JP2012054231A - Nonaqueous electrolyte and nonaqueous electrolyte battery - Google Patents
Nonaqueous electrolyte and nonaqueous electrolyte battery Download PDFInfo
- Publication number
- JP2012054231A JP2012054231A JP2011171993A JP2011171993A JP2012054231A JP 2012054231 A JP2012054231 A JP 2012054231A JP 2011171993 A JP2011171993 A JP 2011171993A JP 2011171993 A JP2011171993 A JP 2011171993A JP 2012054231 A JP2012054231 A JP 2012054231A
- Authority
- JP
- Japan
- Prior art keywords
- carbonate
- aqueous electrolyte
- mass
- battery
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、非水系電解液及び非水系電解液二次電池に関し、詳しくは、電解質として三重結合を有する特定の環状化合物を含有する非水系電解液、および該非水系電解液を用いた非水系電解液電池に関する。 The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery, and more specifically, a non-aqueous electrolyte containing a specific cyclic compound having a triple bond as an electrolyte, and a non-aqueous electrolysis using the non-aqueous electrolyte. It relates to a liquid battery.
携帯電話、ノートパソコン等のいわゆる携帯電子機器用電源から自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源としてリチウム二次電池等の非水系電解液二次電池が実用化されつつある。しかしながら、近年の電子機器の高性能化や駆動用車載電源や定置用大型電源への適用等に伴い、適用される二次電池への要求はますます高まり、二次電池の電池特性の高性能化、例えば高容量化、高温保存特性、サイクル特性等の向上を高い水準で達成することが求められている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are widely used as power sources for so-called portable electronic devices such as mobile phones and notebook computers, to in-vehicle power sources for automobiles and large power sources for stationary applications. It is being put into practical use. However, with the recent high performance of electronic devices and the application to in-vehicle power supplies for driving and large power supplies for stationary applications, the demand for applied secondary batteries is increasing, and the high performance of the battery characteristics of secondary batteries is increasing. For example, it is required to achieve high levels of improvement in capacity, high temperature storage characteristics, cycle characteristics, and the like.
非水系電解液リチウム二次電池に用いる電解液は、通常、主として電解質と非水溶媒とから構成されている。非水溶媒の主成分としては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステルなどが用いられている。また、これらの非水系電解液を用いた電池の負荷特性、サイクル特性、保存特性、低温特性等の電池特性を改良するために、種々の非水溶媒や電解質、助剤等も提案されている。例えば、負極に炭素材料を用いた非水電解質において、ビニレンカーボネート及びその誘電体や、ビニルエチレンカーボネート誘導体を使用することにより、これら環状カーボネートが負極と優先的に反応して負極表面に良質の被膜を形成し、これにより電池の保存特性とサイクル特性が向上することが特許文献1および2に開示されている。また、例えば負極活物質に人造黒鉛を用いた非水電解質において、特定のエチレンカーボネート誘導体と、三重結合含有化合物及び/又はペンタフルオロフェニルオキシ化合物とを併用することにより、ガス発生が少なく、サイクル特性が改善されることが特許文献3に開示されている。 The electrolyte used for the non-aqueous electrolyte lithium secondary battery is usually composed mainly of an electrolyte and a non-aqueous solvent. The main components of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone. It is used. In addition, various nonaqueous solvents, electrolytes, auxiliaries, and the like have been proposed in order to improve battery characteristics such as load characteristics, cycle characteristics, storage characteristics, and low temperature characteristics of batteries using these nonaqueous electrolyte solutions. . For example, in a non-aqueous electrolyte using a carbon material for the negative electrode, by using vinylene carbonate and its dielectric or vinyl ethylene carbonate derivative, these cyclic carbonates react preferentially with the negative electrode, and a good quality coating is formed on the negative electrode surface. Patent Documents 1 and 2 disclose that the storage characteristics and cycle characteristics of the battery are improved. In addition, for example, in a non-aqueous electrolyte using artificial graphite as a negative electrode active material, by combining a specific ethylene carbonate derivative with a triple bond-containing compound and / or a pentafluorophenyloxy compound, gas generation is reduced and cycle characteristics are reduced. It is disclosed in Patent Document 3 that the above is improved.
上記のように近年の二次電池の高性能化への要求が高まる中ではリチウム二次電池の特性の向上、すなわち、高容量化、高温保存特性、サイクル特性等の向上が求められている。このような背景の下、特許文献1、2に記載されている電解液を用いた非水電解液電池では、充電状態の電池を高温で放置したり、連続充放電サイクルを行うと、正極上で不飽和環状カーボネートまたはその誘導体が酸化分解して炭酸ガスを発生するという問題があった。このような使用環境下で炭酸ガスが発生すると、例えば、電池の安全弁が作動したり、電池が膨張する等により電池自体が使用不能になる場合がある。 As described above, the demand for higher performance of the secondary battery in recent years is increasing, and thus the improvement of the characteristics of the lithium secondary battery, that is, the improvement of the capacity, the high temperature storage characteristic, the cycle characteristic and the like is required. In such a background, in the nonaqueous electrolyte battery using the electrolyte solution described in Patent Documents 1 and 2, if the charged battery is left at a high temperature or a continuous charge / discharge cycle is performed, However, there is a problem that the unsaturated cyclic carbonate or a derivative thereof oxidizes and decomposes to generate carbon dioxide gas. If carbon dioxide gas is generated in such a use environment, the battery itself may become unusable due to, for example, activation of a battery safety valve or expansion of the battery.
また、正極上での不飽和環状カーボネートの酸化分解は、炭酸ガスの発生以外にも固体状の分解物の生成という問題も引き起こす。このような固形分解物の生成は、電極層やセパレータの目詰まりを引き起こしてリチウムイオンの移動を阻害したり、あるいは固形分
解物が電極活物質表面に残存してリチウムイオンの挿入脱離反応を阻害する場合がある。その結果、例えば、連続充放電サイクル時に充放電容量が徐々に低下したり、電池の高温保存または連続充放電サイクル後に充放電容量が初期に比べて低下する、あるいは負荷特性が低下する場合がある。
In addition, the oxidative decomposition of unsaturated cyclic carbonate on the positive electrode causes a problem of generating a solid decomposition product in addition to the generation of carbon dioxide gas. Generation of such a solid decomposition product causes clogging of the electrode layer and the separator to inhibit the movement of lithium ions, or the solid decomposition product remains on the surface of the electrode active material and causes the lithium ion insertion / release reaction. May interfere. As a result, for example, the charge / discharge capacity may gradually decrease during a continuous charge / discharge cycle, the charge / discharge capacity may decrease from the initial stage after storage at a high temperature of the battery or after a continuous charge / discharge cycle, or the load characteristics may deteriorate. .
また、これらの正極上での不飽和環状カーボネートの酸化分解は、近年の高性能な二次電池設計の下では特に深刻な問題となる。すなわち、この酸化分解は、正極活物質がリチウムを挿入脱離する電位がリチウムの酸化還元電位よりも上昇すると顕著になる傾向にある。例えば、現在市販されているリチウム二次電池の満充電時の電池電圧である4.2Vよりも高電圧で動作させようとすると、これらの酸化反応は特に顕著に引き起こされる。 Also, the oxidative decomposition of unsaturated cyclic carbonate on these positive electrodes becomes a particularly serious problem under the design of high performance secondary batteries in recent years. That is, this oxidative decomposition tends to become prominent when the potential at which the positive electrode active material inserts and desorbs lithium rises above the redox potential of lithium. For example, when an attempt is made to operate at a voltage higher than 4.2 V, which is a battery voltage at the time of full charge of a currently available lithium secondary battery, these oxidation reactions are particularly prominent.
このような不飽和環状カーボネートの正極上での酸化分解を防ぐ方法として、モノフルオロエチレンカーボネートのようなフッ素原子を有する飽和環状カーボネートを用いる検討もなされている。通常、フッ素原子を有する飽和環状カーボネートの耐酸化性は不飽和環状カーボネートよりも高い。しかしながら、フッ素原子を有する飽和環状カーボネートが形成する負極被膜は耐久性に乏しく、結果として炭酸ガスを発生するという問題があった。 As a method for preventing the oxidative decomposition of the unsaturated cyclic carbonate on the positive electrode, studies using a saturated cyclic carbonate having a fluorine atom such as monofluoroethylene carbonate have been made. Usually, a saturated cyclic carbonate having a fluorine atom has higher oxidation resistance than an unsaturated cyclic carbonate. However, the negative electrode film formed by the saturated cyclic carbonate having fluorine atoms has poor durability, and as a result, there is a problem that carbon dioxide gas is generated.
また、非水系電解液電池を高容量化する別法として、限られた電池体積の中にできるだけ多くの活物質を詰めることが検討されているが、このように電極の活物質層を加圧して高密度化したり、電池内部に占める活物質以外の体積を極力少なくするよう設計された電池では、電池内部の空隙が少なく、少量のガス発生によっても電池内圧は顕著に上昇して、安全弁の作動や電池の膨張等により電池自体が使用不能になる場合がある。 Also, the non-aqueous electrolyte battery as an alternative to high capacity, limited but it has been studied to pack as much of the active material in the battery volume, the active material layer pressurizes Thus electrode In a battery designed to increase the density or reduce the volume other than the active material in the battery as much as possible, there are few voids inside the battery, and even if a small amount of gas is generated, the internal pressure of the battery rises significantly, and the safety valve The battery itself may become unusable due to operation or expansion of the battery.
また、特許文献3には、負極活物質に人造黒鉛を用い、非水電解質として三重結合含有化合物などを用いた非水電解液二次電池が記載されている。ここでは、サイクル特性を改善するために非水電解質として三重結合含有化合物などを用いているが、電解液の副反応性が高く、サイクル特性が向上し難い課題がある。 Patent Document 3 describes a non-aqueous electrolyte secondary battery using artificial graphite as a negative electrode active material and a triple bond-containing compound or the like as a non-aqueous electrolyte. Here, a triple bond-containing compound or the like is used as a non-aqueous electrolyte in order to improve cycle characteristics, but there is a problem that the side characteristics of the electrolytic solution are high and the cycle characteristics are difficult to improve.
そこで、本発明は、近年の二次電池に要求性能に対して発現する上記の種々の問題を解消し、特に、サイクル・保存等の耐久特性や負荷特性が改善された非水系電解液電池を提供すること、および、この非水系電解液電池に好適な非水系電解液を提供することにある。 Therefore, the present invention solves the above-mentioned various problems that are manifested in the required performance of secondary batteries in recent years, and in particular, a non-aqueous electrolyte battery having improved durability characteristics such as cycle and storage and load characteristics. It is to provide a non-aqueous electrolyte suitable for the non-aqueous electrolyte battery.
発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、非水系電解液電池に使用する非水系電解液中に、フッ素原子を有するカーボネートと、下記一般式(1)で表される化合物とを含有することにより、サイクル・保存等の耐久特性や負荷特性が改善された非水系電解液電池が実現できることを見出し、本発明を完成させるに至った。即ち、本発明の要旨は以下の通りである。 As a result of intensive studies to solve the above-mentioned problems, the inventors have expressed a carbonate having fluorine atoms in the non-aqueous electrolyte solution used in the non-aqueous electrolyte battery and the following general formula (1). It has been found that a non-aqueous electrolyte battery with improved durability characteristics such as cycle and storage and load characteristics can be realized by containing the compound, and the present invention has been completed. That is, the gist of the present invention is as follows.
a)リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液であって、前記非水系電解液が、フッ素原子を有するカーボネートと、下記一般式(1)で表される化合物とを含有することを特徴とする非水系電解液、に関する。 a) A non-aqueous electrolyte solution comprising a lithium salt and a non-aqueous solvent for dissolving the lithium salt, wherein the non-aqueous electrolyte solution is a carbonate having a fluorine atom and a compound represented by the following general formula (1) The present invention relates to a non-aqueous electrolyte solution containing
(上記一般式(1)中、XとZはCR1 2、C=O、C=N−R1、C=P−R1、O、S、N−R1、P−R1を表し、同一でも異なっていてもよい。YはCR1 2、C=O、S=O、S(=O)2、P(=O)−R2、P(=O)−OR3を表す。上記一般式(1)中、R及びR1は水素、ハロゲン、または、置換基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。R2は置換基を有してもよい炭素数1から20の炭化水素基である。R3は、Li、NR4 4または、置換基を有してもよい炭素数1から20の炭化水素基である。R4は置換基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。nおよびmは0以上の整数を表す。また隣接する環内の炭素が互いにさらなる結合を作り、当該炭素のRが各ひとつずつ減っていてもよい。Wは上記Rと同義の範囲であり、Wは上記Rと互いに同一であっても異なっていてもよい。) (In the above general formula (1), X and Z represent CR 1 2 , C═O, C═N—R 1 , C = P—R 1 , O, S, N—R 1 , P—R 1 . Y may represent CR 1 2 , C═O, S═O, S (═O) 2 , P (═O) —R 2 , P (═O) —OR 3 . In the general formula (1), R and R 1 are hydrogen, halogen, or an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different from each other. R 2 is an optionally substituted hydrocarbon group having 1 to 20 carbon atoms R 3 is Li, NR 4 4 or an optionally substituted carbon atom having 1 to 20 carbon atoms R 4 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and may be the same or different, and n and m represent an integer of 0 or more. In the adjacent ring The elements may form a further bond with each other, and the R of the carbon may be reduced by one each, W is in the same range as R, and W may be the same as or different from R. )
b)前記一般式(1)で表される化合物が、下記一般式(2)式で表される化合物であることを特徴とする、a)に記載の非水系電解液、に関する。 b) The non-aqueous electrolyte solution according to a), wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
(上記一般式(2)中、YはC=O、S=O、S(=O)2、P(=O)−R2、P(=O)−OR3を表す。R2は置換基を有してもよい炭素数1から20の炭化水素基である。R3は、Li、NR4 4または、置換基を有してもよい炭素数1から20の炭化水素基である。R4は置換基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。) (In the general formula (2), Y represents C═O, S═O, S (═O) 2 , P (═O) —R 2 , P (═O) —OR 3. R 2 represents substitution. R 3 is a hydrocarbon group having 1 to 20 carbon atoms which may have a group, and R 3 is Li, NR 4 4 or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. R 4 is an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different.
c)前記フッ素原子を有するカーボネートが、環状カーボネートであることを特徴とする、a)またはb)に記載の非水系電解液。 c) The non-aqueous electrolyte according to a) or b), wherein the carbonate having a fluorine atom is a cyclic carbonate.
d)前記フッ素原子を有するカーボネートが、フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート、または2,2,2−トリフルオロエチルメチルカーボネートである、a)〜c)の何れか1つに記載の非水系電解液。 d) The carbonate having a fluorine atom is fluoroethylene carbonate, 4,5-difluoroethylene carbonate, bis (2,2,2-trifluoroethyl) carbonate, or 2,2,2-trifluoroethylmethyl carbonate. , A) to c) The nonaqueous electrolytic solution according to any one of the above.
e)前記フッ素原子を有するカーボネートが、非水系電解液中に50質量%未満含有されることを特徴とする、a)〜d)の何れか1つに記載の非水系電解液。 e) The non-aqueous electrolyte solution according to any one of a) to d), wherein the carbonate having a fluorine atom is contained in an amount of less than 50% by mass in the non-aqueous electrolyte solution.
f)前記非水系電解液中におけるフッ素原子を有するカーボネートの含有量を[A]、一般式(1)で表される化合物の含有量を[B]としたときに、[B]/[A]が5から0.0001であることを特徴とする、a)〜e)の何れか1つに記載の非水系電解液。 f) When the content of the carbonate having a fluorine atom in the non-aqueous electrolyte is [A] and the content of the compound represented by the general formula (1) is [B], [B] / [A ] Is 5 to 0.0001, The non-aqueous electrolyte solution according to any one of a) to e).
g)リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であって、該非水系電解液が上記a)ないしf)の何れかに記載の非水系電解液であることを特徴とする非水系電解液電池、に関する。 g) A non-aqueous electrolyte battery comprising a negative electrode and a positive electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is a non-aqueous electrolyte according to any one of a) to f) above. The present invention relates to a non-aqueous electrolyte battery characterized by being a liquid.
h)前記負極が、炭素質材料であることを特徴とする、g)に記載の非水系電解液電池、に関する。 h) The non-aqueous electrolyte battery according to g), wherein the negative electrode is a carbonaceous material.
本発明は、三重結合が他の官能基やヘテロ元素を介することなく、単結合にて環構造に結合した化合物を非水系電解液電池に使用することを特徴の一つとしている。通常、特許文献1〜2に代表されるように、電極表面を保護して保存特性やサイクル特性等の電池耐久性を向上させる材料の多くは環状構造の化合物であり、更に多重結合性部位を有している。本発明者等はこの点に着目し、環構造中の官能基やヘテロ元素の結合部位、多重結合が環構造に結合する部位、および多重結合部分の電子軌道の混成状態について詳細に検討を行ったところ、例えば、環状化合物を構成する環骨格の一部が二重結合である化合物よりも、二重結合が環構造に結合をされている化合物の方が正極との安定性に優れること、加えて、三重結合性の置換基が環構造に結合している方が、二重結合よりも耐久特性に優れた効果(実施例16、比較例9)が得られ、上記の課題が解決できる知見を得た。 One feature of the present invention is that a compound in which a triple bond is bonded to a ring structure by a single bond without using any other functional group or heteroelement is used in a non-aqueous electrolyte battery. Usually, as typified by Patent Documents 1 and 2, many of the materials that protect the electrode surface and improve battery durability such as storage characteristics and cycle characteristics are compounds of a cyclic structure, and further have multiple bonding sites. Have. The present inventors paid attention to this point, and examined in detail the bonding sites of functional groups and heteroelements in the ring structure, the sites where multiple bonds are bonded to the ring structure, and the hybrid state of the electron orbits of the multiple bonds. As a result, for example, a compound in which a double bond is bonded to a ring structure is more stable with a positive electrode than a compound in which a part of the ring skeleton constituting the cyclic compound is a double bond, In addition, when the triple bond substituent is bonded to the ring structure, an effect (Example 16 and Comparative Example 9) having superior durability characteristics than the double bond can be obtained, and the above problems can be solved. Obtained knowledge.
また、三重結合を有する環状化合物は、フッ素原子を有する飽和環状カーボネートよりも貴な電位で還元分解されて良質な負極被膜を形成し、フッ素原子を有する飽和環状カーボネートの還元分解を抑制できる。加えて、フッ素原子を有する飽和環状カーボネートも、三重結合を有する環状化合物も共に正極との安定性に優れる。本発明者等は、該三重結合環状化合物と、フッ素原子を有する飽和環状カーボネートとを含有し、かつ非水系溶媒全体に対するフッ素原子を有する化合物の合計含有量が50質量%未満であるときに、本発明の効果が特に顕著に発現することも見出し、本発明を完成させるに至った。 Moreover, the cyclic compound having a triple bond is reduced and decomposed at a higher potential than the saturated cyclic carbonate having a fluorine atom to form a good quality negative electrode film, and the reductive decomposition of the saturated cyclic carbonate having a fluorine atom can be suppressed. In addition, both the saturated cyclic carbonate having a fluorine atom and the cyclic compound having a triple bond are excellent in stability with the positive electrode. The inventors contain the triple bond cyclic compound and a saturated cyclic carbonate having a fluorine atom, and when the total content of the compound having a fluorine atom relative to the whole non-aqueous solvent is less than 50% by mass, The inventors have also found that the effects of the present invention are particularly prominent, and have completed the present invention.
すなわち、このように、本発明を用いることで、特に高電圧化や高容量化されたリチウム二次電池設計において電池の負荷特性や、サイクル・保存等の耐久特性が改善された非水系電解液電池および該非水系電解液に使用される非水系電解液が提供される。 That is, by using the present invention as described above, the non-aqueous electrolyte solution has improved battery load characteristics, durability characteristics such as cycle and storage, especially in the design of lithium secondary batteries with higher voltages and higher capacities. A battery and a non-aqueous electrolyte used for the non-aqueous electrolyte are provided.
以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではなく、任意に変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments, and can be arbitrarily modified and implemented.
1.非水系電解液
1−1.電解質
<リチウム塩>
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
1. Non-aqueous electrolyte 1-1. Electrolyte <Lithium salt>
As the electrolyte, a lithium salt is usually used. The lithium salt is not particularly limited as long as it is known to be used for this purpose, and any lithium salt can be used. Specific examples include the following.
例えば、LiPF6、LiBF4、LiClO4、LiAlF4、LiSbF6、LiTaF6、LiWF7等の無機リチウム塩;
LiPO3F、LiPO2F2等のフルオロリン酸リチウム類;
LiWOF5等のタングステン酸リチウム類;
HCO2Li、CH3CO2Li、CH2FCO2Li、CHF2CO2Li、CF3CO2Li、CF3CH2CO2Li、CF3CF2CO2Li、CF3CF2CF2CO2Li、CF3CF2CF2CF2CO2Li等のカルボン酸リチウム塩類;
FSO3Li、CH3SO3Li、CH2FSO3Li、CHF2SO3Li、CF3SO3Li、CF3CF2SO3Li、CF3CF2CF2SO3Li、CF3CF2CF2CF2SO3Li等のスルホン酸リチウム塩類;
LiN(FCO)2、LiN(FCO)(FSO2)、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CF3SO2)(C4F9SO2)等のリチウムイミド塩類;
LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムビス(マロナト)ボレート、リチウムジフルオロ(マロナト)ボレート、リチウムビス(メチルマロナト)ボレート、リチウムジフルオロ(メチルマロナト)ボレート、リチウムビス(ジメチルマロナト)ボレート、リチウムジフルオロ(ジメチルマロナト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート、リチウムトリス(マロナト)ホスフェート、リチウムジフルオロビス(マロナト)ホスフェート、リチウムテトラフルオロ(マロナト)ホスフェート、リチウムトリス(メチルマロナト)ホスフェート、リチウムジフルオロビス(メチルマロナト)ホスフェート、リチウムテトラフルオロ(メチルマロナト)ホスフェート、リチウムトリス(ジメチルマロナト)ホスフェート、リチウムジフルオロビス(ジメチルマロナト)ホスフェート、リチウムテトラフルオロ(ジメチルマロナト)ホスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF4(CF3)2、LiPF4(C2F5)2、LiPF4(CF3SO2)2、LiPF4(C2F5SO2)2、LiBF3CF3、LiBF3C2F5、LiBF3C3F7、LiBF2(CF3)2、LiBF2(C2F5)2、LiBF2(CF3SO2)2、LiBF2(C2F5SO2)2等の含フッ素有機リチウム塩類;
等が挙げられる。
For example, LiPF 6, LiBF 4, LiClO 4, LiAlF 4, LiSbF 6, inorganic lithium salts LiTaF 6, LiWF 7 and the like;
Lithium fluorophosphates such as LiPO 3 F and LiPO 2 F 2 ;
Lithium tungstates such as LiWOF 5 ;
HCO 2 Li, CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3 CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 Carboxylic acid lithium salts such as CO 2 Li, CF 3 CF 2 CF 2 CF 2 CO 2 Li;
FSO 3 Li, CH 3 SO 3 Li, CH 2 FSO 3 Li, CHF 2 SO 3 Li, CF 3 SO 3 Li, CF 3 CF 2 SO 3 Li, CF 3 CF 2 CF 2 SO 3 Li, CF 3 CF 2 Sulfonic acid lithium salts such as CF 2 CF 2 SO 3 Li;
LiN (FCO) 2 , LiN (FCO) (FSO 2 ), LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium imide salts such as lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) ;
Lithium metide salts such as LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 ;
Lithium difluorooxalatoborate, lithium bis (oxalato) borate, lithium bis (malonato) borate, lithium difluoro (malonato) borate, lithium bis (methylmalonate) borate, lithium difluoro (methylmalonato) borate, lithium bis (dimethylmalonato) borate, Lithium oxalatoborate salts such as lithium difluoro (dimethylmalonato) borate;
Lithium tetrafluorooxalatophosphate, lithium difluorobis (oxalato) phosphate, lithium tris (oxalato) phosphate, lithium tris (malonato) phosphate, lithium difluorobis (malonato) phosphate, lithium tetrafluoro (malonato) phosphate, lithium tris (Methylmalonate) phosphate, Lithium difluorobis (methylmalonate) phosphate, Lithium tetrafluoro (methylmalonate) phosphate, Lithium tris (dimethylmalonate) phosphate, Lithium difluorobis (dimethylmalonate) phosphate, Lithium tetrafluoro (dimethylmalonate) phosphate, etc. Lithium oxalatophosphate salts of
In addition, LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiBF 3 C 3 F 7 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 , LiBF 2 (C 2 F 5 SO 2 ) 2 Fluorine-containing organic lithium salts such as
Etc.
中でも、LiPF6、LiBF4、LiSbF6、LiTaF6、LiPO2F2、FSO3Li、CF3SO3Li、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBF3CF3、LiBF3C2F5、LiPF3(CF3)3、LiPF3(C2F5)3等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。 Among them, LiPF 6 , LiBF 4 , LiSbF 6 , LiTaF 6 , LiPO 2 F 2 , FSO 3 Li, CF 3 SO 3 Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN ( CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , lithium bisoxalatoborate, lithium difluorooxalatoborate, lithium tetrafluorooxalatophosphate, lithium difluorobisoxalatophosphate, LiBF 3 CF 3, LiBF 3 C 2 F 5, LiPF 3 (CF 3) 3, LiPF 3 (C 2 F 5) 3 , etc. Output characteristics and high-rate discharge characteristics, high-temperature storage characteristics, particularly preferred from the viewpoint that an effect of improving the cycle characteristics and the like.
非水系電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。この範囲であれば、低温特性、サイクル特性、高温特性等の効果が向上する。一方でリチウムの総モル濃度が低すぎると、電解液の
電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
The concentration of these lithium salts in the non-aqueous electrolyte solution is not particularly limited as long as the effects of the present invention are not impaired, but the electric conductivity of the electrolyte solution is in a good range, and good battery performance is ensured. Therefore, the total molar concentration of lithium in the non-aqueous electrolyte is preferably 0.3 mol / L or more, more preferably 0.4 mol / L or more, and further preferably 0.5 mol / L or more. Preferably it is 3 mol / L or less, More preferably, it is 2.5 mol / L or less, More preferably, it is 2.0 mol / L or less. If it is this range, effects, such as a low temperature characteristic, cycling characteristics, and a high temperature characteristic, will improve. On the other hand, if the total molar concentration of lithium is too low, the electrical conductivity of the electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity. May decrease.
また、これらのリチウム塩は、単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPF6とLiBF4や、LiPF6とFSO3Li、LiPF6とLiPO2F2等の併用であり、負荷特性やサイクル特性を向上させる効果がある。これらの中では、LiPF6とFSO3Li、LiPF6とLiPO2F2の併用がその効果が顕著である理由から好ましく、その中でもLiPF6とLiPO2F2の併用が微量の添加で著しい効果が発現する為に特に好ましい。 Moreover, these lithium salts may be used independently or may use 2 or more types together. A preferable example in the case of using two or more kinds in combination is a combination of LiPF 6 and LiBF 4 , LiPF 6 and FSO 3 Li, LiPF 6 and LiPO 2 F 2, etc., and has an effect of improving load characteristics and cycle characteristics. . Among these, the combined use of LiPF 6 and FSO 3 Li and LiPF 6 and LiPO 2 F 2 is preferable because the effect is remarkable, and among them, the combined use of LiPF 6 and LiPO 2 F 2 is a remarkable effect with a small amount of addition. Is particularly preferred because
LiPF6とLiBF4、LiPF6とFSO3Liを併用する場合、非水系電解液全体100質量%に対するLiBF4或いはFSO3Liの濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、一方その上限は通常30質量%以下、好ましくは20質量%以下である。一方、LiPF6とLiPO2F2の併用の場合においても非水系電解液全体100質量%に対するLiPO2F2の濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上であり、一方その上限は、通常10質量%以下、好ましくは5質量%以下である。この範囲であれば、出力特性、負荷特性、低温特性、サイクル特性、高温特性等の効果が向上する。一方で多すぎる場合は、低温において析出して電池特性を低下させる場合があり、少なすぎる場合は、低温特性やサイクル特性、高温保存特性等の向上効果が低下する場合がある。また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CF3SO3Li、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBF3CF3、LiBF3C2F5、LiPF3(CF3)3、LiPF3(C2F5)3等であるのが好ましい。この場合には、非水系電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上、好ましくは30質量%以下、特に好ましくは20質量%以下である。 When LiPF 6 and LiBF 4 , LiPF 6 and FSO 3 Li are used in combination, the concentration of LiBF 4 or FSO 3 Li with respect to 100% by mass of the entire non-aqueous electrolyte is not limited, and the effects of the present invention are not significantly impaired. As long as it is optional, it is usually 0.01% by mass or more, preferably 0.1% by mass or more, and the upper limit is usually 30% by mass or less, preferably 20% with respect to the non-aqueous electrolyte solution of the present invention. It is below mass%. On the other hand, even when LiPF 6 and LiPO 2 F 2 are used in combination, the concentration of LiPO 2 F 2 with respect to 100% by mass of the total amount of the non-aqueous electrolyte is not limited as long as the effect of the present invention is not significantly impaired. However, with respect to the non-aqueous electrolyte solution of the present invention, it is usually 0.001% by mass or more, preferably 0.01% by mass or more, while its upper limit is usually 10% by mass or less, preferably 5% by mass or less. is there. Within this range, effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature characteristics are improved. On the other hand, if it is too much, it may be deposited at low temperature to deteriorate the battery characteristics, and if it is too little, the effect of improving the low temperature characteristics, cycle characteristics, high temperature storage characteristics, etc. may be reduced. Another example is the combined use of an inorganic lithium salt and an organic lithium salt, and the combined use of both has the effect of suppressing deterioration due to high-temperature storage. Examples of the organic lithium salt include CF 3 SO 3 Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2. , Lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2) 3 lithium Bisuo Kisara oxalatoborate, lithium difluoro oxalatoborate, lithium tetrafluoro-oxa Lato phosphate, lithium difluoro bis oxa Lato phosphate, LiBF 3 CF 3, LiBF 3 C 2 F 5, LiPF 3 (CF 3) 3 LiPF 3 (C 2 F 5 ) 3 or the like is preferable. In this case, the ratio of the organic lithium salt to 100% by mass of the whole non-aqueous electrolyte is preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, preferably 30% by mass or less, particularly preferably. It is 20 mass% or less.
ここで、LiPO2F2を電解液中に含有させる場合の電解液の調製は、別途公知の手法で合成したLiPO2F2をLiPF6を含む電解液に添加する方法や後述する活物質や極板等の電池構成要素中に水を共存させておき、LiPF6を含む電解液を用いて電池を組み立てる際に系中でLiPO2F2を発生させる方法が挙げられ、本発明においてはいずれの手法を用いてもよい。 Here, the preparation of the electrolyte solution in the case of incorporating the LiPO 2 F 2 in the electrolyte solution, Ya separately active material method and later be added to the electrolytic solution containing LiPF 6 and LiPO 2 F 2 synthesized by a known method A method of generating LiPO 2 F 2 in the system when water is allowed to coexist in a battery component such as an electrode plate and assembling a battery using an electrolyte containing LiPF 6 is used. You may use the method of.
上記の非水系電解液、および非水系電解液電池中におけるLiPO2F2の含有量を測定する手法としては、特に制限がなく、公知の手法であれば任意に用いることができるが、具体的にはイオンクロマトグラフィーや、F核磁気共鳴分光法(以下、NMRと省略する場合がある)等が挙げられる。 The method for measuring the content of LiPO 2 F 2 in the non-aqueous electrolyte and the non-aqueous electrolyte battery is not particularly limited, and any known method can be used. Examples include ion chromatography and F nuclear magnetic resonance spectroscopy (hereinafter sometimes abbreviated as NMR).
1−2.溶媒
本発明の非水系電解液電池において、フッ素原子を有するカーボネートと、一般式(1)で表される化合物以外に、目的に応じてその他の非水溶媒を用いてもよい。非水溶媒としては、飽和環状カーボネート、飽和鎖状カーボネート、環状及び鎖状カルボン酸エステ
ル、エーテル化合物、スルホン系化合物等を使用することが可能である。
1-2. Solvent In the non-aqueous electrolyte battery of the present invention, other non-aqueous solvents may be used depending on the purpose in addition to the carbonate having a fluorine atom and the compound represented by the general formula (1). As the non-aqueous solvent, it is possible to use saturated cyclic carbonates, saturated chain carbonates, cyclic and chain carboxylic acid esters, ether compounds, sulfone compounds, and the like.
<飽和環状カーボネート>
飽和環状カーボネートとしては、炭素数2〜4のアルキレン基を有するものが挙げられる。
具体的には、炭素数2〜4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Saturated cyclic carbonate>
Examples of the saturated cyclic carbonate include those having an alkylene group having 2 to 4 carbon atoms.
Specifically, examples of the saturated cyclic carbonate having 2 to 4 carbon atoms include ethylene carbonate, propylene carbonate, and butylene carbonate. Among these, ethylene carbonate and propylene carbonate are particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.
飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。 A saturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量の下限は、非水溶媒100質量%中、3質量%以上、より好ましくは5質量%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は、90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の負荷特性を良好な範囲としやすくなる。 The blending amount of the saturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. However, the lower limit of the blending amount when one kind is used alone is 3 in 100% by mass of the non-aqueous solvent. It is at least 5% by mass, more preferably at least 5% by mass. By setting this range, the decrease in electrical conductivity resulting from the decrease in the dielectric constant of the non-aqueous electrolyte is avoided, and the large current discharge characteristics, negative electrode stability, and cycle characteristics of the non-aqueous electrolyte secondary battery are good. It becomes easy to be in a range. Moreover, an upper limit is 90 weight% or less, More preferably, it is 85 weight% or less, More preferably, it is 80 weight% or less. By setting it as this range, the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, a decrease in ionic conductivity is suppressed, and as a result, the load characteristics of the non-aqueous electrolyte secondary battery are easily set in a favorable range.
また、飽和環状カーボネートを2種類以上の任意の組み合わせで用いることもできる。好ましい組合せの一つは、エチレンカーボネートとプロピレンカーボネートに組み合わせである。この場合のエチレンカーボネートとプロピレンカーボネートの質量比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水溶媒全体に占めるプロピレンカーボネートの量は、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上、また上限は、通常20質量%以下、好ましくは8質量%以下、より好ましくは5質量%以下である。この範囲でプロピレンカーボネートを含有すると、エチレンカーボネートとアルキルカーボネート類との組み合わせの特性を維持したまま、更に低温特性が優れるので好ましい。 Moreover, a saturated cyclic carbonate can also be used in arbitrary combinations of 2 or more types. One preferred combination is a combination of ethylene carbonate and propylene carbonate. In this case, the mass ratio of ethylene carbonate to propylene carbonate is preferably 99: 1 to 40:60, and particularly preferably 95: 5 to 50:50. Further, the amount of propylene carbonate in the whole non-aqueous solvent is 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit is usually 20% by mass or less, preferably 8% by mass or less. More preferably, it is 5 mass% or less. When propylene carbonate is contained in this range, it is preferable because the low temperature characteristics are further excellent while maintaining the combination characteristics of ethylene carbonate and alkyl carbonates.
<飽和鎖状カーボネート>
飽和鎖状カーボネートとしては、炭素数3〜7のものが好ましい。
具体的には、炭素数3〜7の飽和鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
<Saturated chain carbonate>
As a saturated chain carbonate, a C3-C7 thing is preferable.
Specifically, as the saturated chain carbonate having 3 to 7 carbon atoms, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate N-butyl methyl carbonate, isobutyl methyl carbonate, t-butyl methyl carbonate, ethyl n-propyl carbonate, n-butyl ethyl carbonate, isobutyl ethyl carbonate, t-butyl ethyl carbonate, and the like.
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。 Among them, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate, and methyl n-propyl carbonate are preferable, and dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are particularly preferable. is there.
飽和鎖状カーボネートの配合量は、非水溶媒100質量%中、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15重量%以上である。このように下限を設定することにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下
を抑制し、ひいては非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。また、炭素原子と酸素原子と水素原子からなる飽和鎖状カーボネートは、非水溶媒100質量%中、95質量%以下、より好ましくは80質量%以下であることが好ましい。このように上限を設定することにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
The blending amount of the saturated chain carbonate is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more in 100% by mass of the non-aqueous solvent. By setting the lower limit in this way, the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, the decrease in ionic conductivity is suppressed, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily set to a favorable range. Become. Further, the saturated chain carbonate composed of carbon atoms, oxygen atoms and hydrogen atoms is preferably 95% by mass or less, more preferably 80% by mass or less, in 100% by mass of the non-aqueous solvent. By setting the upper limit in this way, it is easy to avoid a decrease in electrical conductivity due to a decrease in the dielectric constant of the non-aqueous electrolyte and to make the large current discharge characteristics of the non-aqueous electrolyte secondary battery in a favorable range. .
飽和鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。好ましい一例としては、ジメチルカーボネートとエチルメチルカーボネートとの併用が挙げられる。この場合、ジメチルカーボネートの配合量が10質量%以上、70質量%以下、エチルメチルカーボネートの配合量が10質量%以上、80質量%以下であるものが特に好ましい。また、ジメチルカーボネートとジエチルカーボネートを併用して用いることも好ましく、ジメチルカーボネートの配合量が10質量%以上、70質量%以下、ジエチルカーボネートの配合量が10質量%以上、70質量%以下であるものが特に好ましい。更に、エチルメチルカーボネートとジエチルカーボネートを併用して用いる場合には、エチルメチルカーボネートの配合量が10質量%以上、80質量%以下、ジエチルカーボネートの配合量が10質量%以上、70質量%以下であるものが特に好ましい。 A saturated chain carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. A preferred example is the combined use of dimethyl carbonate and ethyl methyl carbonate. In this case, it is particularly preferable that the amount of dimethyl carbonate is 10% by mass to 70% by mass and the amount of ethyl methyl carbonate is 10% by mass to 80% by mass. It is also preferable to use dimethyl carbonate and diethyl carbonate in combination. The amount of dimethyl carbonate is 10% by mass or more and 70% by mass or less, and the amount of diethyl carbonate is 10% by mass or more and 70% by mass or less. Is particularly preferred. Further, when ethyl methyl carbonate and diethyl carbonate are used in combination, the amount of ethyl methyl carbonate is 10 mass% or more and 80 mass% or less, and the amount of diethyl carbonate is 10 mass% or more and 70 mass% or less. Some are particularly preferred.
<環状カルボン酸エステル>
環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Cyclic carboxylic acid ester>
Examples of the cyclic carboxylic acid ester include those having 3 to 12 total carbon atoms in the structural formula.
Specific examples include gamma butyrolactone, gamma valerolactone, gamma caprolactone, epsilon caprolactone, and the like. Among these, gamma butyrolactone is particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.
環状カルボン酸エステルの配合量は、通常、非水溶媒100質量%中、好ましくは5質量%以上、より好ましくは10質量%以上である。このように下限を設定することにより、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは40質量%以下、より好ましくは35質量%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避して、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。 The compounding amount of the cyclic carboxylic acid ester is usually 5% by mass or more, more preferably 10% by mass or more, in 100% by mass of the non-aqueous solvent. By setting the lower limit in this manner, the electrical conductivity of the non-aqueous electrolyte solution is improved, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily improved. Moreover, the compounding quantity of cyclic carboxylic acid ester becomes like this. Preferably it is 40 mass% or less, More preferably, it is 35 mass% or less. By setting the upper limit in this way, the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, the decrease in electrical conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current of the non-aqueous electrolyte secondary battery It becomes easy to make a discharge characteristic into a favorable range.
<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。
具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
<Chain carboxylic acid ester>
Examples of the chain carboxylic acid ester include those having 3 to 7 carbon atoms in the structural formula.
Specifically, methyl acetate, ethyl acetate, acetic acid-n-propyl, isopropyl acetate, acetic acid-n-butyl, isobutyl acetate, acetic acid-t-butyl, methyl propionate, ethyl propionate, propionate-n-propyl, Isopropyl propionate, n-butyl propionate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, isobutyric acid-n- Examples include propyl and isopropyl isobutyrate.
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。 Among them, methyl acetate, ethyl acetate, acetate-n-propyl acetate-n-butyl acetate, methyl propionate, ethyl propionate, propionate-n-propyl, isopropyl propionate, methyl butyrate, ethyl butyrate, etc. It is preferable from the viewpoint of improvement of ionic conductivity.
鎖状カルボン酸エステルの配合量は、通常、非水溶媒100質量%中、好ましくは5質量%以上、より好ましくは10質量%以上である。このように下限を設定することで、非
水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの配合量は、非水溶媒100質量%中、好ましくは40質量%以下、より好ましくは35質量%以下である。このように上限を設定することで、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。
The compounding amount of the chain carboxylic acid ester is usually 5% by mass or more, more preferably 10% by mass or more, in 100% by mass of the non-aqueous solvent. By setting the lower limit in this way, the electrical conductivity of the non-aqueous electrolyte solution is improved, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily improved. Moreover, the compounding quantity of chain | strand-shaped carboxylic acid ester is in a nonaqueous solvent 100 mass%, Preferably it is 40 mass% or less, More preferably, it is 35 mass% or less. By setting the upper limit in this manner, an increase in negative electrode resistance is suppressed, and the large current discharge characteristics and cycle characteristics of the non-aqueous electrolyte secondary battery are easily set in a favorable range.
<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロ
エトキシ)メタン、ジエトキシメタン、エトキシメトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
<Ether compound>
As the ether compound, a chain ether having 3 to 10 carbon atoms in which part of hydrogen may be substituted with fluorine, and a cyclic ether having 3 to 6 carbon atoms are preferable.
Examples of the chain ether having 3 to 10 carbon atoms include diethyl ether, di (2-fluoroethyl) ether, di (2,2-difluoroethyl) ether, di (2,2,2-trifluoroethyl) ether, ethyl (2-fluoroethyl) ether, ethyl (2,2,2-trifluoroethyl) ether, ethyl (1,1,2,2-tetrafluoroethyl) ether, (2-fluoroethyl) (2,2,2 -Trifluoroethyl) ether, (2-fluoroethyl) (1,1,2,2-tetrafluoroethyl) ether, (2,2,2-trifluoroethyl) (1,1,2,2-tetrafluoro) Ethyl) ether, ethyl-n-propyl ether, ethyl (3-fluoro-n-propyl) ether, ethyl (3,3,3-trifluoro-n-propyl) Ether, ethyl (2,2,3,3-tetrafluoro-n-propyl) ether, ethyl (2,2,3,3,3-pentafluoro-n-propyl) ether, 2-fluoroethyl-n-propyl Ether, (2-fluoroethyl) (3-fluoro-n-propyl) ether, (2-fluoroethyl) (3,3,3-trifluoro-n-propyl) ether, (2-fluoroethyl) (2, 2,3,3-tetrafluoro-n-propyl) ether, (2-fluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, 2,2,2-trifluoroethyl -N-propyl ether, (2,2,2-trifluoroethyl) (3-fluoro-n-propyl) ether, (2,2,2-trifluoroethyl) (3,3,3-trifluoro Olo-n-propyl) ether, (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (2,2,2-trifluoroethyl) (2 , 2,3,3,3-pentafluoro-n-propyl) ether, 1,1,2,2-tetrafluoroethyl-n-propyl ether, (1,1,2,2-tetrafluoroethyl) (3 -Fluoro-n-propyl) ether, (1,1,2,2-tetrafluoroethyl) (3,3,3-trifluoro-n-propyl) ether, (1,1,2,2-tetrafluoroethyl) ) (2,2,3,3-tetrafluoro-n-propyl) ether, (1,1,2,2-tetrafluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) Ether, di-n-propyl Ether, (n-propyl) (3-fluoro-n-propyl) ether, (n-propyl) (3,3,3-trifluoro-n-propyl) ether, (n-propyl) (2,2,3 , 3-tetrafluoro-n-propyl) ether, (n-propyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, di (3-fluoro-n-propyl) ether, ( 3-Fluoro-n-propyl) (3,3,3-trifluoro-n-propyl) ether, (3-fluoro-n-propyl) (2,2,3,3-tetrafluoro-n-propyl) ether , (3-fluoro-n-propyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, di (3,3,3-trifluoro-n-propyl) ether, (3 3,3-triflu (Ro-n-propyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (3,3,3-trifluoro-n-propyl) (2,2,3,3,3-penta Fluoro-n-propyl) ether, di (2,2,3,3-tetrafluoro-n-propyl) ether, (2,2,3,3-tetrafluoro-n-propyl) (2,2,3 3,3-pentafluoro-n-propyl) ether, di (2,2,3,3,3-pentafluoro-n-propyl) ether, di-n-butyl ether, dimethoxymethane, methoxyethoxymethane, methoxy (2 -Fluoroethoxy) methane, methoxy (2,2,2-trifluoroethoxy) methanemethoxy (1,1,2,2-tetrafluoroethoxy) methane, diethoxymethane, ethoxymethoxymeth , Ethoxy (2-fluoroethoxy) methane, ethoxy (2,2,2-trifluoroethoxy) methane, ethoxy (1,1,2,2-tetrafluoroethoxy) methane, di (2-fluoroethoxy) methane, (2-fluoroethoxy) (2,2,2-trifluoroethoxy) methane, (2-fluoroethoxy) (1,1,2,2-tetrafluoroethoxy) methanedi (2,2,2-trifluoroethoxy) Methane, (2,2,2-trifluoroethoxy) (1,1,2,2-tetrafluoroethoxy) methane, di (1,1,2,2-tetrafluoroethoxy) methane, dimethoxyethane, methoxyethoxyethane , Methoxy (2-fluoroethoxy) ethane, methoxy (2,2,2-trifluoroethoxy) ethane, methoxy (1,1,2, , 2-tetrafluoroethoxy) ethane, diethoxyethane, ethoxy (2-fluoroethoxy) ethane, ethoxy (2,2,2-trifluoroethoxy) ethane, ethoxy (1,1,2,2-tetrafluoroethoxy) Ethane, di (2-fluoroethoxy) ethane, (2-fluoroethoxy) (2,2,2-trifluoroethoxy) ethane, (2-fluoroethoxy) (1,1,2,2-tetrafluoroethoxy) ethane , Di (2,2,2-trifluoroethoxy) ethane, (2,2,2-trifluoroethoxy) (1,1,2,2-tetrafluoroethoxy) ethane, di (1,1,2,2) -Tetrafluoroethoxy) ethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol Lumpur dimethyl ether, and the like.
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。 Examples of the cyclic ether having 3 to 6 carbon atoms include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1 , 4-dioxane and the like, and fluorinated compounds thereof.
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。 Among them, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvating ability to lithium ions and improve ion dissociation. Of these, dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are preferable because they have low viscosity and give high ionic conductivity.
エーテル系化合物の配合量は、通常、非水溶媒100質量%中、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上、また、好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。 The compounding amount of the ether-based compound is usually 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 40% by mass or less, in 100% by mass of the nonaqueous solvent. More preferably, it is 35 mass% or less, More preferably, it is 30 mass% or less. If it is this range, it is easy to ensure the improvement effect of the lithium ion dissociation degree of chain ether, and the improvement of the ionic conductivity derived from a viscosity fall, and when a negative electrode active material is a carbonaceous material, a chain ether with lithium ion It is easy to avoid a situation where the capacity is reduced due to co-insertion.
<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
<Sulfone compound>
As the sulfone compound, a cyclic sulfone having 3 to 6 carbon atoms and a chain sulfone having 2 to 6 carbon atoms are preferable. The number of sulfonyl groups in one molecule is preferably 1 or 2.
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。 Examples of the cyclic sulfone include trimethylene sulfones, tetramethylene sulfones, and hexamethylene sulfones that are monosulfone compounds; trimethylene disulfones, tetramethylene disulfones, and hexamethylene disulfones that are disulfone compounds. Among these, from the viewpoint of dielectric constant and viscosity, tetramethylene sulfones, tetramethylene disulfones, hexamethylene sulfones, and hexamethylene disulfones are more preferable, and tetramethylene sulfones (sulfolanes) are particularly preferable.
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と略記する場合がある)が好ましい。スルホラン誘導体としては
、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
The sulfolane is preferably sulfolane and / or a sulfolane derivative (hereinafter sometimes abbreviated as “sulfolane” including sulfolane). As the sulfolane derivative, one in which one or more hydrogen atoms bonded to the carbon atom constituting the sulfolane ring are substituted with a fluorine atom or an alkyl group is preferable.
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等がイオン伝導度が高く入出力が高い点で好ましい。 Among them, 2-methylsulfolane, 3-methylsulfolane, 2-fluorosulfolane, 3-fluorosulfolane, 2,2-difluorosulfolane, 2,3-difluorosulfolane, 2,4-difluorosulfolane, 2,5-difluorosulfolane, 3,4-difluorosulfolane, 2-fluoro-3-methylsulfolane, 2-fluoro-2-methylsulfolane, 3-fluoro-3-methylsulfolane, 3-fluoro-2-methylsulfolane, 4-fluoro-3-methyl Sulfolane, 4-fluoro-2-methylsulfolane, 5-fluoro-3-methylsulfolane, 5-fluoro-2-methylsulfolane, 2-fluoromethylsulfolane, 3-fluoromethylsulfolane, 2-difluoromethylsulfolane, 3-difluoro Methyl sulfolane, 2- Trifluoromethylsulfolane, 3-trifluoromethylsulfolane, 2-fluoro-3- (trifluoromethyl) sulfolane, 3-fluoro-3- (trifluoromethyl) sulfolane, 4-fluoro-3- (trifluoromethyl) sulfolane , 5-fluoro-3- (trifluoromethyl) sulfolane and the like are preferable in terms of high ionic conductivity and high input / output.
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。 As the chain sulfone, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, n-propyl ethyl sulfone, di-n-propyl sulfone, isopropyl methyl sulfone, isopropyl ethyl sulfone, diisopropyl sulfone, n- Butyl methyl sulfone, n-butyl ethyl sulfone, t-butyl methyl sulfone, t-butyl ethyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone, monofluoroethyl methyl sulfone, difluoroethyl methyl sulfone, Trifluoroethyl methyl sulfone, pentafluoroethyl methyl sulfone, ethyl monofluoromethyl sulfone, ethyl difluoromethyl sulfone, ethyl trif Oromethylsulfone, perfluoroethylmethylsulfone, ethyltrifluoroethylsulfone, ethylpentafluoroethylsulfone, di (trifluoroethyl) sulfone, perfluorodiethylsulfone, fluoromethyl-n-propylsulfone, difluoromethyl-n-propylsulfone Trifluoromethyl-n-propylsulfone, fluoromethylisopropylsulfone, difluoromethylisopropylsulfone, trifluoromethylisopropylsulfone, trifluoroethyl-n-propylsulfone, trifluoroethylisopropylsulfone, pentafluoroethyl-n-propylsulfone, Pentafluoroethyl isopropyl sulfone, trifluoroethyl-n-butyl sulfone, trifluoroethyl-t-butyl sulfone Emissions, pentafluoroethyl -n- butyl sulfone, pentafluoroethyl -t- butyl sulfone, and the like.
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等が、イオン伝導度が高く入出力が高い点で好ましい。 Among them, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, isopropyl methyl sulfone, n-butyl methyl sulfone, t-butyl methyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone , Monofluoroethyl methyl sulfone, difluoroethyl methyl sulfone, trifluoroethyl methyl sulfone, pentafluoroethyl methyl sulfone, ethyl monofluoromethyl sulfone, ethyl difluoromethyl sulfone, ethyl trifluoromethyl sulfone, ethyl trifluoroethyl sulfone, ethyl pentafluoro Ethyl sulfone, trifluoromethyl-n-propyl sulfone, trifluoromethyl isopropyl sulfone, tri Ruoroechiru -n- butyl sulfone, trifluoroethyl -t- butyl sulfone, trifluoromethyl -n- butyl sulfone, trifluoromethyl -t- butyl sulfone is preferred because high output is high ionic conductivity.
スルホン系化合物の配合量は、通常、非水溶媒100質量%中、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、また
、好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液二次電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。
The amount of the sulfone compound is usually in 100% by mass of the non-aqueous solvent, preferably 0.3% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and preferably Is 40% by mass or less, more preferably 35% by mass or less, and still more preferably 30% by mass or less. Within this range, durability improvement effects such as cycle characteristics and storage characteristics can be easily obtained, and the viscosity of the non-aqueous electrolyte can be set to an appropriate range to avoid a decrease in electrical conductivity. When charging / discharging an aqueous electrolyte secondary battery at a high current density, it is easy to avoid a situation in which the charge / discharge capacity retention rate decreases.
1−3.フッ素原子を有するカーボネート
本発明の非水系電解液は、フッ素原子を有するカーボネートを含有することを特徴とする。なお、フッ素原子を有するカーボネートであれば限定されず、鎖状であっても環状であってもよい。ただし、一般式(1)で表される化合物はこれに含まれないものとする。また、フッ素原子を有するカーボネートとしては、フッ素原子を有する飽和環状カーボネート、フッ素原子を有する飽和鎖状カーボネート、フッ素原子を有する不飽和環状カーボネート、フッ素原子を有する不飽和鎖状カーボネート等が挙げられる。
1-3. Carbonate Having Fluorine Atom The nonaqueous electrolytic solution of the present invention is characterized by containing a carbonate having a fluorine atom. In addition, if it is a carbonate which has a fluorine atom, it will not be limited, A chain | strand shape or cyclic | annular form may be sufficient. However, the compound represented by the general formula (1) is not included in this. Examples of the carbonate having a fluorine atom include a saturated cyclic carbonate having a fluorine atom, a saturated chain carbonate having a fluorine atom, an unsaturated cyclic carbonate having a fluorine atom, and an unsaturated chain carbonate having a fluorine atom.
<フッ素原子を有する飽和環状カーボネート>
フッ素原子を有する飽和環状カーボネート(以下、フッ素化飽和環状カーボネートともいう)としては、特に制限はないが、例えば、炭素数2〜6のアルキレン基を有する飽和環状カーボネートの誘導体が挙げられ、具体的にはエチレンカーボネート誘導体が挙げられる。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
<Saturated cyclic carbonate having fluorine atom>
The saturated cyclic carbonate having a fluorine atom (hereinafter also referred to as fluorinated saturated cyclic carbonate) is not particularly limited, and examples thereof include saturated cyclic carbonate derivatives having an alkylene group having 2 to 6 carbon atoms. Includes ethylene carbonate derivatives. Examples of the ethylene carbonate derivative include fluorinated products of ethylene carbonate or ethylene carbonate substituted with an alkyl group (for example, an alkyl group having 1 to 4 carbon atoms), and among them, those having 1 to 8 fluorine atoms. preferable.
具体的には、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。 Specifically, monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4- Fluoro-5-methylethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (trifluoromethyl) -ethylene carbonate 4- (fluoromethyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethyl Le ethylene carbonate, 4,4-difluoro-5,5-dimethylethylene carbonate.
中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及び4,5−ジフルオロ−4,5−ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。 Among them, at least one selected from the group consisting of monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, and 4,5-difluoro-4,5-dimethylethylene carbonate has high ionic conductivity. It is more preferable in terms of imparting properties and suitably forming an interface protective film.
また、上述したフッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。 Moreover, the fluorinated saturated cyclic carbonate mentioned above may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
<フッ素原子を有する飽和鎖状カーボネート>
フッ素原子を有する飽和鎖状カーボネート(以下、フッ素化飽和鎖状カーボネートともいう)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化飽和鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化飽和鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
<Saturated chain carbonate having fluorine atom>
A saturated chain carbonate having a fluorine atom (hereinafter also referred to as a fluorinated saturated chain carbonate) can be preferably used. The number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less. When the fluorinated saturated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or may be bonded to different carbons. Examples of the fluorinated saturated chain carbonate include fluorinated dimethyl carbonate derivatives, fluorinated ethyl methyl carbonate derivatives, and fluorinated diethyl carbonate derivatives.
フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。 Examples of the fluorinated dimethyl carbonate derivative include fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, trifluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, bis (difluoro) methyl carbonate, bis (trifluoromethyl) carbonate, and the like.
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。 Fluorinated ethyl methyl carbonate derivatives include 2-fluoroethyl methyl carbonate, ethyl fluoromethyl carbonate, 2,2-difluoroethyl methyl carbonate, 2-fluoroethyl fluoromethyl carbonate, ethyl difluoromethyl carbonate, 2,2,2-trimethyl Examples include fluoroethyl methyl carbonate, 2,2-difluoroethyl fluoromethyl carbonate, 2-fluoroethyl difluoromethyl carbonate, and ethyl trifluoromethyl carbonate.
フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2'−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2'−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2',2'−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。 Fluorinated diethyl carbonate derivatives include ethyl- (2-fluoroethyl) carbonate, ethyl- (2,2-difluoroethyl) carbonate, bis (2-fluoroethyl) carbonate, ethyl- (2,2,2-trifluoro). Ethyl) carbonate, 2,2-difluoroethyl-2′-fluoroethyl carbonate, bis (2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2′-fluoroethyl carbonate, 2,2, Examples include 2-trifluoroethyl-2 ′, 2′-difluoroethyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, and the like.
中でも、フッ素化飽和鎖状カーボネートとしては、特に2,2,2−トリフルオロエチルメチルカーボネート、及びビス(2,2,2−トリフルオロエチル)カーボネートが好ましい。 Among these, as the fluorinated saturated chain carbonate, 2,2,2-trifluoroethyl methyl carbonate and bis (2,2,2-trifluoroethyl) carbonate are particularly preferable.
また、上述したフッ素化飽和鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。 Moreover, the fluorinated saturated chain carbonate mentioned above may be used individually by 1 type, and may have 2 or more types by arbitrary combinations and ratios.
<フッ素原子を有する不飽和環状カーボネート>
フッ素原子を有するカーボネートのうち、フッ素原子を有する不飽和環状カーボネート(以下、フッ素化不飽和環状カーボネートともいう)も好適に用いることができる。フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
<Unsaturated cyclic carbonate having a fluorine atom>
Of the carbonates having fluorine atoms, unsaturated cyclic carbonates having fluorine atoms (hereinafter also referred to as fluorinated unsaturated cyclic carbonates) can be suitably used. Examples of the fluorinated unsaturated cyclic carbonate include a fluorinated vinylene carbonate derivative, a fluorinated ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon unsaturated bond, and the like.
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、等が挙げられる。 Fluorinated vinylene carbonate derivatives include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, 4-fluoro-5- Examples include vinyl vinylene carbonate, 4-fluoro-5-vinyl vinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, and the like.
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−5−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカー
ボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
Examples of the fluorinated ethylene carbonate derivative substituted with an aromatic ring or a substituent having a carbon-carbon unsaturated bond include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5. -Vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-5-vinylethylene carbonate, 4,4-difluoro-5-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate , 4,5-Diff Oro-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenylethylene carbonate, 4,5-difluoro-4- Examples thereof include phenylethylene carbonate.
フッ素化不飽和環状カーボネートとしては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−5−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが好ましい。これらは安定な界面保護被膜を形成するので、より好適に用いられる。 Examples of the fluorinated unsaturated cyclic carbonate include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4 , 4-Difluoro-5-vinylethylene carbonate, 4,4-difluoro-5-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate, 4,5-difluoro-4-allylethylene carbonate, 4-fluoro -4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, 4,5-difluoro-4,5-diallylethylene carbonate are preferred. . Since these form a stable interface protective film, they are more preferably used.
また、フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。 Moreover, a fluorinated unsaturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types by arbitrary combinations and ratios.
<フッ素原子を有する不飽和鎖状カーボネート>
フッ素原子を有するカーボネートのうち、フッ素原子を有する不飽和鎖状カーボネート(以下、フッ素化不飽和鎖状カーボネートともいう)も好適に用いることができる。フッ素化不飽和鎖状カーボネートとしては、1−フルオロビニルメチルカーボネート、2−フルオロビニルメチルカーボネート、1,2−ジフルオロビニルメチルカーボネート、エチル−1−フルオロビニルカーボネート、エチル−2−フルオロビニルカーボネート、エチル−1,2−ジフルオロビニルカーボネート、ビス(1−フルオロビニル)カーボネート、ビス(2−フルオロビニル)カーボネート、ビス(1,2−ジフルオロビニル)カーボネート、1−フルオロ−1−プロペニルメチルカーボネート、2−フルオロ−1−プロペニルメチルカーボネート、3−フルオロ−1−プロペニルメチルカーボネート、1、2−ジフルオロ−1−プロペニルメチルカーボネート、1,3−ジフルオロ−1−プロペニルメチルカーボネート、2,3−ジフルオロ−1−プロペニルメチルカーボネート、3,3−ジフルオロ−1−プロペニルメチルカーボネート、1−フルオロ−2−プロペニルメチルカーボネート、2−フルオロ−2−プロペニルメチルカーボネート、3−フルオロ−2−プロペニルメチルカーボネート、1,1−ジフルオロ−2−プロペニルメチルカーボネート、1,2−ジフルオロ−2−プロペニルメチルカーボネート、1,3−ジフルオロ−2−プロペニルメチルカーボネート、2,3−ジフルオロ−2−プロペニルメチルカーボネート、フルオロエチニルメチルカーボネート、3−フルオロ−1−プロピニルメチルカーボネート、1−フルオロ−2−プロピニルメチルカーボネート、3−フルオロ−2−プロピニルメチルカーボネート、等があげられる。
<Unsaturated linear carbonate having a fluorine atom>
Among carbonates having fluorine atoms, unsaturated chain carbonates having fluorine atoms (hereinafter also referred to as fluorinated unsaturated chain carbonates) can be suitably used. Examples of the fluorinated unsaturated chain carbonate include 1-fluorovinyl methyl carbonate, 2-fluorovinyl methyl carbonate, 1,2-difluorovinyl methyl carbonate, ethyl-1-fluorovinyl carbonate, ethyl-2-fluorovinyl carbonate, ethyl -1,2-difluorovinyl carbonate, bis (1-fluorovinyl) carbonate, bis (2-fluorovinyl) carbonate, bis (1,2-difluorovinyl) carbonate, 1-fluoro-1-propenylmethyl carbonate, 2- Fluoro-1-propenyl methyl carbonate, 3-fluoro-1-propenyl methyl carbonate, 1,2-difluoro-1-propenyl methyl carbonate, 1,3-difluoro-1-propenyl methyl carbonate, 2 3-difluoro-1-propenylmethyl carbonate, 3,3-difluoro-1-propenylmethyl carbonate, 1-fluoro-2-propenylmethyl carbonate, 2-fluoro-2-propenylmethyl carbonate, 3-fluoro-2-propenylmethyl Carbonate, 1,1-difluoro-2-propenylmethyl carbonate, 1,2-difluoro-2-propenylmethyl carbonate, 1,3-difluoro-2-propenylmethyl carbonate, 2,3-difluoro-2-propenylmethyl carbonate, Examples include fluoroethynyl methyl carbonate, 3-fluoro-1-propynyl methyl carbonate, 1-fluoro-2-propynyl methyl carbonate, 3-fluoro-2-propynyl methyl carbonate, and the like.
また、フッ素化不飽和鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。 Moreover, a fluorinated unsaturated chain carbonate may be used individually by 1 type, and may have 2 or more types by arbitrary combinations and ratios.
上記フッ素原子を有するカーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、50以上、250以下が好ましい。この範囲であれば、非水系電解液に対する一般式(1)で表される化合物の溶解性を確保しやすく、本発明の効果が十分に発現されやすい。 The molecular weight of the carbonate having a fluorine atom is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. If it is this range, it will be easy to ensure the solubility of the compound represented by General formula (1) with respect to a non-aqueous electrolyte, and the effect of this invention will fully be expressed easily.
フッ素原子を有するカーボネートを用いる場合の配合量は、非水系電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下、最も好ましくは50質量%未満である。 The blending amount in the case of using a carbonate having a fluorine atom is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more, in 100% by mass of the non-aqueous electrolyte solution. It is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, and most preferably less than 50% by mass.
特にフッ素原子を有するカーボネートに溶媒としての役割を果たさせる場合、その配合量は非水系電解液100質量%中、好ましくは5質量%以上、より好ましくは7質量%以上、さらに好ましくは10質量%以上であり、また好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下であり、最も好ましくは50質量%未満である。この範囲内であれば、電池を高電圧動作させた際に非水系電解液の副分解反応を抑制でき、電池耐久性を高めることができると共に、非水系電解液の電気伝導率の極端な低下を防ぐことができる。溶媒としての役割を果たさせる場合、上記フッ素原子を有するカーボネートの中でも、フッ素化飽和環状あるいは鎖状カーボネートであることが好ましい。 In particular, when a carbonate having a fluorine atom plays a role as a solvent, the blending amount thereof is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 10% by mass in 100% by mass of the nonaqueous electrolytic solution. % Or more, preferably 90% by mass or less, more preferably 70% by mass or less, still more preferably 50% by mass or less, and most preferably less than 50% by mass. Within this range, when the battery is operated at a high voltage, the secondary decomposition reaction of the non-aqueous electrolyte can be suppressed, the battery durability can be improved, and the electrical conductivity of the non-aqueous electrolyte is extremely reduced. Can be prevented. In the case of fulfilling the role as a solvent, among the carbonates having a fluorine atom, a fluorinated saturated cyclic or chain carbonate is preferable.
一方、フッ素原子を有するカーボネートに助剤としての役割を果たさせる場合、その配合量は、非水系電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。この範囲内であれば、電荷移動抵抗を過度に増加させずに耐久性の向上を図ることができるため、高電流密度での充放電耐久性を向上させることができる。助剤としての役割を果たさせる場合、上記フッ素原子を有するカーボネートの中もで、フッ素化飽和カーボネート、フッ素化不飽和環状或いは鎖状カーボネートの少なくとも何れかを1種を用いることが好ましい。 On the other hand, when the carbonate having a fluorine atom plays a role as an auxiliary agent, the blending amount thereof is 100% by mass of the non-aqueous electrolyte solution, preferably 0.01% by mass or more, more preferably 0.1% by mass. More preferably, the content is 0.2% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, and still more preferably 3% by mass or less. Within this range, since the durability can be improved without excessively increasing the charge transfer resistance, the charge / discharge durability at a high current density can be improved. When serving as an auxiliary agent, it is preferable to use at least one of fluorinated saturated carbonate, fluorinated unsaturated cyclic or chain carbonate among the above-mentioned carbonates having fluorine atoms.
尚、フッ素原子を有するカーボネートの溶媒および助剤としての役割について上述したが、実際に用いる際に溶媒あるいは助剤に明確な境界線は存在せず、任意の割合で非水系電解液を調製できるものとする。 Although the role of the carbonate having a fluorine atom as the solvent and auxiliary agent has been described above, there is no clear boundary line in the solvent or auxiliary agent when actually used, and a nonaqueous electrolytic solution can be prepared at an arbitrary ratio. Shall.
また、上記したフッ素化飽和環状カーボネートに関しては、飽和環状・鎖状カーボネートを特定の配合量で組み合わせることにより、電池性能を著しく向上させることができる。
例えば、フッ素化飽和環状カーボネートとしてモノフルオロエチレンカーボネートを選択し、飽和鎖状カーボネートとしてジメチルカーボネート、またはエチルメチルカーボネート、またはジエチルカーボネートを選択した場合、モノフルオロエチレンカーボネートの配合量の下限値としては、10質量%以上であることが好ましく、ジメチルカーボネート、またはエチルメチルカーボネート、またはジエチルカーボネートの配合量が50質量%以上、90質量%以下であることが好ましい。
Moreover, regarding the above-mentioned fluorinated saturated cyclic carbonate, battery performance can be remarkably improved by combining the saturated cyclic / chain carbonate with a specific blending amount.
For example, when monofluoroethylene carbonate is selected as the fluorinated saturated cyclic carbonate and dimethyl carbonate, ethylmethyl carbonate, or diethyl carbonate is selected as the saturated chain carbonate, the lower limit of the blending amount of monofluoroethylene carbonate is: It is preferably 10% by mass or more, and the blending amount of dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate is preferably 50% by mass or more and 90% by mass or less.
また、フッ素化飽和環状カーボネートと飽和鎖状カーボネートを2種類以上併用することも好ましい。例えば、フッ素化飽和環状カーボネートとしてモノフルオロエチレンカーボネートを選択し、飽和鎖状カーボネートにジメチルカーボネートとエチルメチルカーボネートを選択した場合、モノフルオロエチレンカーボネートの配合量の下限値としては、10質量%以上、ジメチルカーボネートの配合量が10質量%以上70質量%以下、エチルメチルカーボネートの配合量が10質量%以上、80質量%以下であることが好ましい。 It is also preferable to use two or more kinds of fluorinated saturated cyclic carbonate and saturated chain carbonate in combination. For example, when monofluoroethylene carbonate is selected as the fluorinated saturated cyclic carbonate and dimethyl carbonate and ethyl methyl carbonate are selected as the saturated chain carbonate, the lower limit of the blending amount of monofluoroethylene carbonate is 10% by mass or more, The blending amount of dimethyl carbonate is preferably 10% by mass or more and 70% by mass or less, and the blending amount of ethyl methyl carbonate is preferably 10% by mass or more and 80% by mass or less.
同様に、飽和鎖状カーボネートにジメチルカーボネートとジエチルカーボネートとを選択した場合、モノフルオロエチレンカーボネートの配合量の下限値としては、10質量%以上、ジメチルカーボネートの配合量が10質量%以上80質量%以下、ジエチルカーボネートの配合量が10質量%以上、80質量%以下であることが好ましい。
同様に、飽和鎖状カーボネートにエチルメチルカーボネートとジエチルカーボネートとを選択した場合、モノフルオロエチレンカーボネートの配合量の下限値としては、10質量%以上、エチルメチルカーボネートの配合量が10質量%以上80質量%以下、ジエチルカーボネートの配合量が10質量%以上、70質量%以下であることが好ましい。
Similarly, when dimethyl carbonate and diethyl carbonate are selected as the saturated chain carbonate, the lower limit of the amount of monofluoroethylene carbonate is 10% by mass or more, and the amount of dimethyl carbonate is 10% by mass or more and 80% by mass. Hereinafter, it is preferable that the compounding quantity of diethyl carbonate is 10 mass% or more and 80 mass% or less.
Similarly, when ethyl methyl carbonate and diethyl carbonate are selected as the saturated chain carbonate, the lower limit of the amount of monofluoroethylene carbonate is 10% by mass or more, and the amount of ethyl methyl carbonate is 10% by mass or more 80%. It is preferable that the blending amount of diethyl carbonate is 10% by mass or more and 70% by mass or less.
このような配合量を選択することで、電解質の低温析出温度を低下させながら、非水系電解液の粘度も低下させてイオン伝導度を向上させ、低温でも高出力を得ることができる。 By selecting such a blending amount, the low-temperature deposition temperature of the electrolyte is lowered, the viscosity of the nonaqueous electrolytic solution is also lowered to improve the ionic conductivity, and a high output can be obtained even at a low temperature.
また、上記組成に、飽和環状カーボネートにエチレンカーボネートを選択して加えることも好ましい。例えば、モノフルオロエチレンカーボネートとエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを選択した場合、モノフルオロエチレンカーボネートの配合量の下限値としては、0.01質量%以上、エチレンカーボネートの配合量が5質量%以上50質量%以下、ジメチルカーボネートの配合量が10質量%以上50質量%以下、エチルメチルカーボネートの配合量が10質量%以上70質量%以下であるものが特に好ましい。 In addition, it is also preferable to add ethylene carbonate to the saturated cyclic carbonate in the above composition. For example, when monofluoroethylene carbonate, ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate are selected, the lower limit of the amount of monofluoroethylene carbonate is 0.01% by mass or more, and the amount of ethylene carbonate is 5% by mass. It is particularly preferable that the amount of dimethyl carbonate is 10% by mass to 50% by mass and the amount of ethyl methyl carbonate is 10% by mass to 70% by mass.
1−4.一般式(1)で表される化合物
本発明は、下記一般式(1)で表される化合物を非水系電解液中に含有することを特徴としている。
1-4. Compound Represented by General Formula (1) The present invention is characterized by containing a compound represented by the following general formula (1) in a non-aqueous electrolyte solution.
上記一般式(1)中、XとZはCR1 2、C=O、C=N−R1、C=P−R1、O、S、N−R1、P−R1を表し、同一でも異なっていてもよい。YはCR1 2、C=O、S=O、S(=O)2、P(=O)−R2、P(=O)−OR3を表す。上記一般式(1)中、R及びR1は水素、ハロゲン、または、置換基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。R2は置換基を有してもよい炭素数1から20の炭化水素基である。R3は、Li、NR4 4または、置換基を有してもよい炭素数1から20の炭化水素基である。R4は置換基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。nおよびmは0以上の整数を表す。また隣接する環内の炭素が互いにさらなる結合を作り、当該炭素のRが各ひとつずつ減っていてもよい。Wは上記Rと同義の範囲である。 In the general formula (1), X and Z represent CR 1 2 , C═O, C═N—R 1 , C═P—R 1 , O, S, N—R 1 , P—R 1 , It may be the same or different. Y represents CR 1 2 , C═O, S═O, S (═O) 2 , P (═O) —R 2 , P (═O) —OR 3 . In the general formula (1), R and R 1 are hydrogen, halogen, or an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different from each other. . R 2 is an optionally substituted hydrocarbon group having 1 to 20 carbon atoms. R 3 is Li, NR 4 4 or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. R 4 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and may be the same or different. n and m represent an integer of 0 or more. In addition, carbons in adjacent rings may form further bonds with each other, and R of the carbons may be reduced by one each. W is the same as R.
上記一般式(1)中、XとZは、一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、CR1 2、O、S、N−Rがより好ましい。また、Yも一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、C=O、S=O、S(=O)2、P(=O)−R2、P(=O)−OR3がより好ましい。 In the general formula (1), X and Z have the general formula (1) is not particularly limited as long as the scope of the described, preferably, CR 1 2, O, S , N-R are more preferred. Y is not particularly limited as long as it is within the range described in the general formula (1), but preferably C═O, S═O, S (═O) 2 , P (═O) —R 2 , P ( ═O) —OR 3 is more preferred.
RおよびR1は、一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、水素、フッ素、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基があげられる。
R2およびR4は、一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素・芳香族ヘテロ環があげられる。
R3は、一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、Li、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基・芳香族ヘテロ環があげられる。
R and R 1 are not particularly limited as long as they are within the range described in the general formula (1), but preferably have hydrogen, fluorine, a saturated aliphatic hydrocarbon group which may have a substituent, or a substituent. Examples thereof may include an unsaturated aliphatic hydrocarbon group which may be substituted, and an aromatic hydrocarbon group which may have a substituent.
R 2 and R 4 are not particularly limited as long as they are within the range described in the general formula (1), but are preferably a saturated aliphatic hydrocarbon group that may have a substituent or a substituent. Examples thereof include an unsaturated aliphatic hydrocarbon group and an aromatic hydrocarbon / aromatic heterocycle which may have a substituent.
R 3 is not particularly limited as long as it is within the range described in the general formula (1), but preferably Li, a saturated aliphatic hydrocarbon group which may have a substituent, or a group which may have a substituent. Examples thereof include saturated aliphatic hydrocarbon groups and aromatic hydrocarbon groups and aromatic heterocycles which may have a substituent.
置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基・芳香族ヘテロ環の、置換基としては特に限定はされないが、好ましくは、ハロゲン、カルボン酸、炭酸、スルホン酸、リン酸、亜リン酸等があげられ、さらに好ましくは、ハロゲン、最も好ましくはフッ素があげられる。 A saturated aliphatic hydrocarbon group that may have a substituent, an unsaturated aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, and an aromatic heterocyclic ring. The substituent is not particularly limited, but preferably includes halogen, carboxylic acid, carbonic acid, sulfonic acid, phosphoric acid, phosphorous acid, and the like, more preferably halogen, and most preferably fluorine.
好ましい飽和脂肪族炭化水素基として、具体的には、メチル基、エチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1−フルオロエチル基、2−フルオロエチル基、1,1−ジフルオロエチル基、1,2−ジフルオロエチル基、2,2−ジフルオロエチル基、1,1、2−トリフルオロエチル基、1,2、2−トリフルオロエチル基、2、2、2−トリフルオロエチル基フェニル基、シクロペンチル基、シクロヘキシル基があげられる。 Specific preferred saturated aliphatic hydrocarbon groups are methyl, ethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 1,1-difluoro. Ethyl group, 1,2-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2-trifluoroethyl group, 1,2,2-trifluoroethyl group, 2,2,2-trifluoroethyl Examples thereof include a phenyl group, a cyclopentyl group, and a cyclohexyl group.
好ましい不飽和脂肪族炭化水素基としては、具体的には、エテニル基、1−フルオロエテニル基、2−フルオロエテニル基、1−メチルエテニル基、2−プロペニル基、2−フルオロ−2−プロペニル基、3−フルオロ−2−プロペニル基、エチニル基、2−フルオロエチニル基、2−プロピニル基、3−フルオロ−2プロピニル基があげられる。
好ましい芳香族炭化水素基としては、フェニル基、2−フルオロフェニル基、3−フルオロフェニル基、2、4−ジフルオロフェニル基、2、6−ジフルオロフェニル基、3、5−ジフルオロフェニル基、2、4、6−トリフルオロフェニル基があげられる。
Specific preferred unsaturated aliphatic hydrocarbon groups are ethenyl, 1-fluoroethenyl, 2-fluoroethenyl, 1-methylethenyl, 2-propenyl, 2-fluoro-2-propenyl. Group, 3-fluoro-2-propenyl group, ethynyl group, 2-fluoroethynyl group, 2-propynyl group and 3-fluoro-2propynyl group.
Preferred aromatic hydrocarbon groups include phenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,5-difluorophenyl group, 2, Examples include 4,6-trifluorophenyl group.
好ましい芳香族ヘテロ環としては、2−フラニル基、3−フラニル基、2−チオフェニル基、3−チオフェニル基、1−メチル−2−ピロリル基、1−メチル−3−ピロリル基があげられる。
これらの中でも、メチル基、エチル基、フルオロメチル基、トリフルオロメチル基、2−フルオロエチル基、2、2、2−トリフルオロエチル基、エテニル基、エチニル基、フェニル基があげられる。さらに好ましくは、メチル基、エチル基、エチニル基あげられる。
Preferable aromatic heterocycle includes 2-furanyl group, 3-furanyl group, 2-thiophenyl group, 3-thiophenyl group, 1-methyl-2-pyrrolyl group, and 1-methyl-3-pyrrolyl group.
Among these, a methyl group, an ethyl group, a fluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2,2,2-trifluoroethyl group, an ethenyl group, an ethynyl group, and a phenyl group are exemplified. More preferred are a methyl group, an ethyl group, and an ethynyl group.
nおよびmは一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、0または1であり、さらに好ましくは、n=m=1またはn=1、m=0である。
また、分子量は、好ましくは、50以上である。また、好ましくは、500以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。
n and m are not particularly limited as long as they are within the range described in the general formula (1), but are preferably 0 or 1, and more preferably n = m = 1 or n = 1 and m = 0.
The molecular weight is preferably 50 or more. Moreover, Preferably, it is 500 or less. If it is this range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention will fully be expressed easily.
一般式(1)で表される化合物の好ましい具体例としては、以下に記載する化合物があげられる。 Preferable specific examples of the compound represented by the general formula (1) include the compounds described below.
これらの中でも、その反応性と安定性の両面からRが水素、フッ素またはエチニル基であることが好ましい。他の置換基である場合、反応性が低下し、期待する特性が低下する恐れが有る。また、フッ素以外のハロゲンで有る場合は、反応性が高すぎて副反応が増加する恐れが有る。 Among these, it is preferable that R is hydrogen, a fluorine, or an ethynyl group from both the reactivity and the stability. In the case of other substituents, the reactivity is lowered, and the expected properties may be lowered. Moreover, when it is halogen other than fluorine, there is a possibility that the reactivity is too high and the side reaction increases.
また、Rにおけるフッ素またはエチニル基の数は合わせて2つ以内で有ることが好ましい。これらの数が多すぎると、電解液との相溶性が悪化する恐れがあり、また、反応性が高すぎて副反応が増加する恐れが有る。 The number of fluorine or ethynyl groups in R is preferably within 2 in total. If the number is too large, the compatibility with the electrolytic solution may be deteriorated, and the reactivity may be too high to increase the side reaction.
また、これらの中でも、n=1、m=0が好ましい。双方が0である場合、環のひずみから安定性が悪化し、反応性が高くなりすぎて副反応が増加する恐れが有る。また、n=2以上、またはn=1であっても、m=1以上で有る場合、環状より鎖状である方が安定となる恐れがあり、初期の特性を示さない恐れが有る。 Among these, n = 1 and m = 0 are preferable. When both are 0, stability deteriorates from the distortion of the ring, the reactivity becomes too high, and there is a possibility that side reactions increase. Further, even if n = 2 or more, or n = 1, when m = 1 or more, there is a possibility that the chain is more stable than the ring and the initial characteristics may not be exhibited.
さらに、一般式(1)中、XとZは、CR1 2またはOがより好ましい。これら以外の場合、反応性が高すぎて副反応が増加する恐れが有る。 Further, in the general formula (1), X and Z are, CR 1 2 or O are more preferred. In cases other than these, the reactivity may be too high and side reactions may increase.
また、分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。この範囲であれば、非水系電解液に対する一般式(1)の溶解性をさらに確保しやすく、本発明の効果が十分にさらに発現されやすい。 The molecular weight is more preferably 100 or more, and more preferably 200 or less. If it is this range, it will be easy to ensure further the solubility of General formula (1) with respect to a non-aqueous electrolyte solution, and the effect of this invention will be further fully expressed easily.
これらさらに好ましい化合物の具体例としては、以下に記載する化合物があげられる。 Specific examples of these more preferable compounds include the compounds described below.
さらに好ましくは、Rが全て水素である場合である。この場合、期待される特性を維持しつつ、副反応が最も抑制される可能性が高い。また、YがC=OまたはS=Oの場合、XおよびZのいずれか一方がOである事が、YがS(=O)2、P(=O)−R2、P(=O)−OR3の場合XとZが共にOまたはCH2であるか、XとZのいずれか一方がOであり、もう一方がCH2で有ることが好ましい。YがC=OまたはS=Oの場合、XとZが共にCH2であると、反応性が高すぎて副反応が増加する恐れが有る。 More preferably, R is all hydrogen. In this case, the side reaction is most likely to be suppressed while maintaining the expected characteristics. Further, when Y is C═O or S═O, one of X and Z is O, indicating that Y is S (═O) 2 , P (═O) —R 2 , P (═O In the case of —OR 3 , it is preferable that both X and Z are O or CH 2 , or one of X and Z is O and the other is CH 2 . When Y is C═O or S═O, if both X and Z are CH 2 , the reactivity may be too high and side reactions may increase.
これらの化合物として具体的には、以下に記載する化合物があげられる。 Specific examples of these compounds include the compounds described below.
一方、一般式(2)であらわされる化合物が、工業的な製造の容易さの観点から、好ましい。 On the other hand, the compound represented by the general formula (2) is preferable from the viewpoint of ease of industrial production.
上記一般式(2)中、YはC=O、S=O、S(=O)2、P(=O)−R2、P(=O)−OR3を表す。R2は置換基を有してもよい炭素数1から20の炭化水素基である。R3は、Li、NR4 4または、置換基を有してもよい炭素数1から20の炭化水素基である。R4は置換基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。 In the general formula (2), Y represents C═O, S═O, S (═O) 2 , P (═O) —R 2 , P (═O) —OR 3 . R 2 is an optionally substituted hydrocarbon group having 1 to 20 carbon atoms. R 3 is Li, NR 4 4 or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. R 4 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and may be the same or different.
これら、好ましい条件を持つ化合物としては、具体的には以下の化合物があげられる。 Specific examples of these compounds having preferable conditions include the following compounds.
一般式(1)であらわされる化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、一般式(1)で表される化合物の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。一般式(1)であらわされる化合物の配合量は、非水系溶媒100質量%中、好ましくは、0.001質量%以
上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。一方で少なすぎると、本発明における効果が十分に発揮しにくい場合があり、また多すぎると、抵抗が増加して出力や負荷特性が低下する場合がある。
The compound represented by General formula (1) may be used individually by 1 type, or may have 2 or more types by arbitrary combinations and ratios. Moreover, the compounding quantity of the compound represented by General formula (1) is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The compounding amount of the compound represented by the general formula (1) is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass in 100% by mass of the non-aqueous solvent. Further, it is preferably 5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less. Within this range, the non-aqueous electrolyte secondary battery is likely to exhibit a sufficient cycle characteristics improvement effect, and the high-temperature storage characteristics are reduced, the amount of gas generated is increased, and the discharge capacity maintenance rate is reduced. Easy to avoid. On the other hand, if the amount is too small, the effects of the present invention may not be sufficiently exerted. If the amount is too large, the resistance may increase and the output and load characteristics may decrease.
また、フッ素原子を有するカーボネートと一般式(1)で表される化合物の配合量の割合は、特に限定されないが、フッ素原子を有するカーボネートの合計含有質量を[A]、一般式(1)で表される化合物の合計含有質量を[B]としたときに、[B]/[A]の上限値は、通常100以下、好ましくは20以下、より好ましくは10以下、さらに好ましくは5以下であり、下限時は通常0.0001以上、好ましくは0.05以上、より好ましくは0.1以上である。 Moreover, the ratio of the compounding quantity of the carbonate which has a fluorine atom, and the compound represented by General formula (1) is although it does not specifically limit, The total content mass of the carbonate which has a fluorine atom is [A], General formula (1) When the total content of the compounds represented is [B], the upper limit of [B] / [A] is usually 100 or less, preferably 20 or less, more preferably 10 or less, and even more preferably 5 or less. Yes, the lower limit is usually 0.0001 or more, preferably 0.05 or more, more preferably 0.1 or more.
1−5.助剤
本発明の非水系電解液電池において、フッ素原子を有する飽和環状カーボネートと、一般式(1)で表される化合物以外に、目的に応じて適宜助剤を用いてもよい。助剤としては、以下に示される不飽和結合を有する環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
1-5. Auxiliary Agent In the non-aqueous electrolyte battery of the present invention, an auxiliary agent may be appropriately used depending on the purpose in addition to the saturated cyclic carbonate having a fluorine atom and the compound represented by the general formula (1). Examples of auxiliary agents include cyclic carbonates having an unsaturated bond shown below, overcharge inhibitors, other auxiliary agents, and the like.
<不飽和結合を有する環状カーボネート>
本発明の非水系電解液において、非水系電解液電池の負極表面に皮膜を形成し、電池の長寿命化を達成するために、フッ素原子を有する環状カーボネートと、一般式(1)で表される化合物に加えて、一般式(1)の化合物を除いた不飽和結合を有する環状カーボネート(以下、不飽和環状カーボネートともいう)を用いることができる。
<Cyclic carbonate having an unsaturated bond>
In the non-aqueous electrolyte solution of the present invention, in order to form a film on the negative electrode surface of the non-aqueous electrolyte battery and to extend the life of the battery, the cyclic carbonate having fluorine atoms and the general formula (1) are used. In addition to the compound, a cyclic carbonate having an unsaturated bond excluding the compound of the general formula (1) (hereinafter also referred to as an unsaturated cyclic carbonate) can be used.
前記不飽和環状カーボネートとしては、炭素−炭素二重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環又は炭素−炭素二重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
The unsaturated cyclic carbonate is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond, and any unsaturated carbonate can be used. The cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate.
Examples of the unsaturated cyclic carbonate include vinylene carbonates, ethylene carbonates substituted with a substituent having an aromatic ring or a carbon-carbon double bond, phenyl carbonates, vinyl carbonates, allyl carbonates, catechol carbonates, and the like. It is done.
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート等が挙げられる。 As vinylene carbonates, vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate, 4 , 5-diallyl vinylene carbonate and the like.
芳香環又は炭素−炭素二重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート等が挙げられる。 Specific examples of ethylene carbonates substituted with an aromatic ring or a substituent having a carbon-carbon double bond include vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, 4-methyl-5-vinyl ethylene carbonate, 4- Allyl-5-vinylethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl-5-phenylethylene carbonate, allylethylene carbonate, 4,5-diallylethylene Examples thereof include carbonate and 4-methyl-5-allylethylene carbonate.
中でも、特に一般式(1)の化合物と併用するのに好ましい不飽和環状カーボネートと
しては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
Among them, particularly preferable unsaturated cyclic carbonates for use in combination with the compound of the general formula (1) include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, Allyl vinylene carbonate, 4,5-diallyl vinylene carbonate, vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, 4-methyl-5-vinyl ethylene carbonate, allyl ethylene carbonate, 4,5-diallyl ethylene carbonate, 4-methyl- Since 5-allylethylene carbonate and 4-allyl-5-vinylethylene carbonate form a stable interface protective film, they are more preferably used.
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。 The molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. If it is this range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention will fully be expressed easily. The molecular weight of the unsaturated cyclic carbonate is more preferably 80 or more, and more preferably 150 or less. The production method of the unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method.
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの配合量は、非水系溶媒100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。一方で少なすぎる場合は、本発明における効果が十分に発揮しない場合があり、また多すぎる場合は、抵抗が増加して出力や負荷特性が低下する場合がある。 An unsaturated cyclic carbonate may be used individually by 1 type, or may have 2 or more types by arbitrary combinations and ratios. Moreover, the compounding quantity of unsaturated cyclic carbonate is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The blending amount of the unsaturated cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass or more, in 100% by mass of the non-aqueous solvent. Preferably, it is 5 mass% or less, More preferably, it is 4 mass% or less, More preferably, it is 3 mass% or less. Within this range, the non-aqueous electrolyte secondary battery is likely to exhibit a sufficient cycle characteristics improvement effect, and the high-temperature storage characteristics are reduced, the amount of gas generated is increased, and the discharge capacity maintenance rate is reduced. Easy to avoid. On the other hand, if the amount is too small, the effects of the present invention may not be sufficiently exhibited. If the amount is too large, the resistance may increase and the output and load characteristics may decrease.
<過充電防止剤>
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
<Overcharge prevention agent>
In the non-aqueous electrolyte solution of the present invention, an overcharge inhibitor can be used in order to effectively suppress battery explosion / ignition when the non-aqueous electrolyte secondary battery is in an overcharged state or the like. .
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。 As an overcharge inhibitor, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, Partially fluorinated products of the above aromatic compounds such as o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like And a fluorine-containing anisole compound. Of these, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydrogenated, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. These may be used alone or in combination of two or more. When two or more kinds are used in combination, in particular, a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene, biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, Using at least one selected from aromatic compounds not containing oxygen, such as t-amylbenzene, and at least one selected from oxygen-containing aromatic compounds such as diphenyl ether, dibenzofuran, and the like is an overcharge prevention property and a high temperature storage property. From the standpoint of balance.
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系溶媒100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲でれば、過充電防止剤の効果を十分に発現
させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。過充電防止剤は、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上、特に好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。
The amount of the overcharge inhibitor is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The overcharge inhibitor is preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the non-aqueous solvent. If it is this range, it will be easy to fully express the effect of an overcharge inhibiting agent, and it will be easy to avoid the situation where the battery characteristics, such as a high temperature storage characteristic, fall. The overcharge inhibitor is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 3% by mass or less, still more preferably. Is 2% by mass or less.
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホラン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2−メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテン二トリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、3,3'−オキシジプロピオニトリル、3,3'−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のシアノ基を1つ有する化合物;マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル3,3'−(エチレンジオキシ)ジプロピオニトリル、3,3'−(エチレンジチオ)ジプロピオニトリル等のシアノ基を2つ有する化合物;1,12−ジイソシアナトドデカン、1,11−ジイソシアナトウンデカン、1,10−ジイソシアナトデカン、1,9‐ジイソシアナトノナン、1,8−ジイソシアナトオクタン、1,7−イソシアナトヘプタン、1,6−ジイソシアナトヘキサン等のイソシアネート基を2つ有する化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。これらは1種を単独で用いても、2種以上を併用して
もよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
<Other auxiliaries>
Other known auxiliary agents can be used in the non-aqueous electrolyte solution of the present invention. Other auxiliaries include carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, anhydrous Carboxylic anhydrides such as itaconic acid, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; 2,4,8,10-tetraoxaspiro [5.5 ] Spiro compounds such as undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane; ethylene sulfite, 1,3-propane sultone, 1-fluoro-1,3- Propane sultone, 2-fluoro-1,3-propane sultone, 3-ph Oro-1,3-propane sultone, 1-propene-1,3-sultone, 1-fluoro-1-propene-1,3-sultone, 2-fluoro-1-propene-1,3-sultone, 3-fluoro -1-propene-1,3-sultone, 1,4-butanesultone, 1-butene-1,4-sultone, 3-butene-1,4-sultone, methyl fluorosulfonate, ethyl fluorosulfonate, methanesulfonic acid Sulfur-containing compounds such as methyl, ethyl methanesulfonate, busulfan, sulfolane, sulfolene, diphenylsulfone, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone, 1-methyl 2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidino And nitrogen-containing compounds such as N-methylsuccinimide; acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, lauronitrile, 2-methylbutyronitrile, trimethylacetonitrile, hexanenitrile, cyclopentanecarbo Nitrile, cyclohexanecarbonitrile, acrylonitrile, methacrylonitrile, crotononitrile, 3-methylcrotononitrile, 2-methyl-2-butenenitryl, 2-pentenenitrile, 2-methyl-2-pentenenitrile, 3-methyl 2-pentenenitrile, 2-hexenenitrile, fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, 2-fluoropropionitrile, 3-fluoropropionitrile, 2 , 2-difluoropropionitrile, 2,3-difluoropropionitrile, 3,3-difluoropropionitrile, 2,2,3-trifluoropropionitrile, 3,3,3-trifluoropropionitrile, 3, Cyano groups such as 3′-oxydipropionitrile, 3,3′-thiodipropionitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, pentafluoropropionitrile, etc. Compound having one; malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, methylmalononitrile, ethylmalononitrile, isopropylmalononitrile, tert-butylmalononitrile Methylsuccinonitrile, 2,2-dimethylsuccinonitrile, 2,3-dimethylsuccinonitrile, trimethylsuccinonitrile, tetramethylsuccinonitrile 3,3 ′-(ethylenedioxy) dipropionitrile, 3,3 Compounds having two cyano groups such as'-(ethylenedithio) dipropionitrile; 1,12-diisocyanatododecane, 1,11-diisocyanatoundecane, 1,10-diisocyanatodecane, 1,9- Compounds having two isocyanate groups such as diisocyanatononane, 1,8-diisocyanatooctane, 1,7-isocyanatoheptane, 1,6-diisocyanatohexane; heptane, octane, nonane, decane, cycloheptane Hydrocarbon compounds such as fluorobenzene, difluorobenzene, hexafluorobenze And fluorine-containing aromatic compounds such as benzotrifluoride. These may be used alone or in combination of two or more. By adding these auxiliaries, capacity maintenance characteristics and cycle characteristics after high temperature storage can be improved.
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系溶媒100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。 The blending amount of other auxiliary agents is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The other auxiliary agent is preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the non-aqueous solvent. Within this range, the effects of other auxiliaries can be sufficiently exhibited, and it is easy to avoid a situation in which battery characteristics such as high-load discharge characteristics deteriorate. The blending amount of other auxiliaries is more preferably 0.1% by mass or more, further preferably 0.2% by mass or more, more preferably 3% by mass or less, and further preferably 1% by mass or less. .
以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。 The non-aqueous electrolyte solution described above includes those existing inside the non-aqueous electrolyte battery according to the present invention. Specifically, the components of the non-aqueous electrolyte solution such as lithium salt, solvent, and auxiliary agent are separately synthesized, and the non-aqueous electrolyte solution is prepared from what is substantially isolated by the method described below. In the case of a nonaqueous electrolyte solution in a nonaqueous electrolyte battery obtained by pouring into a separately assembled battery, the components of the nonaqueous electrolyte solution of the present invention are individually placed in the battery, In order to obtain the same composition as the non-aqueous electrolyte solution of the present invention by mixing in a non-aqueous electrolyte battery, the compound constituting the non-aqueous electrolyte solution of the present invention is further generated in the non-aqueous electrolyte battery. The case where the same composition as the aqueous electrolyte is obtained is also included.
2.電池構成
本発明の非水系電解液電池は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた非水系電解液電池について説明する。
本発明の非水系電解液二次電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
2. Battery Configuration The non-aqueous electrolyte battery of the present invention is suitable for use as an electrolyte for a secondary battery, for example, a lithium secondary battery, among non-aqueous electrolyte batteries. Hereinafter, a non-aqueous electrolyte battery using the non-aqueous electrolyte of the present invention will be described.
The non-aqueous electrolyte secondary battery of the present invention can adopt a known structure. Typically, the negative electrode and the positive electrode capable of occluding and releasing ions (for example, lithium ions), and the non-aqueous electrolyte of the present invention described above. An aqueous electrolyte solution.
2−1.負極
以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
2-1. Negative electrode The negative electrode active material used for the negative electrode is described below. The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples include carbonaceous materials, alloy materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.
<負極活物質>
負極活物質としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
負極活物質として用いられる炭素質材料としては、
(a)天然黒鉛、
(b)人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、
(c)負極活物質層が少なくとも2種以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(d)負極活物質層が少なくとも2種以上の異なる配向性を有する炭素質からなり、かつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、(a)〜(d)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<Negative electrode active material>
Examples of the negative electrode active material include carbonaceous materials, alloy materials, lithium-containing metal composite oxide materials, and the like.
As a carbonaceous material used as a negative electrode active material,
(A) natural graphite,
(B) a carbonaceous material obtained by heat-treating an artificial carbonaceous material and an artificial graphite material at least once in the range of 400 to 3200 ° C;
(C) a carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different crystallinities and / or has an interface in contact with the different crystalline carbonaceous materials,
(D) a carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different orientations and / or has an interface in contact with the carbonaceous materials having different orientations;
Is preferably a good balance between initial irreversible capacity and high current density charge / discharge characteristics. Further, the carbonaceous materials (a) to (d) may be used alone or in combination of two or more in any combination and ratio.
上記(b)の人造炭素質物質並びに人造黒鉛質物質としては、天然黒鉛、石炭系コーク
ス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。
Examples of the artificial carbonaceous material and the artificial graphite material of (b) include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, and those obtained by oxidizing these pitches, needle coke, pitch coke, and Carbon materials that are partially graphitized, furnace black, acetylene black, organic pyrolysis products such as pitch-based carbon fibers, carbonizable organic materials and their carbides, or carbonizable organic materials are benzene, toluene, xylene, quinoline And a solution dissolved in a low-molecular organic solvent such as n-hexane, and carbides thereof.
負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記する場合がある)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As an alloy material used as the negative electrode active material, as long as lithium can be occluded / released, lithium alone, simple metals and alloys forming lithium alloys, or oxides, carbides, nitrides, silicides, sulfides thereof Any of compounds such as products or phosphides may be used and is not particularly limited. The single metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / metalloid elements (that is, excluding carbon), more preferably aluminum, silicon and tin (hereinafter referred to as “ Simple metals) and alloys or compounds containing these atoms (sometimes abbreviated as “specific metal elements”). These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。 As a negative electrode active material having at least one kind of atom selected from a specific metal element, a metal simple substance of any one specific metal element, an alloy composed of two or more specific metal elements, one type or two or more specific types Alloys comprising metal elements and one or more other metal elements, as well as compounds containing one or more specific metal elements, and oxides, carbides, nitrides and silicides of the compounds And composite compounds such as sulfides or phosphides. By using these simple metals, alloys or metal compounds as the negative electrode active material, the capacity of the battery can be increased.
また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。 In addition, a compound in which these complex compounds are complexly bonded to several kinds of elements such as a simple metal, an alloy, or a nonmetallic element is also included. Specifically, for example, in silicon and tin, an alloy of these elements and a metal that does not operate as a negative electrode can be used. For example, in the case of tin, a complex compound containing 5 to 6 kinds of elements in combination with a metal that acts as a negative electrode other than tin and silicon, a metal that does not operate as a negative electrode, and a nonmetallic element may be used. it can.
これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物、炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。 Among these negative electrode active materials, since the capacity per unit mass is large when a battery is formed, any one simple metal of a specific metal element, an alloy of two or more specific metal elements, oxidation of a specific metal element In particular, silicon and / or tin metal simple substance, alloy, oxide, carbide, nitride and the like are preferable from the viewpoint of capacity per unit mass and environmental load.
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、さらにリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある)である。即ちスピネル構造を有するリチウムチタン複合酸化物を、非水系電解液二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。 The lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but a material containing titanium and lithium is preferable from the viewpoint of high current density charge / discharge characteristics, A lithium-containing composite metal oxide material containing titanium is more preferable, and a composite oxide of lithium and titanium (hereinafter sometimes abbreviated as “lithium titanium composite oxide”). That is, it is particularly preferable to use a lithium titanium composite oxide having a spinel structure in a negative electrode active material for a non-aqueous electrolyte secondary battery because the output resistance is greatly reduced.
また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
上記金属酸化物が、一般式(A)で表されるリチウムチタン複合酸化物であり、一般式(A)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
Further, lithium or titanium of the lithium titanium composite oxide is at least selected from the group consisting of other metal elements such as Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. Those substituted with one element are also preferred.
The metal oxide is a lithium titanium composite oxide represented by the general formula (A). In the general formula (A), 0.7 ≦ x ≦ 1.5, 1.5 ≦ y ≦ 2.3, It is preferable that 0 ≦ z ≦ 1.6 because the structure upon doping and dedoping of lithium ions is stable.
LixTiyMzO4 (A)
[一般式(1)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
上記の一般式(A)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
Li x Ti y M z O 4 (A)
[In General Formula (1), M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. ]
Among the compositions represented by the general formula (A),
(A) 1.2 ≦ x ≦ 1.4, 1.5 ≦ y ≦ 1.7, z = 0
(B) 0.9 ≦ x ≦ 1.1, 1.9 ≦ y ≦ 2.1, z = 0
(C) 0.7 ≦ x ≦ 0.9, 2.1 ≦ y ≦ 2.3, z = 0
This structure is particularly preferable because of a good balance of battery performance.
上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3O4、(b)ではLi1Ti2O4、(c)ではLi4/5Ti11/5O4である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3O4が好ましいものとして挙げられる。 Particularly preferred representative compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (a), Li 1 Ti 2 O 4 in (b), Li 4/5 Ti 11/5 O in (c). 4 . As for the structure of Z ≠ 0, for example, Li 4/3 Ti 4/3 Al 1/3 O 4 is preferable.
<炭素質材料の物性>
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ましい。
<Physical properties of carbonaceous materials>
When using a carbonaceous material as a negative electrode active material, it is desirable to have the following physical properties.
(菱面体晶率)
菱面体晶率は、X線広角回折法(XRD)による菱面体晶構造黒鉛層(ABCスタッキング層)と六方晶構造黒鉛層(ABスタッキング層)の割合から次式を用いて求めることができる。
菱面体晶率(%)=XRDのABC(101)ピークの積分強度÷
XRDのAB(101)ピーク積分強度×100
ここで、本発明で用いることができる炭素質材料の菱面体晶率は、下限値としては、通常0%以上、好ましくは3%以上、更に好ましくは5%以上、特に好ましくは12%以上である。また、上限値としては、好ましくは35%以下、より好ましくは27%以下、更に好ましくは24%以下、特に好ましくは20%以下の範囲である。ここで、菱面体晶率が0%とは、ABCスタッキング層に由来するXRDピークが全く検出されないことを指す。また0%より大きいとは、ABCスタッキング層に由来するXRDピークが僅かでも検出されていることを指す。
(Rhombohedral crystal ratio)
The rhombohedral crystal ratio can be determined from the ratio of the rhombohedral structure graphite layer (ABC stacking layer) and the hexagonal structure graphite layer (AB stacking layer) by the X-ray wide angle diffraction method (XRD) using the following formula.
Rhombohedral crystal ratio (%) = integrated intensity of ABC (101) peak of XRD ÷
XRD AB (101) peak integrated intensity × 100
Here, the rhombohedral crystal ratio of the carbonaceous material that can be used in the present invention is usually 0% or more, preferably 3% or more, more preferably 5% or more, and particularly preferably 12% or more as a lower limit. is there. Moreover, as an upper limit, Preferably it is 35% or less, More preferably, it is 27% or less, More preferably, it is 24% or less, Most preferably, it is the range of 20% or less. Here, the rhombohedral crystal ratio of 0% indicates that no XRD peak derived from the ABC stacking layer is detected. On the other hand, “greater than 0%” means that even a slight XRD peak derived from the ABC stacking layer is detected.
菱面体晶率が上記範囲内であれば、例えば、炭素質材料の結晶構造中に欠陥が少なく電解液との反応性が小さく、サイクル中の電解液の消耗が少なくサイクル特性に優れるので好ましい。 If the rhombohedral crystal ratio is within the above range, for example, there are few defects in the crystal structure of the carbonaceous material, the reactivity with the electrolytic solution is small, the consumption of the electrolytic solution during the cycle is small, and the cycle characteristics are excellent.
菱面体晶率を求めるためのXRDの測定方法は、0.2mmの試料板に黒鉛粉体が配向しないように充填し、X線回折装置(例えば、PANalytical社製 X'Pert Pro MPDでCuKα線にて、出力45kV、40mA)で測定した。得られた回折パターンを使用し解析ソフトJADE5.0を用い、非対称ピアソンVII関数を用いたプロファイルフィッティングにより前記ピーク積分強度をそれぞれ算出し、前記式から菱面体晶率を求める。 The XRD measurement method for determining the rhombohedral crystal ratio is as follows: a 0.2 mm sample plate is filled so that the graphite powder is not oriented, and an X-ray diffractometer (for example, CuKα ray by X'Pert Pro MPD manufactured by PANalytical) is used. And an output of 45 kV and 40 mA). Using the obtained diffraction pattern, the peak integrated intensity is calculated by profile fitting using an asymmetric Pearson VII function using analysis software JADE 5.0, and the rhombohedral crystal ratio is obtained from the above formula.
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・ スリット:
ソーラースリット 0.04度
発散スリット 0.5度
横発散マスク 15mm
散乱防止スリット 1度
・測定範囲及びステップ角度/計測時間:
(101)面:41度≦2θ≦47.5度 0.3度/60秒
・バックグラウンド補正:
42.7から45.5度の間を直線で結び、バックグラウンドとし差し引く。
・菱面体晶構造黒鉛粒子層のピーク:43.4度付近のピークのことを指す。
・六方晶構造黒鉛粒子層のピーク:44.5度付近のピークのことを指す。
The X-ray diffraction measurement conditions are as follows. “2θ” indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit:
Solar slit 0.04 degree divergence slit 0.5 degree side divergence mask 15mm
Anti-scattering slit 1 degree ・ Measurement range and step angle / measurement time:
(101) plane: 41 ° ≦ 2θ ≦ 47.5 ° 0.3 ° / 60 seconds Background correction:
Connect 42.7 to 45.5 degrees with a straight line and subtract as background.
-Peak of rhombohedral-structure graphite particle layer: refers to a peak around 43.4 degrees.
-Peak of hexagonal structure graphite particle layer: It indicates a peak around 44.5 degrees.
上記範囲の菱面体晶率を有する黒鉛粒子を得る方法は、従来の技術を用いて製造する方法を採用することが可能であり、特に限定されないが、黒鉛粒子を500℃以上の温度で熱処理することにより製造することが好ましい。特に、黒鉛粒子に衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を与える。この他、本発明で規定する菱面体晶率は、機械的作用の強度、処理時間、繰り返しの有無などを変えることでも調整することが可能である。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するもの、若しくは、循環機構を有しないが装置を複数台連結させ処理する機構を有するものであるのが好ましい。好ましい装置の一例として、(株)奈良機械製作所製のハイブリダイゼーションシステムなどを挙げることができる。 A method for obtaining graphite particles having a rhombohedral crystal ratio in the above range can employ a method of manufacturing using conventional techniques, and is not particularly limited, but the graphite particles are heat-treated at a temperature of 500 ° C. or higher. It is preferable to manufacture by this. In particular, mechanical effects such as compression, friction, shearing force, etc. including the interaction of particles are given to graphite particles mainly by impact force. In addition, the rhombohedral crystal ratio defined in the present invention can also be adjusted by changing the strength of mechanical action, processing time, presence / absence of repetition, and the like. Specifically, it has a rotor with a large number of blades installed inside the casing, and when the rotor rotates at high speed, mechanical action such as impact compression, friction, shearing force, etc. is applied to the carbon material introduced inside. An apparatus that provides a surface treatment is preferable. Moreover, it is preferable to have a mechanism that repeatedly gives a mechanical action by circulating a carbon material, or a mechanism that does not have a circulation mechanism but connects a plurality of apparatuses. As an example of a preferable apparatus, there can be mentioned a hybridization system manufactured by Nara Machinery Co., Ltd.
また、前記機械的作用を与えた後に熱処理を加えることがより好ましい。
更に前記機械的作用を与えた後に炭素前駆体と複合化し700℃以上の温度で熱処理を加えることが特に好ましい。
Further, it is more preferable to apply a heat treatment after applying the mechanical action.
Further, it is particularly preferable that after applying the mechanical action, it is combined with a carbon precursor and subjected to heat treatment at a temperature of 700 ° C. or higher.
(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
(X-ray parameters)
The d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method of carbonaceous material is preferably 0.335 nm or more, and is usually 0.360 nm or less, 0 350 nm or less is preferable, and 0.345 nm or less is more preferable. Further, the crystallite size (Lc) of the carbonaceous material obtained by X-ray diffraction by the Gakushin method is preferably 1.0 nm or more, and more preferably 1.5 nm or more.
(体積基準平均粒径)
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
(Volume-based average particle size)
The volume-based average particle diameter of the carbonaceous material is a volume-based average particle diameter (median diameter) obtained by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and 7 μm. The above is particularly preferable, and is usually 100 μm or less, preferably 50 μm or less, more preferably 40 μm or less, further preferably 30 μm or less, and particularly preferably 25 μm or less.
体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製造工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
If the volume-based average particle size is below the above range, the irreversible capacity may increase, leading to loss of initial battery capacity. On the other hand, when the above range is exceeded, when an electrode is produced by coating, it tends to be a non-uniform coating surface, which may be undesirable in the battery manufacturing process.
The volume-based average particle size is measured by dispersing carbon powder in a 0.2% by weight aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and laser diffraction / scattering particle size distribution. This is carried out using a meter (LA-700 manufactured by Horiba, Ltd.). The median diameter determined by the measurement is defined as the volume-based average particle diameter of the carbonaceous material of the present invention.
(ラマンR値、ラマン半値幅)
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好まし
く、0.5以下が特に好ましい。
(Raman R value, Raman half width)
The Raman R value of the carbonaceous material is a value measured using an argon ion laser Raman spectrum method, and is usually 0.01 or more, preferably 0.03 or more, more preferably 0.1 or more, and usually 1.5 or less, preferably 1.2 or less, more preferably 1 or less, and particularly preferably 0.5 or less.
ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。特にラマンR値が0.1以上の負極活物質と一般式(1)に記載の化合物を併用すると、負極表面で被膜が良好なネットワークを形成し、かつ好適な被膜密度となるため、保存特性やサイクル特性、負荷特性を劇的に向上させることができる。 When the Raman R value is below the above range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where Li enters between layers decreases with charge / discharge. That is, charge acceptance may be reduced. In addition, when the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics. In particular, when a negative electrode active material having a Raman R value of 0.1 or more and a compound described in the general formula (1) are used in combination, the film forms a good network on the negative electrode surface and has a suitable film density. And cycle characteristics and load characteristics can be dramatically improved.
一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、炭素質材料の1580cm-1付近のラマン半値幅は特に制限されないが、通常10cm-1以上であり、15cm-1以上が好ましく、また、通常100cm-1以下であり、80cm-1以下が好ましく、60cm-1以下がさらに好ましく、40cm-1以下が特に好ましい。
On the other hand, if it exceeds the above range, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte is increased, and the efficiency may be lowered and the gas generation may be increased.
Further, the Raman half-width in the vicinity of 1580 cm −1 of the carbonaceous material is not particularly limited, but is usually 10 cm −1 or more, preferably 15 cm −1 or more, and usually 100 cm −1 or less, and 80 cm −1 or less. Preferably, it is more preferably 60 cm −1 or less, particularly preferably 40 cm −1 or less.
ラマン半値幅が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。 If the Raman half width is less than the above range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where Li enters between layers decreases with charge and discharge. That is, charge acceptance may be reduced. In addition, when the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics. On the other hand, if it exceeds the above range, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte is increased, and the efficiency may be lowered and the gas generation may be increased.
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm-1付近のピークPAの強度IAと、1360cm-1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明の炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm-1付近のピークPAの半値幅を測定し、これを本発明の炭素質材料のラマン半値幅と定義する。 The measurement of the Raman spectrum, using a Raman spectrometer (manufactured by JASCO Corporation Raman spectrometer), the sample is naturally dropped into the measurement cell and filled, and while irradiating the sample surface in the cell with argon ion laser light, This is done by rotating the cell in a plane perpendicular to the laser beam. The resulting Raman spectrum, the intensity I A of the peak P A in the vicinity of 1580 cm -1, and measuring the intensity I B of a peak P B in the vicinity of 1360 cm -1, the intensity ratio R (R = I B / I A) Is calculated. The Raman R value calculated by the measurement is defined as the Raman R value of the carbonaceous material of the present invention. Further, the half width of the peak P A in the vicinity of 1580 cm -1 of the resulting Raman spectrum was measured, which is defined as the Raman half-value width of the carbonaceous material of the present invention.
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm-1
・測定範囲 :1100cm-1〜1730cm-1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理、
・スムージング処理 :単純平均、コンボリューション5ポイント
Moreover, said Raman measurement conditions are as follows.
Argon ion laser wavelength: 514.5nm
・ Laser power on the sample: 15-25mW
・ Resolution: 10-20cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
・ Raman R value, Raman half width analysis: background processing,
-Smoothing processing: Simple average, 5 points of convolution
(配向比)
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
(Orientation ratio)
The orientation ratio of the carbonaceous material is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0.67 or less. When the orientation ratio is below the above range, the high-density charge / discharge characteristics may deteriorate. The upper limit of the above range is the theoretical upper limit value of the orientation ratio of the carbonaceous material.
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m-2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素
の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明の炭素質材料の配向比と定義する。
The orientation ratio is measured by X-ray diffraction after pressure-molding the sample. Set the molded body obtained by filling 0.47 g of the sample into a molding machine with a diameter of 17 mm and compressing it with 58.8 MN · m -2 so that it is flush with the surface of the sample holder for measurement. X-ray diffraction is measured. From the (110) diffraction and (004) diffraction peak intensities of the obtained carbon, a ratio represented by (110) diffraction peak intensity / (004) diffraction peak intensity is calculated. The orientation ratio calculated by the measurement is defined as the orientation ratio of the carbonaceous material of the present invention.
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
The X-ray diffraction measurement conditions are as follows. “2θ” indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit:
Divergence slit = 0.5 degree Light receiving slit = 0.15 mm
Scattering slit = 0.5 degree / measurement range and step angle / measurement time:
(110) plane: 75 degrees ≦ 2θ ≦ 80 degrees 1 degree / 60 seconds (004) plane: 52 degrees ≦ 2θ ≦ 57 degrees 1 degree / 60 seconds
(アスペクト比(粉))
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
(Aspect ratio (powder))
The aspect ratio of the carbonaceous material is usually 1 or more and usually 10 or less, preferably 8 or less, and more preferably 5 or less. If the aspect ratio exceeds the above range, streaking or a uniform coated surface cannot be obtained when forming an electrode plate, and the high current density charge / discharge characteristics may deteriorate. The lower limit of the above range is the theoretical lower limit value of the aspect ratio of the carbonaceous material.
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径aと、それと直交する最短となる径bを測定し、a/bの平均値を求める。該測定で求められるアスペクト比(a/b)を、本発明の炭素質材料のアスペクト比と定義する。 The aspect ratio is measured by magnifying and observing the carbonaceous material particles with a scanning electron microscope. Carbonaceous material particles when three-dimensional observation is performed by selecting arbitrary 50 graphite particles fixed to the end face of a metal having a thickness of 50 μm or less and rotating and tilting the stage on which the sample is fixed. The longest diameter a and the shortest diameter b orthogonal to it are measured, and the average value of a / b is obtained. The aspect ratio (a / b) obtained by the measurement is defined as the aspect ratio of the carbonaceous material of the present invention.
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
<Configuration and production method of negative electrode>
Any known method can be used for producing the electrode as long as the effects of the present invention are not significantly impaired. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to a negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. Can do.
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。 In the case of using an alloy-based material, a method of forming a thin film layer (negative electrode active material layer) containing the above-described negative electrode active material by a technique such as vapor deposition, sputtering, or plating is also used.
(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
(Current collector)
As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the current collector for the negative electrode include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. Copper is particularly preferable from the viewpoint of ease of processing and cost.
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔である。 In addition, the shape of the current collector may be, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, or the like when the current collector is a metal material. Among these, a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable.
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。 The thickness of the current collector is usually 1 μm or more, preferably 5 μm or more, and is usually 100 μm or less, preferably 50 μm or less. This is because if the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be too low, and conversely if it is too thin, handling may be difficult.
(結着材)
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Binder)
The binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used in manufacturing the electrode.
Specific examples include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, polyimide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, Rubber polymers such as NBR (acrylonitrile / butadiene rubber) and ethylene / propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate , Soft resinous polymers such as ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer, etc. And a polymer composition having ion conductivity of alkali metal ions (particularly lithium ions). These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。 The ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less, 15% by mass. The following is more preferable, 10% by mass or less is further preferable, and 8% by mass or less is particularly preferable. When the ratio of the binder with respect to a negative electrode active material exceeds the said range, the binder ratio from which the amount of binders does not contribute to battery capacity may increase, and the fall of battery capacity may be caused. On the other hand, below the above range, the strength of the negative electrode may be reduced.
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。 In particular, when a rubbery polymer typified by SBR is contained as a main component, the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, and 0 .6% by mass or more is more preferable, and is usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less. When the main component contains a fluorine-based polymer typified by polyvinylidene fluoride, the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. It is preferably 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.
(増粘剤)
増粘剤は、通常、負極活物質層を作製する際のスラリーの粘度を調整するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Thickener)
A thickener is normally used in order to adjust the viscosity of the slurry at the time of producing a negative electrode active material layer. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。 Further, when using a thickener, the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, Moreover, it is 5 mass% or less normally, 3 mass% or less is preferable, and 2 mass% or less is more preferable.
(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がさらに好ましく、1.3g・cm-3以上が特に好ましく、また、2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下がさらに好ましく、1.9
g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(Electrode density)
The electrode structure when the negative electrode active material is converted into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g · cm −3 or more, and 1.2 g · cm −3 or more. but more preferably, particularly preferably 1.3 g · cm -3 or more, preferably 2.2 g · cm -3 or less, more preferably 2.1 g · cm -3 or less, 2.0 g · cm -3 or less More preferably, 1.9
Particularly preferred is g · cm −3 or less. When the density of the negative electrode active material existing on the current collector exceeds the above range, the negative electrode active material particles are destroyed, and the initial irreversible capacity increases or non-aqueous system near the current collector / negative electrode active material interface. There is a case where high current density charge / discharge characteristics are deteriorated due to decrease in permeability of the electrolytic solution. On the other hand, if the amount is less than the above range, the conductivity between the negative electrode active materials decreases, the battery resistance increases, and the capacity per unit volume may decrease.
(負極板の厚さ)
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、負極板から金属箔(集電体)厚さを差し引いた負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
(Thickness of negative electrode plate)
The thickness of the negative electrode plate is designed according to the positive electrode plate to be used, and is not particularly limited. However, the thickness of the negative electrode active material layer obtained by subtracting the thickness of the metal foil (current collector) from the negative electrode plate is usually 15 μm. Above, preferably 20 μm or more, more preferably 30 μm or more, and usually 300 μm or less, preferably 280 μm or less, more preferably 250 μm or less.
(負極板の表面被覆)
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
(Surface coating of negative electrode plate)
Moreover, you may use what adhered the substance of the composition different from this to the surface of the said negative electrode plate. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.
2−2.正極
<正極活物質>
以下に正極に使用される正極活物質について述べる。
2-2. Positive electrode <positive electrode active material>
The positive electrode active material used for the positive electrode is described below.
(組成)
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
(composition)
The positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. For example, a material containing lithium and at least one transition metal is preferable. Specific examples include lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds.
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO2等のリチウム・コバルト複合酸化物、LiMnO2、LiMn2O4、Li2MnO4等のリチウム・マンガン複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、等が挙げられる。また、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられ、具体例としては、リチウム・ニッケル・コバルト・アルミ複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物等が挙げられる。これらの中でも、電池特性が良好であるため、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物が好ましい。 The transition metal of the lithium transition metal composite oxide is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples include lithium-cobalt composite oxide such as LiCoO 2 , LiMnO 2 , LiMn. Examples thereof include lithium / manganese composite oxides such as 2 O 4 and Li 2 MnO 4 and lithium / nickel composite oxides such as LiNiO 2 . Further, some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and Si. Specific examples include lithium-nickel-cobalt-aluminum composite oxides, lithium-cobalt-nickel composite oxides, lithium-cobalt-manganese composite oxides, lithium- Nickel / manganese composite oxide, lithium / nickel / cobalt / manganese composite oxide, and the like can be given. Among these, lithium / nickel / manganese composite oxide and lithium / nickel / cobalt / manganese composite oxide are preferable because of good battery characteristics.
置換されたものの具体例としては、例えば、Li1+aNi0.5Mn0.5O2、Li1+aNi0.8Co0.2O2、Li1+aNi0.85Co0.10Al0.05O2、Li1+aNi0.33Co0.33Mn0.33O2、Li1+aNi0.45Mn0.45Co0.1O2、Li1+aNi0.475Mn0.475Co0.05O2、Li1+aMn1.8Al0.2O4、Li1+aMn2O4、Li1+aMn1.5Ni0.5O4、xLi2MnO3・(1−x)Li1+aMO2(M=遷移金属であり、例えば、Li、Ni、Mn及びCoからなる群より選ばれる金属など)等が挙げられる(a;0<a≦3.0)。これらの置換金属元素の組成式中での比率は、それを用いた電池の電池特性や材料のコストなどの関
係により適宜調節される。
Specific examples of the substituted ones include, for example, Li 1 + a Ni 0.5 Mn 0.5 O 2 , Li 1 + a Ni 0.8 Co 0.2 O 2 , Li 1 + a Ni 0.85 Co 0.10 Al 0.05 O 2 , Li 1 + a Ni 0.33 Co 0.33 Mn 0.33 O 2 , Li 1 + a Ni 0.45 Mn 0.45 Co 0.1 O 2 , Li 1 + a Ni 0.475 Mn 0.475 Co 0.05 O 2 , Li 1 + a Mn 1.8 Al 0.2 O 4 , Li 1 + a Mn 2 O 4 , Li 1 + a Mn 1.5 Ni 0.5 O 4 , xLi 2 MnO 3. (1-x) Li 1 + a MO 2 (M = transition metal, for example from Li, Ni, Mn and Co A metal selected from the group consisting of (a; 0 <a ≦ 3.0). The ratio of these substituted metal elements in the composition formula is appropriately adjusted depending on the relationship between the battery characteristics of the battery using the element and the cost of the material.
リチウム含有遷移金属リン酸化合物は、LixMPO4(M=周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)で表すことができ、上記遷移金属(M)としては、V、Ti、Cr、Mg、Zn、Ca、Cd、Sr、Ba、Co、Ni、Fe、MnおよびCuからなる群より選ばれる少なくとも一種の元素であることが好ましく、Co、Ni、Fe、Mnからなる群より選ばれる少なくとも一種の元素であることがより好ましい。例えば、LiFePO4、Li3Fe2(PO4)3、LiFeP2O7等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、LiMnPO4等のリン酸マンガン類、LiNiPO4等のリン酸ニッケル類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
これらの中でも、LiFePO4、Li3Fe2(PO4)3、LiFeP2O7等のリン酸鉄類が、高温・充電状態での金属溶出が起こりにくく、また安価であるために好適に用いられる。
The lithium-containing transition metal phosphate compound is Li x MPO 4 (M = a kind of element selected from the group consisting of Group 4 to Group 11 transition metals in the periodic table, x is 0 <x <1. 2), and the transition metal (M) is selected from the group consisting of V, Ti, Cr, Mg, Zn, Ca, Cd, Sr, Ba, Co, Ni, Fe, Mn, and Cu. It is preferably at least one element, and more preferably at least one element selected from the group consisting of Co, Ni, Fe, and Mn. For example, LiFePO 4, Li 3 Fe 2 (PO 4) 3, LiFeP 2 O 7 , etc. of phosphorus Santetsurui, cobalt phosphate such as LiCoPO 4, manganese phosphate such as LiMnPO 4, phosphoric acids such as LiNiPO 4 Nickel, a part of transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Examples include those substituted with other metals such as Nb and Si.
Among these, iron phosphates such as LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , and LiFeP 2 O 7 are preferably used because they are less likely to cause metal elution at high temperatures and charged states and are inexpensive. It is done.
なお、上述の「LixMPO4を基本組成とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるFe等のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。置換する他の元素はAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の元素であることが好ましい。上記他元素置換を行う場合は、0.1mol%以上、5mol%以下が好ましく、さらに好ましくは0.2mol%以上、2.5mol%以下である。 The above-mentioned “with Li x MPO 4 as the basic composition” means not only the composition represented by the composition formula but also a part of the site such as Fe in the crystal structure substituted with another element. Is also included. Furthermore, it means that not only a stoichiometric composition but also a non-stoichiometric composition in which some elements are deficient or the like is included. Other elements to be substituted are preferably elements such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and Si. In the case of performing the substitution of other elements, the content is preferably 0.1 mol% or more and 5 mol% or less, more preferably 0.2 mol% or more and 2.5 mol% or less.
上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。
また、本発明のリチウム遷移金属系化合物粉体は、異元素が導入されてもよい。異元素としては、B、Na、Mg、Al、K、Ca、Ti、V、Cr、Fe、Cu、Zn、Sr、Y、Zr、Nb、Ru、Rh、Pd、Ag、In、Sn、Sb、Te、Ba、Ta、Mo、W、Re、Os、Ir、Pt、Au、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、N、F、Cl、Br、Iの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
The said positive electrode active material may be used independently and may use 2 or more types together.
Further, foreign elements may be introduced into the lithium transition metal-based compound powder of the present invention. Different elements include B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sn, Sb. Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu , Bi, N, F, Cl, Br, or I. These foreign elements may be incorporated into the crystal structure of the lithium transition metal compound, or may not be incorporated into the crystal structure of the lithium transition metal compound, and may be a single element or compound on the particle surface or grain boundary. May be unevenly distributed.
(表面被覆)
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(Surface coating)
Moreover, you may use what the substance of the composition different from this adhered to the surface of the said positive electrode active material. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。 For example, these surface adhering substances are dissolved or suspended in a solvent, impregnated and added to the positive electrode active material, and dried. After the surface adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material, It can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing simultaneously. In addition, when making carbon adhere, the method of making carbonaceous adhere mechanically later in the form of activated carbon etc. can also be used, for example.
表面付着物質の量としては、該正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合があるため、本組成範囲が好ましい。
本発明においては、正極活物質の表面に、これとは異なる組成の物質が付着したものをも「正極活物質」という。
The amount of the surface adhering substance is by mass with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, and the upper limit, preferably 20% or less, more preferably, as the lower limit. Is used at 10% or less, more preferably 5% or less. The surface adhering substance can suppress the oxidation reaction of the electrolyte solution on the surface of the positive electrode active material and can improve the battery life. However, when the amount of the adhering quantity is too small, the effect is not sufficiently manifested. In the case where it is too high, the resistance may increase in order to inhibit the entry and exit of lithium ions, so this composition range is preferable.
In the present invention, a material in which a material having a different composition is attached to the surface of the positive electrode active material is also referred to as “positive electrode active material”.
(形状)
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
(shape)
Examples of the shape of the positive electrode active material particles include a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, and a column shape, which are conventionally used. It is preferable that the secondary particles have a spherical shape or an elliptical shape. In general, an electrochemical element expands and contracts as the active material in the electrode expands and contracts as it is charged and discharged. Therefore, the active material is easily damaged due to the stress or the conductive path is broken. Therefore, it is preferable that the primary particles are aggregated to form secondary particles, rather than a single particle active material having only primary particles, in order to relieve expansion and contraction stress and prevent deterioration. In addition, spherical or oval spherical particles are less oriented during molding of the electrode than plate-like equiaxed particles, so that the expansion and contraction of the electrode during charging and discharging is small, and the electrode is produced. The mixing with the conductive material is also preferable because it is easy to mix uniformly.
(メジアン径d50)
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1.0μm以上、最も好ましくは2μm以上であり、上限は、好ましくは20μm以下、より好ましくは18μm以下、さらに好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下を招いたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ該正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
(Median diameter d 50 )
The median diameter d 50 of the positive electrode active material particles (secondary particle diameter when primary particles aggregate to form secondary particles) is preferably 0.1 μm or more, more preferably 0.5 μm or more, The upper limit is preferably 20 μm or less, more preferably 18 μm or less, still more preferably 16 μm or less, and most preferably 15 μm or less. If the lower limit is not reached, a high tap density product may not be obtained. If the upper limit is exceeded, it takes time for the diffusion of lithium in the particles. When a conductive material, a binder, or the like is slurried with a solvent and applied as a thin film, problems such as streaking may occur. Here, by mixing two or more kinds of the positive electrode active materials having different median diameters d 50 , the filling property at the time of forming the positive electrode can be further improved.
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。 In the present invention, the median diameter d 50 is measured by a known laser diffraction / scattering particle size distribution measuring apparatus. When LA-920 manufactured by HORIBA is used as a particle size distribution meter, a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
(平均一次粒子径)
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.03μm以上、より好ましくは0.05μm以上、さらに好ましくは0.08μm以上であり、特に好ましくは0.1μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
(Average primary particle size)
When primary particles are aggregated to form secondary particles, the average primary particle diameter of the positive electrode active material is preferably 0.03 μm or more, more preferably 0.05 μm or more, and still more preferably 0.8. The upper limit is preferably 5 μm or less, more preferably 4 μm or less, still more preferably 3 μm or less, and most preferably 2 μm or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that there is a high possibility that battery performance such as output characteristics will deteriorate. is there. On the other hand, when the value falls below the lower limit, there is a case where problems such as inferior reversibility of charge / discharge are usually caused because crystals are not developed.
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定
される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
In the present invention, the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.
<正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着材とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着材、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成されることにより正極を得ることができる。
<Configuration and manufacturing method of positive electrode>
The structure of the positive electrode will be described below. In the present invention, the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector. Manufacture of the positive electrode using a positive electrode active material can be performed by a conventional method. That is, a positive electrode active material and a binder, and if necessary, a conductive material and a thickener mixed in a dry form into a sheet form are pressure-bonded to the positive electrode current collector, or these materials are used as a liquid medium. A positive electrode can be obtained by forming a positive electrode active material layer on the current collector by applying it to a positive electrode current collector and drying it as a slurry by dissolving or dispersing in a slurry.
正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは93質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。 The content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. Moreover, an upper limit becomes like this. Preferably it is 95 mass% or less, More preferably, it is 93 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3以上、より好ましくは2g/cm3、さらに好ましくは2.2g/cm3以上であり、上限としては、好ましくは4.0g/cm3以下、より好ましくは3.8g/cm3以下、さらに好ましくは3.6g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。 The positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material. The density of the positive electrode active material layer is preferably 1.5 g / cm 3 or more as a lower limit, more preferably 2 g / cm 3 , further preferably 2.2 g / cm 3 or more, and preferably 4.0 g as an upper limit. / cm 3 or less, more preferably 3.8 g / cm 3 or less, more preferably 3.6 g / cm 3 or less. If it exceeds this range, the permeability of the electrolyte solution to the vicinity of the current collector / active material interface decreases, and the charge / discharge characteristics particularly at a high current density decrease, and a high output may not be obtained. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and a high output may not be obtained.
(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(Conductive material)
A known conductive material can be arbitrarily used as the conductive material. Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio. The conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more in the positive electrode active material layer, and the upper limit is usually 50% by mass or less, preferably It is used so as to contain 30% by mass or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
(結着材)
正極活物質層の製造に用いる結着材としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン
、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Binder)
The binder used for manufacturing the positive electrode active material layer is not particularly limited, and in the case of a coating method, any material that can be dissolved or dispersed in a liquid medium used during electrode manufacturing may be used. Resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine rubber, isoprene rubber , Rubber polymers such as butadiene rubber and ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / Ethylene copolymer, styrene Thermoplastic elastomeric polymer such as isoprene / styrene block copolymer or hydrogenated product thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer Soft resinous polymers such as polymers; Fluoropolymers such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymers; alkali metal ions (especially lithium ions) And a polymer composition having ion conductivity. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
[電解液の製造]
乾燥アルゴン雰囲気下、表4の割合となるように、LiPF6、モノフルオロエチレンカーボネート、ジメチルカーボネート、一般式(1)で表される化合物及びその他の化合物を用いて、実施例2〜14、及び比較例3〜6に用いる電解液を調製した。なお、LiPF6の濃度は、モノフルオロエチレンカーボネート、ジメチルカーボネートを合計した溶媒組成対して、1mol/Lとなるように調製した。
[Manufacture of electrolyte]
Examples 2 to 14 using LiPF 6 , monofluoroethylene carbonate, dimethyl carbonate, a compound represented by the general formula (1) and other compounds so as to have the ratio of Table 4 in a dry argon atmosphere, and The electrolyte solution used for Comparative Examples 3-6 was prepared. The concentration of LiPF 6 was adjusted to 1 mol / L with respect to the solvent composition obtained by adding monofluoroethylene carbonate and dimethyl carbonate.
(増粘剤)
増粘剤は、通常、正極活物質層の製造に用いるスラリーの粘度を調製するために使用することができる。特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
(Thickener)
A thickener can be used normally in order to adjust the viscosity of the slurry used for manufacture of a positive electrode active material layer. In particular, when an aqueous medium is used, it is preferable to make a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios. When a thickener is further added, the ratio of the thickener to the active material is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more. The upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. Below this range, applicability may be significantly reduced. If it exceeds, the ratio of the active material in the positive electrode active material layer may decrease, and there may be a problem that the capacity of the battery decreases and a problem that the resistance between the positive electrode active materials increases.
(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
(Current collector)
The material of the positive electrode current collector is not particularly limited, and a known material can be arbitrarily used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。 Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. Although the thickness of the thin film is arbitrary, it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。 Moreover, it is also preferable from the viewpoint of reducing the electronic contact resistance between the current collector and the positive electrode active material layer that a conductive additive is applied to the surface of the current collector. Examples of the conductive assistant include noble metals such as carbon, gold, platinum, and silver.
(正極板の厚さ)
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、正極板から金属箔(集電体)厚さを差し引いた正極活物質層の厚さは、集電体の片面に対して下限として、
好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは500μm以下、より好ましくは450μm以下である。
(Thickness of positive plate)
The thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the positive electrode active material layer obtained by subtracting the thickness of the metal foil (current collector) from the positive electrode plate is set on one side of the current collector. As a lower limit,
The upper limit is preferably 10 μm or more, more preferably 20 μm or more, and the upper limit is preferably 500 μm or less, more preferably 450 μm or less.
(正極板の表面被覆)
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(Positive electrode surface coating)
Moreover, you may use what adhered the substance of the composition different from this to the surface of the said positive electrode plate. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
2−3.セパレータ
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
2-3. Separator Normally, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit. In this case, the nonaqueous electrolytic solution of the present invention is usually used by impregnating the separator.
The material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Among them, a resin, glass fiber, inorganic material, etc. formed of a material that is stable with respect to the non-aqueous electrolyte solution of the present invention is used, and a porous sheet or a nonwoven fabric-like material having excellent liquid retention properties is used. Is preferred.
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As materials for the resin and glass fiber separator, for example, polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyethersulfone, glass filters and the like can be used. Of these, glass filters and polyolefins are preferred, and polyolefins are more preferred. These materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、10μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。 The thickness of the separator is arbitrary, but is usually 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and usually 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less. If the separator is too thin than the above range, the insulating properties and mechanical strength may decrease. On the other hand, if it is thicker than the above range, not only the battery performance such as the rate characteristic may be lowered, but also the energy density of the whole non-aqueous electrolyte secondary battery may be lowered.
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。 Furthermore, when using a porous material such as a porous sheet or nonwoven fabric as the separator, the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, Further, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too smaller than the above range, the membrane resistance tends to increase and the rate characteristics tend to deteriorate. Moreover, when larger than the said range, it exists in the tendency for the mechanical strength of a separator to fall and for insulation to fall.
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。 Moreover, although the average pore diameter of a separator is also arbitrary, it is 0.5 micrometer or less normally, 0.2 micrometer or less is preferable, and it is 0.05 micrometer or more normally. If the average pore diameter exceeds the above range, a short circuit tends to occur. On the other hand, below the above range, the film resistance may increase and the rate characteristics may deteriorate.
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。 On the other hand, as inorganic materials, for example, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used. Used.
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。
上記の独立した薄膜形状以外に、樹脂製の結着材を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として多孔層を形成させることが挙げられる。
As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. In the thin film shape, those having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm are preferably used.
In addition to the above-mentioned independent thin film shape, a separator formed by forming a composite porous layer containing inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, a porous layer may be formed by using alumina particles having a 90% particle size of less than 1 μm on both surfaces of the positive electrode and using a fluororesin as a binder.
セパレータの非電解液二次電池における特性を、ガーレ値で把握することができる。ガーレ値とは、フィルム厚さ方向の空気の通り抜け難さを示し、100mlの空気が該フィルムを通過するのに必要な秒数で表されるため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚さ方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚さ方向の連通性が悪いことを意味する。連通性とは、フィルム厚さ方向の孔のつながり度合いである。本発明のセパレータのガーレ値が低ければ、様々な用途に使用することが出来る。例えば非水系リチウム二次電池のセパレータとして使用した場合、ガーレ値が低いということは、リチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。セパレータのガーレ値は、任意ではあるが、好ましくは10〜1000秒/100mlであり、より好ましくは15〜800秒/100mlであり、更に好ましくは20〜500秒/100mlである。ガーレ値が1000秒/100ml以下であれば、実質的には電気抵抗が低く、セパレータとしては好ましい。 The characteristics of the separator in the non-electrolyte secondary battery can be grasped by the Gurley value. The Gurley value indicates the difficulty of air passage in the film thickness direction, and is expressed as the number of seconds required for 100 ml of air to pass through the film. It means that it is harder to go through. That is, a smaller value means better communication in the thickness direction of the film, and a larger value means lower communication in the thickness direction of the film. Communication is the degree of connection of holes in the film thickness direction. If the Gurley value of the separator of the present invention is low, it can be used for various purposes. For example, when used as a separator for a non-aqueous lithium secondary battery, a low Gurley value means that lithium ions can be easily transferred and is preferable because of excellent battery performance. Although the Gurley value of a separator is arbitrary, Preferably it is 10-1000 second / 100ml, More preferably, it is 15-800 second / 100ml, More preferably, it is 20-500 second / 100ml. If the Gurley value is 1000 seconds / 100 ml or less, the electrical resistance is substantially low, which is preferable as a separator.
2−4.電池設計
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
2-4. Battery design <electrode group>
The electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed through the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape through the separator. Either is acceptable. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。 When the electrode group occupancy is below the above range, the battery capacity decreases. Also, if the above range is exceeded, the void space is small, the battery expands, and the member expands or the vapor pressure of the electrolyte liquid component increases and the internal pressure rises. In some cases, the gas release valve that lowers various characteristics such as storage at high temperature and the like, or releases the internal pressure to the outside is activated.
<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
<Exterior case>
The material of the outer case is not particularly limited as long as it is a substance that is stable with respect to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。 In an exterior case using metals, the metal is welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed sealed structure, or a caulking structure using the above metals via a resin gasket. Things. Examples of the outer case using the laminate film include a case where a resin-sealed structure is formed by heat-sealing resin layers. In order to improve sealing performance, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used. Resins are preferably used.
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<Protective element>
Protection elements such as PTC (Positive Temperature Coefficient), thermal fuse, thermistor, which increases resistance when abnormal heat is generated or excessive current flows, shuts off current flowing through the circuit due to sudden increase in battery internal pressure or internal temperature during abnormal heat generation A valve (current cutoff valve) or the like can be used. It is preferable to select a protective element that does not operate under normal use at a high current, and it is more preferable that the protective element is designed so as not to cause abnormal heat generation or thermal runaway even without the protective element.
<外装体>
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
<Exterior body>
The non-aqueous electrolyte secondary battery of the present invention is usually configured by housing the non-aqueous electrolyte, the negative electrode, the positive electrode, the separator, and the like in an exterior body. This exterior body is not particularly limited, and any known one can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Specifically, the material of the exterior body is arbitrary, but usually, for example, nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, or the like is used.
The shape of the exterior body is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
<一般式(1)で表される化合物の合成>
本実施例で用いる一般式(1)で表される化合物は、下記の方法により合成した。
<Synthesis of Compound Represented by General Formula (1)>
The compound represented by the general formula (1) used in this example was synthesized by the following method.
[化合物Iの合成]
原料1)は、非特許文献(Journal of Organic Cehmistry,56(3),1083−1088(1991))の方法に従って合成を行った。次に原料1)を用い、非特許文献(Europian journal of organic chemistry,2009(20),2836−2844)に準じる方法により、化合物Iを得た。
The raw material 1) was synthesized according to the method of non-patent literature (Journal of Organic Chemistry, 56 (3), 1083-1088 (1991)). Next, using raw material 1), Compound I was obtained by a method according to non-patent literature (European journal of organic chemistry, 2009 (20), 2836-2844).
[化合物IIの合成]
窒素気流下、塩化メチレンに原料1)を溶解し、原料3)の塩化メチレン溶液を滴下した。室温で3時間攪拌後、水を加えて反応を停止し、有機層を飽和重曹水・水で洗浄した後、硫酸マグネシウムで乾燥後、減圧条件で溶媒を除去し中間体1)を得た。この中間体1)をアセトニトリルに溶解させ、氷冷しながら、触媒量の塩化ルテニウムを溶解させた水溶液、過ヨウ素酸ナトリウムを順に加え、1時間攪拌した。ジエチルエーテル、飽和重曹水を加え、有機層に抽出した。硫酸ナトリウムを用いて乾燥したのちシリカゲルカラムクロマトグラフィーにて精製し、化合物IIを得た。
Under a nitrogen stream, the raw material 1) was dissolved in methylene chloride, and the methylene chloride solution of the raw material 3) was added dropwise. After stirring at room temperature for 3 hours, the reaction was stopped by adding water, and the organic layer was washed with saturated aqueous sodium bicarbonate and water, dried over magnesium sulfate, and then the solvent was removed under reduced pressure to obtain Intermediate 1). This intermediate 1) was dissolved in acetonitrile, and an aqueous solution in which a catalytic amount of ruthenium chloride was dissolved and sodium periodate were sequentially added while stirring on ice, and stirred for 1 hour. Diethyl ether and saturated aqueous sodium hydrogen carbonate were added, and the mixture was extracted into an organic layer. After drying with sodium sulfate, the residue was purified by silica gel column chromatography to obtain Compound II.
[化合物IIIの合成]
窒素気流下、テトラヒドロフラン原料1)を溶解させ、トリエチルアミンを加え塩基性にした後、原料4)のテトラヒドロフラン溶液を滴下した。その後、室温で2時間攪拌し、析出した白色粉末をろ別後、減圧条件で溶媒を除去し、化合物IIIを得た。
Under a nitrogen stream, the tetrahydrofuran raw material 1) was dissolved, triethylamine was added to make it basic, and then a tetrahydrofuran solution of the raw material 4) was added dropwise. Thereafter, the mixture was stirred at room temperature for 2 hours, and the precipitated white powder was filtered off, and then the solvent was removed under reduced pressure to obtain Compound III.
化合物I〜IIIのスペクトルデータを以下に示す。 The spectral data of compounds I to III are shown below.
<実施例A>
[負極の作製]
炭素質材料98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、それぞれ実施例1〜22、比較例1〜14、及び参考例1に用いる負極とした。
<Example A>
[Production of negative electrode]
98 parts by mass of a carbonaceous material, 100 parts by mass of an aqueous dispersion of sodium carboxymethylcellulose (concentration of 1% by mass of carboxymethylcellulose sodium) and an aqueous dispersion of styrene-butadiene rubber (styrene-butadiene, respectively) as a thickener and a binder 1 part by mass of rubber concentration 50 mass%) was added and mixed with a disperser to form a slurry. The obtained slurry was applied to a copper foil having a thickness of 10 μm, dried, and rolled with a press. The active material layer was 30 mm wide, 40 mm long, 5 mm wide, and 9 mm long uncoated. It cut out into the shape which has a part, and it was set as the negative electrode used for Examples 1-22, Comparative Examples 1-14, and Reference Example 1, respectively.
[正極の作製]
正極活物質としてLiCoO2を90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、正極とした。
[Production of positive electrode]
90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive material, and 5% by mass of polyvinylidene fluoride (PVdF) as a binder were mixed in an N-methylpyrrolidone solvent. And slurried. The obtained slurry was applied to an aluminum foil having a thickness of 15 μm, dried, and rolled with a press. The active material layer was 30 mm in width, 40 mm in length, 5 mm in width, and 9 mm in length. It cut out into the shape which has a process part, and was set as the positive electrode.
[電解液の製造]
乾燥アルゴン雰囲気下、表2の割合となるように、LiPF6、モノフルオロエチレンカーボネート(MFEC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)と一般式(1)で表される化合物及び一般式(1)以外の化合物を用いて、実施例1及び比較例1、2に用いる電解液を調製した。なお、LiPF6の濃度は、MFEC、EC、DMC、EMCを合計した溶媒組成対して、1.4mol/Lとなるように調製した。
[Manufacture of electrolyte]
In the dry argon atmosphere, LiPF 6 , monofluoroethylene carbonate (MFEC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and general formula (1) as shown in Table 2 The electrolyte solution used for Example 1 and Comparative Examples 1 and 2 was prepared using the compound represented except the compound represented by General formula (1). The concentration of LiPF 6 was adjusted to 1.4 mol / L with respect to the total solvent composition of MFEC, EC, DMC, and EMC.
[リチウム二次電池の製造]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表2に記載の電解液をそれぞれ袋内に注入し、真空封止を行い、シート状電池を作製し、それぞれ実施例1及び比較例1〜2に用いる電池とした。
[Manufacture of lithium secondary batteries]
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, and the positive electrode to prepare a battery element. The battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 μm) were covered with a resin layer while projecting positive and negative terminals, and each electrolyte solution shown in Table 2 was then placed in the bag. The sheet-like battery was manufactured and used as Example 1 and Comparative Examples 1 and 2, respectively.
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で慣らし運転を行った。慣らし運転を行った電池を、25℃において0.2Cに相当する定電流で充電した後、0.2Cに相当する定電流で放
電を実施して初期放電容量を求めた。結果を表3に示す。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、また0.2Cとはその1/5の電流値を表す。
[Evaluation of initial discharge capacity]
The lithium secondary battery was conditioned with a constant current corresponding to 0.2 C at 25 ° C. in a state of being sandwiched between glass plates in order to improve the adhesion between the electrodes. The battery that had been conditioned was charged with a constant current corresponding to 0.2 C at 25 ° C., and then discharged with a constant current corresponding to 0.2 C to obtain an initial discharge capacity. The results are shown in Table 3. Here, 1C represents a current value for discharging the reference capacity of the battery in one hour, and 0.2C represents a current value of 1/5 thereof.
[高温保存特性の評価]
初期容量評価試験の終了した電池を、エタノール浴中に浸して体積を測定した後、0.2Cの定電流で充電後、定電圧で電流値が0.05Cになるまで充電した。これを85℃で24時間保存し、電池を冷却させた後、エタノール浴中に浸して体積を測定し、連続充電の前後の体積変化から発生したガス量を求めた。その後、25℃において0.2Cの定電流で放電させて残存容量を求めた後、0.2Cの定電流で充電後、定電圧で電流値が0.05Cになるまで充電し、1Cの定電流で放電を実施して1C放電容量を求めた。結果を表3に示す。
[Evaluation of high-temperature storage characteristics]
The battery for which the initial capacity evaluation test was completed was immersed in an ethanol bath and the volume was measured. After charging at a constant current of 0.2 C, the battery was charged at a constant voltage until the current value reached 0.05 C. This was stored at 85 ° C. for 24 hours, and after cooling the battery, the volume was measured by immersion in an ethanol bath, and the amount of gas generated from the volume change before and after continuous charging was determined. Then, after discharging at 25 ° C. with a constant current of 0.2 C to determine the remaining capacity, charging with a constant current of 0.2 C and then charging with a constant voltage until the current value becomes 0.05 C, a constant current of 1 C is obtained. Discharging with current was performed to determine 1C discharge capacity. The results are shown in Table 3.
表3から明らかなように、本発明に係る非水系電解液を用いた電池(実施例1)は、本発明に係る非水系電解液でないものを用いた電池(比較例1〜2)に比べて、高温保存後の発生ガス量を大幅に低減させることができる。 As is apparent from Table 3, the battery using the non-aqueous electrolyte solution according to the present invention (Example 1) is compared with the battery using the non-aqueous electrolyte solution according to the present invention (Comparative Examples 1 and 2). Thus, the amount of gas generated after high temperature storage can be greatly reduced.
<実施例B>
[正極の作製]
正極活物質としてLiCoO2を90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、実施例2〜14及び比較例3〜6に用いる正極とした。
<Example B>
[Production of positive electrode]
A slurry is prepared by mixing 90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive material, and 5% by mass of polyvinylidene fluoride as a binder in an N-methylpyrrolidone solvent. did. The obtained slurry was applied to an aluminum foil having a thickness of 15 μm, dried, and rolled with a press. The active material layer was 30 mm in width, 40 mm in length, 5 mm in width, and 9 mm in length. It cut out into the shape which has a process part, and it was set as the positive electrode used for Examples 2-14 and Comparative Examples 3-6.
[電解液の製造]
乾燥アルゴン雰囲気下、表4の割合となるように、LiPF6、モノフルオロエチレンカーボネート、ジメチルカーボネート、一般式(1)で表される化合物及びその他の化合物を用いて、実施例2〜14、及び比較例3〜6に用いる電解液を調製した。なお、LiPF6の濃度は、モノフルオロエチレンカーボネート、ジメチルカーボネートを合計した溶媒組成対して、1mol/Lとなるように調製した。
[Manufacture of electrolyte]
Examples 2 to 14, using LiPF 6 , monofluoroethylene carbonate, dimethyl carbonate, the compound represented by the general formula (1) and other compounds so as to have the ratio of Table 4 in a dry argon atmosphere, and The electrolyte solution used for Comparative Examples 3-6 was prepared. The concentration of LiPF 6 was adjusted to 1 mol / L with respect to the solvent composition obtained by adding monofluoroethylene carbonate and dimethyl carbonate.
[リチウム二次電池の製造]
上記正極並びに上記電解液を使用した以外、上記実施例<A>と同様にしてシート状電池を作製した。
[Manufacture of lithium secondary batteries]
A sheet-like battery was produced in the same manner as in Example <A> except that the positive electrode and the electrolytic solution were used.
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃
において0.2Cに相当する定電流で慣らし運転を行った。慣らし運転を行った電池を、25℃において0.2Cに相当する定電流で充電した後、0.2Cに相当する定電流で放電を実施して初期放電容量を求めた。
[Evaluation of initial discharge capacity]
In a state where the lithium secondary battery is sandwiched between glass plates in order to improve the adhesion between the electrodes,
The running-in operation was performed at a constant current corresponding to 0.2C. The battery that had been conditioned was charged with a constant current corresponding to 0.2 C at 25 ° C., and then discharged with a constant current corresponding to 0.2 C to obtain an initial discharge capacity.
[サイクル特性の評価]
初期放電容量評価を行ったリチウム二次電池を、45℃において、0.5Cの定電流で充電後、0.5Cの定電流で放電する過程を1サイクルとして、100サイクル実施した。(100サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。
[Evaluation of cycle characteristics]
The lithium secondary battery for which the initial discharge capacity was evaluated was charged at a constant current of 0.5 C at 45 ° C. and then discharged at a constant current of 0.5 C, and 100 cycles were performed. The discharge capacity retention rate was determined from the formula of (discharge capacity at the 100th cycle) ÷ (discharge capacity at the first cycle) × 100.
[高温保存特性の評価]
初期放電容量の評価が完了したリチウム二次電池を、25℃において、0.2Cの定電流−定電圧(0.05Cカット)で充電後、85℃で24時間保存し、電池を室温まで冷却させた後、エタノール浴中に浸して体積を測定し、高温保存前後の体積変化から発生したガス量を求めた。
[Evaluation of high-temperature storage characteristics]
A lithium secondary battery whose initial discharge capacity has been evaluated is charged with a constant current-constant voltage (0.05 C cut) at 25 ° C. at 25 ° C. and then stored at 85 ° C. for 24 hours to cool the battery to room temperature. Then, the volume was measured by immersing in an ethanol bath, and the amount of gas generated from the volume change before and after high-temperature storage was determined.
表4から明らかなように、本発明に係る非水系電解液を用いた電池(実施例2〜14)は、一般式(1)で表される化合物を含有しない非水系電解液を用いた電池(比較例3〜6)と比較して、サイクル容量維持率に優れる。また、<実施例A>と比較して電池電圧が高い状態であっても、本発明の効果は顕著に示されている。更に不飽和結合を有する環状カーボネート等の助剤を含有する場合であっても(実施例2〜9)、同様に本発明の効果を確認することができる。この理由として、フッ素原子を有するカーボネートと共に一般式(1)で表される化合物を導入した場合、一般式(1)で表される化合物が形成する電極保護層にフッ素原子を有するカーボネートが取り込まれ、高度に架橋することで電極表面耐久性が著しく向上し、結果として上記のような特筆すべき電池耐久性能の向上が引き起こされるものと推測される。 As is apparent from Table 4, the batteries using the non-aqueous electrolyte solution according to the present invention (Examples 2 to 14) are batteries using the non-aqueous electrolyte solution not containing the compound represented by the general formula (1). Compared with (Comparative Examples 3 to 6), the cycle capacity retention rate is excellent. Further, even when the battery voltage is higher than that in <Example A>, the effect of the present invention is remarkably shown. Furthermore, even if it is a case where auxiliary agents, such as a cyclic carbonate which has an unsaturated bond, are contained (Examples 2-9), the effect of this invention can be confirmed similarly. This is because, when a compound represented by the general formula (1) is introduced together with a carbonate having a fluorine atom, the carbonate having a fluorine atom is taken into the electrode protective layer formed by the compound represented by the general formula (1). It is presumed that the electrode surface durability is remarkably improved by highly cross-linking, and as a result, the above-mentioned remarkable battery durability performance is improved.
<実施例C>
[正極の作製]
正極活物質としてLi(Ni1/3Mn1/3Co1/3)O2を90質量%と、導電材としてのアセチレンブラック5質量%と、結着材としてのポリフッ化ビニリデン5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、実施例15、比較例7、8、及び参考例1に用いる正極とした。
<Example C>
[Production of positive electrode]
90% by mass of Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive material, 5% by mass of polyvinylidene fluoride as a binder, Were slurried by mixing in N-methylpyrrolidone solvent. The obtained slurry was applied to a 15 μm-thick aluminum foil previously coated with a conductive additive, dried, and rolled with a press machine. The active material layer size was 30 mm wide, 40 mm long, and 5 mm wide. The positive electrode used in Example 15, Comparative Examples 7 and 8, and Reference Example 1 was cut into a shape having an uncoated part with a length of 9 mm.
[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合物(体積比30:30:40)に乾燥したLiPF6を1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表5に記載の割合でフッ素原子を有するカーボネート及び/又は一般式(1)で表される化合物を混合し、実施例15、比較例7、8、及び参考例1に用いる電解液とした。
[Manufacture of electrolyte]
Under a dry argon atmosphere, a basic electrolyte solution was prepared by dissolving LiPF 6 dried in a mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate (volume ratio 30:30:40) to a ratio of 1 mol / L. The basic electrolyte solution was mixed with a carbonate having a fluorine atom and / or a compound represented by the general formula (1) at a ratio shown in Table 5, and Example 15, Comparative Examples 7, 8, and Reference Example 1 were mixed. It was set as the electrolyte solution to be used.
[リチウム二次電池の製造]
上記正極並びに上記基本電解液を使用した以外、上記実施例<A>と同様にしてシート状電池を作製した。
[Manufacture of lithium secondary batteries]
A sheet battery was prepared in the same manner as in Example <A> except that the positive electrode and the basic electrolyte were used.
[サイクル特性の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で容量確認を行った後、60℃において、2Cの定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、300サイクル実施した。(300サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。
[Evaluation of cycle characteristics]
After confirming the capacity with a constant current corresponding to 0.2 C at 25 ° C. in a state where the lithium secondary battery is sandwiched between glass plates in order to improve the adhesion between the electrodes, a constant current of 2 C at 60 ° C. After charging, the process of discharging at a constant current of 2C was taken as one cycle, and 300 cycles were performed. The discharge capacity retention ratio was calculated from the formula of (discharge capacity at 300th cycle) ÷ (discharge capacity at the first cycle) × 100.
表5から明らかなように、本発明に係る非水系電解液を用いた電池(実施例15)は、一般式(1)で表される化合物を含まない非水系電解液を用いた電池(比較例7、8)と比較して、サイクル容量維持率に優れる。また、実施例<A>及び<B>と比較して電池電圧がより高い状態であっても、サイクル容量維持率に優れる。また、一般式(1)で表される化合物は単独でも電極表面を保護して電池耐久性を向上させる機能を有するが(参考例1)、フッ素原子を有するカーボネートと併用することにより、更に電池耐久性が向上する。
この理由として、フッ素原子を有するカーボネートと一般式(1)で表される化合物を併用することにより、一般式(1)で表される化合物が形成する電極保護層にフッ素原子を有するカーボネートが取り込まれ、高度に架橋することで電極表面耐久性が著しく向上し、結果として上記のような特筆すべき電池耐久性能の向上が引き起こされるものと推測される。
As is clear from Table 5, the battery using the non-aqueous electrolyte solution according to the present invention (Example 15) is a battery using the non-aqueous electrolyte solution not containing the compound represented by the general formula (1) (Comparison). Compared to Examples 7 and 8), the cycle capacity retention rate is excellent. Further, even when the battery voltage is higher than in Examples <A> and <B>, the cycle capacity retention rate is excellent. In addition, the compound represented by the general formula (1) alone has a function of protecting the electrode surface and improving the battery durability (Reference Example 1). Durability is improved.
The reason for this is that when a carbonate having a fluorine atom and a compound represented by the general formula (1) are used in combination, the carbonate having a fluorine atom is taken into the electrode protective layer formed by the compound represented by the general formula (1). Therefore, it is presumed that the electrode surface durability is remarkably improved by highly crosslinking, and as a result, the above-mentioned remarkable battery durability performance is improved.
<実施例D>
[正極の作製]
正極活物質としてLi(Ni1/3Mn1/3Co1/3)O2を90質量%と、導電材としてのアセチレンブラック5質量%と、結着材としてのポリフッ化ビニリデン5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、実施例16〜18、及び比較例9、10に用いる正極とした。
<Example D>
[Production of positive electrode]
90% by mass of Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive material, 5% by mass of polyvinylidene fluoride as a binder, Were slurried by mixing in N-methylpyrrolidone solvent. The obtained slurry was applied to a 15 μm-thick aluminum foil previously coated with a conductive additive, dried, and rolled with a press machine. The active material layer size was 30 mm wide, 40 mm long, and 5 mm wide. The positive electrode used in Examples 16 to 18 and Comparative Examples 9 and 10 was cut into a shape having an uncoated part with a length of 9 mm.
[電解液の製造]
乾燥アルゴン雰囲気下、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合物(体積比30:30:40)に乾燥したLiPF6を1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表6に記載の割合で、一般式(1)で表される化合物、或いはその他の化合物を混合し、実施例16〜18、及び比較例9、10に用いる電解液とした。
[Manufacture of electrolyte]
In a dry argon atmosphere, the basic electrolyte solution was prepared by dissolving LiPF 6 in a mixture of monofluoroethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate (volume ratio 30:30:40) to a ratio of 1 mol / L. Prepared. The basic electrolyte solution is mixed with the compound represented by the general formula (1) or other compounds at the ratio shown in Table 6, and the electrolyte solution used in Examples 16 to 18 and Comparative Examples 9 and 10 did.
[リチウム二次電池の製造]
上記正極並びに上記電解液を使用した以外、上記実施例<A>と同様にしてシート状電池を作製した。
[Manufacture of lithium secondary batteries]
A sheet-like battery was produced in the same manner as in Example <A> except that the positive electrode and the electrolytic solution were used.
[サイクル特性の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で容量確認を行った後、60℃において、2Cの定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、300サイクル実施した。(300サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。
[Evaluation of cycle characteristics]
After confirming the capacity with a constant current corresponding to 0.2 C at 25 ° C. in a state where the lithium secondary battery is sandwiched between glass plates in order to improve the adhesion between the electrodes, a constant current of 2 C at 60 ° C. After charging, the process of discharging at a constant current of 2C was taken as one cycle, and 300 cycles were performed. The discharge capacity retention ratio was calculated from the formula of (discharge capacity at 300th cycle) ÷ (discharge capacity at the first cycle) × 100.
表6から明らかなように、本発明に係る非水系電解液を用いた電池(実施例16〜18)は、一般式(1)で表される化合物を含まない非水系電解液を用いた電池(比較例10)や一般式(1)で表される範囲に含まれない類似化合物を含有する非水系電解液を用いた電池(比較例9)と比較して、サイクル容量維持率に優れる。このように、一般式(1)で表される範囲に含まれる化合物であれば、どのような化合物を用いた場合であっても、サイクル容量維持率に優れることがわかる。
一方で、一般式(1)で表される化合物と同様に環外に多重結合性部位を有する化合物であっても、環外に炭素−炭素二重結合を有する化合物を用いた場合では(比較例9)、フッ素原子を有するカーボネートと併用した場合でも、耐久性向上効果は実施例16〜18と比較して大きく劣る。
この理由として、フッ素原子を有するカーボネートと一般式(1)で表される化合物を併用することにより、一般式(1)で表される化合物が形成する電極保護層にフッ素原子を有するカーボネートが取り込まれ、高度に架橋することで電極表面耐久性が著しく向上し、結果として上記のような特筆すべき電池耐久性能の向上が引き起こされると推測される。
As is clear from Table 6, the batteries (Examples 16 to 18) using the non-aqueous electrolyte according to the present invention are batteries using a non-aqueous electrolyte that does not contain the compound represented by the general formula (1). Compared to a battery (Comparative Example 9) using a non-aqueous electrolyte containing a similar compound not included in the range represented by (Comparative Example 10) or the general formula (1), the cycle capacity retention rate is excellent. Thus, as long as it is a compound contained in the range represented by General formula (1), it turns out that it is excellent in a cycle capacity | capacitance maintenance factor, no matter what compound is used.
On the other hand, even in the case of a compound having a multiple bond site outside the ring as in the compound represented by the general formula (1), when a compound having a carbon-carbon double bond outside the ring is used (comparison) Even when Example 9) and a carbonate having a fluorine atom are used in combination, the durability improvement effect is greatly inferior to Examples 16-18.
The reason for this is that when a carbonate having a fluorine atom and a compound represented by the general formula (1) are used in combination, the carbonate having a fluorine atom is taken into the electrode protective layer formed by the compound represented by the general formula (1). Therefore, it is presumed that the electrode surface durability is remarkably improved by highly crosslinking, and as a result, the above-mentioned remarkable battery durability performance is improved.
<実施例E>
[正極の作製]
正極活物質としてLi1.1(Ni0.45Mn0.45Co0.10)O2を85質量%と、導電材としてのアセチレンブラック10質量%と、結着材としてのポリフッ化ビニリデン5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、実施例19、20、及び比較例11〜13に用いる正極とした。
<Example E>
[Production of positive electrode]
85% by mass of Li 1.1 (Ni 0.45 Mn 0.45 Co 0.10 ) O 2 as a positive electrode active material, 10% by mass of acetylene black as a conductive material, and 5% by mass of polyvinylidene fluoride as a binder, N-methyl Mix in a pyrrolidone solvent to make a slurry. The obtained slurry was applied to a 15 μm-thick aluminum foil previously coated with a conductive additive, dried, and rolled with a press machine. The active material layer size was 30 mm wide, 40 mm long, and 5 mm wide. The positive electrode used in Examples 19 and 20 and Comparative Examples 11 to 13 was cut into a shape having an uncoated portion with a length of 9 mm.
[電解液の製造]
乾燥アルゴン雰囲気下、モノフルオロエチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合物(体積比30:30:40)に乾燥したLiPF6
を1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表7に記載の割合で、一般式(1)で表される化合物、或いはその他の化合物を混合し、実施例19、20、及び比較例11〜13に用いる電解液とした。
[Manufacture of electrolyte]
LiPF 6 dried in a mixture (volume ratio 30:30:40) of monofluoroethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate in a dry argon atmosphere
Was dissolved at a rate of 1 mol / L to prepare a basic electrolyte. The basic electrolyte solution is mixed with the compound represented by the general formula (1) or other compounds at the ratio shown in Table 7, and the electrolyte solution used in Examples 19 and 20 and Comparative Examples 11 to 13 is used. did.
[リチウム二次電池の製造]
上記正極並びに上記基本電解液を使用した以外、上記実施例と同様にしてシート状電池を作製した。
[Manufacture of lithium secondary batteries]
A sheet-like battery was produced in the same manner as in the above example except that the positive electrode and the basic electrolyte were used.
[サイクル特性の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で容量確認を行った後、60℃において、2Cの定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、300サイクル実施した。(300サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。
[Evaluation of cycle characteristics]
After confirming the capacity with a constant current corresponding to 0.2 C at 25 ° C. in a state where the lithium secondary battery is sandwiched between glass plates in order to improve the adhesion between the electrodes, a constant current of 2 C at 60 ° C. After charging, the process of discharging at a constant current of 2C was taken as one cycle, and 300 cycles were performed. The discharge capacity retention ratio was calculated from the formula of (discharge capacity at 300th cycle) ÷ (discharge capacity at the first cycle) × 100.
表7から明らかなように、本発明に係る非水系電解液を用いた電池(実施例19、20)は、本発明に係る非水系電解液でない非水系電解液を用いた電池(比較例11〜13)と比較して、サイクル容量維持率に優れる。このように、一般式(1)で表される化合物であれば、どのような化合物を用いてもサイクル容量維持率に優れることがわかる。一方で、環外に炭素−炭素二重結合を持つ化合物である比較例12や、環内に多重結合を持つ化合物である比較例11では、仮にフッ素原子を有するカーボネートと共に導入しても、耐久性向上効果は発現しない。
この理由としては、フッ素原子を有するカーボネートと一般式(1)で表される化合物を併用することにより、一般式(1)で表される化合物が形成する電極保護層にフッ素原
子を有するカーボネートが取り込まれ、高度に架橋することで電極表面耐久性が著しく向上し、結果として上記のような優れた電池耐久性能の向上効果が発揮されるが(実施例19、20)、一般式(1)で表される範囲に含まれない化合物を用いた場合では、電極保護層の安定性が低いためと推測される(比較例11、12)。
さらに、実施例<A>〜<D>と比較して電池電圧がさらにより高い状態であっても、本発明の効果は顕著に示されている。以上のことから、本発明に係る非水系電解液を用いると、如何なる電極設計であっても耐久性向上効果を発現することが分かる。
As is clear from Table 7, the batteries using the non-aqueous electrolyte solution according to the present invention (Examples 19 and 20) are the batteries using the non-aqueous electrolyte solution that is not the non-aqueous electrolyte solution according to the present invention (Comparative Example 11). Compared with ˜13), the cycle capacity retention rate is excellent. Thus, it can be seen that any compound represented by the general formula (1) is excellent in the cycle capacity retention rate regardless of which compound is used. On the other hand, in Comparative Example 12 which is a compound having a carbon-carbon double bond outside the ring and Comparative Example 11 which is a compound having a multiple bond in the ring, even if introduced together with a carbonate having a fluorine atom, it is durable. The effect of improving sex is not manifested.
The reason for this is that when a carbonate having a fluorine atom and a compound represented by the general formula (1) are used in combination, a carbonate having a fluorine atom is formed on the electrode protective layer formed by the compound represented by the general formula (1). Although the electrode surface durability is remarkably improved by being taken in and highly crosslinked, as a result, the effect of improving the excellent battery durability performance as described above is exhibited (Examples 19 and 20), but the general formula (1) In the case of using a compound that is not included in the range represented by the above, it is presumed that the stability of the electrode protective layer is low (Comparative Examples 11 and 12).
Furthermore, the effects of the present invention are remarkably shown even when the battery voltage is even higher than in Examples <A> to <D>. From the above, it can be seen that when the non-aqueous electrolyte solution according to the present invention is used, the durability improving effect is exhibited regardless of the electrode design.
<実施例F>
[正極の作製]
正極活物質としてLi1.05Ni0.5Mn1.5O2を90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、実施例21、22、及び比較例14に用いる正極とした。
<Example F>
[Production of positive electrode]
90% by mass of Li 1.05 Ni 0.5 Mn 1.5 O 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive material, and 5% by mass of polyvinylidene fluoride as a binder in an N-methylpyrrolidone solvent Mixed and slurried. The obtained slurry was applied to an aluminum foil having a thickness of 15 μm, dried, and rolled with a press. The active material layer was 30 mm in width, 40 mm in length, 5 mm in width, and 9 mm in length. It cut out in the shape which has a process part, and it was set as the positive electrode used for Examples 21, 22 and Comparative Example 14.
[電解液の製造]
乾燥アルゴン雰囲気下、トランス−4,5−ジフルオロエチレンカーボネートとビス(2,2,2−トリフルオロエチル)カーボネートとの混合物(体積比50:50、実施例31、32)、及びトランス−4,5−ジフルオロエチレンカーボネートとジエチルカーボネートとの混合物(体積比50:50、比較例20)にそれぞれ乾燥したLiPF6を1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表8に記載の割合で一般式(1)で表される化合物を混合し、実施例21、22、及び比較例14に用いる電解液とした。
[Manufacture of electrolyte]
Under a dry argon atmosphere, a mixture of trans-4,5-difluoroethylene carbonate and bis (2,2,2-trifluoroethyl) carbonate (volume ratio 50:50, Examples 31, 32), and trans-4, A basic electrolyte solution was prepared by dissolving LiPF 6 dried in a mixture of 5-difluoroethylene carbonate and diethyl carbonate (volume ratio 50:50, Comparative Example 20) to a ratio of 1 mol / L. The basic electrolyte solution was mixed with the compound represented by the general formula (1) at the ratio shown in Table 8 to obtain an electrolyte solution used in Examples 21, 22 and Comparative Example 14.
[リチウム二次電池の製造]
上記正極並びに上記電解液を使用した以外、上記実施例<A>と同様にしてシート状電池を作製した。
[Manufacture of lithium secondary batteries]
A sheet-like battery was produced in the same manner as in Example <A> except that the positive electrode and the electrolytic solution were used.
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.3Cに相当する定電流で慣らし運転を行った。慣らし運転を行った電池を、25℃において0.3Cに相当する定電流で充電した後、0.3Cに相当する定電流で放電を実施して初期放電容量を求めた。
[Evaluation of initial discharge capacity]
The lithium secondary battery was conditioned by a constant current corresponding to 0.3 C at 25 ° C. in a state where the lithium secondary battery was sandwiched between glass plates in order to enhance the adhesion between the electrodes. The battery that had been conditioned was charged at a constant current corresponding to 0.3 C at 25 ° C., and then discharged at a constant current corresponding to 0.3 C to determine the initial discharge capacity.
[高温保存特性の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.3Cに相当する定電流で容量確認を行った後、0.3Cに相当する定電流で充電し、60℃で72時間保存した。電池を室温まで冷却させた後、0.3Cに相当する定電流で放電して放電容量を求め、(保存後の放電容量)÷(保存前の放電容量)×100の計算式から、容量維持率を求めた。
[Evaluation of high-temperature storage characteristics]
After confirming the capacity with a constant current corresponding to 0.3 C at 25 ° C. in a state where the lithium secondary battery is sandwiched between glass plates in order to enhance the adhesion between the electrodes, a constant current corresponding to 0.3 C is obtained. And stored at 60 ° C. for 72 hours. After cooling the battery to room temperature, discharge at a constant current equivalent to 0.3 C to obtain the discharge capacity, and maintain the capacity from the formula of (discharge capacity after storage) ÷ (discharge capacity before storage) × 100 The rate was determined.
表8から明らかなように、本発明に係る非水系電解液を用いた電池(実施例21、22)は、一般式(1)で表される化合物を含有しない非水系電解液を用いた電池(比較例14)と比較して、高温保存後の容量維持率に優れる。すなわち、フッ素原子を有するカーボネートと一般式(1)で表される化合物を併用することにより、電池耐久性の向上効果が発現することが分かる。また、実施例<A>〜<E>と比較して特段、電池電圧が高い状態であっても、本発明の効果は顕著に示されている。以上のことから、本発明に係る非水系電解液を用いると、如何なる電極設計であっても耐久性向上効果を発現することが分かる。 As is clear from Table 8, the batteries using the non-aqueous electrolyte according to the present invention (Examples 21 and 22) are batteries using a non-aqueous electrolyte that does not contain the compound represented by the general formula (1). Compared to (Comparative Example 14), the capacity retention rate after high-temperature storage is excellent. That is, it can be seen that an effect of improving battery durability is exhibited by using a carbonate having a fluorine atom and the compound represented by the general formula (1) in combination. In addition, the effects of the present invention are remarkably exhibited even when the battery voltage is particularly high as compared with Examples <A> to <E>. From the above, it can be seen that when the non-aqueous electrolyte solution according to the present invention is used, the durability improving effect is exhibited regardless of the electrode design.
以上の実施例<A>〜<F>の結果から明らかなように、フッ素原子を有するカーボネートと一般式(1)で表される化合物を組み合わせることにより、電池耐久性は著しく向上することがわかる。特に、電池電圧が異なっていてもその効果は絶大であることから、幅広い電池構成に対して電池耐久性を向上させることが理解できる。また、フッ素原子を有するカーボネートと一般式(1)の化合物を選択する場合において、本発明で規定される範囲であれば、如何なる種類の組合せでも効果を発現することが示された。 As is clear from the results of the above Examples <A> to <F>, it can be seen that the battery durability is remarkably improved by combining the carbonate having a fluorine atom and the compound represented by the general formula (1). . In particular, even if the battery voltage is different, the effect is tremendous, and it can be understood that the battery durability is improved for a wide range of battery configurations. Moreover, when selecting the carbonate which has a fluorine atom, and the compound of General formula (1), if it was the range prescribed | regulated by this invention, it was shown that any kind of combination expresses an effect.
本発明の非水系電解液によれば、本発明の非水系電解液を用いた非水系電解液二次電池は、高温保存試験やサイクル試験といった耐久試験後においても、容量維持率が高く、入出力性能に優れており、有用である。そのため、本発明の非水系電解液及びこれを用いた非非水系電解液二次電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。 According to the non-aqueous electrolyte of the present invention, the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte of the present invention has a high capacity maintenance rate even after a durability test such as a high-temperature storage test or a cycle test. It has excellent output performance and is useful. Therefore, the non-aqueous electrolyte solution of the present invention and the non-non-aqueous electrolyte secondary battery using the same can be used for various known applications. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, etc. , Walkie Talkie, Electronic Notebook, Calculator, Memory Card, Portable Tape Recorder, Radio, Backup Power Supply, Motor, Automobile, Motorcycle, Motorbike, Bicycle, Lighting Equipment, Toy, Game Equipment, Clock, Electric Tool, Strobe, Camera, Load Examples include leveling power sources and natural energy storage power sources.
Claims (8)
とを特徴とする、請求項1〜4の何れか1項に記載の非水系電解液。 The non-aqueous electrolyte solution according to any one of claims 1 to 4, wherein the carbonate having a fluorine atom is contained in the non-aqueous electrolyte solution in an amount of less than 50% by mass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011171993A JP5948756B2 (en) | 2010-08-05 | 2011-08-05 | Non-aqueous electrolyte and non-aqueous electrolyte battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010176470 | 2010-08-05 | ||
JP2010176470 | 2010-08-05 | ||
JP2011171993A JP5948756B2 (en) | 2010-08-05 | 2011-08-05 | Non-aqueous electrolyte and non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012054231A true JP2012054231A (en) | 2012-03-15 |
JP5948756B2 JP5948756B2 (en) | 2016-07-06 |
Family
ID=45907309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011171993A Active JP5948756B2 (en) | 2010-08-05 | 2011-08-05 | Non-aqueous electrolyte and non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5948756B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367807A (en) * | 2012-03-27 | 2013-10-23 | Tdk株式会社 | Nonaqueous electrolytic solution and lithium ion secondary battery |
EP2768066A1 (en) * | 2012-11-26 | 2014-08-20 | Huawei Technologies Co., Ltd. | Nonaqueous organic electrolyte additive and preparation method thereof, nonaqueous organic electrolyte, and lithium ion secondary battery |
WO2018139288A1 (en) * | 2017-01-30 | 2018-08-02 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte secondary battery |
CN115799638A (en) * | 2022-12-16 | 2023-03-14 | 苏州祺添新材料有限公司 | Electrolyte additive composition of lithium ion battery, electrolyte containing additive composition and application of electrolyte |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003132946A (en) * | 2001-10-24 | 2003-05-09 | Mitsui Chemicals Inc | Nonaqueous electrolytic solution and secondary battery using the same |
JP2005235591A (en) * | 2004-02-19 | 2005-09-02 | Mitsui Chemicals Inc | Nonaqueous electrolyte and lithium secondary battery |
JP2007019011A (en) * | 2005-06-10 | 2007-01-25 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery |
JP2007042329A (en) * | 2005-08-01 | 2007-02-15 | Mitsui Chemicals Inc | Lithium secondary battery |
WO2007043526A1 (en) * | 2005-10-12 | 2007-04-19 | Mitsui Chemicals, Inc. | Nonaqueous electrolyte solution and lithium secondary battery using same |
JP2007242496A (en) * | 2006-03-10 | 2007-09-20 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2010118356A (en) * | 2005-01-20 | 2010-05-27 | Ube Ind Ltd | Nonaqueous electrolyte and lithium secondary battery using the same |
-
2011
- 2011-08-05 JP JP2011171993A patent/JP5948756B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003132946A (en) * | 2001-10-24 | 2003-05-09 | Mitsui Chemicals Inc | Nonaqueous electrolytic solution and secondary battery using the same |
JP2005235591A (en) * | 2004-02-19 | 2005-09-02 | Mitsui Chemicals Inc | Nonaqueous electrolyte and lithium secondary battery |
JP2010118356A (en) * | 2005-01-20 | 2010-05-27 | Ube Ind Ltd | Nonaqueous electrolyte and lithium secondary battery using the same |
JP2007019011A (en) * | 2005-06-10 | 2007-01-25 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery |
JP2007042329A (en) * | 2005-08-01 | 2007-02-15 | Mitsui Chemicals Inc | Lithium secondary battery |
WO2007043526A1 (en) * | 2005-10-12 | 2007-04-19 | Mitsui Chemicals, Inc. | Nonaqueous electrolyte solution and lithium secondary battery using same |
JP2007242496A (en) * | 2006-03-10 | 2007-09-20 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367807A (en) * | 2012-03-27 | 2013-10-23 | Tdk株式会社 | Nonaqueous electrolytic solution and lithium ion secondary battery |
JP2013229307A (en) * | 2012-03-27 | 2013-11-07 | Tdk Corp | Nonaqueous electrolyte solution and lithium ion secondary battery |
US9601808B2 (en) | 2012-03-27 | 2017-03-21 | Tdk Corporation | Nonaqueous electrolytic solution containing glycol sulfate derivative and fluoroethylene carbonate and lithium ion secondary battery containing the same |
EP2768066A1 (en) * | 2012-11-26 | 2014-08-20 | Huawei Technologies Co., Ltd. | Nonaqueous organic electrolyte additive and preparation method thereof, nonaqueous organic electrolyte, and lithium ion secondary battery |
EP2768066A4 (en) * | 2012-11-26 | 2014-12-24 | Huawei Tech Co Ltd | Nonaqueous organic electrolyte additive and preparation method thereof, nonaqueous organic electrolyte, and lithium ion secondary battery |
WO2018139288A1 (en) * | 2017-01-30 | 2018-08-02 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte secondary battery |
CN109891658A (en) * | 2017-01-30 | 2019-06-14 | 松下知识产权经营株式会社 | Non-aqueous electrolyte secondary battery |
JPWO2018139288A1 (en) * | 2017-01-30 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte secondary battery |
JP6990878B2 (en) | 2017-01-30 | 2022-02-03 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
CN115799638A (en) * | 2022-12-16 | 2023-03-14 | 苏州祺添新材料有限公司 | Electrolyte additive composition of lithium ion battery, electrolyte containing additive composition and application of electrolyte |
CN115799638B (en) * | 2022-12-16 | 2024-02-27 | 苏州祺添新材料股份有限公司 | Electrolyte additive composition of lithium ion battery, electrolyte containing additive composition and application of electrolyte |
WO2024124903A1 (en) * | 2022-12-16 | 2024-06-20 | 苏州祺添新材料股份有限公司 | Electrolyte additive composition of lithium-ion battery, electrolyte containing additive composition, and use of electrolyte |
Also Published As
Publication number | Publication date |
---|---|
JP5948756B2 (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6485485B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
KR101930558B1 (en) | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery | |
JP6128242B2 (en) | Non-aqueous electrolyte additive | |
KR101837785B1 (en) | Nonaqueous-electrolyte secondary battery | |
JP6036298B2 (en) | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte battery using the same | |
WO2012035821A1 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery | |
JP5799752B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2014086221A (en) | Nonaqueous electrolyte secondary battery | |
JP5948756B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
JP5842379B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6221201B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP5664056B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
JP5857434B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
JP5948755B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
JP5760665B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
JP6003036B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5760809B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
JP6221632B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
JP6311465B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same | |
JP6233014B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same | |
JP2012089413A (en) | Nonaqueous electrolyte battery | |
JP2012089412A (en) | Sealed nonaqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160523 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5948756 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |