間で算出した開放電圧変化量の絶対値を加算して最終的な開放電圧充電率変化量を算出し、
前記電池容量算出手段は、前記最終的な電流積算充電率変化量と前記最終的な開放電圧充電率変化量とから前記容量維持率を算出することを特徴とする電池容量算出装置。
In the battery capacity calculation device according to claim 3,
The current integrated charging rate change amount calculating means adds the absolute value of the current integrated charging rate change amount calculated in the plurality of current integrating periods to calculate a final current integrated charging rate change amount,
The open-circuit voltage charge rate change amount calculating means adds the absolute value of the open-circuit voltage change amount calculated in the plurality of current integration periods to calculate a final open-circuit voltage charge rate change amount,
The battery capacity calculation unit calculates the capacity maintenance rate from the final current integrated charge rate change amount and the final open-circuit voltage charge rate change amount.
車両の走行中に車両に搭載された二次電池の充放電電流の大きさが所定の閾値を超えてから前記閾値以下となるまでの期間を電流積算期間として前記充放電電流の絶対値の積算値を算出する電流積算手段と、
前記二次電池の状態量に基づいて前記電流積算期間の開始時および終了時の開放電圧を推定する開放電圧推定手段と、
前記電流積算期間の開始時および終了時の前記開放電圧に基づく前記二次電池の充電率である開放電圧充電率を算出する開放電圧充電率算出手段と、
複数の電流積算期間で算出した各積算値の和を初期電池容量で除算して電流積算充電率変化量を算出する電流積算充電率変化量算出手段と、
前記複数の電流積算期間における各電流積算期間の終了時の開放電圧充電率と当該電流積算期間の開始時の開放電圧充電率との差分である開放電圧充電率変化量をそれぞれ算出し、各開放電圧充電率変化量の絶対値を加算して最終的な開放電圧充電率変化量を算出する開放電圧充電率変化量算出手段と、
前記最終的な開放電圧充電率変化量に対する前記電流積算充電率変化量の比である容量維持率を算出し、算出した容量維持率に基づき前記二次電池の電池容量を算出する電池容量算出手段と、
を備えたことを特徴とする電池容量算出装置。
Accumulation of the absolute value of the charge / discharge current with the period from when the charge / discharge current of the secondary battery mounted on the vehicle during travel of the vehicle exceeds a predetermined threshold to the threshold or less as a current integration period Current integrating means for calculating a value;
An open-circuit voltage estimating means for estimating an open-circuit voltage at the start and end of the current integration period based on a state quantity of the secondary battery;
An open-circuit voltage charge rate calculating means for calculating an open-circuit voltage charge rate that is a charge rate of the secondary battery based on the open-circuit voltage at the start and end of the current integration period;
Current integrated charge rate change amount calculating means for calculating the current integrated charge rate change amount by dividing the sum of each integrated value calculated in a plurality of current integration periods by the initial battery capacity;
An open-circuit voltage charge rate change amount, which is a difference between an open-circuit voltage charge rate at the end of each current integration period and an open-circuit voltage charge rate at the start of the current integration period in each of the plurality of current integration periods, is calculated respectively. An open-circuit voltage charge rate change amount calculating means for calculating a final open-circuit voltage charge rate change amount by adding the absolute value of the voltage charge rate change amount;
Battery capacity calculating means for calculating a capacity maintenance rate that is a ratio of the current integrated charging rate change amount to the final open-circuit voltage charging rate change amount, and calculating a battery capacity of the secondary battery based on the calculated capacity maintenance rate When,
A battery capacity calculation device comprising:
車両の走行中に車両に搭載された二次電池の充放電電流の大きさが所定の閾値を超えてから前記閾値以下となるまでの期間を電流積算期間とし、複数の電流積算期間における前記充放電電流の絶対値の積算値を算出する電流積算手段と、
前記二次電池の状態量に基づいて前記電流積算期間の開始時および終了時の開放電圧を推定する開放電圧推定手段と、
前記電流積算期間の開始時および終了時の前記開放電圧に基づく前記二次電池の充電率である開放電圧充電率を算出する開放電圧充電率算出手段と、
前記積算値を初期電池容量で除算して電流積算充電率変化量を算出する電流積算充電率変化量算出手段と、
前記複数の電流積算期間における各電流積算期間の終了時の開放電圧充電率と当該電流積算期間の開始時の開放電圧充電率との差分である開放電圧充電率変化量をそれぞれ算出し、各開放電圧充電率変化量の絶対値を加算して最終的な開放電圧充電率変化量を算出する開放電圧充電率変化量算出手段と、
前記最終的な開放電圧充電率変化量に対する前記電流積算充電率変化量の比である容量維持率を算出し、算出した容量維持率に基づき前記二次電池の電池容量を算出する電池容量算出手段と、
を備えたことを特徴とする電池容量算出装置。
A period from when the charge / discharge current of the secondary battery mounted on the vehicle while the vehicle is running exceeds a predetermined threshold to a value equal to or lower than the threshold is defined as a current integration period, and the charging / discharging in a plurality of current integration periods is performed. Current integrating means for calculating the integrated value of the absolute value of the discharge current;
An open-circuit voltage estimating means for estimating an open-circuit voltage at the start and end of the current integration period based on a state quantity of the secondary battery;
An open-circuit voltage charge rate calculating means for calculating an open-circuit voltage charge rate that is a charge rate of the secondary battery based on the open-circuit voltage at the start and end of the current integration period;
Current integrated charge rate change amount calculating means for calculating the current integrated charge rate change amount by dividing the integrated value by the initial battery capacity;
An open-circuit voltage charge rate change amount, which is a difference between an open-circuit voltage charge rate at the end of each current integration period and an open-circuit voltage charge rate at the start of the current integration period in each of the plurality of current integration periods, is calculated respectively. An open-circuit voltage charge rate change amount calculating means for calculating a final open-circuit voltage charge rate change amount by adding the absolute value of the voltage charge rate change amount;
Battery capacity calculating means for calculating a capacity maintenance rate that is a ratio of the current integrated charging rate change amount to the final open-circuit voltage charging rate change amount, and calculating a battery capacity of the secondary battery based on the calculated capacity maintenance rate When,
A battery capacity calculation device comprising:
二次電池の充放電電流の大きさが所定の閾値を超える期間を電流積算期間として電流積算に基づく充電率変化量を算出すると共に、電流積算期間の開始時および終了時に推定した開放電圧から開放電圧に基づく充電率変化量を算出し、
前記開放電圧に基づく充電率変化量に対する前記電流積算に基づく充電率変化量の比である容量維持率を算出し、算出した容量維持率に基づき前記二次電池の電池容量を算出することを特徴とする電池容量算出装置。
The amount of change in the charging rate based on the current integration is calculated with the period when the charge / discharge current of the secondary battery exceeds the specified threshold as the current integration period, and is released from the open circuit voltage estimated at the start and end of the current integration period. Calculate the amount of change in charging rate based on voltage,
A capacity maintenance rate that is a ratio of a charging rate change amount based on the current integration to a charging rate change amount based on the open circuit voltage is calculated, and a battery capacity of the secondary battery is calculated based on the calculated capacity maintenance rate. A battery capacity calculation device.
JP2010200186A 2010-09-07 2010-09-07 Battery capacity calculation device and battery capacity calculation method Expired - Fee Related JP5419832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200186A JP5419832B2 (en) 2010-09-07 2010-09-07 Battery capacity calculation device and battery capacity calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200186A JP5419832B2 (en) 2010-09-07 2010-09-07 Battery capacity calculation device and battery capacity calculation method

Publications (2)

Publication Number Publication Date
JP2012058028A true JP2012058028A (en) 2012-03-22
JP5419832B2 JP5419832B2 (en) 2014-02-19

Family

ID=46055312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200186A Expired - Fee Related JP5419832B2 (en) 2010-09-07 2010-09-07 Battery capacity calculation device and battery capacity calculation method

Country Status (1)

Country Link
JP (1) JP5419832B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845892A (en) * 1994-08-03 1996-02-16 Tokyo Electron Ltd Rotary treating apparatus
CN103197257A (en) * 2013-04-03 2013-07-10 华为技术有限公司 Method and device for detecting state of health (SOH) of battery
JP2013195408A (en) * 2012-03-23 2013-09-30 Denso Corp Battery pack voltage detection device and method of manufacturing the same
JP2014059227A (en) * 2012-09-18 2014-04-03 Calsonic Kansei Corp Soundness calculation device for battery and soundness calculation method therefor
JP2014059226A (en) * 2012-09-18 2014-04-03 Calsonic Kansei Corp Soundness calculation device for battery and soundness calculation method therefor
KR20140062772A (en) * 2012-11-15 2014-05-26 현대모비스 주식회사 Intelligent battery sensor and battery nominal capacity estimation method using iteration thereof
CN103869251A (en) * 2012-12-17 2014-06-18 横河电机株式会社 Secondary-battery maximum-capacity measuring apparatus
JP2014522488A (en) * 2012-03-16 2014-09-04 エルジー・ケム・リミテッド Battery state estimation apparatus and method
JP2014174050A (en) * 2013-03-11 2014-09-22 Kayaba Ind Co Ltd Battery capacity estimation device
JP2015040764A (en) * 2013-08-22 2015-03-02 カルソニックカンセイ株式会社 Battery charging rate detection device
WO2015033504A1 (en) * 2013-09-05 2015-03-12 カルソニックカンセイ株式会社 Battery soundness estimation device and soundness estimation method
KR20150037144A (en) * 2013-09-30 2015-04-08 현대모비스 주식회사 Intelligent Battery Sensor Apparatus and Method thereof
CN104977534A (en) * 2014-04-02 2015-10-14 鸿富锦精密工业(深圳)有限公司 Method for estimating state-of-health of battery and device thereof
JP2016024170A (en) * 2014-07-24 2016-02-08 日立オートモティブシステムズ株式会社 Battery control device
CN105339802A (en) * 2013-02-28 2016-02-17 日立汽车系统株式会社 Device for assessing extent of degradation in secondary cell
WO2016140152A1 (en) * 2015-03-02 2016-09-09 日立オートモティブシステムズ株式会社 Battery control device and vehicle system
JP2016171716A (en) * 2015-03-13 2016-09-23 エスアイアイ・セミコンダクタ株式会社 Battery residual amount prediction device and battery pack
JPWO2014083856A1 (en) * 2012-11-30 2017-01-05 三洋電機株式会社 Battery management device, power supply device, and SOC estimation method
CN106324508A (en) * 2015-07-02 2017-01-11 华为技术有限公司 Battery health state detection device and method
CN106842041A (en) * 2016-12-28 2017-06-13 深圳天珑无线科技有限公司 A kind of method and device for calculating battery capacity
JP2017143026A (en) * 2016-02-12 2017-08-17 スズキ株式会社 Secondary battery soundness estimation method in system combining fuel cell and secondary battery, and system combining fuel cell and secondary battery
FR3051981A1 (en) * 2016-05-27 2017-12-01 Commissariat Energie Atomique METHOD AND DEVICE FOR EVALUATING A HEALTH STATUS INDICATOR OF A CELL OF A LITHIUM BATTERY
JP2018021837A (en) * 2016-08-04 2018-02-08 プライムアースEvエナジー株式会社 Device and method for determining deterioration of secondary battery, and device for controlling secondary battery
JP2018173370A (en) * 2017-03-31 2018-11-08 住友電気工業株式会社 Abnormality determination device, abnormality determination method, and computer program
JP2019021515A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Battery system and vehicle on which battery system is mounted
CN109428362A (en) * 2017-09-03 2019-03-05 湖州南浔遨优电池有限公司 A kind of active equalization policy optimization method of battery management system
CN109428363A (en) * 2017-09-03 2019-03-05 湖州南浔遨优电池有限公司 A kind of passive balance policy optimization method of battery management system
KR101958277B1 (en) * 2017-11-21 2019-03-14 한국항공우주연구원 System and Method for Determining Characteristic of Battery Cell
US10343544B2 (en) 2016-11-01 2019-07-09 Hyundai Motor Company Apparatus and method for controlling charging of battery for hybrid vehicle
US10353007B2 (en) 2015-05-28 2019-07-16 Mitsubishi Electric Corporation Rechargeable battery parameter estimation apparatus and rechargeable battery parameter estimation method for calculating first and second coefficients which are partial derivatives of an estimated value of the battery state-of-charge
WO2019230033A1 (en) * 2018-05-31 2019-12-05 住友電気工業株式会社 Parameter estimation device, parameter estimation method, and computer program
CN110622018A (en) * 2017-12-21 2019-12-27 株式会社Lg化学 Method for calibrating the state of charge of a battery and battery management system
CN112018853A (en) * 2020-09-04 2020-12-01 江西江铃集团新能源汽车有限公司 Battery charging protection method and device for pure electric vehicle
CN114200317A (en) * 2021-11-11 2022-03-18 一汽奔腾轿车有限公司 SOC estimation method of dynamically corrected ampere-hour integration method
WO2023106302A1 (en) * 2021-12-10 2023-06-15 古河電気工業株式会社 Lead storage battery system and method for estimating deterioration of lead storage battery
EP4336199A1 (en) * 2022-09-07 2024-03-13 Mahle International GmbH A method and a system for estimating the state of health of a rechargeable battery, in particular for a vehicle
WO2024111909A1 (en) * 2022-11-21 2024-05-30 주식회사 피엠그로우 Method for supplementing accuracy of state of charge (soc)
WO2024189954A1 (en) * 2023-03-14 2024-09-19 株式会社日立ハイテク Secondary battery state diagnosis system and state diagnosis method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635163A (en) * 2015-01-21 2015-05-20 广州市香港科大霍英东研究院 On-line estimation early warning method for SOH (State Of Health) of electric vehicle battery pack
WO2016132813A1 (en) 2015-02-19 2016-08-25 三菱電機株式会社 Battery state estimation device
CN110506216B (en) 2017-03-31 2022-03-08 三菱电机株式会社 Battery state estimating device
JP7346155B2 (en) 2019-08-21 2023-09-19 東芝エネルギーシステムズ株式会社 Battery capacity estimation device, battery capacity estimation method, and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303627A (en) * 2002-04-10 2003-10-24 Hitachi Ltd Status detecting device and various devices using the same
JP2004170231A (en) * 2002-11-20 2004-06-17 Toshitaka Takei Battery equipment system indicating degradation of battery
JP2005083970A (en) * 2003-09-10 2005-03-31 Nippon Soken Inc State sensing device and state detection method of secondary battery
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
JP2008041280A (en) * 2006-08-01 2008-02-21 Sony Corp Battery pack, and calculation method of deterioration degree
JP2008241358A (en) * 2007-03-26 2008-10-09 Sanyo Electric Co Ltd Full capacity detection method of battery
JP2010048656A (en) * 2008-08-21 2010-03-04 Nippon Soken Inc Devie and methof of measuring battery deterioration
JP2010186619A (en) * 2009-02-12 2010-08-26 Sony Corp Battery pack and battery capacity calculating method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303627A (en) * 2002-04-10 2003-10-24 Hitachi Ltd Status detecting device and various devices using the same
JP2004170231A (en) * 2002-11-20 2004-06-17 Toshitaka Takei Battery equipment system indicating degradation of battery
JP2005083970A (en) * 2003-09-10 2005-03-31 Nippon Soken Inc State sensing device and state detection method of secondary battery
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
JP2008041280A (en) * 2006-08-01 2008-02-21 Sony Corp Battery pack, and calculation method of deterioration degree
JP2008241358A (en) * 2007-03-26 2008-10-09 Sanyo Electric Co Ltd Full capacity detection method of battery
JP2010048656A (en) * 2008-08-21 2010-03-04 Nippon Soken Inc Devie and methof of measuring battery deterioration
JP2010186619A (en) * 2009-02-12 2010-08-26 Sony Corp Battery pack and battery capacity calculating method

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845892A (en) * 1994-08-03 1996-02-16 Tokyo Electron Ltd Rotary treating apparatus
JP2014522488A (en) * 2012-03-16 2014-09-04 エルジー・ケム・リミテッド Battery state estimation apparatus and method
JP2013195408A (en) * 2012-03-23 2013-09-30 Denso Corp Battery pack voltage detection device and method of manufacturing the same
JP2014059227A (en) * 2012-09-18 2014-04-03 Calsonic Kansei Corp Soundness calculation device for battery and soundness calculation method therefor
JP2014059226A (en) * 2012-09-18 2014-04-03 Calsonic Kansei Corp Soundness calculation device for battery and soundness calculation method therefor
KR20140062772A (en) * 2012-11-15 2014-05-26 현대모비스 주식회사 Intelligent battery sensor and battery nominal capacity estimation method using iteration thereof
KR101960090B1 (en) * 2012-11-15 2019-03-19 현대모비스 주식회사 Intelligent battery sensor and battery nominal capacity estimation method using iteration thereof
JPWO2014083856A1 (en) * 2012-11-30 2017-01-05 三洋電機株式会社 Battery management device, power supply device, and SOC estimation method
JP2014119331A (en) * 2012-12-17 2014-06-30 Yokogawa Electric Corp Secondary battery maximum capacity measuring apparatus
CN103869251A (en) * 2012-12-17 2014-06-18 横河电机株式会社 Secondary-battery maximum-capacity measuring apparatus
EP2963432A4 (en) * 2013-02-28 2016-11-30 Hitachi Automotive Systems Ltd Device for assessing extent of degradation in secondary cell
CN105339802A (en) * 2013-02-28 2016-02-17 日立汽车系统株式会社 Device for assessing extent of degradation in secondary cell
JP2014174050A (en) * 2013-03-11 2014-09-22 Kayaba Ind Co Ltd Battery capacity estimation device
CN103197257A (en) * 2013-04-03 2013-07-10 华为技术有限公司 Method and device for detecting state of health (SOH) of battery
JP2015040764A (en) * 2013-08-22 2015-03-02 カルソニックカンセイ株式会社 Battery charging rate detection device
WO2015033504A1 (en) * 2013-09-05 2015-03-12 カルソニックカンセイ株式会社 Battery soundness estimation device and soundness estimation method
JP2015052482A (en) * 2013-09-05 2015-03-19 カルソニックカンセイ株式会社 Soundness estimation device and soundness estimation method for battery
CN105283773A (en) * 2013-09-05 2016-01-27 日本康奈可株式会社 Battery soundness estimation device and soundness estimation method
KR20150037144A (en) * 2013-09-30 2015-04-08 현대모비스 주식회사 Intelligent Battery Sensor Apparatus and Method thereof
KR102079038B1 (en) 2013-09-30 2020-02-19 현대모비스 주식회사 Intelligent Battery Sensor Apparatus and Method thereof
CN104977534A (en) * 2014-04-02 2015-10-14 鸿富锦精密工业(深圳)有限公司 Method for estimating state-of-health of battery and device thereof
JP2016024170A (en) * 2014-07-24 2016-02-08 日立オートモティブシステムズ株式会社 Battery control device
CN107431367B (en) * 2015-03-02 2020-08-11 日本汽车能源株式会社 Battery control device and vehicle system
WO2016140152A1 (en) * 2015-03-02 2016-09-09 日立オートモティブシステムズ株式会社 Battery control device and vehicle system
CN107431367A (en) * 2015-03-02 2017-12-01 日立汽车系统株式会社 Battery control device and Vehicular system
US10266063B2 (en) 2015-03-02 2019-04-23 Hitachi Automotive Systems, Ltd. Battery controller and vehicle system
JPWO2016140152A1 (en) * 2015-03-02 2018-01-25 日立オートモティブシステムズ株式会社 Battery control device and vehicle system
JP2016171716A (en) * 2015-03-13 2016-09-23 エスアイアイ・セミコンダクタ株式会社 Battery residual amount prediction device and battery pack
US10353007B2 (en) 2015-05-28 2019-07-16 Mitsubishi Electric Corporation Rechargeable battery parameter estimation apparatus and rechargeable battery parameter estimation method for calculating first and second coefficients which are partial derivatives of an estimated value of the battery state-of-charge
US10712395B2 (en) 2015-07-02 2020-07-14 Huawei Technologies Co., Ltd. Apparatus and method for detecting battery state of health
EP3285081A4 (en) * 2015-07-02 2018-07-18 Huawei Technologies Co., Ltd. Battery state of health detection device and method
CN106324508A (en) * 2015-07-02 2017-01-11 华为技术有限公司 Battery health state detection device and method
JP2017143026A (en) * 2016-02-12 2017-08-17 スズキ株式会社 Secondary battery soundness estimation method in system combining fuel cell and secondary battery, and system combining fuel cell and secondary battery
FR3051981A1 (en) * 2016-05-27 2017-12-01 Commissariat Energie Atomique METHOD AND DEVICE FOR EVALUATING A HEALTH STATUS INDICATOR OF A CELL OF A LITHIUM BATTERY
EP3258282A1 (en) * 2016-05-27 2017-12-20 Commissariat à l'Energie Atomique et aux Energies Alternatives Method and device for assessing an indicator of the state of health of a cell of a lithium battery
JP2018021837A (en) * 2016-08-04 2018-02-08 プライムアースEvエナジー株式会社 Device and method for determining deterioration of secondary battery, and device for controlling secondary battery
US10343544B2 (en) 2016-11-01 2019-07-09 Hyundai Motor Company Apparatus and method for controlling charging of battery for hybrid vehicle
CN106842041A (en) * 2016-12-28 2017-06-13 深圳天珑无线科技有限公司 A kind of method and device for calculating battery capacity
JP2018173370A (en) * 2017-03-31 2018-11-08 住友電気工業株式会社 Abnormality determination device, abnormality determination method, and computer program
JP2019021515A (en) * 2017-07-18 2019-02-07 トヨタ自動車株式会社 Battery system and vehicle on which battery system is mounted
CN109428363B (en) * 2017-09-03 2022-09-06 浙江遨优动力系统有限公司 Passive equalization strategy optimization method of battery management system
CN109428363A (en) * 2017-09-03 2019-03-05 湖州南浔遨优电池有限公司 A kind of passive balance policy optimization method of battery management system
CN109428362A (en) * 2017-09-03 2019-03-05 湖州南浔遨优电池有限公司 A kind of active equalization policy optimization method of battery management system
CN109428362B (en) * 2017-09-03 2022-09-09 浙江遨优动力系统有限公司 Active equalization strategy optimization method of battery management system
KR101958277B1 (en) * 2017-11-21 2019-03-14 한국항공우주연구원 System and Method for Determining Characteristic of Battery Cell
US11480620B2 (en) 2017-12-21 2022-10-25 Lg Energy Solution, Ltd. Method for calibrating state of charge of battery and battery management system
CN110622018A (en) * 2017-12-21 2019-12-27 株式会社Lg化学 Method for calibrating the state of charge of a battery and battery management system
JPWO2019230033A1 (en) * 2018-05-31 2021-07-15 住友電気工業株式会社 Parameter estimator, parameter estimation method and computer program
US11448704B2 (en) 2018-05-31 2022-09-20 Sumitomo Electric Industries, Ltd. Parameter estimation device, parameter estimation method, and computer program
WO2019230033A1 (en) * 2018-05-31 2019-12-05 住友電気工業株式会社 Parameter estimation device, parameter estimation method, and computer program
JP7211420B2 (en) 2018-05-31 2023-01-24 住友電気工業株式会社 Parameter estimation device, parameter estimation method and computer program
CN112018853A (en) * 2020-09-04 2020-12-01 江西江铃集团新能源汽车有限公司 Battery charging protection method and device for pure electric vehicle
CN114200317A (en) * 2021-11-11 2022-03-18 一汽奔腾轿车有限公司 SOC estimation method of dynamically corrected ampere-hour integration method
WO2023106302A1 (en) * 2021-12-10 2023-06-15 古河電気工業株式会社 Lead storage battery system and method for estimating deterioration of lead storage battery
EP4336199A1 (en) * 2022-09-07 2024-03-13 Mahle International GmbH A method and a system for estimating the state of health of a rechargeable battery, in particular for a vehicle
WO2024111909A1 (en) * 2022-11-21 2024-05-30 주식회사 피엠그로우 Method for supplementing accuracy of state of charge (soc)
WO2024189954A1 (en) * 2023-03-14 2024-09-19 株式会社日立ハイテク Secondary battery state diagnosis system and state diagnosis method

Also Published As

Publication number Publication date
JP5419832B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5419832B2 (en) Battery capacity calculation device and battery capacity calculation method
US10266063B2 (en) Battery controller and vehicle system
JP5393624B2 (en) Battery capacity calculation device and battery capacity calculation method
JP4786058B2 (en) Power storage device remaining capacity detection device
CN107533109B (en) Battery control device and electric vehicle system
US9566875B2 (en) Method of detecting battery capacity of secondary battery
JP5595361B2 (en) Secondary battery charge state estimation device
EP2847026B1 (en) Electrical storage system and equalizing method
US9880224B2 (en) Battery system monitoring device
WO2014083856A1 (en) Battery management device, power supply, and soc estimation method
JP2012057998A (en) Charge rate calculation apparatus for secondary battery and charge rate calculation method
WO2016140148A1 (en) Battery control device and vehicle system
CN105283773A (en) Battery soundness estimation device and soundness estimation method
KR20130018311A (en) Capacity estimating apparatus for secondary battery
JP2012063246A (en) Calibration apparatus for current sensor
JP5393616B2 (en) Secondary battery capacity maintenance rate calculation device and capacity maintenance rate calculation method
JP2014134391A (en) Power supply control apparatus, power supply model update method, program, and medium
WO2005093446A1 (en) Method and equipment for estimating residual capacity of storage battery
JP2000002758A (en) Maximum input/output power estimating device for battery
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP2011209086A (en) Error correction method of current sensor
WO2016178308A1 (en) Secondary battery charging rate calculation device and storage battery system
JP2023024201A (en) Battery management device and method
JP5365582B2 (en) Battery control system
JP6164147B2 (en) Battery control system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees