Nothing Special   »   [go: up one dir, main page]

JP2010213413A - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP2010213413A
JP2010213413A JP2009055090A JP2009055090A JP2010213413A JP 2010213413 A JP2010213413 A JP 2010213413A JP 2009055090 A JP2009055090 A JP 2009055090A JP 2009055090 A JP2009055090 A JP 2009055090A JP 2010213413 A JP2010213413 A JP 2010213413A
Authority
JP
Japan
Prior art keywords
stator
housing
rotor
partition member
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009055090A
Other languages
Japanese (ja)
Other versions
JP5388636B2 (en
Inventor
Tamotsu Kawamura
保 河村
Hirobumi Shin
博文 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009055090A priority Critical patent/JP5388636B2/en
Publication of JP2010213413A publication Critical patent/JP2010213413A/en
Application granted granted Critical
Publication of JP5388636B2 publication Critical patent/JP5388636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating electric machine having a simple configuration and preventing a cooling medium of a stator housing chamber from leaking to a rotor housing chamber. <P>SOLUTION: The rotating electric machine 10 includes: a stator 11, a freely rotatable rotor 12 arranged in the inner circumferential side of a stator 11 via an air gap, and a housing 13 for housing the stator 11 and the rotor 12. A partitioning wall member 17 is provided in the air gap S, for dividing the stator housing chamber 20 for housing the stator 11 from the rotor housing chamber 30 for housing the rotor 12. An inlet port 131a for introducing the cooling medium to the inside of the housing from the outside, and an outlet portion 131b for guiding the cooling medium to the outside from the inside of the housing are provided in the stator housing chamber 20. At least one rib 175 extending in an axial direction is provided at a position facing the slot 112 on the outer circumferential surface of the partitioning wall member 17. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転電機、特にステータを冷却する冷却構造を備えた回転電機に関する。   The present invention relates to a rotating electrical machine, and more particularly, to a rotating electrical machine having a cooling structure for cooling a stator.

従来、ステータを冷却する冷却構造を備えた回転電機として、例えば特許文献1に記載の回転電機が知られている。この回転電機200は、図8及び図9に示すように、スロット201とティース202が内周面に交互に形成されたステータコア203にコイル204が装着されたステータ205と、ステータ205の内周部に配置され回転自在なロータ206と、ステータ205とロータ206を収容するハウジング207と、を備えて構成されている。   Conventionally, for example, a rotating electrical machine described in Patent Document 1 is known as a rotating electrical machine having a cooling structure for cooling a stator. As shown in FIGS. 8 and 9, the rotating electrical machine 200 includes a stator 205 in which a coil 204 is mounted on a stator core 203 in which slots 201 and teeth 202 are alternately formed on an inner peripheral surface, and an inner peripheral portion of the stator 205. And a rotatable rotor 206, a stator 205, and a housing 207 that accommodates the rotor 206.

また、ステータ205を冷却する構造として、スロット201の開口部付近にスロット201を閉塞するプレート208を配置するとともに、プレート208とステータコア203の内周側及び外周側に金型を配置しそこに樹脂を充填することでステータ205の両端とハウジング207の側壁部212、212間に隔壁209、209を形成し、ハウジング207内をステータ205を収容するステータ収容室210とロータ206を収容するロータ収容室211に分割している。
そして、ステータ収容室210に形成された導入口213からハウジング207内に冷却用の冷媒を導入し、導出口214から冷媒を外部に導出し、ステータ205を冷却することが記載されている。
Further, as a structure for cooling the stator 205, a plate 208 that closes the slot 201 is disposed in the vicinity of the opening of the slot 201, and molds are disposed on the inner peripheral side and the outer peripheral side of the plate 208 and the stator core 203, and resin is provided there. Partition walls 209 and 209 are formed between both ends of the stator 205 and the side walls 212 and 212 of the housing 207, and the housing 207 has a stator housing chamber 210 for housing the stator 205 and a rotor housing chamber for housing the rotor 206. It is divided into 211.
In addition, it is described that a cooling refrigerant is introduced into the housing 207 from the introduction port 213 formed in the stator housing chamber 210, the refrigerant is led out to the outside through the outlet port 214, and the stator 205 is cooled.

特開2003−61285号公報JP 2003-61285 A

しかしながら特許文献1に記載の回転電機200は、ステータコア203を磁性板を積層した積層構造とした場合に、ステータ収容室210に導入された冷媒が積層間の隙間からロータ収容室211に漏れるおそれがあった。漏れた冷媒がロータ206に付着すると機械損失が増加し、また、ロータ収容室211から外部へ冷媒を排出しようとすると別途、排出機構が必要になるなどの問題があった。
また、プレート208の両端の隔壁209、209は、金型を用いて樹脂を充填して形成されるため構造が複雑であるとともに、製造工程が複雑であった。
However, in the rotating electrical machine 200 described in Patent Document 1, when the stator core 203 has a laminated structure in which magnetic plates are laminated, the refrigerant introduced into the stator accommodating chamber 210 may leak into the rotor accommodating chamber 211 from the gap between the laminates. there were. When the leaked refrigerant adheres to the rotor 206, the mechanical loss increases, and when the refrigerant is discharged from the rotor accommodating chamber 211 to the outside, a separate discharge mechanism is required.
Moreover, since the partition walls 209 and 209 at both ends of the plate 208 are formed by filling a resin using a mold, the structure is complicated and the manufacturing process is complicated.

本発明は、上記した事情に鑑みてなされたもので、その目的は、簡易な構成でステータ収容室の冷媒がロータ収容室に漏れるのを防止することができる回転電機を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rotating electrical machine that can prevent the refrigerant in the stator housing chamber from leaking into the rotor housing chamber with a simple configuration.

上記目的を達成するために、請求項1に記載の発明は、
スロット(例えば、後述の実施形態におけるスロット112)とティース(例えば、後述の実施形態におけるティース111)が内周面に交互に形成されたステータコア(例えば、後述の実施形態におけるステータコア110)にコイル(例えば、後述の実施形態におけるコイル114)が装着されたステータ(例えば、後述の実施形態におけるステータ11)と、前記ステータの内周側にエアギャップ(例えば、後述の実施形態におけるエアギャップS)を介して配置され回転自在なロータ(例えば、後述の実施形態におけるロータ12)と、前記ステータと前記ロータを収容するハウジング(例えば、後述の実施形態におけるハウジング13と、を備えた回転電機(例えば、後述の実施形態における回転電機10)であって、
前記エアギャップには、前記ステータを収容するステータ収容室(例えば、後述の実施形態におけるステータ収容室20)と前記ロータを収容するロータ収容室(例えば、後述の実施形態におけるロータ収容室30)を液密に分割する隔壁部材(例えば、後述の実施形態における隔壁部材17)が設けられ、
前記ステータ収容室には、外部から前記ハウジング内部に冷媒を導入する導入口(例えば、後述の実施形態における導入口131a)と、前記ハウジング内部から外部に冷媒を導出する導出口(例えば、後述の実施形態における導出口131b)が設けられ、
前記隔壁部材は、外周面に前記スロットと対向する位置に軸方向に伸びる少なくとも1つのリブ(例えば、後述の実施形態におけるリブ175)が設けられている、
ことを特徴とする。
In order to achieve the above object, the invention described in claim 1
A coil (e.g., a stator core (e.g., a stator core 110 in an embodiment described later)) in which slots (e.g., a slot 112 in embodiments described later) and teeth (e.g., teeth 111 in embodiments described later) are alternately formed on the inner peripheral surface is formed. For example, a stator (for example, a stator 11 in the later-described embodiment) on which a coil 114 in the later-described embodiment is mounted, and an air gap (for example, an air gap S in the later-described embodiment) on the inner peripheral side of the stator. A rotating electrical machine (for example, a rotor 12 in an embodiment described later) and a housing (for example, a housing 13 in an embodiment described later) that accommodates the stator and the rotor. A rotating electrical machine 10) in an embodiment described later,
The air gap includes a stator accommodating chamber (for example, a stator accommodating chamber 20 in an embodiment described later) and a rotor accommodating chamber (for example, a rotor accommodating chamber 30 in an embodiment described later) for accommodating the rotor. A partition member (for example, a partition member 17 in an embodiment described later) that is divided liquid-tightly is provided.
In the stator housing chamber, an introduction port (for example, an introduction port 131a in an embodiment described later) for introducing a refrigerant into the housing from the outside, and an outlet port (for example, described later) for extracting the refrigerant from the inside of the housing to the outside. The outlet 131b) in the embodiment is provided,
The partition member is provided with at least one rib (for example, a rib 175 in an embodiment described later) extending in the axial direction at a position facing the slot on the outer peripheral surface.
It is characterized by that.

請求項2に記載の発明は、請求項1に記載の発明の構成に加えて、
前記リブは、前記スロットと対向する全ての位置に設けられている、
ことを特徴とする。
In addition to the configuration of the invention described in claim 1, the invention described in claim 2
The ribs are provided at all positions facing the slot.
It is characterized by that.

請求項3に記載の発明は、請求項1又は2に記載の発明の構成に加えて、
前記ハウジングには、前記隔壁部材の軸方向両側に、且つ、内径側に前記隔壁部材を支持する環状支持部(例えば、後述の実施形態における環状支持部133)が設けられ、
前記隔壁部材の内周面が、シール部材(例えば、後述の実施形態におけるOリング18)を介して前記環状支持部に支持される、
ことを特徴とする。
In addition to the configuration of the invention described in claim 1 or 2, the invention described in claim 3
The housing is provided with an annular support portion (for example, an annular support portion 133 in an embodiment described later) that supports the partition member on both sides in the axial direction of the partition member and on the inner diameter side.
The inner peripheral surface of the partition member is supported by the annular support portion via a seal member (for example, an O-ring 18 in an embodiment described later).
It is characterized by that.

請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明の構成に加えて、
前記隔壁部材は、樹脂材からなり、前記リブが射出成形により一体に形成されている、
ことを特徴とする。
In addition to the configuration of the invention according to any one of claims 1 to 3, the invention according to claim 4
The partition member is made of a resin material, and the rib is integrally formed by injection molding.
It is characterized by that.

請求項5に記載の発明は、請求項4に記載の発明の構成に加えて、
前記隔壁部材の前記外周面のうち、前記リブが形成されていない部分がティース先端面(例えば、後述の実施形態におけるティース先端面111a)にインロー嵌合する、
ことを特徴とする。
In addition to the structure of the invention described in claim 4, the invention described in claim 5
Of the outer peripheral surface of the partition member, a portion where the rib is not formed fits in a tooth tip surface (for example, a tooth tip surface 111a in an embodiment described later),
It is characterized by that.

請求項6に記載の発明は、請求項1〜5のいずれかに記載の発明の構成に加えて、
前記リブは、周方向端面に前記ティースの周方向端面(例えば、後述の実施形態における周方向端面111b)と当接する当接部(例えば、後述の実施形態における当接部177)を有する、
ことを特徴とする。
In addition to the structure of the invention in any one of Claims 1-5, the invention of Claim 6 is
The rib has a contact portion (for example, a contact portion 177 in an embodiment described later) that contacts a circumferential end surface of the tooth (for example, a circumferential end surface 111b in the embodiment described later) on the circumferential end surface.
It is characterized by that.

請求項1の発明によれば、ステータ収容室とロータ収容室を液密に分割する隔壁が1つの円筒状の隔壁部材から構成されるため簡易な構成で、ステータ収容室の冷媒がロータ収容室に漏れるのを防止することができる。これにより、冷媒がロータに付着することによる機械損失を低減することができ効率を向上させることができる。また、ロータ収容室から冷媒を外部へ排出する排出機構を設ける必要がないので回転電機を小型化することができる。
さらにステータ収容室とロータ収容室を分割する隔壁が1つの隔壁部材から構成されるので、冷媒による径方向外側からの圧力に対して強度を確保することができる。また、隔壁部材は、外周面にステータのスロットと対向する位置に軸方向に伸びる少なくとも1つのリブが設けられているので、径方向外側からの圧力に対してさらに強度を向上させることができる。これにより、ステータ収容室の圧力が高くなっても隔壁部材の破壊や変形によるロータ収容室への冷媒漏れを回避することができるため、冷媒流量を増やして冷却性能を向上させることができる。
さらに、リブとステータのティースが当接することにより、隔壁部材がロータの回転に伴って連れ回るのを防止することができる。
According to the first aspect of the present invention, the partition that divides the stator accommodating chamber and the rotor accommodating chamber in a liquid-tight manner is composed of a single cylindrical partition member, so that the refrigerant in the stator accommodating chamber is a simple structure and the rotor accommodating chamber It is possible to prevent leakage. Thereby, the mechanical loss by a refrigerant | coolant adhering to a rotor can be reduced, and efficiency can be improved. Further, since there is no need to provide a discharge mechanism for discharging the refrigerant from the rotor housing chamber to the outside, the rotating electrical machine can be reduced in size.
Furthermore, since the partition which divides | segments a stator storage chamber and a rotor storage chamber is comprised from one partition member, intensity | strength can be ensured with respect to the pressure from the radial direction outer side by a refrigerant | coolant. Further, since the partition wall member is provided with at least one rib extending in the axial direction at a position facing the stator slot on the outer peripheral surface, the strength can be further improved against pressure from the outside in the radial direction. Thereby, even if the pressure in the stator accommodating chamber increases, the refrigerant leakage to the rotor accommodating chamber due to the breakage or deformation of the partition member can be avoided, so that the refrigerant flow rate can be increased and the cooling performance can be improved.
Furthermore, the rib member and the teeth of the stator are in contact with each other, so that the partition member can be prevented from being rotated with the rotation of the rotor.

請求項2の発明によれば、スロットと対向する全ての位置にリブが設けられているので、径方向外側からの圧力に対してさらに強度を向上させることができる。これにより、隔壁部材の肉厚を薄くしてステータとロータ間のエアギャップを小さくすることができ、エアギャップによる磁気抵抗の増加を抑制することができる。   According to the invention of claim 2, since the ribs are provided at all positions facing the slot, the strength can be further improved against the pressure from the outside in the radial direction. Thereby, the wall thickness of the partition member can be reduced, the air gap between the stator and the rotor can be reduced, and an increase in magnetic resistance due to the air gap can be suppressed.

請求項3の発明によれば、ステータ収容室に冷媒が供給されると冷媒により隔壁部材の外周面に液圧が作用するが、シール部材は隔壁部材の内周面と当接するので、冷媒の液圧がシール部材を密着する方向に作用するため、シール性を向上させることができる。また、リブにより隔壁部材がロータの回転に伴って連れ回りを防止するので、シール部材が摩耗により損傷することを防止することができる。   According to the third aspect of the present invention, when the refrigerant is supplied to the stator housing chamber, the refrigerant acts on the outer peripheral surface of the partition wall member, but the seal member contacts the inner peripheral surface of the partition wall member. Since the hydraulic pressure acts in the direction in which the sealing member is brought into close contact, the sealing performance can be improved. Further, the rib member prevents the partition member from being rotated along with the rotation of the rotor, so that the seal member can be prevented from being damaged due to wear.

請求項4の発明によれば、隔壁部材は、樹脂材からなり、リブが射出成形により一体に形成されているので、リブを備えた隔壁部材を容易に製造することができる。   According to the invention of claim 4, since the partition member is made of a resin material and the ribs are integrally formed by injection molding, the partition member having the ribs can be easily manufactured.

請求項5の発明によれば、隔壁部材の外周面のうちリブが形成されていない部分がティース先端面にインロー嵌合することにより、隔壁部材の一部が外径側に変形しようとしてもティース先端面で支持されるので、ステータ収容室の圧力が高くなっても隔壁部材の破壊や変形によるロータ収容室への冷媒漏れを回避することができるため、冷媒流量を増やして冷却性能を向上させることができる。   According to the invention of claim 5, even if a part of the partition wall member is deformed to the outer diameter side by fitting the portion of the outer peripheral surface of the partition wall member where the rib is not formed into the tooth tip surface by inlay fitting. Since it is supported by the front end surface, it is possible to avoid refrigerant leakage to the rotor housing chamber due to the breakage or deformation of the partition wall member even when the pressure of the stator housing chamber becomes high, so that the refrigerant flow rate is increased and the cooling performance is improved. be able to.

請求項6の発明によれば、リブに形成された当接部がステータのティースと当接することにより隔壁部材がロータの回転に伴って連れ回るのを確実に防止することができる。   According to the sixth aspect of the present invention, the abutting portion formed on the rib abuts against the teeth of the stator, so that it is possible to reliably prevent the partition wall member from rotating with the rotation of the rotor.

本発明に係る回転電機の一実施形態の軸方向断面図であり、図2のI−I線断面図である。It is an axial sectional view of an embodiment of a rotating electrical machine according to the present invention, and is a sectional view taken along line II in FIG. 図1に示す回転電機の軸直交方向断面図である。FIG. 2 is a cross-sectional view in the direction perpendicular to the axis of the rotating electrical machine shown in FIG. 1. 図2の回転電機においてロータが時計回りに回転した場合を説明する軸直交方向断面図である。FIG. 3 is a cross-sectional view perpendicular to the axis for explaining a case where a rotor rotates clockwise in the rotating electrical machine of FIG. 2. 図1に示す回転電機における隔壁部材の変形モードを説明する軸方向断面図である。It is an axial sectional view explaining the deformation mode of the partition member in the rotating electrical machine shown in FIG. 耐圧試験に用いた歪ゲージを取り付けた隔壁部材の斜視図である。It is a perspective view of the partition member which attached the strain gauge used for the pressure test. 耐圧試験装置を示す図であり、(a)は耐圧試験装置の軸直交方向断面図であり、(b)は(a)のB−B線断面図である。It is a figure which shows a pressure | voltage resistant test apparatus, (a) is an axial orthogonal direction sectional view of a pressure | voltage resistant test apparatus, (b) is the BB sectional drawing of (a). 耐圧試験装置における隔壁部材の変形を示す図である。It is a figure which shows the deformation | transformation of the partition member in a pressure | voltage resistant test apparatus. 特許文献1に記載の回転電機の軸方向断面図である。3 is an axial sectional view of a rotating electrical machine described in Patent Document 1. FIG. 特許文献1に記載の回転電機のステータの軸直交方向の部分断面図である。FIG. 6 is a partial cross-sectional view in a direction perpendicular to the axis of a stator of a rotating electrical machine described in Patent Document 1.

以下、本発明に係る回転電機の各実施形態について、添付図面に基づいて詳細に説明する。   Hereinafter, each embodiment of the rotating electrical machine according to the present invention will be described in detail with reference to the accompanying drawings.

本実施の形態による回転電機10は、例えば図1及び図2に示すように、ステータ11と、ステータ11の内周側にエアギャップSを介して対向配置されたロータ12と、ステータ11とロータ12を収容するハウジング13と、を備えて構成されている。   The rotating electrical machine 10 according to the present embodiment includes, for example, as shown in FIGS. 1 and 2, a stator 11, a rotor 12 that is disposed to face the inner peripheral side of the stator 11 via an air gap S, and the stator 11 and the rotor. And a housing 13 that accommodates the housing 12.

ハウジング13は、円筒状の円筒壁部131と、円筒壁部131の両側をOリング14、14を介して液密に閉塞した側壁部132、132と、側壁部132、132の軸方向内側に接合され円筒壁部131より小径で軸方向長さの短い環状支持部133と、から構成されている。円筒壁部131には、外部からハウジング内部へ冷媒を導入する導入口131aが穿設されるとともにハウジング内部から外部へ冷媒を導出する導出口131bが穿設されている。そして、円筒壁部131の内周面には、ステータ11が固定されている。   The housing 13 includes a cylindrical cylindrical wall portion 131, side wall portions 132 and 132 in which both sides of the cylindrical wall portion 131 are liquid-tightly closed via O-rings 14 and 14, and axially inner sides of the side wall portions 132 and 132. An annular support portion 133 that is joined and has a smaller diameter than the cylindrical wall portion 131 and a shorter axial length is formed. The cylindrical wall 131 is provided with an introduction port 131a for introducing a refrigerant from the outside to the inside of the housing and an outlet port 131b for drawing the refrigerant from the inside of the housing to the outside. The stator 11 is fixed to the inner peripheral surface of the cylindrical wall 131.

ステータ11は、内径側に所定の間隔で突出する複数のティース111が設けられてティース111とスロット112が周方向に交互に形成されたステータコア110と、ステータコア110の各ティース111に巻回されたコイル114とから構成されている。ステータコア110は、複数層の電磁鋼板が積層されて構成されている。   The stator 11 is wound around each tooth 111 of the stator core 110 and a stator core 110 in which a plurality of teeth 111 protruding at a predetermined interval are provided on the inner diameter side, and the teeth 111 and the slots 112 are alternately formed in the circumferential direction. The coil 114 is configured. The stator core 110 is configured by laminating a plurality of layers of electromagnetic steel plates.

ロータ12は、回転軸15と一体に回転可能なロータコア120と、ロータコア120内に周方向に等間隔に配置された不図示の永久磁石とから構成されている。回転軸15はハウジング13の側壁部132、132に軸受16、16を介して回転自在に支持されており、ロータコア120はステータコア110により与えられる回転磁束に対して反力を生じて回転軸15と一体に回転可能となっている。   The rotor 12 includes a rotor core 120 that can rotate integrally with the rotary shaft 15, and permanent magnets (not shown) that are arranged in the rotor core 120 at equal intervals in the circumferential direction. The rotating shaft 15 is rotatably supported on the side wall portions 132 and 132 of the housing 13 via bearings 16 and 16, and the rotor core 120 generates a reaction force against the rotating magnetic flux applied by the stator core 110 and It can rotate as a unit.

ここで、本実施形態の回転電機10は、ステータ11の内周面とロータ12の外周面間に形成されたエアギャップSに1つの円筒状の隔壁部材17が設けられ、隔壁部材17の両端部の内周面がOリング18、18を介してハウジング13の環状支持部133、133に支持されている。隔壁部材17は、非磁性及び非導電性材料、例えば、樹脂、セラミックなどから構成され、軸方向で対向するハウジング13の側壁部132、132間距離と略等しい軸方向長さを有し、厚さ(径方向長さ)は所定の強度を確保できるようにエアギャップSより短い厚さに設定されている。   Here, in the rotating electrical machine 10 according to the present embodiment, one cylindrical partition member 17 is provided in the air gap S formed between the inner peripheral surface of the stator 11 and the outer peripheral surface of the rotor 12. The inner peripheral surface of each part is supported by the annular support parts 133 and 133 of the housing 13 via O-rings 18 and 18. The partition member 17 is made of a non-magnetic and non-conductive material, such as resin or ceramic, and has an axial length substantially equal to the distance between the side wall portions 132 and 132 of the housing 13 facing in the axial direction. The thickness (the length in the radial direction) is set to a thickness shorter than the air gap S so as to ensure a predetermined strength.

また、隔壁部材17の外周面には、射出成形により一体形成され軸方向に伸びる複数のリブ175が周方向に等間隔に設けられ、そして各リブ175がステータ11のスロット112に対応して配置されている。各リブ175は略台形状の断面形状を有し、スロット112に部分的に入り込んでいる。リブ175の周方向両端面には、当接部177、177が形成され、ティース111の周方向端面111b、111bと当接可能となっている。従って、図3に示すように、矢印で示すようにロータ12が時計回りに回転したとすると、隔壁部材17にも矢印で示す方向に回転しようとするが、回転方向前方側の当接部177がティース111の回転方向後方側の周方向端面111bに当接し、その回転が防止される。   A plurality of ribs 175 integrally formed by injection molding and extending in the axial direction are provided on the outer peripheral surface of the partition wall member 17 at equal intervals in the circumferential direction, and each rib 175 is disposed corresponding to the slot 112 of the stator 11. Has been. Each rib 175 has a substantially trapezoidal cross-sectional shape and partially enters the slot 112. Abutting portions 177 and 177 are formed on both end surfaces in the circumferential direction of the rib 175 so as to be in contact with the circumferential end surfaces 111b and 111b of the tooth 111. Therefore, as shown in FIG. 3, if the rotor 12 rotates clockwise as indicated by an arrow, the partition member 17 also tries to rotate in the direction indicated by the arrow, but the contact portion 177 on the front side in the rotational direction. Comes into contact with the circumferential end surface 111b on the rear side in the rotational direction of the tooth 111, and its rotation is prevented.

また、隔壁部材17の外周面のうち、リブ175が形成されてない部分はティース111の内周面であるティース先端面111aとインロー嵌合している。このように構成された隔壁部材17は、ステータ11を収容するステータ収容室20とロータ12を収容するロータ収容室30とにハウジング13内を分割する隔壁として機能し、隔壁部材17の内周面と環状支持部133、133間に設けられたOリング18、18によりステータ収容室20がロータ収容室30から液密に隔離されている。   Moreover, the part in which the rib 175 is not formed among the outer peripheral surfaces of the partition member 17 is inlay-fitted with the teeth front end surface 111a which is the inner peripheral surface of the teeth 111. The partition member 17 configured as described above functions as a partition that divides the interior of the housing 13 into a stator housing chamber 20 that houses the stator 11 and a rotor housing chamber 30 that houses the rotor 12. The stator housing chamber 20 is liquid-tightly isolated from the rotor housing chamber 30 by O-rings 18 and 18 provided between the annular support portions 133 and 133.

そして、ハウジング13の円筒壁部131に形成された導入口131aから絶縁性の冷媒が供給され、ステータ収容室20が冷媒で充填されることによりステータ11が冷却される。このとき円筒状の隔壁部材17の変形モードは、図4に示すように両端支持の分布荷重曲げとなる。   Then, an insulating refrigerant is supplied from an inlet 131a formed in the cylindrical wall 131 of the housing 13, and the stator 11 is cooled by filling the stator housing chamber 20 with the refrigerant. At this time, the deformation mode of the cylindrical partition member 17 is distributed load bending with both ends supported as shown in FIG.

以上、説明したように本実施形態の回転電機10によれば、ステータ収容室20とロータ収容室30を液密に分割する隔壁が1つの隔壁部材17から構成されるため簡易な構成で、ステータ収容室20の冷媒がロータ収容室30に漏れるのを防止することができる。これにより、冷媒がロータ12に付着することによる機械損失を低減することができ効率を向上させることができる。また、ロータ収容室30から冷媒を外部へ排出する排出機構を設ける必要がないので回転電機10を小型化することができる。
さらにステータ収容室20とロータ収容室30を分割する隔壁が1つの隔壁部材17から構成されるので、冷媒による径方向外側からの圧力に対して強度を確保することができる。また、リブ175に形成された当接部177がティース111の周方向端面111bと当接することにより隔壁部材17がロータ12の回転に伴って連れ回るのを防止することができる。
As described above, according to the rotating electrical machine 10 of the present embodiment, since the partition wall that divides the stator housing chamber 20 and the rotor housing chamber 30 in a liquid-tight manner is composed of one partition member 17, the stator has a simple configuration. It is possible to prevent the refrigerant in the storage chamber 20 from leaking into the rotor storage chamber 30. Thereby, the mechanical loss by a refrigerant | coolant adhering to the rotor 12 can be reduced, and efficiency can be improved. Further, since there is no need to provide a discharge mechanism for discharging the refrigerant from the rotor housing chamber 30 to the outside, the rotating electrical machine 10 can be reduced in size.
Furthermore, since the partition which divides the stator storage chamber 20 and the rotor storage chamber 30 is comprised from the one partition member 17, intensity | strength can be ensured with respect to the pressure from the radial direction outer side by a refrigerant | coolant. Further, the abutting portion 177 formed on the rib 175 abuts on the circumferential end surface 111 b of the tooth 111, whereby the partition member 17 can be prevented from rotating with the rotation of the rotor 12.

また、本実施形態の回転電機10によれば、スロット112と対向する全ての位置にリブ175が設けられているので、径方向外側からの圧力に対してさらに強度を向上させることができる。これにより、隔壁部材17の肉厚を薄くしてステータ11とロータ12間のエアギャップSを小さくすることができ、エアギャップSによる磁気抵抗の増加を抑制することができる。   Further, according to the rotating electrical machine 10 of the present embodiment, since the ribs 175 are provided at all positions facing the slot 112, the strength can be further improved against the pressure from the outside in the radial direction. Thereby, the wall thickness of the partition member 17 can be reduced, the air gap S between the stator 11 and the rotor 12 can be reduced, and an increase in magnetic resistance due to the air gap S can be suppressed.

また、本実施形態の回転電機10によれば、ステータ収容室20に冷媒が供給されると冷媒により隔壁部材17の外周面に液圧が作用するが、Oリング18、18が隔壁部材17の内周面と当接するので、冷媒の液圧がOリング18、18をつぶす方向に作用するため、シール性を向上させることができる。また、リブ175により隔壁部材17がロータ12の回転に伴って連れ回りを防止するので、Oリング18、18が摩耗により損傷することを防止することができる。   Further, according to the rotating electrical machine 10 of the present embodiment, when refrigerant is supplied to the stator housing chamber 20, hydraulic pressure acts on the outer peripheral surface of the partition wall member 17 by the coolant, but the O-rings 18 and 18 are connected to the partition wall member 17. Since it abuts on the inner peripheral surface, the fluid pressure of the refrigerant acts in the direction of crushing the O-rings 18 and 18, so that the sealing performance can be improved. Further, since the rib member 175 prevents the partition member 17 from being rotated along with the rotation of the rotor 12, it is possible to prevent the O-rings 18 and 18 from being damaged due to wear.

また、本実施形態の回転電機によれば、隔壁部材17は、樹脂材からなり、リブ175が射出成形により一体に形成されているので、リブ175を備えた隔壁部材17を容易に製造することができる。   Further, according to the rotating electrical machine of the present embodiment, the partition member 17 is made of a resin material, and the ribs 175 are integrally formed by injection molding. Therefore, the partition member 17 provided with the ribs 175 can be easily manufactured. Can do.

次に、図5〜図7を参照して円筒状の隔壁部材の耐圧試験について説明する。
図5に示すように、試験用サンプルとして円筒状の隔壁部材Saを用意し、隔壁部材Saの軸方向両側に周方向に等間隔で4つの歪ゲージ(A〜D,E〜H)を貼り付けた。試験装置40は、隔壁部材Saより大径の円筒部41と該円筒部41の内周面から突出し周方向等間隔に設けられた突出部42を有する円筒状部材43と、軸方向両端に設けられ互いに対向する軸部材44、44と、を備え、内部に冷媒を供給可能に構成されている。そして、図6(a)及び(b)に示すように試験装置40に隔壁部材Saを装着し、隔壁部材Saの外周面をティースに相当する突出部42にインロー嵌合させるとともに、隔壁部材Saの内周面をOリング45、45により液密にして軸方向両端の軸部材44、44に固定した。このように隔壁部材Saを試験装置40に装着し、隔壁部材Saの外周側の空間に冷媒を供給し、隔壁部材Saの歪を調べた。
Next, a pressure resistance test of the cylindrical partition member will be described with reference to FIGS.
As shown in FIG. 5, a cylindrical partition member Sa is prepared as a test sample, and four strain gauges (A to D, E to H) are attached at equal intervals in the circumferential direction on both sides in the axial direction of the partition member Sa. I attached. The test apparatus 40 includes a cylindrical member 43 having a cylindrical portion 41 having a diameter larger than that of the partition wall member Sa, protruding portions 42 protruding from the inner peripheral surface of the cylindrical portion 41 and provided at equal intervals in the circumferential direction, and provided at both axial ends. The shaft members 44 and 44 are opposed to each other, and are configured to be able to supply a refrigerant therein. Then, as shown in FIGS. 6A and 6B, the partition member Sa is attached to the test apparatus 40, and the outer peripheral surface of the partition member Sa is fitted into the protruding portion 42 corresponding to the teeth, and the partition member Sa. The inner peripheral surface of each was made fluid-tight by O-rings 45 and 45 and fixed to shaft members 44 and 44 at both axial ends. Thus, the partition member Sa was mounted on the test apparatus 40, the refrigerant was supplied to the space on the outer peripheral side of the partition member Sa, and the strain of the partition member Sa was examined.

図7に耐圧試験の結果を示す。
図7に示すように、油圧がかかっていないときには略真円断面(図7(a)参照)を有する隔壁部材Saが、油圧を上げていくことで次第に変形する過程が観測された。油圧が比較的低い状態では、図7(b)に示すように4箇所の歪ゲージには全て圧縮応力が作用しており、次第に油圧を上げていくと、図7(c)に示すように一箇所で引張応力が作用した。そして、さらに油圧を上げることで図7(d)に示すように、図7(c)における引張応力発生部から隔壁部材Saが破損した。
この耐圧試験結果から、隔壁部材Saに外圧を作用させると、ある圧力で1ヶ所に引張応力が発生し、さらに外圧を上げることで引張応力発生部から隔壁部材Saが破損することがわかった。
なお、隔壁部材Saの外周面を突出部42にインロー嵌合させない場合についても同様の試験を行なったが、インロー嵌合させる場合に比べて低圧で隔壁部材Saが破損することが確認できた。
FIG. 7 shows the result of the pressure resistance test.
As shown in FIG. 7, when the hydraulic pressure was not applied, a process in which the partition member Sa having a substantially perfect circular cross section (see FIG. 7A) gradually deformed by increasing the hydraulic pressure was observed. In a state where the hydraulic pressure is relatively low, compressive stress is applied to all four strain gauges as shown in FIG. 7B, and when the hydraulic pressure is gradually increased, as shown in FIG. 7C. Tensile stress was applied at one location. Further, as shown in FIG. 7 (d), the partition wall member Sa was damaged from the tensile stress generating portion in FIG. 7 (c) by further increasing the hydraulic pressure.
From this pressure resistance test result, it was found that when an external pressure is applied to the partition wall member Sa, a tensile stress is generated at one location at a certain pressure, and the partition wall Sa is damaged from the tensile stress generation portion by further increasing the external pressure.
The same test was performed for the case where the outer peripheral surface of the partition wall member Sa was not fitted with the spigot portion 42, but it was confirmed that the partition wall member Sa was damaged at a lower pressure than when the spigot fitting was performed.

ここで、本実施形態の回転電機10は、隔壁部材17の外周面のうちリブ175が形成されていない部分がティース先端面111aにインロー嵌合するため、隔壁部材17の一部に引張応力が作用し外径側に変形しようとしても隔壁部材17がティース先端面111aに支持される。従ってステータ収容室20の圧力が高くなっても隔壁部材17の外径方向への変形を均等に抑止でき、隔壁部材17の破壊や変形によるロータ収容室30への冷媒漏れを回避することができるため、冷媒流量を増やして冷却性能を向上させることができる。   Here, in the rotating electrical machine 10 of the present embodiment, a portion of the outer peripheral surface of the partition wall member 17 where the ribs 175 are not formed fits in the tooth tip surface 111a, so that tensile stress is applied to a part of the partition wall member 17. The partition member 17 is supported by the tooth tip surface 111a even if it acts and is deformed to the outer diameter side. Therefore, even when the pressure in the stator housing chamber 20 is increased, deformation of the partition wall member 17 in the outer diameter direction can be uniformly suppressed, and refrigerant leakage to the rotor housing chamber 30 due to breakage or deformation of the partition wall member 17 can be avoided. Therefore, it is possible to improve the cooling performance by increasing the refrigerant flow rate.

また、隔壁部材17は、外周面にステータ11のスロット112と対向する位置に軸方向に伸びるリブ175が設けられているので、径方向外側からの圧力に対してさらに強度を向上させることができる。これにより、ステータ収容室20の圧力が高くなっても隔壁部材17の破壊や変形によるロータ収容室30への冷媒漏れを回避することができるため、冷媒流量を増やしてさらに冷却性能を向上させることができる。   Moreover, since the rib member 175 extending in the axial direction is provided on the outer peripheral surface of the partition wall member 17 at a position facing the slot 112 of the stator 11, the strength can be further improved against pressure from the outside in the radial direction. . As a result, even if the pressure in the stator housing chamber 20 increases, refrigerant leakage to the rotor housing chamber 30 due to breakage or deformation of the partition member 17 can be avoided, so that the coolant flow rate can be increased to further improve the cooling performance. Can do.

なお、本発明は、上記実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   In addition, this invention is not limited to what was illustrated to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.

例えば、上記実施形態では隔壁部材17の外周面のうちリブが形成されていない部分をティース先端面111aにインロー嵌合させたが、所定の応力以下で使用するならば、隔壁部材17をティース先端面111aにインロー嵌合させる必要はなく、隔壁部材17の外周面とティース先端面111aとの間に所定の隙間を設けてもよい。これにより、隔壁部材17の外径寸法を厳密に管理する必要はなく隔壁部材17の製造を容易にすることができる。   For example, in the above embodiment, the portion of the outer peripheral surface of the partition member 17 where the ribs are not formed is fitted in the tooth tip surface 111a by inlay fitting. There is no need to fit the surface 111a in-slot, and a predetermined gap may be provided between the outer peripheral surface of the partition wall member 17 and the tooth tip surface 111a. Thereby, it is not necessary to strictly manage the outer diameter of the partition member 17, and the manufacture of the partition member 17 can be facilitated.

また、上記実施形態では、各スロットに対向する全ての位置に軸方向に伸びるリブ175を設けたが、これに限定されず、少なくとも1つのリブ175を設けることで隔壁部材17の連れ回りを防止することができる。なお、隔壁部材17の強度及びバランスを考慮すると、2つ以上のリブを周方向に均等に設けることが好ましい。   Further, in the above embodiment, the ribs 175 extending in the axial direction are provided at all positions facing each slot. However, the present invention is not limited to this, and at least one rib 175 is provided to prevent the partition member 17 from being accompanied. can do. In consideration of the strength and balance of the partition member 17, it is preferable to provide two or more ribs equally in the circumferential direction.

10 回転電機
11 ステータ
110 ステータコア
111 ティース
111a ティース先端面
111b 周方向端面
112 スロット
114 コイル
12 ロータ
13 ハウジング
131a 導入口
131b 導出口
133 環状支持部
17 隔壁部材
175 リブ
177 当接部
18 Oリング(シール部材)
20 ステータ収容室
30 ロータ収容室
S エアギャップ
DESCRIPTION OF SYMBOLS 10 Rotating electrical machine 11 Stator 110 Stator core 111 Teeth 111a Teeth front end surface 111b Circumferential end surface 112 Slot 114 Coil 12 Rotor 13 Housing 131a Inlet 131b Outlet 133 Annular support 17 Partition member 175 Rib 177 Contact 18 O ring )
20 Stator accommodating chamber 30 Rotor accommodating chamber S Air gap

Claims (6)

スロットとティースが内周面に交互に形成されたステータコアにコイルが装着されたステータと、前記ステータの内周側にエアギャップを介して配置され回転自在なロータと、前記ステータと前記ロータを収容するハウジングと、を備えた回転電機であって、
前記エアギャップには、前記ステータを収容するステータ収容室と前記ロータを収容するロータ収容室を液密に分割する隔壁部材が設けられ、
前記ステータ収容室には、外部から前記ハウジング内部に冷媒を導入する導入口と、前記ハウジング内部から外部に冷媒を導出する導出口が設けられ、
前記隔壁部材は、外周面に前記スロットと対向する位置に軸方向に伸びる少なくとも1つのリブが設けられている、
ことを特徴とする回転電機。
A stator in which a coil is mounted on a stator core in which slots and teeth are alternately formed on the inner peripheral surface, a rotatable rotor disposed on the inner peripheral side of the stator via an air gap, and the stator and the rotor are accommodated A rotating electrical machine having a housing
The air gap is provided with a partition member that liquid-divides a stator accommodating chamber that accommodates the stator and a rotor accommodating chamber that accommodates the rotor,
The stator accommodating chamber is provided with an introduction port for introducing a refrigerant into the housing from the outside, and an outlet port for deriving the refrigerant from the inside of the housing to the outside.
The partition member is provided on the outer peripheral surface with at least one rib extending in the axial direction at a position facing the slot.
Rotating electric machine characterized by that.
前記リブは、前記スロットと対向する全ての位置に設けられている、
ことを特徴とする請求項1に記載の回転電機。
The ribs are provided at all positions facing the slot.
The rotating electrical machine according to claim 1.
前記ハウジングには、前記隔壁部材の軸方向両側に、且つ、内径側に前記隔壁部材を支持する環状支持部が設けられ、
前記隔壁部材の内周面が、シール部材を介して前記環状支持部に支持される、
ことを特徴とする請求項1又は2に記載の回転電機。
The housing is provided with annular support portions for supporting the partition member on both sides in the axial direction of the partition member and on the inner diameter side,
An inner peripheral surface of the partition member is supported by the annular support portion via a seal member.
The rotating electrical machine according to claim 1 or 2, characterized in that
前記隔壁部材は、樹脂材からなり、前記リブが射出成形により一体に形成されている、
ことを特徴とする請求項1〜3のいずれかに記載の回転電機。
The partition member is made of a resin material, and the rib is integrally formed by injection molding.
The rotating electrical machine according to any one of claims 1 to 3.
前記隔壁部材の前記外周面のうち、前記リブが形成されていない部分がティース先端面にインロー嵌合する、
ことを特徴とする請求項1〜4のいずれかに記載の回転電機。
Of the outer peripheral surface of the partition member, the portion where the rib is not formed is inlay-fitted to the tooth tip surface,
The rotating electrical machine according to any one of claims 1 to 4, wherein
前記リブは、周方向端面に前記ティースの周方向端面と当接する当接部を有する、
ことを特徴とする請求項1〜5のいずれかに記載の回転電機。
The rib has a contact portion that contacts a circumferential end surface of the teeth on a circumferential end surface.
The rotating electrical machine according to any one of claims 1 to 5, wherein
JP2009055090A 2009-03-09 2009-03-09 Rotating electric machine Expired - Fee Related JP5388636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055090A JP5388636B2 (en) 2009-03-09 2009-03-09 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055090A JP5388636B2 (en) 2009-03-09 2009-03-09 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2010213413A true JP2010213413A (en) 2010-09-24
JP5388636B2 JP5388636B2 (en) 2014-01-15

Family

ID=42972988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055090A Expired - Fee Related JP5388636B2 (en) 2009-03-09 2009-03-09 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5388636B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086227A1 (en) 2010-12-22 2012-06-28 株式会社Ihi Rotator
JP2013027090A (en) * 2011-07-19 2013-02-04 Ulvac Japan Ltd Motor
US8928195B2 (en) 2010-04-23 2015-01-06 Ihi Corporation Rotary machine
WO2021196405A1 (en) * 2020-04-01 2021-10-07 江苏嘉轩智能工业科技股份有限公司 Air cooling structure of outer rotor electric roller
JP2022007639A (en) * 2020-06-26 2022-01-13 株式会社荏原製作所 Resin mold rotor, canned motor, canned motor pump, fan scrubber, and vacuum pump device
RU2809517C1 (en) * 2020-04-01 2023-12-12 Цзянсу Джасон Интеллиджент Индастриал Текнолоджи Ко., Лтд. Air cooling drum motor design with external rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986875U (en) * 1982-12-01 1984-06-12 トヨタ自動車株式会社 Seal structure of oil cooled generator
JPH08266013A (en) * 1995-03-24 1996-10-11 Matsushita Electric Ind Co Ltd Electric motor
JP2005245155A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Motor cooling structure
JP2007049866A (en) * 2005-08-12 2007-02-22 Toshiba Industrial Products Manufacturing Corp Resin can for canned motor and production method therefor, injection mold, canned motor, and canned motor pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986875U (en) * 1982-12-01 1984-06-12 トヨタ自動車株式会社 Seal structure of oil cooled generator
JPH08266013A (en) * 1995-03-24 1996-10-11 Matsushita Electric Ind Co Ltd Electric motor
JP2005245155A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Motor cooling structure
JP2007049866A (en) * 2005-08-12 2007-02-22 Toshiba Industrial Products Manufacturing Corp Resin can for canned motor and production method therefor, injection mold, canned motor, and canned motor pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928195B2 (en) 2010-04-23 2015-01-06 Ihi Corporation Rotary machine
WO2012086227A1 (en) 2010-12-22 2012-06-28 株式会社Ihi Rotator
US10673306B2 (en) 2010-12-22 2020-06-02 Ihi Corporation Rotary machine
JP2013027090A (en) * 2011-07-19 2013-02-04 Ulvac Japan Ltd Motor
WO2021196405A1 (en) * 2020-04-01 2021-10-07 江苏嘉轩智能工业科技股份有限公司 Air cooling structure of outer rotor electric roller
RU2809517C1 (en) * 2020-04-01 2023-12-12 Цзянсу Джасон Интеллиджент Индастриал Текнолоджи Ко., Лтд. Air cooling drum motor design with external rotor
JP2022007639A (en) * 2020-06-26 2022-01-13 株式会社荏原製作所 Resin mold rotor, canned motor, canned motor pump, fan scrubber, and vacuum pump device
JP7398343B2 (en) 2020-06-26 2023-12-14 株式会社荏原製作所 Resin mold rotor, canned motor, canned motor pump, fan scrubber, vacuum pump equipment

Also Published As

Publication number Publication date
JP5388636B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP2010213412A (en) Rotating electric machine
JP5772832B2 (en) Rotating machine
JP5445675B2 (en) Rotating machine
JP5388636B2 (en) Rotating electric machine
JP6210002B2 (en) Axial gap type rotating electrical machine
JP6270213B2 (en) Electric motor
JP5555510B2 (en) Canned motor and canned motor pump
JP2012157195A (en) Rotary electric machine
JP4812787B2 (en) Method of manufacturing rotor for pump motor, pump motor, pump and rotor for pump motor
TW201828576A (en) Axial gap-type rotary electric machine and method for producing same
JP2007205246A (en) Water pump and hybrid vehicle
JP2020137269A (en) Rotary electric machine
JP5392012B2 (en) Electric motor
JP6365516B2 (en) Stator and axial gap type rotating electric machine including the stator
JP2010288373A (en) Partition wall member for cooling motor
JP2017195683A (en) Dynamo-electric machine
JP2010144595A (en) Electric pump
JP2016151245A (en) Electric water pump
JP6151668B2 (en) Rotor for rotating electrical machines
KR101169790B1 (en) Waterproof Water Pump Motor
JP2017005940A (en) Rotor structure of axial gap type rotary electric machine
JP2007016780A (en) Pump having polar anisotropic magnetic ring
JP2017017772A (en) Canned motor pump and manufacturing method of canned motor pump
JP2004048877A (en) Rotary electric machine
JP5799827B2 (en) Method for manufacturing rotor of permanent magnet type rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees