Nothing Special   »   [go: up one dir, main page]

JP2012051393A - Rolling bearing unit for supporting wheel - Google Patents

Rolling bearing unit for supporting wheel Download PDF

Info

Publication number
JP2012051393A
JP2012051393A JP2010193117A JP2010193117A JP2012051393A JP 2012051393 A JP2012051393 A JP 2012051393A JP 2010193117 A JP2010193117 A JP 2010193117A JP 2010193117 A JP2010193117 A JP 2010193117A JP 2012051393 A JP2012051393 A JP 2012051393A
Authority
JP
Japan
Prior art keywords
ring member
axial
outer diameter
diameter
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010193117A
Other languages
Japanese (ja)
Inventor
Hiroo Ishikawa
寛朗 石川
Matsu Setsu
松 薛
Toru Takehara
徹 竹原
Tatsuo Wakabayashi
達男 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010193117A priority Critical patent/JP2012051393A/en
Publication of JP2012051393A publication Critical patent/JP2012051393A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Rolling Contact Bearings (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a structure capable of keeping, in a high dimension, both of: the decrease in weight of an outer diameter side orbital ring member 3b and the securement of the strength and rigidity of a base end part of a rotational flange 12; and the securement of the form accuracy and dimensional accuracy of respective fitting holes 15a.SOLUTION: A radial-direction inner end part of the axial-direction inner side surface of the rotational flange 12 and an axial-direction outer end part of a recessed part 17 formed in an outer peripheral surface of the outer diameter side orbital ring member 3b are smoothly continued by a recessed and curved surface 19b having a cross sectional arc shape. The diameter D of the outer peripheral edge of the recessed and curved surface 19b is specified to be a diameter R of an inscribed circle of the respective fitting holes 15a or below. Reinforcing ribs 25 are respectively provided in positions sandwiching the fitting holes 15a and 15a from both sides in the circumferential direction, in a part between the radial-direction inner end part of the axial-direction inner side surface of the rotational flange 12 and the axial-direction outer end part of the recessed part 17 of the outer peripheral surface of the outer diameter side orbital ring member 3b.

Description

この発明は、自動車の車輪を懸架装置に対して回転自在に支持する為の車輪支持用転がり軸受ユニットであって、内径側軌道輪部材が回転せずに外径側軌道輪部材が回転する、所謂外輪回転型に関して、この外径側軌道輪部材の軽量化を意図した構造の改良に関する。具体的には、外径側軌道輪部材の軽量化と、この外径側軌道輪部材に車輪を支持する為の回転フランジの基端部の強度及び剛性の確保と、この回転フランジに形成する取付孔の形状精度及び寸法精度の確保とを、高次元で並立できる構造の実現を可能にするものである。   This invention is a wheel support rolling bearing unit for rotatably supporting a vehicle wheel with respect to a suspension device, and the outer diameter side race ring member rotates without rotating the inner diameter side race ring member. With respect to the so-called outer ring rotating type, the present invention relates to an improvement in the structure intended to reduce the weight of the outer diameter side race ring member. Specifically, the outer diameter side race ring member is reduced in weight, the strength and rigidity of the base end portion of the rotary flange for supporting the wheel on the outer diameter side race ring member are secured, and the rotary flange is formed on the rotary flange. It is possible to realize a structure that can secure the shape accuracy and dimensional accuracy of the mounting hole in a high dimension.

外輪回転型の車輪支持用転がり軸受ユニットは、懸架装置への取付部の構造を内輪回転型のものに比べて簡単にできる為、一部の自動車で、従動輪(FF車の後輪、FR車及びMR車の前輪)支持用の転がり軸受ユニットとして使用されている。但し、内径側軌道輪部材に比べて直径が大きな外径側軌道輪部材を回転させる為、慣性モーメントが大きくなり、加速性能を中心とする走行性能や燃費性能を確保する面から、内輪回転型の車輪支持用転がり軸受ユニットに比べて不利になる。この様な不利を低減乃至解消する為には、前記外径側軌道輪部材を軽量化する事が効果的である。   The outer ring rotating type rolling bearing unit for supporting the wheel can make the structure of the mounting part to the suspension device easier than that of the inner ring rotating type, so in some automobiles, the driven wheel (rear wheel of FF vehicle, FR It is used as a rolling bearing unit for supporting the front wheels of cars and MR cars. However, because the outer diameter side race ring member having a larger diameter than the inner diameter side race ring member is rotated, the moment of inertia is increased, and from the aspect of ensuring driving performance and fuel efficiency performance centering on acceleration performance, the inner ring rotation type This is disadvantageous compared to the rolling bearing unit for supporting wheels. In order to reduce or eliminate such disadvantages, it is effective to reduce the weight of the outer diameter side race ring member.

車輪支持用転がり軸受ユニットとして必要な性能を確保しつつ、前記外径側軌道輪部材を軽量化するには、次の(1)〜(3)の様な構成を採用する事が効果がある。
(1) 内径側軌道輪部材の外周面と前記外径側軌道輪部材の内周面との間に複列に配置した転動体のうち、軸方向外側(軸方向に関して外とは、車両への組み付け状態で幅方向外側となる側を言う)の列の転動体のピッチ円直径を、軸方向内側(軸方向に関して内とは、車両への組み付け状態で幅方向中央となる側を言う)の列の転動体のピッチ円直径よりも小さくする。
(2) 前記外径側軌道輪部材の軸方向中間部の外径を、同じく軸方向内端寄り部分の外径よりも小さくする。
(3) 前記外径側軌道輪部材に対して車輪を支持固定する為、この外径側軌道輪部材の外周面に設けた回転フランジの軸方向に関する厚さを、必要部分で厚く、それ以外の部分で薄くする。
In order to reduce the weight of the outer diameter raceway ring member while ensuring the necessary performance as a wheel bearing rolling bearing unit, it is effective to adopt the following configurations (1) to (3) .
(1) Of the rolling elements arranged in a double row between the outer peripheral surface of the inner diameter side race ring member and the inner peripheral surface of the outer diameter side race ring member, the outer side in the axial direction The pitch circle diameter of the rolling elements in the row of the row in the assembled state is the inner side in the axial direction (inner with respect to the axial direction means the side that is the center in the width direction when assembled to the vehicle) It is made smaller than the pitch circle diameter of the rolling elements in the row.
(2) The outer diameter of the intermediate portion in the axial direction of the outer diameter side race ring member is also made smaller than the outer diameter of the portion near the inner end in the axial direction.
(3) In order to support and fix the wheel to the outer diameter side race ring member, the thickness in the axial direction of the rotary flange provided on the outer peripheral surface of the outer diameter side race ring member is thick at the necessary portion, and the others Thin the part.

これら(1)〜(3)に示した構成のうち、(1)(2)に関しては、例えば特許文献1に記載されている。
前記(1)の様に、前記軸方向外側の列の転動体のピッチ円直径を小さくする事により、前記外径側軌道輪部材に車輪を結合固定する為、この外径側軌道輪部材の外周面に設けた回転フランジの直径を適正に保てる(過大になる事を防止できる)。又、前記軸方向内側の列の転動体のピッチ円直径を大きくする事により、前記車輪支持用転がり軸受ユニットのモーメント剛性を確保し、この車輪支持用転がり軸受ユニットを組み込んだ車両の走行安定性の確保と、この車輪支持用転がり軸受ユニットの耐久性の確保とを図れる。
又、前記(2)の様に、前記外径側軌道輪部材の軸方向中間部の外径を、軸方向内端寄り部分の外径よりも小さくする事で、この外径側軌道輪部材の径方向に関する厚さが過大になる事を防止できて、前記外径側軌道輪部材の軽量化を図れる。
更に、前記(3)の構成に関しては、例えば特許文献2に記載されている。比較的大きな外径を有し、しかも円板状である前記回転フランジの厚さを、必要部分でのみ厚くする事により、この回転フランジを含む、前記外径側軌道輪部材の軽量化を図れる。
Of these configurations shown in (1) to (3), (1) and (2) are described in Patent Document 1, for example.
As described in (1) above, by reducing the pitch circle diameter of the rolling elements in the outer row in the axial direction, the wheel is coupled and fixed to the outer diameter side race ring member. The diameter of the rotating flange provided on the outer peripheral surface can be kept appropriate (can be prevented from becoming excessive). Further, by increasing the pitch circle diameter of the rolling elements in the inner row in the axial direction, the moment rigidity of the rolling bearing unit for wheel support is ensured, and the running stability of a vehicle incorporating the rolling bearing unit for wheel support is secured. And durability of the wheel bearing rolling bearing unit can be ensured.
Further, as described in (2) above, the outer diameter side race ring member is made smaller than the outer diameter of the axially intermediate portion of the outer diameter side race ring member than the outer diameter of the portion near the inner end in the axial direction. The thickness in the radial direction can be prevented from becoming excessive, and the outer diameter side race ring member can be reduced in weight.
Further, the configuration (3) is described in Patent Document 2, for example. By reducing the thickness of the rotating flange having a relatively large outer diameter and a disk shape only at a necessary portion, the outer diameter side race ring member including the rotating flange can be reduced in weight. .

図6〜8は、上述した(1)〜(3)の様な構成を備えた、従前の車輪支持用転がり軸受ユニットの1例を示している。この車輪支持用転がり軸受ユニット1は、内径側軌道輪部材2と、外径側軌道輪部材3と、それぞれが転動体である複数個の玉4a、4bとを備える。
このうちの内径側軌道輪部材2は、主部5と、この主部5の軸方向外端部に外嵌した内輪素子6とを、かしめ部7により結合固定して成る。これら主部5及び内輪素子6は、何れも中炭素鋼(主部5の場合)、軸受鋼(内輪素子6の場合)等の、焼き入れ硬化可能な鉄系合金製で、それぞれの外周面に内輪軌道8a、8bを形成している。これら両内輪軌道8a、8bのうち、前記内輪素子6の外周面に形成した、軸方向に関して外側列の内輪軌道8aの外径よりも、前記主部5の中間部軸方向内側寄り部分の外周面に形成した、内側列の内輪軌道8bの外径が大きい。更に、前記主部5の内周面に、この内周面から径方向内方に突出する状態で静止フランジ9を設け、この静止フランジ9の円周方向複数箇所(図示の例では4箇所)に、ねじ孔10、10を設けている。使用状態でこの様な内径側軌道輪部材2は、ナックル等の懸架装置の構成部材側に形成した通孔を挿通したボルトを前記各ねじ孔10、10に螺合し更に締め付ける事により、前記懸架装置に支持固定されて回転しない。
FIGS. 6-8 has shown an example of the conventional rolling bearing unit for wheel support provided with the structure like said (1)-(3). The wheel support rolling bearing unit 1 includes an inner diameter side race ring member 2, an outer diameter side race ring member 3, and a plurality of balls 4a and 4b, each of which is a rolling element.
Of these, the inner diameter side race ring member 2 is formed by coupling and fixing a main portion 5 and an inner ring element 6 fitted on the outer end in the axial direction of the main portion 5 by a caulking portion 7. The main part 5 and the inner ring element 6 are each made of an iron-based alloy such as medium carbon steel (in the case of the main part 5) and bearing steel (in the case of the inner ring element 6) that can be hardened by hardening. Inner ring raceways 8a and 8b are formed in the inner ring. Out of these inner ring raceways 8a and 8b, the outer circumference of the inner portion of the main portion 5 that is closer to the inner side in the axial direction than the outer diameter of the inner ring raceway 8a in the outer row in the axial direction formed on the outer circumferential surface of the inner ring element 6. The outer diameter of the inner ring raceway 8b in the inner row formed on the surface is large. Further, stationary flanges 9 are provided on the inner peripheral surface of the main portion 5 so as to protrude radially inward from the inner peripheral surface, and a plurality of circumferential positions of the stationary flange 9 (four in the illustrated example). Are provided with screw holes 10 and 10. In the state of use, such an inner diameter side raceway ring member 2 is screwed into the screw holes 10 and 10 with bolts through which through holes formed on a component member side of a suspension device such as a knuckle, and further tightened. It is supported and fixed to the suspension system and does not rotate.

又、前記外径側軌道輪部材3は、中炭素鋼等の、焼き入れ硬化可能な鉄系合金製で、前記内径側軌道輪部材2の周囲に、この内径側軌道輪部材2と同心に配置されている。この様な外径側軌道輪部材3には、内周面の一部で前記両内輪軌道8a、8bに対向する部分に複列の外輪軌道11a、11bを、外周面の軸方向外寄り部分に回転フランジ12を、それぞれ有する。これら両外輪軌道11a、11bの内径は、前記両内輪軌道8a、8bの外径に合わせて、軸方向外側列の外輪軌道11aの内径が、同じく軸方向内側列の外輪軌道11bの内径よりも小さい。又、前記回転フランジ12は、車輪及び制動用回転体(ディスク或いはドラム)を支持する為の軸方向外側面を平坦面とする代わりに、軸方向内側面を凹凸形状とし、厚肉部13、13と薄肉部14、14とを、円周方向に関して交互に配置している。そして、このうちの厚肉部13、13に、前記回転フランジ12に車輪を結合固定する為の結合部材を装着する取付孔15、15を、この回転フランジ12を軸方向に貫通する状態で設けている。尚、これら各取付孔15、15は、前記結合部材としてボルトを使用する場合には、このボルトの雄ねじ部を螺合させる為のねじ孔とし、スタッドを使用する場合には、このスタッドの基端部を締り嵌めで嵌合(圧入によりセレーション係合)させる為の通孔とする。何れにしても、前記各取付孔15、15は互いに同径で、それぞれの中心は、前記外径側軌道輪部材3と同心の単一円周上に、円周方向に関して等間隔に存在する。   Further, the outer diameter side race ring member 3 is made of an iron-based alloy such as medium carbon steel that can be hardened by hardening, and is concentric with the inner diameter side race ring member 2 around the inner diameter side race ring member 2. Has been placed. In such an outer diameter side race ring member 3, double row outer ring raceways 11a and 11b are arranged on a part of the inner circumference surface facing both the inner ring raceways 8a and 8b, and an axially outer portion of the outer circumference surface. Each has a rotating flange 12. The inner diameters of these outer ring raceways 11a and 11b are matched with the outer diameters of both inner ring raceways 8a and 8b, so that the inner diameter of the outer ring raceway 11a in the axially outer row is larger than the inner diameter of the outer ring raceway 11b in the same axially inner row. small. Further, the rotating flange 12 has an uneven inner surface in the axial direction instead of a flat outer surface in the axial direction for supporting the wheel and the brake rotating body (disk or drum), 13 and thin portions 14 and 14 are alternately arranged in the circumferential direction. Of these, thick holes 13 and 13 are provided with mounting holes 15 and 15 for mounting a coupling member for coupling and fixing a wheel to the rotary flange 12 in a state of passing through the rotary flange 12 in the axial direction. ing. Each of the mounting holes 15 and 15 is a screw hole for screwing the male screw portion of the bolt when a bolt is used as the coupling member, and when the stud is used, the base of the stud is used. It is a through-hole for fitting the end part by interference fitting (serration engagement by press fitting). In any case, the mounting holes 15 and 15 have the same diameter, and the centers thereof exist on the single circumference concentric with the outer diameter side race ring member 3 at equal intervals in the circumferential direction. .

上述の様な外径側軌道輪部材3は、その使用状態で、前記回転フランジ12に結合固定した車輪と共に回転する。又、前記各薄肉部14、14には、軽量化の為の透孔16、16を形成している。又、前記外径側軌道輪部材3の外径を、前記軸方向内側の外輪軌道11bの周囲部分よりも、この周囲部分と前記回転フランジ12との間部分で小さくしている。即ち、この間部分を、軸方向の両側部分よりも外径が小さくなった、凹入部(アンダカット部)17としている。この凹入部17を設ける事により、前記外径側軌道輪部材3の軸方向中間部の径方向に関する厚さが過大になる事を防止して、この外径側軌道輪部材3の軽量化を図っている。尚、前記凹入部17の軸方向両端部は、それぞれ隣接する面と、曲面により連続させている。先ず、この凹入部17の軸方向外端部は前記回転フランジ12の軸方向内側面と、断面形状が四分の一円弧状の凹曲面19により、滑らかに連続させている。又、前記凹入部17の軸方向内端部は、前記外径側軌道輪部材3の外周面のうちで、前記内側列の外輪軌道11bの周囲部分と、断面円弧状の凹曲面20により連続させている。尚、これら両凹曲面19、20は、前記外径側軌道輪部材3の中心軸を含む仮想平面に関する断面形状が凹んでいるが、この中心軸に直交する仮想平面に関する断面形状が凸円弧である事は勿論である。   The outer diameter side race ring member 3 as described above rotates together with the wheel coupled and fixed to the rotary flange 12 in the state of use. The thin portions 14 and 14 are formed with through holes 16 and 16 for weight reduction. Further, the outer diameter of the outer diameter side raceway ring member 3 is made smaller between the peripheral part and the rotary flange 12 than the peripheral part of the outer ring raceway 11b on the inner side in the axial direction. That is, the portion between these is a recessed portion (undercut portion) 17 having an outer diameter smaller than both axial side portions. By providing the recessed portion 17, it is possible to prevent the thickness in the radial direction of the axially intermediate portion of the outer diameter side race ring member 3 from becoming excessive, and to reduce the weight of the outer diameter side race ring member 3. I am trying. Note that both end portions in the axial direction of the recessed portion 17 are continuous with adjacent surfaces and curved surfaces. First, the outer end portion in the axial direction of the recessed portion 17 is smoothly continued by the inner surface in the axial direction of the rotary flange 12 and the concave curved surface 19 whose sectional shape is a quarter arc. Further, the axially inner end portion of the recessed portion 17 is continuous by a peripheral portion of the outer ring raceway 11b in the inner row and a concave curved surface 20 having a circular arc section in the outer peripheral surface of the outer diameter side raceway ring member 3. I am letting. The biconcave curved surfaces 19 and 20 have a concave cross-sectional shape with respect to the virtual plane including the central axis of the outer diameter side race ring member 3, but the cross-sectional shape with respect to the virtual plane orthogonal to the central axis is a convex arc. Of course there are.

又、前記各玉4a、4bは、前記両内輪軌道8a、8bと前記両外輪軌道11a、11bとの間に、両列毎に複数個ずつ、それぞれ保持器18a、18bに保持された状態で、転動自在に設けられている。前記各軌道8a、8b、11a、11bの径の相違に伴って、外側列の玉4a、4aのピッチ円直径PCDOは、内側列の玉4b、4bのピッチ円直径PCDIよりも小さい(PCDO<PCDI)。
更に、前記各玉4a、4bを設置した内部空間21の両端開口のうち、軸方向外端側を略有底円筒状のキャップ22により、軸方向内端側を、組み合わせシールリング等のシールリング23により、それぞれ塞いでいる。
The balls 4a and 4b are held in the cages 18a and 18b, respectively, in plural numbers for each row between the inner ring raceways 8a and 8b and the outer ring raceways 11a and 11b. It is provided so that it can roll freely. With the difference in diameter of each of the tracks 8a, 8b, 11a, 11b, the pitch circle diameter PCD O of the balls 4a, 4a in the outer row is smaller than the pitch circle diameter PCD I of the balls 4b, 4b in the inner row ( PCD O <PCD I ).
Further, among the openings at both ends of the internal space 21 where the balls 4a and 4b are installed, the axially outer end side is provided with a substantially bottomed cylindrical cap 22, and the axially inner end side thereof is a seal ring such as a combination seal ring. 23, respectively.

上述の様な車輪支持用転がり軸受ユニット1は、前述の(1)〜(3)の様な構成を総て備えている為、車輪支持用転がり軸受ユニット1として必要な性能を確保しつつ、前記外径側軌道輪部材3の軽量化を図り易い。但し、これら性能の確保と軽量化とを、より一層高いレベルで両立させる為には、前記回転フランジ12に加わるモーメントに対する、この回転フランジ12の内径側端部と前記外径側軌道輪部材3の本体部分との連続部の強度及び剛性を確保しつつ、前記回転フランジ12の薄肉化を図る必要がある。この為には、次の様な問題がある。以下、この点に就いて説明する。   Since the wheel support rolling bearing unit 1 as described above has all of the above-described configurations (1) to (3), while ensuring the necessary performance as the wheel support rolling bearing unit 1, It is easy to reduce the weight of the outer diameter side race ring member 3. However, in order to achieve both performance and weight reduction at a higher level, the inner diameter side end of the rotating flange 12 and the outer diameter side race ring member 3 with respect to the moment applied to the rotating flange 12 are used. It is necessary to reduce the thickness of the rotating flange 12 while ensuring the strength and rigidity of the continuous portion with the main body portion. For this purpose, there are the following problems. Hereinafter, this point will be described.

前記回転フランジ12の円周方向複数箇所に形成する、前記各取付孔15、15の径方向位置(これら各取付孔15、15のピッチ円直径)は、前記回転フランジ12に結合固定すべき車輪(ホイール)との関係で、或る程度規制される。又、前記各取付孔15、15の内径は、これら各取付孔15、15に組み付けるべき、前記各結合部材の外径との関係で規制される。又、これら各結合部材の外径は、前記回転フランジ12と前記車輪との結合強度を確保する面から規制される。即ち、前記各取付孔15、15のピッチ円直径及びそれぞれの内径は、前記車輪支持用転がり軸受ユニット1を装着すべき車両が決まればほぼ決定され、設計の自由度は極めて限られる。   The radial positions of the mounting holes 15, 15 formed at a plurality of locations in the circumferential direction of the rotating flange 12 (the pitch circle diameters of the mounting holes 15, 15) are wheels to be coupled and fixed to the rotating flange 12. It is regulated to some extent in relation to (wheel). Further, the inner diameters of the mounting holes 15 and 15 are regulated in relation to the outer diameters of the coupling members to be assembled in the mounting holes 15 and 15. Moreover, the outer diameter of each of these coupling members is restricted from the aspect of securing the coupling strength between the rotating flange 12 and the wheel. That is, the pitch circle diameter and the inner diameter of each of the mounting holes 15, 15 are almost determined if the vehicle to which the wheel bearing rolling bearing unit 1 is to be mounted is determined, and the degree of freedom in design is extremely limited.

一方、前記回転フランジ12には、車両の旋回走行に伴って、車輪(タイヤ)の接地面を入力部とする大きなモーメントが加わり、このモーメントを、前記回転フランジ12の内径側端部と前記外径側軌道輪部材3の本体部分との連続部で支承する必要が生じる。従って、この連続部の曲げ強度及び曲げ剛性を十分に高くする必要がある。図6〜8に示した従前の構造の場合には、前記凹入部17の軸方向外端部と前記回転フランジ12の軸方向内側面とを連続させる凹曲面19の曲率半径を大きくする事により、前記連続部の強度及び剛性を確保する様にしている。即ち、この曲率半径が小さいと、前記モーメントにより前記連続部に大きな応力が加わり易くなる。この為、前記車輪支持用転がり軸受ユニット1の信頼性及び耐久性の確保を考慮した場合、前記回転フランジ12の薄肉化による、前記外径側軌道輪部材3の軽量化は限られてしまう。そこで、前記凹曲面19の曲率半径を大きくする事により、前記信頼性及び耐久性の確保と前記薄肉化との両立を図っている。   On the other hand, with the turning of the vehicle, a large moment is applied to the rotating flange 12 with the ground contact surface of the wheel (tire) as an input portion, and this moment is applied to the inner end of the rotating flange 12 and the outer end. It is necessary to support the radial side race ring member 3 at a continuous portion with the main body portion. Therefore, it is necessary to sufficiently increase the bending strength and bending rigidity of the continuous portion. In the case of the conventional structure shown in FIGS. 6 to 8, by increasing the radius of curvature of the concave curved surface 19 that connects the axially outer end portion of the concave portion 17 and the axially inner side surface of the rotary flange 12. The strength and rigidity of the continuous portion are ensured. That is, when the radius of curvature is small, a large stress is easily applied to the continuous portion by the moment. For this reason, when ensuring the reliability and durability of the wheel support rolling bearing unit 1, the weight reduction of the outer diameter side race ring member 3 due to the thinning of the rotating flange 12 is limited. Thus, by increasing the radius of curvature of the concave curved surface 19, the reliability and durability are ensured and the thickness is reduced.

ところが、前記凹曲面19の曲率半径を大きくすると、図7に示す様に、前記各取付孔15、15の一部(前記回転フランジ12の径方向に関して内端寄り部分)が、前記凹曲面19の一部に開口する状態となる。この結果、前記各取付孔15、15の内周面の軸方向長さが、この内周面の全周に亙って均一にならず、前記回転フランジ12の径方向に関して内端寄り部分で、他の部分よりも長くなってしまう。前記各取付孔15、15は、ドリル、リーマ、タップ、転造タップ等の切削工具若しくはねじ加工工具により形成するが、上述の様にこれら各取付孔15、15の内周面の軸方向長さが不均一であると、加工の途中で前記切削工具若しくはねじ加工工具に曲げ方向の力が加わり易い。この結果、得られる前記各取付孔15、15の寸法精度及び形状精度の確保が難しくなるだけでなく、前記切削工具の耐久性確保も難しくなる。切削工具の耐久性低下は、前記外径側軌道輪部材3を含む、前記車輪支持用転がり軸受ユニット1の製造コストの上昇に結び付く。更に、前記各結合部材が、基板部に鍔部を備えたスタッドの場合には、この鍔部との干渉を防止する為、前記凹面部19の一部を削り取る面倒もある。   However, when the radius of curvature of the concave curved surface 19 is increased, as shown in FIG. 7, a part of each of the mounting holes 15, 15 (a portion closer to the inner end with respect to the radial direction of the rotating flange 12) becomes the concave curved surface 19. It will be in the state opened to a part of. As a result, the axial length of the inner peripheral surface of each of the mounting holes 15, 15 is not uniform over the entire circumference of the inner peripheral surface, and at the portion near the inner end with respect to the radial direction of the rotary flange 12. , It will be longer than the other parts. Each of the mounting holes 15 and 15 is formed by a cutting tool or a screw machining tool such as a drill, a reamer, a tap, or a rolling tap. As described above, the axial length of the inner peripheral surface of each of the mounting holes 15 and 15 is set. If the thickness is not uniform, a force in the bending direction is likely to be applied to the cutting tool or the screw machining tool during the machining. As a result, it is difficult not only to ensure the dimensional accuracy and shape accuracy of the obtained mounting holes 15, 15, but also to ensure the durability of the cutting tool. The reduction in the durability of the cutting tool leads to an increase in the manufacturing cost of the wheel support rolling bearing unit 1 including the outer diameter side race ring member 3. Further, in the case where each of the coupling members is a stud provided with a flange portion on the base plate portion, in order to prevent interference with the flange portion, there is a troublesome part of scraping off the concave surface portion 19.

回転フランジの内径側端部と外径側軌道輪部材の本体部分との連続部の強度及び剛性を確保し、しかも各取付孔の軸方向寸法を、これら各取付孔の全周に亙り均一にできる構造として従来から、特許文献3〜5に記載された構造が知られている。図9〜10は、このうちの特許文献4に記載された、従来構造の1例を示している。この従来構造の場合、部分円すい筒状の補強部材24の大径側端部を回転フランジ12の外周縁部に、同じく小径側端部を外径側軌道輪部材3aの外周面でこの回転フランジ12よりも軸方向内方寄り部分に、それぞれ溶接により接合固定している。この様な図9〜10に示した車輪支持用転がり軸受ユニット1aの使用時に、旋回走行に伴って前記回転フランジ12にモーメントが加わると、前記補強部材24がこのモーメントを支承して、この回転フランジ12が前記外径側軌道輪部材3aの本体部分に対し曲がる事を抑える。この為、この外径側軌道輪部材3aを薄肉化し、しかも、凹入部17aの軸方向外端部と前記回転フランジ12の軸方向内側面とを連続させる凹曲面19aの曲率半径を小さくできる。そして、各取付孔15aの軸方向寸法を、これら各取付孔15aの全周に亙り均一にできて、これら各取付孔15aの精度確保と切削工具若しくはねじ加工工具の耐久性確保とを図れる。   Ensuring the strength and rigidity of the continuous part between the inner diameter side end of the rotating flange and the main body part of the outer diameter side race ring member, and the axial dimension of each mounting hole is uniform over the entire circumference of each mounting hole Conventionally, the structures described in Patent Documents 3 to 5 are known as possible structures. 9 to 10 show an example of a conventional structure described in Patent Document 4 among them. In the case of this conventional structure, the large-diameter-side end of the partially conical cylindrical reinforcing member 24 is the outer peripheral edge of the rotary flange 12, and the small-diameter-side end is the outer flange of the outer-diameter-side race ring member 3a. Each of them is fixedly joined by welding to a portion closer to the axially inner side than 12. When the wheel support rolling bearing unit 1a shown in FIGS. 9 to 10 is used, if a moment is applied to the rotary flange 12 as the vehicle turns, the reinforcing member 24 supports the moment and rotates the rotation. It suppresses that the flange 12 bends with respect to the main-body part of the said outer diameter side bearing ring member 3a. For this reason, the outer diameter side race ring member 3a can be made thin, and the radius of curvature of the concave curved surface 19a that connects the axially outer end portion of the concave portion 17a and the axially inner side surface of the rotary flange 12 can be reduced. Further, the axial dimensions of the mounting holes 15a can be made uniform over the entire circumference of the mounting holes 15a, so that the accuracy of the mounting holes 15a and the durability of the cutting tool or screw machining tool can be ensured.

但し、上述の図9〜10に示した従来構造の場合、前記補強部材24を設ける為、この補強部材24の加工コスト、部品管理コスト、組み付けコストが嵩む。しかも、前記補強部材24を前記外径側軌道輪部材3aに溶接固定するのに伴って、前記回転フランジ12の平面度が悪化したり、内側列の外輪軌道11bの硬度が低下し、この外輪軌道11bの転がり疲れ寿命が低下する可能性がある。   However, in the case of the conventional structure shown in FIGS. 9 to 10 described above, since the reinforcing member 24 is provided, the processing cost, parts management cost, and assembly cost of the reinforcing member 24 increase. Moreover, as the reinforcing member 24 is welded and fixed to the outer diameter side raceway ring member 3a, the flatness of the rotary flange 12 is deteriorated, or the hardness of the outer ring raceway 11b in the inner row is lowered. The rolling fatigue life of the track 11b may be reduced.

一方、特許文献6、7には、外径側軌道輪部材の外周面に形成したフランジの強度を確保する為、これら外径側軌道輪部材の外周面とフランジの側面との間に複数の補強リブを設けた、車輪支持用転がり軸受ユニットの構造が記載されている。前記両特許文献のうちの特許文献6に記載された発明は、内輪回転型の車輪支持用転がり軸受ユニットを対象としており、特許文献7に記載された発明は、外輪回転型の車輪支持用転がり軸受ユニットを対象としている。但し、何れの構造の場合も、複列に配置した転動体のピッチ円直径が同じであり、又、前記外径側軌道輪部材の径方向に関して、前記各補強リブの外径側端部が、フランジの外周縁と一致若しくはこの外周縁よりも径方向外方部分に存在する。更に、このフランジの厚さが、前記各補強リブを設けた部分を除いて均一である。この様な特許文献6、7に記載された発明の構造は、本発明の対象となる、前述の図6〜8に示した構造とは大きく異なる。   On the other hand, in Patent Documents 6 and 7, in order to ensure the strength of the flange formed on the outer peripheral surface of the outer diameter side race ring member, a plurality of gaps are provided between the outer peripheral surface of the outer diameter side race ring member and the side surface of the flange. The structure of a wheel bearing rolling bearing unit provided with reinforcing ribs is described. The invention described in Patent Document 6 out of both patent documents is directed to a wheel bearing rolling bearing unit of an inner ring rotating type, and the invention described in Patent Document 7 is a wheel supporting rolling of an outer ring rotating type. Intended for bearing units. However, in any structure, the pitch circle diameters of the rolling elements arranged in double rows are the same, and the outer diameter side ends of the reinforcing ribs are in the radial direction of the outer diameter side race ring member. , Which coincides with the outer peripheral edge of the flange or is present in the radially outer part from the outer peripheral edge. Further, the thickness of the flange is uniform except for the portions where the reinforcing ribs are provided. The structures of the inventions described in Patent Documents 6 and 7 are greatly different from the structures shown in FIGS. 6 to 8 which are the objects of the present invention.

特開2008−275023号公報JP 2008-275023 A 特開2008−55984号公報JP 2008-55984 A 独国特許出願公開第10 2007 023 661号明細書German Patent Application Publication No. 10 2007 023 661 独国特許出願公開第10 2007 060 627号明細書German Patent Application Publication No. 10 2007 060 627 独国特許出願公開第10 2008 023 588号明細書German Patent Application Publication No. 10 2008 023 588 特開2004−36818号公報JP 2004-36818 A 特開2006−105304号公報JP 2006-105304 A

本発明は、上述の様な事情に鑑みて、外輪回転型の車輪支持用転がり軸受ユニットを構成する外径側軌道輪部材の軽量化と、この外径側軌道輪部材に車輪を支持する為の回転フランジの基端部の強度及び剛性の確保と、結合部材を組み付ける為の取付孔の形状精度及び寸法精度の確保とを、高次元で並立させられる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is to reduce the weight of the outer diameter side bearing ring member constituting the outer ring rotating type wheel support rolling bearing unit and to support the wheel on the outer diameter side bearing ring member. The invention has been invented to realize a structure in which securing of the strength and rigidity of the base end portion of the rotating flange and securing of the shape accuracy and dimensional accuracy of the mounting hole for assembling the coupling member can be arranged in a high dimension. .

本発明の車輪支持用転がり軸受ユニットは、内径側軌道輪部材と、外径側軌道輪部材と、複数個の転動体とを備える。
このうちの内径側軌道輪部材は、外周面に複列の内輪軌道を有し、使用状態で懸架装置に支持固定されて回転しない。又、これら両内輪軌道のうちの軸方向外側の内輪軌道の外径が、同じく軸方向内側の内輪軌道の外径よりも小さい。
又、前記外径側軌道輪部材は、前記内径側軌道輪部材の周囲に、この内径側軌道輪部材と同心に配置されている。又、内周面の一部で前記両内輪軌道に対向する部分に複列の外輪軌道を、外周面の軸方向外寄り部分に回転フランジを、それぞれ有する。又、これら両外輪軌道のうちの軸方向外側の外輪軌道の内径が、同じく軸方向内側の外輪軌道の内径よりも小さい。又、前記外径側軌道輪部材の外径が、この軸方向内側の外輪軌道の周囲部分よりも、この周囲部分と前記回転フランジとの間部分で小さくなっている。又、この回転フランジの円周方向複数箇所で径方向に関する位置が互いに同じ位置に、この回転フランジに前記車輪を結合固定する為の結合部材を装着する取付孔が、この回転フランジを軸方向に貫通する状態で設けられている。更に、前記回転フランジの軸方向内側面の径方向内端部と、前記外径側軌道輪部材の外周面のうちの前記間部分の軸方向外端部とが、断面円弧状の凹曲面により滑らかに連続している。そして、前記外径側軌道輪部材は、使用状態で前記回転フランジに結合固定した車輪と共に回転する。
又、前記各転動体は、前記両内輪軌道と前記両外輪軌道との間に、両列毎に複数個ずつ設けられている。そして、前記内径側軌道輪部材の周囲に前記外径側軌道輪部材を、回転自在に支持している。
The wheel bearing rolling bearing unit of the present invention includes an inner diameter side race ring member, an outer diameter side race ring member, and a plurality of rolling elements.
Among these, the inner ring side race ring member has a double row inner ring race track on the outer peripheral surface, and is supported and fixed to the suspension device in a use state and does not rotate. Of these inner ring raceways, the outer diameter of the inner ring raceway on the axially outer side is also smaller than the outer diameter of the inner ring raceway on the inner side in the axial direction.
The outer diameter side race ring member is disposed around the inner diameter side race ring member and concentrically with the inner diameter side race ring member. Further, a part of the inner peripheral surface has a double row outer ring raceway at a portion facing both the inner ring raceways, and a rotation flange at an axially outer portion of the outer peripheral surface. The inner diameter of the outer ring raceway on the outer side in the axial direction is smaller than the inner diameter of the outer ring raceway on the inner side in the axial direction. Further, the outer diameter of the outer diameter side race ring member is smaller in the portion between the peripheral portion and the rotary flange than the peripheral portion of the outer ring race on the inner side in the axial direction. In addition, the mounting holes for mounting the connecting members for connecting and fixing the wheel to the rotating flange are located at the same position in the radial direction at a plurality of circumferential positions of the rotating flange. It is provided in a penetrating state. Furthermore, the radially inner end of the axial inner surface of the rotating flange and the axially outer end of the intermediate portion of the outer peripheral surface of the outer race ring member are formed by a concave curved surface having a circular arc cross section. Smooth and continuous. And the said outer diameter side track ring member rotates with the wheel couple | bonded and fixed to the said rotation flange in the use condition.
Further, a plurality of the rolling elements are provided for each row between the inner ring raceways and the outer ring raceways. And the said outer diameter side bearing ring member is rotatably supported around the said inner diameter side bearing ring member.

特に、本発明の車輪支持用転がり軸受ユニットに於いては、前記凹曲面の外周縁の直径を、前記各取付孔の内接円の直径以下としている。
そして、前記回転フランジの軸方向内側面の径方向内端部と、前記外径側軌道輪部材の外周面との間で前記各取付孔を円周方向両側から挟む位置に複数の補強リブを、それぞれ前記内側面から軸方向内方に、前記外周面から径方向外方に、それぞれ突出する状態で設けている。
In particular, in the wheel bearing rolling bearing unit of the present invention, the diameter of the outer peripheral edge of the concave curved surface is set to be equal to or smaller than the diameter of the inscribed circle of each mounting hole.
Then, a plurality of reinforcing ribs are provided at positions that sandwich the mounting holes from both sides in the circumferential direction between the radially inner end of the axially inner side surface of the rotating flange and the outer circumferential surface of the outer diameter side race ring member. These are provided so as to protrude inward in the axial direction from the inner side surface and radially outward from the outer peripheral surface, respectively.

上述の様な本発明の車輪支持用転がり軸受ユニットを実施する場合、より具体的には、請求項2に記載した発明の様に、前記外径側軌道輪部材を、鉄系合金に鍛造加工を施して成るものとする。又、前記回転フランジに厚肉部と薄肉部とを、円周方向に関して交互に配置し、前記各取付孔及び前記各補強リブを、このうちの厚肉部の軸方向内側面と前記外周面との間に設ける。
更に具体的には、請求項3に記載した発明の様に、前記各補強リブの軸方向外端部を、前記回転フランジの内側面と滑らかに連続させる。そして、これら各補強リブの径方向外端部とこの内側面との連続部を、前記各取付孔のピッチ円よりも径方向に関して内側に存在させる。
或いは、請求項4又は請求項5に記載した発明の様に、前記各補強リブの軸方向内端部を、前記外径側軌道輪部材の外周面と滑らかに連続させる。そして、前記各補強リブの軸方向内端部とこの外径側軌道輪部材の外周面との連続部を、前記軸方向外側の外輪軌道の肩部の軸方向内側(請求項4に記載した発明の場合)又は外側(請求項5に記載した発明の場合)に存在させる。
When implementing the wheel bearing rolling bearing unit of the present invention as described above, more specifically, as in the invention described in claim 2, the outer diameter side race ring member is forged into an iron-based alloy. Shall be made. In addition, thick portions and thin portions are arranged alternately in the circumferential direction on the rotating flange, and the mounting holes and the reinforcing ribs are connected to the inner surface in the axial direction of the thick portion and the outer peripheral surface. Provide between.
More specifically, as in the invention described in claim 3, the axially outer ends of the respective reinforcing ribs are smoothly connected to the inner surface of the rotating flange. And the continuous part of the radial direction outer end part of each of these reinforcement ribs and this inner surface exists on the inner side in the radial direction than the pitch circle of each said mounting hole.
Or like the invention described in Claim 4 or Claim 5, the axial direction inner end part of each said reinforcement rib is made to continue smoothly with the outer peripheral surface of the said outer diameter side track ring member. And the continuous part of the axial direction inner end part of each said reinforcing rib and the outer peripheral surface of this outer diameter side bearing ring member is set to the axially inner side of the shoulder part of the outer ring raceway outside the axial direction (described in claim 4). In the case of the invention) or outside (in the case of the invention described in claim 5).

上述の様に構成する本発明によれば、外輪回転型の車輪支持用転がり軸受ユニットを構成する外径側軌道輪部材の軽量化と、この外径側軌道輪部材に車輪を支持する為の回転フランジの基端部の強度及び剛性の確保と、結合部材を組み付ける為の取付孔の形状精度及び寸法精度の確保とを、高次元で並立させられる。この理由に就いて、以下に説明する。   According to the present invention configured as described above, it is possible to reduce the weight of the outer diameter side bearing ring member constituting the outer ring rotating type wheel support rolling bearing unit and to support the wheel on the outer diameter side bearing ring member. Ensuring the strength and rigidity of the base end portion of the rotating flange and ensuring the shape accuracy and dimensional accuracy of the mounting hole for assembling the coupling member can be arranged side by side in a high dimension. The reason will be described below.

本発明の車輪支持用転がり軸受ユニットを構成する外径側軌道輪部材の場合、各取付孔を円周方向両側から挟む位置に補強リブを設けている為、これら各補強リブにより、これら各取付孔を設けた回転フランジのモーメント剛性が向上する。この為、この回転フランジの軸方向に関する厚さを特に大きくせず、しかも、この回転フランジの軸方向内側面と前記外径側軌道輪部材の外周面との連続部に存在させる凹曲面の曲率半径を小さくしても、前記モーメント剛性を確保できる。そして、この凹曲面の外周縁の直径を前記各取付孔の内接円の直径以下として、これら各取付孔の内周面の軸方向長さを、この内周面の全周に亙って均一にできる。この結果、これら各取付孔を加工する切削工具に曲げ方向の力が加わりにくくなり、これら各取付孔の形状精度及び寸法精度を確保すると共に、前記切削工具の耐久性を確保できる。   In the case of the outer diameter side bearing ring member constituting the wheel bearing rolling bearing unit of the present invention, the reinforcing ribs are provided at positions sandwiching the mounting holes from both sides in the circumferential direction. The moment rigidity of the rotary flange with holes is improved. For this reason, the thickness of the rotating flange in the axial direction is not particularly increased, and the curvature of the concave curved surface existing in the continuous portion between the axial inner surface of the rotating flange and the outer peripheral surface of the outer diameter side raceway ring member. Even if the radius is reduced, the moment rigidity can be secured. Then, the diameter of the outer peripheral edge of the concave curved surface is set to be equal to or smaller than the diameter of the inscribed circle of each mounting hole, and the axial length of the inner peripheral surface of each mounting hole is extended over the entire circumference of the inner peripheral surface. Can be uniform. As a result, it becomes difficult to apply a force in the bending direction to the cutting tool that processes each of the mounting holes, and it is possible to ensure the shape accuracy and dimensional accuracy of each of the mounting holes and to ensure the durability of the cutting tool.

特に、請求項2に記載した発明によれば、前記回転フランジの軽量化を、より高次元で図れる。
又、請求項3に記載した発明によれば、前記各補強リブを不要に嵩張るものにせずに済み、これら各補強リブを含む、前記外径側軌道輪部材の軽量化を、より高次元で図れる。
In particular, according to the invention described in claim 2, the weight of the rotating flange can be reduced in a higher dimension.
Further, according to the invention described in claim 3, it is not necessary to make each of the reinforcing ribs unnecessarily bulky, and the outer diameter side bearing ring member including these reinforcing ribs can be reduced in weight in a higher dimension. I can plan.

又、本発明の車輪支持用転がり軸受ユニットを構成する外径側軌道輪部材は、軸方向中間部の外径が両側部分の外径よりも小さくなっている為、この外径側軌道輪部材を鍛造加工により造る場合には、軸方向内端部の直径を拡げる、拡径工程が必要になる。この拡径工程の際、前記外径側軌道輪部材の軸方向中間部乃至内端部の外周面をバックアップ型により抑え付ける場合と、抑え付けない場合とが考えられる。何れにしても、前記拡径工程では、中間素材の軸方向内端部に拡径パンチを押し込んで、この軸方向内端部の直径を拡げる。この様な拡径工程時に前記中間素材には、前記拡径パンチが押し込まれた、拡径すべき部分だけでなく、この拡径すべき部分と軸方向に隣接する、拡径すべきでない部分にも、径方向外方に向いた、余分な力が加わる。この様な余分な力に拘らず、この拡径すべきでない部分の径方向寸法が変化しない様にする為の考慮が必要である。   Further, the outer diameter side bearing ring member constituting the rolling bearing unit for supporting a wheel of the present invention has an outer diameter at the intermediate portion in the axial direction smaller than the outer diameters at both side portions. When forging is made by forging, a diameter expansion process is required to increase the diameter of the inner end in the axial direction. In this diameter expansion process, it is conceivable that the outer peripheral surface of the axially intermediate portion or inner end portion of the outer diameter side bearing ring member is suppressed by a backup mold or not. In any case, in the diameter expansion step, the diameter expansion punch is pushed into the inner end portion in the axial direction of the intermediate material to increase the diameter of the inner end portion in the axial direction. During the diameter expansion process, the intermediate material is not limited to the portion where the diameter-expansion punch has been pushed in, but the portion that should be expanded, and the portion that is adjacent to the portion that should be expanded in the axial direction and should not be expanded. In addition, an extra force directed radially outward is applied. Regardless of such extra force, it is necessary to consider that the radial dimension of the portion that should not be expanded does not change.

請求項4に記載した発明の様に、前記各補強リブの軸方向内端部と前記外径側軌道輪部材の外周面との連続部の軸方向位置を、軸方向外側の外輪軌道の肩部の軸方向内側に存在させれば、前記バックアップ型を使用しなくても、前記拡径パンチの押し込みに伴って、前記拡径すべきでない部分の寸法が変化する事を抑えられる。
これに対して、請求項5に記載した発明の様に、前記各補強リブの軸方向内端部と前記外径側軌道輪部材の外周面との連続部の軸方向位置を、軸方向外側の外輪軌道の肩部の軸方向外側に存在させれば、前記バックアップ型を使用する場合に、このバックアップ型と前記外径側軌道輪部材との周方向に関する位相を合わせる手間をなくせる。
As in the invention described in claim 4, the axial position of the continuous portion between the axial inner end of each reinforcing rib and the outer peripheral surface of the outer diameter side race ring member is defined as the shoulder of the outer race track on the outer side in the axial direction. If it exists in the axial direction inside of a part, even if it does not use the said backup type | mold, it can suppress that the dimension of the said part which should not be diameter-expanded changes with the pushing of the said diameter-expansion punch.
On the other hand, as in the invention described in claim 5, the axial position of the continuous portion between the axial inner end portion of each reinforcing rib and the outer peripheral surface of the outer diameter side race ring member is defined as the axial outer side. When the backup type is used, it is possible to eliminate the trouble of matching the phase in the circumferential direction between the backup type and the outer diameter side race ring member when the backup type is used.

本発明の実施の形態の1例を示す断面図。Sectional drawing which shows one example of embodiment of this invention. 同じく外径側軌道輪部材を取り出して示す半部断面図。The half part sectional view which takes out and shows an outer diameter side race ring member similarly. 同じく図2のA部拡大図。The A section enlarged view of FIG. 2 similarly. 同じく外径側軌道輪部材を取り出して軸方向内方から見た状態で示す斜視図。The perspective view similarly shown in the state which took out the outer diameter side bearing ring member and was seen from the axial direction inner side. 中間素材の軸方向内端部を拡径して、凹入部を備えた外径側軌道輪部材とする工程を説明する為の、一部を簡略化して示す半部断面図。The half section view which simplifies a part for explaining the process of enlarging the axial direction inner end part of an intermediate material, and making it the outside diameter side race ring member provided with the concave part. 従前の構造の1例を、軸方向内方から見た状態で示す斜視図。The perspective view which shows one example of the conventional structure in the state seen from the axial direction inner side. 同じく断面図。Similarly sectional drawing. 同じく外輪軌道部材を取り出して軸方向内方から見た状態で示す斜視図。The perspective view shown in the state which took out the outer ring raceway member and was seen from the axial direction inner side. 従来から知られている構造の1例を示す断面図。Sectional drawing which shows one example of the structure known conventionally. 同じく、軸方向内方から見た状態で示す斜視図。Similarly, the perspective view shown in the state seen from the axial direction inner side.

図1〜5は、本発明の実施の形態の1例を示している。尚、本例を含めて本発明の特徴は、外輪回転型の車輪支持用転がり軸受ユニット1bを構成する外径側軌道輪部材3bの軽量化と、この外径側軌道輪部材3bに車輪を支持する為の回転フランジ12の基端部の強度及び剛性の確保と、結合部材を組み付ける為の取付孔15a、15aの形状精度及び寸法精度の確保とを、高次元で並立させるべく、前記外径側軌道輪部材3bの外周面と前記回転フランジ12の軸方向内側面との連続部の形状を工夫した点にある。その他の部分の構造及び作用は、前述の図6〜8に示した従前の構造と同様であるから、同等部分には同一符号を付して、重複する説明を省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   1 to 5 show an example of an embodiment of the present invention. The characteristics of the present invention including this example are that the outer diameter side race ring member 3b constituting the outer ring rotating type wheel support rolling bearing unit 1b is reduced in weight, and the outer diameter side race ring member 3b is provided with a wheel. In order to ensure that the strength and rigidity of the base end of the rotating flange 12 for supporting and securing the shape accuracy and dimensional accuracy of the mounting holes 15a and 15a for assembling the coupling members are aligned in a high dimension, This is in that the shape of the continuous portion between the outer peripheral surface of the radial side ring member 3b and the inner surface in the axial direction of the rotary flange 12 is devised. Since the structure and operation of the other parts are the same as those of the previous structure shown in FIGS. 6 to 8 described above, the same parts are denoted by the same reference numerals, and redundant description is omitted or simplified. The description will focus on the features of the example.

本例の車輪支持用転がり軸受ユニット1bの場合も、前記従前の構造の場合と同様に、前記外径側軌道輪部材3bの外周面と前記回転フランジ12の軸方向内側面との連続部に、断面形状が四分の一円弧状である、凹曲面19bを形成している。この凹曲面19bの母線の両端部と、前記外径側軌道輪部材3bの外周面の母線及び前記回転フランジ12の軸方向内側面の母線とは、それぞれ前記凹曲面19bの母線の接線方向に、滑らかに連続している。特に、本例の車輪支持用転がり軸受ユニット1bの場合には、前記凹曲面19bの断面形状の曲率半径を、前記従前の構造の断面形状の曲率半径よりも十分に小さくして、前記凹曲面19bの幅寸法(特に、前記外径側軌道輪部材3bの径方向に関する高さh)を小さくしている。そして、前記凹曲面19bの外周縁の直径Dを、前記各取付孔15a、15aの内接円の直径R以下(D≦R)としている。   Also in the case of the wheel support rolling bearing unit 1b of this example, as in the case of the previous structure, the continuous portion between the outer peripheral surface of the outer diameter side race ring member 3b and the axial inner surface of the rotary flange 12 is provided. A concave curved surface 19b having a cross-sectional shape of a quarter arc is formed. Both ends of the generatrix of the concave curved surface 19b, the generatrix of the outer peripheral surface of the outer diameter side race ring member 3b, and the generatrix of the inner surface in the axial direction of the rotary flange 12 are respectively tangential to the generatrix of the concave curved surface 19b. Smooth and continuous. In particular, in the case of the wheel-supporting rolling bearing unit 1b of the present example, the radius of curvature of the cross-sectional shape of the concave curved surface 19b is made sufficiently smaller than the radius of curvature of the cross-sectional shape of the conventional structure, and the concave curved surface. The width dimension of 19b (particularly, the height h in the radial direction of the outer diameter side race ring member 3b) is reduced. The diameter D of the outer peripheral edge of the concave curved surface 19b is set to be equal to or smaller than the diameter R of the inscribed circle of the mounting holes 15a and 15a (D ≦ R).

前記外径側軌道輪部材3bは、中炭素鋼等の鉄系合金に鍛造加工を施して成るもので、外周面の軸方向外端寄り部分に、円板状の前記回転フランジ12を形成している。この回転フランジ12は、前記従前の構造と同様に、軸方向外側面を平坦面とする代わりに、軸方向内側面を凹凸形状とし、厚肉部13、13と薄肉部14、14とを、円周方向に関して交互に配置している。円周方向に関する幅寸法に関して、前記各厚肉部13、13は、径方向内端部で最も広く、径方向外方に向かうに従って漸減する。即ち、これら各厚肉部13、13を前記外径側軌道輪部材3bの軸方向から見た形状は、頂部が丸くなった、略二等辺三角形状である。前記各取付孔15a、15aは、この様な厚肉部13、13の円周方向中間部で径方向外端寄り部分(頂部近傍部分)に、前記回転フランジ12を軸方向に貫通する状態で設けている。   The outer diameter side race ring member 3b is formed by forging an iron-based alloy such as medium carbon steel, and the disk-shaped rotating flange 12 is formed on the outer peripheral surface of the outer peripheral portion in the axial direction. ing. In the same manner as in the previous structure, the rotating flange 12 has an axially inner side surface having an uneven shape instead of a flat outer surface in the axial direction, and the thick portions 13 and 13 and the thin portions 14 and 14 are Alternatingly arranged in the circumferential direction. Regarding the width dimension in the circumferential direction, each of the thick portions 13 and 13 is widest at the radially inner end, and gradually decreases toward the radially outer side. That is, the shape of each of these thick portions 13, 13 viewed from the axial direction of the outer diameter side race ring member 3 b is a substantially isosceles triangle shape with a rounded top. Each of the mounting holes 15a, 15a is in a state of penetrating the rotary flange 12 in the axial direction at the radially outer end portion (the vicinity of the top portion) in the circumferential intermediate portion of the thick portions 13, 13. Provided.

一方、前記回転フランジ12の軸方向内側面のうち、前記各厚肉部13、13の基端部(この回転フランジ12の径方向内端部)で、これら各厚肉部13、13に形成した、前記各取付孔15a、15aを円周方向両側から挟む位置に、それぞれ補強リブ25、25を形成している。これら各補強リブ25、25はそれぞれ、前記回転フランジ12の軸方向内側面から軸方向内方に、前記外径側軌道輪部材3bの外周面から径方向外方に、それぞれ突出する形状を有する。又、前記外径側軌道輪部材3bの外周面から径方向外方への突出量である高さ寸法が、軸方向内方に向かうに従って漸減する。前記各補強リブ25、25の軸方向外端部は前記回転フランジ12の内側面と、同じく軸方向内端部は前記外径側軌道輪部材3bの外周面と、それぞれ滑らかに連続している。即ち、前記各補強リブ25、25の峰部の形状(周方向から見た形状)は、図2〜3に示す様に、直線部の両端に部分円弧部を配置した形状を有するもので、これら両部分円弧部の端部と、前記内側面及び外周面とが、これら両部分円弧部の接線方向に、滑らかに連続している。   On the other hand, of the inner side surface in the axial direction of the rotating flange 12, the thick end portions 13, 13 are formed at the base end portions (the radially inner end portions of the rotating flange 12). Reinforcing ribs 25, 25 are formed at positions sandwiching the mounting holes 15a, 15a from both sides in the circumferential direction, respectively. Each of the reinforcing ribs 25 and 25 has a shape that protrudes axially inward from the axial inner surface of the rotary flange 12 and radially outward from the outer peripheral surface of the outer diameter side race ring member 3b. . Further, the height dimension, which is a protruding amount radially outward from the outer peripheral surface of the outer diameter side race ring member 3b, gradually decreases toward the inner side in the axial direction. The axially outer end portions of the reinforcing ribs 25 and 25 are smoothly continuous with the inner surface of the rotating flange 12, and the axially inner end portion is continuously continuous with the outer peripheral surface of the outer diameter side race ring member 3b. . That is, the shape (the shape seen from the circumferential direction) of the ridges of each of the reinforcing ribs 25, 25 has a shape in which partial arc portions are arranged at both ends of the linear portion, as shown in FIGS. The end portions of both the partial arc portions, the inner side surface and the outer peripheral surface are smoothly continuous in the tangential direction of the both partial arc portions.

前記各補強リブ25、25の径方向外端部と前記回転フランジ12の内側面との連続部は、前記各取付孔15a、15aのピッチ円よりも径方向に関して内側に存在する。尚、前記各補強リブ25、25の径方向外端部と前記回転フランジ12の内側面との連続部とは、前記部分円弧部の端部と前記内側面との接続部を言う。従って、前記各補強リブ25、25の外接円の直径D25は、前記各取付孔15a、15aのピッチ円の直径PCD15以下(D25≦PCD15)である。前記径方向位置は、前記各補強リブ25、25による補強機能を確保でき、且つ、これら各補強リブ25、25の容積が過大にならない範囲で規制する。これら各補強リブ25、25の軸方向内端部の位置に関しては、前記外径側軌道輪部材3bの加工工程との関係で規制する。この点に就いては、後述する。 A continuous portion between the radially outer end portion of each of the reinforcing ribs 25 and 25 and the inner surface of the rotating flange 12 exists inside the pitch circle of the mounting holes 15a and 15a in the radial direction. The continuous portion between the radially outer end of each of the reinforcing ribs 25 and 25 and the inner surface of the rotary flange 12 refers to a connecting portion between the end of the partial arc portion and the inner surface. Therefore, the diameter D 25 of the circumscribed circle of the reinforcing ribs 25, 25 is equal to or less than the diameter PCD 15 of the pitch circle of the mounting holes 15a, 15a (D 25 ≦ PCD 15 ). The radial position is restricted within a range in which a reinforcing function by the reinforcing ribs 25 and 25 can be secured and the volume of the reinforcing ribs 25 and 25 is not excessive. The positions of the inner end portions in the axial direction of the reinforcing ribs 25 and 25 are restricted in relation to the processing step of the outer diameter side race ring member 3b. This point will be described later.

上述の様に本例の車輪支持用転がり軸受ユニット1bを構成する、前記外径側軌道輪部材3bは、前記各取付孔15a、15aを円周方向両側から挟む位置に、これら各取付孔15a、15a毎に1対ずつの補強リブ25、25を設けている。この為、これら各補強リブ25、25により、前記各取付孔15a、15aを設けた、前記回転フランジ12のモーメント剛性が向上する。この結果、この回転フランジ12の軸方向に関する厚さを特に大きくせず、しかも、この回転フランジ12の軸方向内側面と前記外径側軌道輪部材3bの外周面との連続部に存在させる前記凹曲面19bの曲率半径を小さくしても、前記モーメント剛性を確保できる。本例の場合には、前記回転フランジ12を、前記各厚肉部13、13と前記各薄肉部14、14とにより構成しているが、このうちの各厚肉部13、13の厚さ寸法を特に大きくせず、各薄肉部14、14の厚さ寸法をより小さくしても、前記モーメント剛性を確保できる。   As described above, the outer diameter side bearing ring member 3b constituting the wheel support rolling bearing unit 1b of the present example has the mounting holes 15a at positions where the mounting holes 15a and 15a are sandwiched from both sides in the circumferential direction. , A pair of reinforcing ribs 25 are provided for each 15a. For this reason, the moment rigidity of the rotary flange 12 provided with the mounting holes 15a and 15a is improved by the reinforcing ribs 25 and 25. As a result, the thickness of the rotating flange 12 in the axial direction is not particularly increased, and the axial thickness of the rotating flange 12 and the outer peripheral surface of the outer diameter side race ring member 3b are present in a continuous portion. Even if the curvature radius of the concave curved surface 19b is reduced, the moment rigidity can be secured. In the case of this example, the rotating flange 12 is composed of the thick portions 13 and 13 and the thin portions 14 and 14, but the thickness of each of the thick portions 13 and 13 is the same. Even if the dimensions are not particularly increased, the moment rigidity can be ensured even if the thickness dimensions of the thin wall portions 14 and 14 are further reduced.

この為、前記各補強リブ25、25を設ける事を考慮しても、十分な軽量化を図れる。即ち、これら各補強リブ25、25の外接円の直径D25は、前記各取付孔15a、15aのピッチ円の直径PCD15以下である為、前記各補強リブ25、25を不要に嵩張るものにせずに済む。即ち、前記車輪支持用転がり軸受ユニット1bを搭載した車両の旋回走行時に前記回転フランジ12には、前記各取付孔15a、15aに装着した、スタッド或はボルト等の結合部材からモーメントが加わるが、このモーメントに基づいて、前記各取付孔15a、15aのうちの、前記回転フランジ12の径方向に関して内寄り部分に大きな引っ張り応力が加わる。この様な引っ張り応力に拘らず、前記回転フランジ12の一部に亀裂等の損傷が発生するのを防止する為には、前記回転フランジ12の径方向に関して内寄り部分の剛性を確保する必要がある。特に、前記結合部材がボルトであり、前記各取付孔15a、15aがねじ孔である場合には、雌ねじの溝底からの亀裂発生を防止する為に、上記内寄り部分の剛性確保が重要になる。反面、前記各取付孔15a、15aのピッチ円よりも外径側部分まで前記各補強リブ25、25を設けても、それ以上の前記回転フランジ12の耐久性向上効果はあまり期待できない。本例の場合、前記各補強リブ25、25を形成する範囲を上述の様に規制している為、これら各補強リブ25、25の容積を必要最小限に抑えて、前記外径側軌道輪部材3bの軽量化を、より高次元で図れる。 For this reason, even if it considers providing the said each reinforcing ribs 25 and 25, sufficient weight reduction can be achieved. That is, the diameter D 25 of the circumscribed circle of each of the reinforcing ribs 25, 25 is equal to or less than the diameter PCD 15 of the pitch circle of the mounting holes 15a, 15a, so that the reinforcing ribs 25, 25 are unnecessarily bulky. You do n’t have to. That is, moment is applied to the rotary flange 12 from a connecting member such as a stud or a bolt attached to the mounting holes 15a and 15a when the vehicle equipped with the wheel bearing rolling bearing unit 1b is turned. Based on this moment, a large tensile stress is applied to an inward portion of each of the mounting holes 15a, 15a in the radial direction of the rotating flange 12. Regardless of such tensile stress, it is necessary to ensure the rigidity of the inward portion in the radial direction of the rotating flange 12 in order to prevent the occurrence of damage such as cracks in a part of the rotating flange 12. is there. In particular, when the coupling member is a bolt and each of the mounting holes 15a, 15a is a screw hole, it is important to ensure the rigidity of the inward portion in order to prevent cracks from the groove bottom of the female screw. Become. On the other hand, even if the reinforcing ribs 25 are provided up to the outer diameter side of the pitch circle of the mounting holes 15a, 15a, the effect of further improving the durability of the rotating flange 12 cannot be expected. In the case of this example, the range in which the reinforcing ribs 25 and 25 are formed is regulated as described above. Therefore, the volume of the reinforcing ribs 25 and 25 is suppressed to the necessary minimum, and the outer diameter side raceway ring is reduced. The weight of the member 3b can be reduced in a higher dimension.

上述の様に本例の車輪支持用転がり軸受ユニット1bに組み込む外径側軌道輪部材3bの場合には、前記回転フランジ12のモーメント剛性を確保しつつ、前記凹曲面19bの曲率半径を小さくして、この凹曲面19bの外周縁の直径Dを、前記各取付孔15a、15aの内接円の直径R以下にしている。従って、これら各取付孔15a、15aの両端は、何れも、前記回転フランジ12の軸方向両側面のうち、互いにほぼ平行な、実質的に平坦な部分に開口する。従って、前記各取付孔15a、15aの内周面の軸方向長さを、この内周面の全周に亙って均一にできる。この結果、これら各取付孔15a、15aを加工する、ドリル、リーマ、タップ、転造タップ等の切削工具若しくはねじ加工工具に曲げ方向の力が加わりにくくなり、前記各取付孔15a、15aの形状精度及び寸法精度を確保すると共に、前記切削工具の耐久性を確保できる。   As described above, in the case of the outer diameter side bearing ring member 3b incorporated in the wheel supporting rolling bearing unit 1b of this example, the radius of curvature of the concave curved surface 19b is reduced while ensuring the moment rigidity of the rotating flange 12. Thus, the diameter D of the outer peripheral edge of the concave curved surface 19b is set to be equal to or smaller than the diameter R of the inscribed circle of the mounting holes 15a and 15a. Therefore, both ends of each of the mounting holes 15a, 15a are opened in substantially flat portions of the both side surfaces in the axial direction of the rotary flange 12 that are substantially parallel to each other. Accordingly, the axial length of the inner peripheral surface of each of the mounting holes 15a, 15a can be made uniform over the entire circumference of the inner peripheral surface. As a result, it becomes difficult to apply a force in a bending direction to a cutting tool or a screw machining tool such as a drill, a reamer, a tap, a rolling tap, or the like that processes each of the mounting holes 15a, 15a, and the shape of the mounting holes 15a, 15a. While ensuring accuracy and dimensional accuracy, the durability of the cutting tool can be secured.

尚、前記各取付孔15a、15aをねじ孔とする場合には、前記凹曲面19bの一部にねじ溝の端部が露出しない様にする。この為に、前記各取付孔15a、15aを、雌ねじの溝底径の内径を有する円孔と仮定して、これら各取付孔15a、15aの内接円の直径を設定し、前記凹曲面19bの外周縁の直径を、この設定した内接円の直径以下とする。この理由は、曲率が大きく、応力が集中し易いねじ溝の底部が前記凹曲面19b部分に露出する事を防止して、このねじ溝の底部を起点とする亀裂が発生する可能性を、より低くする為である。   When the mounting holes 15a and 15a are screw holes, the end portions of the screw grooves are not exposed to a part of the concave curved surface 19b. For this purpose, assuming that each of the mounting holes 15a and 15a is a circular hole having an inner diameter of the groove bottom diameter of the female screw, the diameter of the inscribed circle of each of the mounting holes 15a and 15a is set, and the concave curved surface 19b is set. The diameter of the outer peripheral edge is set to be equal to or smaller than the diameter of the set inscribed circle. The reason for this is that the bottom of the thread groove, which has a large curvature and is likely to concentrate stress, is prevented from being exposed to the concave curved surface 19b, and the possibility that a crack starting from the bottom of the thread groove will occur. It is for lowering.

又、前記外径側軌道輪部材3bは、軸方向中間部に存在する凹入部17の外径が、両側部分の外径よりも小さくなっている。この為、前記外径側軌道輪部材3bを鍛造加工により造る場合には、軸方向内端部の直径を拡げる、拡径工程が必要になる。この拡径工程の際、図5に示す様に、前記外径側軌道輪部材3bの軸方向中間部乃至内端部の外周面をバックアップ型26により抑え付ける場合と、抑え付けない場合とが考えられる。何れにしても、前記拡径工程では、中間素材28の軸方向内端部に拡径パンチ27を押し込んで、この軸方向内端部の直径を拡げる。この様な拡径工程時に前記中間素材28には、前記拡径パンチ27が押し込まれた部分だけでなく、軸方向に隣接する、拡径すべきでない部分にも、径方向外方に向いた、余分な力が加わる。この様な余分な力に拘らず、前記中間素材28のうちで拡径すべきでない部分(特に、前記外径側軌道輪部材3bの内周面に形成した複列の外輪軌道11a、11bのうちの外側列の外輪軌道11a部分及びこの外輪軌道11aよりも軸方向外側部分)の径方向寸法が変化しない様にする為の考慮が必要である。   In the outer diameter side race ring member 3b, the outer diameter of the recessed portion 17 existing in the axially intermediate portion is smaller than the outer diameters of both side portions. For this reason, when the outer diameter side race ring member 3b is manufactured by forging, a diameter expansion step of expanding the diameter of the inner end in the axial direction is required. In this diameter expansion process, as shown in FIG. 5, there are a case where the outer peripheral surface of the axially intermediate portion or inner end portion of the outer diameter side race ring member 3b is suppressed by the backup die 26 and a case where it is not suppressed. Conceivable. In any case, in the diameter expansion step, the diameter expansion punch 27 is pushed into the inner end portion of the intermediate material 28 in the axial direction, and the diameter of the inner end portion in the axial direction is expanded. During the diameter expansion process, the intermediate material 28 faces not only the portion where the diameter expansion punch 27 is pushed, but also the portion adjacent to the axial direction that should not be expanded in the radial direction. Extra power is added. Regardless of such extra force, the portion of the intermediate material 28 that should not be expanded (in particular, the double row outer ring raceways 11a and 11b formed on the inner peripheral surface of the outer diameter side race ring member 3b). It is necessary to consider that the radial dimension of the outer ring raceway 11a portion of the outer row and the outer ring raceway portion 11a in the radial direction of the outer ring raceway 11a does not change.

前記拡径パンチ27の押し込みに伴う有害な変形を最小限に止め、仕上加工時の削り代を少なく抑える為には、前記バックアップ型26を使用する事が好ましい。但し、このバックアップ型26は、加工後に被加工物の周囲から取り外す必要上、周方向に関して複数個の素子に分割可能で、しかも加工時に径方向外方に加わる大きな力を支承できる構造でなければならない為、設備コストが嵩む。この様なバックアップ型26を省略して製造コストを低く抑える為には、前記中間素材28の側の構造を工夫して、前記有害な変形を抑える必要がある。   In order to minimize harmful deformation caused by the pressing of the diameter-expanding punch 27 and to minimize the machining allowance during finishing, it is preferable to use the backup die 26. However, this back-up mold 26 must be removed from the periphery of the workpiece after processing, and can be divided into a plurality of elements in the circumferential direction, and must not be able to support a large force applied radially outward during processing. Because it does not become, equipment cost increases. In order to omit such a backup mold 26 and keep the manufacturing cost low, it is necessary to devise the structure on the intermediate material 28 side to suppress the harmful deformation.

そこで、前記バックアップ型26を省略する場合には、前記各補強リブ25、25の軸方向内端部と前記外径側軌道輪部材3bの外周面との連続部の軸方向位置を、前記拡径パンチ27により拡径する部分に、できるだけ近付ける。具体的には、前記外側列の外輪軌道11aの肩部29の軸方向内側(図5のイ位置若しくはこれよりも同図の右側)に存在させる。この様に、前記各補強リブ25、25の軸方向内端部(前記連続部)を、前記拡径すべき部分に近い、前記肩部29の軸方向内側に存在させれば、前記拡径すべきでない部分の、径方向に関する剛性を高くできる。この結果、前記バックアップ型26を使用しなくても、前記拡径パンチ27の押し込みに伴って、前記拡径すべきでない部分の寸法が変化する事を抑えられる。   Therefore, when the backup mold 26 is omitted, the axial position of the continuous portion between the axial inner ends of the reinforcing ribs 25 and 25 and the outer peripheral surface of the outer diameter side race ring member 3b is increased. It is as close as possible to the portion where the diameter is expanded by the diameter punch 27. Specifically, it is present on the inner side in the axial direction of the shoulder portion 29 of the outer ring raceway 11a in the outer row (a position in FIG. 5 or the right side in FIG. 5). In this way, if the axially inner end portions (the continuous portions) of the respective reinforcing ribs 25, 25 are present on the inner side in the axial direction of the shoulder portion 29, which is close to the portion to be expanded in diameter, the expanded diameter is increased. The rigidity in the radial direction of the portion that should not be increased can be increased. As a result, even if the backup die 26 is not used, it is possible to suppress a change in the size of the portion that should not be expanded as the diameter expanding punch 27 is pushed.

これに対して、前記バックアップ型26を使用する場合には、前記各補強リブ25、25の軸方向内端部と前記外径側軌道輪部材3bの外周面との連続部の軸方向位置を、前記拡径パンチ27により拡径する部分から少し遠ざける。具体的には、前記肩部29の軸方向外側(図5のロ位置若しくはこれよりも同図の左側)に存在させる。前記バックアップ型26と前記各補強リブ25、25とが径方向に重畳すると、このバックアップ型26と前記外径側軌道輪部材3bとの、円周方向に関する位相を合わせる必要がある。これに対して、前記連続部の軸方向位置を図5のロ位置若しくはこれよりも軸方向外側にすれば、前記バックアップ型26と前記各補強リブ25、25とが径方向に重畳せず、前記位相を合わせる必要がなくなる。   On the other hand, when the backup mold 26 is used, the axial position of the continuous portion between the axial inner end of each of the reinforcing ribs 25 and 25 and the outer peripheral surface of the outer diameter side race ring member 3b is determined. , And away from the diameter-enlarged portion by the diameter-enlarging punch 27. Specifically, it is present on the outer side in the axial direction of the shoulder portion 29 (the position in FIG. 5 or the left side in FIG. 5). When the backup mold 26 and the reinforcing ribs 25 and 25 overlap each other in the radial direction, it is necessary to match the phases of the backup mold 26 and the outer diameter side race ring member 3b in the circumferential direction. On the other hand, if the axial position of the continuous portion is set to the lower position in FIG. 5 or outside in the axial direction, the backup mold 26 and the reinforcing ribs 25 and 25 do not overlap in the radial direction, There is no need to match the phases.

本発明を実施する場合に、各取付孔15a、15aをねじ孔とし、各結合部材をボルトとする事が、本発明の効果を十分に得る面から好ましい。但し、前記各取付孔15a、15aを単なる円孔とし、各結合部材を、それぞれの基端部に鍔部を備えたスタッドとする事もできる。この場合には、この鍔部の形状を単なる円形とせずに、各補強リブ25、25と干渉しない形状とする。   When implementing this invention, it is preferable from the surface which obtains the effect of this invention fully that each attachment hole 15a, 15a is made into a screw hole, and each connection member is made into a volt | bolt. However, the mounting holes 15a, 15a can be simply circular holes, and the connecting members can be studs having flanges at their base ends. In this case, the shape of the collar portion is not a simple circle but a shape that does not interfere with the reinforcing ribs 25 and 25.

1、1a、1b 車輪支持用転がり軸受ユニット
2 内径側軌道輪部材
3、3a、3b 外径側軌道輪部材
4a、4b 玉
5 主部
6 内輪素子
7 かしめ部
8a、8b 内輪軌道
9 静止フランジ
10 ねじ孔
11a、11b 外輪軌道
12 回転フランジ
13 厚肉部
14 薄肉部
15、15a 取付孔
16 透孔
17、17a 凹入部
18a、18b 保持器
19、19a、19b 凹曲面
20 凹曲面
21 内部空間
22 キャップ
23 シールリング
24 補強部材
25 補強リブ
26 バックアップ型
27 拡径パンチ
28 中間素材
29 肩部
DESCRIPTION OF SYMBOLS 1, 1a, 1b Rolling bearing unit for wheel support 2 Inner diameter side ring member 3, 3a, 3b Outer diameter side ring member 4a, 4b Ball 5 Main part 6 Inner ring element 7 Caulking part 8a, 8b Inner ring raceway 9 Static flange 10 Screw hole 11a, 11b Outer ring raceway 12 Rotating flange 13 Thick part 14 Thin part 15, 15a Mounting hole 16 Through hole 17, 17a Recessed part 18a, 18b Retainer 19, 19a, 19b Recessed curved surface 20 Recessed curved surface 21 Internal space 22 Cap 23 Seal Ring 24 Reinforcement Member 25 Reinforcement Rib 26 Backup Type 27 Expanding Punch 28 Intermediate Material 29 Shoulder

Claims (5)

外周面に複列の内輪軌道を有し、使用状態で懸架装置に支持固定されて回転しない内径側軌道輪部材と、この内径側軌道輪部材の周囲にこの内径側軌道輪部材と同心に配置され、内周面の一部で前記両内輪軌道に対向する部分に複列の外輪軌道を、外周面の軸方向外寄り部分に回転フランジを、それぞれ有し、使用状態でこの回転フランジに結合固定した車輪と共に回転する外径側軌道輪部材と、前記両内輪軌道と前記両外輪軌道との間に、両列毎に複数個ずつ設けられた転動体とを備え、前記両内輪軌道のうちの軸方向外側の内輪軌道の外径が同じく軸方向内側の内輪軌道の外径よりも小さく、前記両外輪軌道のうちの軸方向外側の外輪軌道の内径が同じく軸方向内側の外輪軌道の内径よりも小さく、前記外径側軌道輪部材の外径が、この軸方向内側の外輪軌道の周囲部分よりも、この周囲部分と前記回転フランジとの間部分で小さくなっており、この回転フランジの円周方向複数箇所で径方向に関する位置が互いに同じ位置に、この回転フランジに前記車輪を結合固定する為の結合部材を装着する取付孔が、この回転フランジを軸方向に貫通する状態で設けられており、前記回転フランジの軸方向内側面の径方向内端部と前記外径側軌道輪部材の外周面のうちの前記間部分の軸方向外端部とが、断面円弧状の凹曲面により滑らかに連続している車輪支持用転がり軸受ユニットに於いて、この凹曲面の外周縁の直径は前記各取付孔の内接円の直径以下であり、前記回転フランジの軸方向内側面の径方向内端部と前記外径側軌道輪部材の外周面との間で前記各取付孔を円周方向両側から挟む位置に複数の補強リブを、それぞれ前記内側面から軸方向内方に、前記外周面から径方向外方に、それぞれ突出する状態で設けている事を特徴とする車輪支持用転がり軸受ユニット。   An inner ring raceway member having a double-row inner ring raceway on the outer peripheral surface, which is supported and fixed to the suspension device in use and does not rotate, and is arranged around the inner diameter raceway ring member concentrically with the inner diameter raceway ring member A part of the inner peripheral surface has a double-row outer ring raceway in the part facing both inner ring raceways and a rotary flange in the axially outer part of the outer peripheral surface, and is connected to this rotary flange in use. An outer-diameter-side race ring member that rotates together with fixed wheels, and a plurality of rolling elements provided in each row between the inner ring raceways and the outer ring raceways. The outer diameter of the inner ring raceway on the outer side in the axial direction is smaller than the outer diameter of the inner ring raceway on the inner side in the axial direction, and the inner diameter of the outer ring raceway on the outer side in the axial direction is the inner diameter of the outer ring raceway on the inner side in the axial direction. Smaller than the outer diameter of the outer ring member. It is smaller than the peripheral part of the outer ring raceway on the inner side in the direction, and the part between this peripheral part and the rotating flange. A mounting hole for mounting a coupling member for coupling and fixing the wheel to the flange is provided in a state of passing through the rotating flange in the axial direction, and a radially inner end of an axial inner surface of the rotating flange; In the wheel support rolling bearing unit in which the outer circumferential surface of the outer diameter side race ring member is smoothly continuous with the axially outer end portion of the intermediate portion by a concave curved surface having a circular arc cross section. The diameter of the outer peripheral edge of the curved surface is equal to or less than the diameter of the inscribed circle of each of the mounting holes, and is between the radial inner end of the axial inner surface of the rotating flange and the outer peripheral surface of the outer raceway ring member. Each mounting hole on both sides in the circumferential direction A rolling bearing unit for supporting a wheel, characterized in that a plurality of reinforcing ribs are provided at positions sandwiched between the inner side surface and the inner surface in an axially inward direction and from the outer peripheral surface in a radially outward direction. . 前記外径側軌道輪部材が、鉄系合金に鍛造加工を施して成るものであって、前記回転フランジに厚肉部と薄肉部とが、円周方向に関して交互に配置されており、前記各取付孔及び前記各補強リブが、このうちの厚肉部の軸方向内側面と前記外周面との間に設けられている、請求項1に記載した車輪支持用転がり軸受ユニット。   The outer diameter side race ring member is formed by forging an iron-based alloy, and the thick portion and the thin portion are alternately arranged in the circumferential direction on the rotating flange. The wheel support rolling bearing unit according to claim 1, wherein the mounting hole and the reinforcing ribs are provided between the axially inner side surface of the thick portion and the outer peripheral surface. 前記各補強リブの軸方向外端部が、前記回転フランジの内側面と滑らかに連続しており、これら各補強リブの径方向外端部とこの内側面との連続部が、前記各取付孔のピッチ円よりも径方向に関して内側に存在する、請求項2に記載した車輪支持用転がり軸受ユニット。   An axial outer end portion of each reinforcing rib is smoothly continuous with an inner surface of the rotating flange, and a continuous portion between the radially outer end portion of each reinforcing rib and the inner surface is the mounting hole. The rolling bearing unit for supporting a wheel according to claim 2, wherein the rolling bearing unit is present on the inner side in the radial direction than the pitch circle. 前記各補強リブの軸方向内端部が、前記外径側軌道輪部材の外周面と滑らかに連続しており、前記各補強リブの軸方向内端部とこの外径側軌道輪部材の外周面との連続部の軸方向位置が、前記軸方向外側の外輪軌道の肩部の軸方向内側に存在する、請求項3に記載した車輪支持用転がり軸受ユニット。   The axial inner end of each reinforcing rib is smoothly continuous with the outer peripheral surface of the outer diameter side race ring member, and the axial inner end of each reinforcing rib and the outer circumference of the outer diameter side race ring member The wheel bearing rolling bearing unit according to claim 3, wherein an axial position of a continuous portion with the surface is present on an axially inner side of a shoulder portion of the outer ring raceway on the outer side in the axial direction. 前記各補強リブの軸方向内端部が、前記外径側軌道輪部材の外周面と滑らかに連続しており、前記各補強リブの軸方向内端部とこの外径側軌道輪部材の外周面との連続部の軸方向位置が、前記軸方向外側の外輪軌道の肩部の軸方向外側に存在する、請求項3に記載した車輪支持用転がり軸受ユニット。   The axial inner end of each reinforcing rib is smoothly continuous with the outer peripheral surface of the outer diameter side race ring member, and the axial inner end of each reinforcing rib and the outer circumference of the outer diameter side race ring member The wheel support rolling bearing unit according to claim 3, wherein an axial position of a continuous portion with the surface is present on an axially outer side of a shoulder portion of the outer ring raceway on the outer side in the axial direction.
JP2010193117A 2010-08-31 2010-08-31 Rolling bearing unit for supporting wheel Withdrawn JP2012051393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193117A JP2012051393A (en) 2010-08-31 2010-08-31 Rolling bearing unit for supporting wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193117A JP2012051393A (en) 2010-08-31 2010-08-31 Rolling bearing unit for supporting wheel

Publications (1)

Publication Number Publication Date
JP2012051393A true JP2012051393A (en) 2012-03-15

Family

ID=45905269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193117A Withdrawn JP2012051393A (en) 2010-08-31 2010-08-31 Rolling bearing unit for supporting wheel

Country Status (1)

Country Link
JP (1) JP2012051393A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014105452U1 (en) 2013-11-13 2015-03-11 Nsk Ltd. rolling bearing unit
KR101576950B1 (en) * 2014-12-02 2015-12-11 주식회사 베어링아트 Manufacturing method for outer ring of ball bearing and outer ring of ball bearing using the same
JP2016151440A (en) * 2015-02-16 2016-08-22 日本精工株式会社 Test device of rolling bearing unit for wheel support
DE202017106535U1 (en) 2016-10-28 2017-11-17 Nsk Ltd. Rolling bearing unit for wheel bearing
EP4372241A4 (en) * 2021-07-12 2024-10-30 Ntn Toyo Bearing Co Ltd Vehicle wheel bearing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014105452U1 (en) 2013-11-13 2015-03-11 Nsk Ltd. rolling bearing unit
KR101576950B1 (en) * 2014-12-02 2015-12-11 주식회사 베어링아트 Manufacturing method for outer ring of ball bearing and outer ring of ball bearing using the same
JP2016151440A (en) * 2015-02-16 2016-08-22 日本精工株式会社 Test device of rolling bearing unit for wheel support
DE202017106535U1 (en) 2016-10-28 2017-11-17 Nsk Ltd. Rolling bearing unit for wheel bearing
EP4372241A4 (en) * 2021-07-12 2024-10-30 Ntn Toyo Bearing Co Ltd Vehicle wheel bearing device

Similar Documents

Publication Publication Date Title
KR101484812B1 (en) Wheel bearing unit
EP1939471B1 (en) Bearing device for wheel
JP5227158B2 (en) Roller bearing inner ring and wheel bearing device having the same
JP2009113635A (en) Wheel bearing device
JP2012051393A (en) Rolling bearing unit for supporting wheel
JP6587851B2 (en) Wheel bearing device
JP2004322834A (en) Rotation supporting device for wheel
JP2012148643A (en) Rolling bearing device for wheel
JP4693752B2 (en) Manufacturing method of wheel bearing device
US9694627B2 (en) Hub-bearing having a light alloy rotor-hub
JP5228343B2 (en) Double row rolling bearing unit for wheel support and manufacturing method thereof
JP2008173995A (en) Bearing device for wheel
JP2013086514A (en) Rolling bearing unit for supporting wheel
US20110129178A1 (en) Rolling bearing device
JP5644665B2 (en) Bearing unit
JP3893933B2 (en) Rotating support device for wheel and assembling method thereof
JP2010179670A (en) Rolling bearing unit for supporting wheel
JP2022150834A (en) hub unit bearing
WO2015147245A1 (en) Bearing device for wheel
JP5141114B2 (en) Rolling bearing unit for wheel support
JP2007120594A (en) Wheel bearing device
JP5574146B2 (en) Rolling bearing device for wheels
JP2008002474A (en) Hub unit for supporting wheel
JP4034799B2 (en) Wheel bearing device
KR20200120564A (en) Wheel bearing assembly

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105