JP2010261116A - Woven fabric - Google Patents
Woven fabric Download PDFInfo
- Publication number
- JP2010261116A JP2010261116A JP2009111236A JP2009111236A JP2010261116A JP 2010261116 A JP2010261116 A JP 2010261116A JP 2009111236 A JP2009111236 A JP 2009111236A JP 2009111236 A JP2009111236 A JP 2009111236A JP 2010261116 A JP2010261116 A JP 2010261116A
- Authority
- JP
- Japan
- Prior art keywords
- fabric
- conductive wire
- woven fabric
- yarn
- weft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Woven Fabrics (AREA)
Abstract
Description
本発明は、導電線材を有する織物に関する。 The present invention relates to a fabric having a conductive wire.
この種の織物として特許文献1及び特許文献2の織物が公知である。例えば特許文献1に記載の織物は、織物の主構成をなす絶縁繊維と、通電可能な導電線材と、導電線材に電力を供給可能な通電手段とを有する。
絶縁繊維は、綿などの天然繊維やポリエステルなどの合成繊維である。また導電線材は、ナイロンまたはポリエステル糸(芯部)と、芯部を被覆するメッキ層を有する。
そして経糸又は緯糸の一部に導電線材を用いて織物を織製したのち、所定の仕上げ加工を施し、さらに導電線材と通電手段を電気的につなげる。仕上げ加工として、典型的に精練や仕上げセットなどの加熱処理が織物に施される。
そして特許文献1の織物は、静電容量式センサの電極として用いることができ、例えば車両用シートの表皮材に使用することができる。
As this type of fabric, the fabrics of Patent Document 1 and Patent Document 2 are known. For example, the woven fabric described in Patent Document 1 includes insulating fibers that constitute the main structure of the woven fabric, conductive wires that can be energized, and energization means that can supply power to the conductive wires.
The insulating fiber is a natural fiber such as cotton or a synthetic fiber such as polyester. The conductive wire has a nylon or polyester thread (core part) and a plating layer covering the core part.
Then, after weaving a woven fabric using a conductive wire material on a part of the warp or weft, a predetermined finishing process is performed, and the conductive wire material and the energizing means are electrically connected. As the finishing process, typically, heat treatment such as scouring and finishing set is applied to the fabric.
And the textile fabric of patent document 1 can be used as an electrode of an electrostatic capacitance type sensor, for example, can be used for the skin material of a vehicle seat.
また特許文献2には、ヒータとして使用可能な織物の開示がある。この織物は、導電糸(導電線材)と、非導電糸(絶縁繊維)にて構成される。
導電糸は、通電により発熱可能な導電線材であり、例えば金属、合金、導電性プラスチックの導線又は炭素繊維にて構成される。そして経糸又は緯糸の一部に導電線材を用いて織物を織製したのち、所定の仕上げ加工を施して織物とする。
Patent Document 2 discloses a fabric that can be used as a heater. This fabric is composed of conductive yarn (conductive wire) and non-conductive yarn (insulating fiber).
The conductive yarn is a conductive wire that can generate heat when energized, and is made of, for example, a metal, an alloy, a conductive plastic lead, or carbon fiber. And after weaving a woven fabric using a conductive wire for a part of the warp or weft, a predetermined finishing process is performed to obtain a woven fabric.
ところで公知技術では、仕上げ加工時などに織物を加熱するのであるが、このとき導電線材一部が織物表面から突出することがあった。
このため公知の織物では、乗員の着座動作によって、導電線材が織物から引き出されたり摩耗したりすることがあった(着座性の悪化や性能低下を招きやすい構成であった)。とくに炭素繊維は、繊維軸に対する垂直方向のせん断力や摩擦に脆く、乗員の着座動作によって断線しやすい。
By the way, in the known technique, the fabric is heated at the time of finishing or the like, but at this time, a part of the conductive wire may protrude from the surface of the fabric.
For this reason, in the known woven fabric, the conductive wire may be pulled out of the woven fabric or worn by the occupant's seating operation (the configuration easily deteriorates the seating property and reduces the performance). In particular, carbon fibers are vulnerable to shearing force and friction in the direction perpendicular to the fiber axis, and are easily broken by the occupant's seating motion.
そこで本発明者らが鋭意検討した結果、導電線材の突出原因が、加熱処理による絶縁繊維の収縮であることを見出した。すなわち導電線材は、典型的な絶縁繊維よりも熱による収縮が少ない(又は非収縮性である)。このため織物を加熱処理すると、絶縁繊維の収縮に導電線材が追従できず(導電線材と絶縁繊維の間に糸長差が生じて)、弛んだ導電線材一部が織物表面から突出するのである。
本発明は上述の点に鑑みて創案されたものであり、本発明が解決しようとする課題は、織物からの導電線材の突出を極力抑えて、織物の耐久性を向上させることにある。
Therefore, as a result of intensive studies by the present inventors, it has been found that the cause of the protrusion of the conductive wire is the shrinkage of the insulating fibers due to heat treatment. That is, the conductive wire is less contracted by heat (or non-shrinkable) than a typical insulating fiber. For this reason, when the woven fabric is heat-treated, the conductive wire cannot follow the contraction of the insulating fiber (a yarn length difference is generated between the conductive wire and the insulating fiber), and a part of the loose conductive wire protrudes from the surface of the woven fabric. .
The present invention has been devised in view of the above points, and the problem to be solved by the present invention is to improve the durability of the fabric by suppressing the protrusion of the conductive wire from the fabric as much as possible.
上記課題を解決するための手段として、第1発明の織物は、通電可能な導電線材と、導電線材に電力を供給可能な通電手段とを備える。そして織物の一部を、乾熱収縮率(後述)が2%以下の導電線材で構成するとともに、前記一部とは異なる織物の他部を絶縁繊維にて構成する。そして本発明では、絶縁繊維の少なくとも一部が、乾熱収縮率が5%以上の絶縁繊維である。この種の織物では、耐久性等の観点から、織物からの導電線材の突出を極力抑えることが好ましい。 As means for solving the above-mentioned problems, the fabric of the first invention includes a conductive wire that can be energized and an energization means that can supply power to the conductive wire. A part of the woven fabric is made of a conductive wire having a dry heat shrinkage (described later) of 2% or less, and the other part of the woven fabric different from the part is made of an insulating fiber. In the present invention, at least a part of the insulating fiber is an insulating fiber having a dry heat shrinkage rate of 5% or more. In this type of woven fabric, it is preferable to suppress the protrusion of the conductive wire from the woven fabric as much as possible from the viewpoint of durability and the like.
そこで本発明では、上述の織物に、他の織物部分よりも収縮しやすい収縮部を設ける。そして導電線材の一部又は全部を、収縮部の収縮力によって、織物の面方向に撓み変形させて(例えば波状又は湾曲状に)配置することにより、織物からの導電線材の突出を防止又は低減する構成とした。
そして織物の加熱処理時においては、収縮部の収縮に導電線材を追従させて、(織物表面から極力突出させることなく)織物の面方向に更に撓み変形可能な構成とした。
Therefore, in the present invention, the above-mentioned woven fabric is provided with a contraction portion that is more easily contracted than other fabric portions. Then, a part or all of the conductive wire is bent and deformed in the surface direction of the fabric by the contraction force of the contraction portion (for example, in a wavy or curved shape), thereby preventing or reducing the protrusion of the conductive wire from the fabric. It was set as the structure to do.
At the time of heat treatment of the fabric, the conductive wire is made to follow the contraction of the contraction portion so that the fabric can be further bent and deformed (without protruding from the fabric surface as much as possible).
第2発明の織物は、第1発明に記載の織物であって、上述の絶縁繊維で、拘束組織部と、収縮部としての糸飛ばし組織部を形成する。拘束組織部は、導電線材の配置方向と直交する向きに経糸と緯糸が密に交錯する組織部であり、糸飛ばし組織部は、同直交する向きに経糸と緯糸が疎に交錯する組織部である。
そして本発明では、糸飛ばし組織部と拘束組織部の収縮力の差を利用して、導電線材の一部又は全部を織物の面方向に好適に撓み変形させて配置することとした。
A woven fabric according to a second invention is the woven fabric according to the first invention, and forms the restraint tissue portion and the yarn skipping tissue portion as the contraction portion with the above-described insulating fibers. The restraint structure part is a structure part where warps and wefts closely intersect in the direction orthogonal to the arrangement direction of the conductive wire, and the yarn skipping structure part is a structure part where warps and wefts loosely intersect in the same direction. is there.
In the present invention, by utilizing the difference in contraction force between the yarn skipping tissue portion and the restraining tissue portion, a part or all of the conductive wire material is suitably bent and deformed in the surface direction of the fabric.
第3発明の織物は、第2発明に記載の織物であって、上述の導電線材を、糸飛ばし組織部と拘束組織部の境界部に配置して、導電線材の一部又は全部を織物の面方向に撓み変形させる構成とした。
そして本発明では、糸飛ばし組織部と拘束組織部の収縮差を最大限に利用することで、導電線材をより確実に織物の面方向に撓み変形させることができる。
A woven fabric according to a third invention is the woven fabric according to the second invention, wherein the conductive wire described above is arranged at a boundary portion between the yarn skipping tissue portion and the restraint tissue portion, and a part or all of the conductive wire material is made of the woven fabric. It was set as the structure which bends and deforms in a surface direction.
And in this invention, a conductive wire can be more flexibly deformed in the surface direction of a textile fabric by utilizing the contraction difference of the yarn skipping structure part and the restraint structure part to the maximum.
本発明に係る第1発明によれば、導電線材の突出を極力抑えて、織物の耐久性を向上させることができる。また第2発明によれば、比較的簡単な構成によって、導電線材の突出を好適に抑えることができる。そして第3発明によれば、導電線材を、織物の面方向に更に好適に撓み変形させることができる。 According to the first aspect of the present invention, it is possible to improve the durability of the fabric by suppressing the protrusion of the conductive wire as much as possible. According to the second invention, the protrusion of the conductive wire can be suitably suppressed with a relatively simple configuration. According to the third aspect of the invention, the conductive wire can be more suitably bent and deformed in the surface direction of the fabric.
以下、本発明を実施するための形態を、図1〜図5を参照して説明する。各図では、便宜上、一部の導電線材にのみ符号を付すことがある。また各図では、飛ばし組織部と拘束組織部の一部にのみ符号を付すことがある。また図4では、織物の完全組織を、実線の四角で囲うこととする。
そして各図には、適宜、車両用シート前方に符号F、車両用シート後方に符号B、車両用シート側方に符号L、車両用シート上方に符号UP、車両用シート下方に符号DWを付すこととする。
Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS. In each figure, a code | symbol may be attached | subjected only to one part conductive wire for convenience. Moreover, in each figure, a code | symbol may be attached | subjected only to a part of a skipping tissue part and a restraint tissue part. In FIG. 4, the complete structure of the woven fabric is surrounded by a solid line.
In each figure, reference numeral F is attached to the front of the vehicle seat, reference numeral B is attached to the rear of the vehicle seat, reference numeral L is attached to the side of the vehicle seat, reference sign UP is provided above the vehicle seat, and reference sign DW is provided below the vehicle seat. I will do it.
図1の車両用シート2は、シートクッション4とシートバック6とヘッドレスト8を有する。これら部材は、各々、シート外形をなすクッション材(4P,6P,8P、図示省略)と、クッション材を被覆する表皮材(4S,6S,8S)を有する。
そして本実施形態では、シートクッション4の着座側の表皮材4Sが、導電線材20を備える織物10(詳細後述)にて構成されている。そして織物10は、導電線材20に通電手段18を電気的につなげることで、静電容量式センサの電極又はヒータとして機能するのであるが、このとき織物10からの導電線材20の突出を極力抑えることが望まれる(図2を参照)。
そこで本発明では、後述の織物構成によって、織物10からの導電線材20の突出を極力抑えることとした。
A vehicle seat 2 in FIG. 1 includes a seat cushion 4, a seat back 6, and a headrest 8. Each of these members has a cushion material (4P, 6P, 8P, not shown) that forms the outer shape of the seat, and a skin material (4S, 6S, 8S) that covers the cushion material.
And in this embodiment, the skin material 4S of the seating side of the seat cushion 4 is comprised with the textile fabric 10 (it mentions later in detail) provided with the electrically conductive wire 20. The fabric 10 functions as an electrode or heater of a capacitive sensor by electrically connecting the energizing means 18 to the conductive wire 20. At this time, the protrusion of the conductive wire 20 from the fabric 10 is suppressed as much as possible. It is desirable (see FIG. 2).
Therefore, in the present invention, the protrusion of the conductive wire 20 from the fabric 10 is suppressed as much as possible by the fabric configuration described later.
[織物]
本実施形態の織物10は、図2及び図3を参照して、絶縁繊維(経糸21,緯糸22)と導電線材20と通電手段18を備える。そして本実施形態では、織物10の主構成である絶縁繊維(21,22)によって、拘束組織部T1と糸飛ばし組織部T2を織物10に形成する。以下、各構成について説明する。
[fabric]
The fabric 10 of this embodiment is provided with the insulating fiber (warp yarn 21, weft yarn 22), the conductive wire 20, and the electricity supply means 18 with reference to FIG.2 and FIG.3. And in this embodiment, the restraint structure | tissue part T1 and the yarn skipping structure | tissue part T2 are formed in the fabric 10 by the insulating fiber (21, 22) which is the main structure of the fabric 10. FIG. Each configuration will be described below.
(絶縁繊維)
絶縁繊維(21,22)は、織物10の主構成となる絶縁材料であり、典型的に比抵抗が108Ω・cmを超える(図3を参照)。また少なくとも絶縁繊維の一部が乾熱収縮率(後述)5%以上となる繊維により織物10が構成されている。
この種の絶縁繊維として、植物系及び動物系の天然繊維、熱可塑性樹脂又は熱硬化性樹脂からなる化学繊維及びこれらの混紡糸や混繊糸を例示することができる。そして織物10の経糸21又は緯糸22として、絶縁繊維の線材(紡績糸、フィラメント、延伸糸又は伸縮加工糸(仮撚加工糸や座屈糸)などの線材)を使用することができる。
そして天然繊維では、綿、麻又は羊毛が風合いに優れるため、織物10の構成として用いることが好ましい。また化学繊維では、ポリエステル繊維(例えばポリエチレンテレフタレートのフィラメント)やナイロン繊維は耐久性と風合いと強度に優れるため、織物10の構成として用いることが好ましい。
(Insulating fiber)
The insulating fibers (21, 22) are an insulating material which is the main component of the fabric 10, and typically have a specific resistance exceeding 10 8 Ω · cm (see FIG. 3). In addition, the woven fabric 10 is composed of fibers in which at least part of the insulating fibers has a dry heat shrinkage rate (described later) of 5% or more.
Examples of this type of insulating fiber include plant-based and animal-based natural fibers, chemical fibers made of thermoplastic resins or thermosetting resins, and blended yarns or mixed yarns thereof. As the warp yarn 21 or the weft yarn 22 of the fabric 10, an insulating fiber wire (a wire material such as a spun yarn, a filament, a drawn yarn, or a stretched yarn (false twisted yarn or buckled yarn)) can be used.
And in natural fiber, since cotton, hemp, or wool is excellent in a texture, it is preferable to use it as a structure of the fabric 10. Among chemical fibers, polyester fibers (for example, polyethylene terephthalate filaments) and nylon fibers are preferably used as the fabric 10 because they are excellent in durability, texture and strength.
ここで織物10の主構成となる絶縁繊維は、少なくとも一部が乾熱収縮率(後述)5%以上である必要がある。織物10の風合いや地厚感、伸縮性のために、好ましくは重量比として(乾熱収縮率5%の絶縁繊維が)全絶縁繊維中の50%以上を占めることが好ましく、より好ましくは同様に80%以上である。
乾熱収縮率は5%以上であれば特に制限はないが、一部の絶縁繊維の収縮率が高すぎると導電線材(後述)が弛んだり、引きつれを起こしたりするため、(乾熱収縮率の上限が)50%以下であることが好ましい。同様な理由のため、(乾熱収縮率の上限は)30%以下がより好ましく、20%以下が最も好ましい。
Here, at least a part of the insulating fiber which is the main component of the fabric 10 needs to have a dry heat shrinkage rate (described later) of 5% or more. For the texture, ground thickness, and stretchability of the fabric 10, it is preferable that the weight ratio (insulating fibers having a dry heat shrinkage rate of 5%) occupy 50% or more of all insulating fibers, and more preferably 80% or more.
The dry heat shrinkage rate is not particularly limited as long as it is 5% or more, but if the shrinkage rate of some of the insulating fibers is too high, the conductive wire (described later) may be loosened or dragged. The upper limit of the rate is preferably 50% or less. For the same reason, the upper limit of the dry heat shrinkage is more preferably 30% or less, and most preferably 20% or less.
(乾熱収縮率)
上述の乾熱収縮率は、「JIS L 1013 4.18.2 乾熱収縮率 B法」に準拠して測定することができる。
本測定法では、初荷重として8.82mN×(表示テックス数)を用い、150℃の乾燥機中に線材をつり下げ、取り出し後の荷重としては2.94mN×(表示テックス数)を用いる。これは、織機上で経糸又は緯糸として線材が織製されるとき、強い張力で引っ張られるのに対して、仕上げセット等の熱処理後に製品として仕上がった織物10には、経糸と緯糸が互いに交錯することによって比較的弱い張力しか掛っていないことにもとづく。すなわち織機上の張力を初荷重として8.82mN×(表示テックス数)を用い、製品としての織物中の張力として2.94mN×(表示テックス数)を用いる。これにより、例えば炭素繊維(後述する導電線材20の一例)のように剛直で乾熱収縮率0%の繊維は、PET仮撚加工糸で構成された織物中で収縮することができずに弛み、織物表面から突出するのである。
(Dry heat shrinkage)
The dry heat shrinkage rate described above can be measured in accordance with “JIS L 1013 4.18.2 Dry heat shrinkage rate B method”.
In this measurement method, 8.82 mN × (display tex number) is used as the initial load, the wire is suspended in a dryer at 150 ° C., and 2.94 mN × (display tex number) is used as the load after removal. This is because when a wire is woven as a warp or weft on a loom, it is pulled with a strong tension, whereas in a woven fabric 10 that is finished as a product after a heat treatment such as a finishing set, the warp and the weft intersect each other. This is based on the fact that only a relatively weak tension is applied. That is, 8.82 mN × (display tex number) is used as the initial load as the tension on the loom, and 2.94 mN × (display tex number) is used as the tension in the fabric as the product. As a result, for example, a carbon fiber (an example of the conductive wire 20 described later) that is rigid and has a dry heat shrinkage rate of 0% cannot be shrunk in a woven fabric made of PET false twisted yarn. Projecting from the fabric surface.
(導電線材)
導電線材20は、通電可能な導電性の線材であり、典型的に比抵抗が100〜10-12Ω・cmである。この導電線材20を織物10に取付けることで、織物10自体を、静電容量式センサの電極やヒータとして用いることができる。
この種の導電線材20として、金属や合金などの導電糸、炭素繊維のフィラメント及びメッキ線材を例示できる。また導電線材20に絶縁繊維を撚り合せる(カバリングする)こともできる。さらに導電線材20に絶縁繊維の被覆層を形成することもできる。
ここでメッキ線材とは、非導電性又は導電性の線材(芯部)と、金属又は合金のメッキ層を有する線材である。また炭素繊維とは、ポリアクリロニトリル系炭素繊維(PAN系炭素繊維)やピッチ系炭素繊維である。なかでも焼成温度1000℃以上の炭素繊維(炭素化繊維、黒鉛化繊維、黒鉛繊維)は良好な電気伝導性を有するため、本実施形態の導電線材20として好適に使用できる。
(Conductive wire)
The conductive wire 20 is a conductive wire that can be energized, and typically has a specific resistance of 10 0 to 10 -12 Ω · cm. By attaching the conductive wire 20 to the fabric 10, the fabric 10 itself can be used as an electrode or a heater of a capacitive sensor.
Examples of this type of conductive wire 20 include conductive yarns such as metals and alloys, carbon fiber filaments, and plated wires. Insulating fibers can also be twisted (covered) onto the conductive wire 20. Furthermore, a coating layer of insulating fibers can be formed on the conductive wire 20.
Here, the plated wire is a wire having a non-conductive or conductive wire (core portion) and a metal or alloy plating layer. Carbon fibers are polyacrylonitrile-based carbon fibers (PAN-based carbon fibers) and pitch-based carbon fibers. Among these, carbon fibers (carbonized fibers, graphitized fibers, graphite fibers) having a firing temperature of 1000 ° C. or higher have good electrical conductivity, and can be suitably used as the conductive wire 20 of the present embodiment.
そして導電線材20は、乾熱収縮率2%以下の特性を有する線材である。これは炭素繊維、金属繊維では特性上有するものであり、合金繊維においても、形状記憶合金を除いて上記特性を有する。また、例えばPETに無電解メッキした繊維についても通常エッチング処理などの過程で熱処理されているために2%以下の乾熱収縮率になりやすい。
さらに前述の通り、少なくとも一部が乾熱収縮率5%以上となる絶縁繊維によって構成された織物10中でこれら導電繊維20が交織されており、収縮差によって導電線材20は織物表面に弛んでしまい、織物使用中に引き出されたり、摩耗しやすかったりする。本実施形態では、後述するように、織物中に他の織物部分よりも収縮しやすい収縮部を設ける。そして導電線材20の一部又は全部を、収縮部の収縮力によって撓み変形させて織物10の面方向に配置させるものである。
The conductive wire 20 is a wire having a characteristic of a dry heat shrinkage rate of 2% or less. This is characteristic in carbon fibers and metal fibers, and alloy fibers also have the above characteristics except for shape memory alloys. Further, for example, a fiber electrolessly plated on PET is also heat-treated in the course of an etching process or the like, and thus tends to have a dry heat shrinkage of 2% or less.
Further, as described above, the conductive fibers 20 are interwoven in the fabric 10 that is at least partially composed of insulating fibers having a dry heat shrinkage rate of 5% or more, and the conductive wire 20 loosens on the fabric surface due to the shrinkage difference. As a result, it is pulled out during use of the fabric or is easily worn out. In the present embodiment, as will be described later, a shrinkage portion that is easier to shrink than other fabric portions is provided in the fabric. Then, a part or all of the conductive wire 20 is bent and deformed by the contraction force of the contraction part and arranged in the surface direction of the fabric 10.
[織物の作製]
本実施形態では、図3及び図5を参照して、織物10の一部を導電線材20で構成するとともに、織物10の他部を絶縁繊維にて構成する。このとき絶縁繊維(21,22)によって、拘束組織部T1と、糸飛ばし組織部T2を形成する。
そして本実施形態では、緯糸22の一部を導電線材20にて構成する例を説明する(導電線材20の配置位置の詳細は後述する)。この形態では、導電線材20の配置方向(導電方向D1)は緯糸22の配置方向となる。
また本実施形態では、経糸21と緯糸22の大部分を絶縁繊維にて構成する。織物10では、経糸21と緯糸22が規則的に交錯することもあり、経糸21が緯糸22を飛び越えることもある。そこで本実施形態では、経糸21が飛び越えた緯糸22の本数を「経糸の飛び本数」と呼ぶ。
[Production of woven fabric]
In this embodiment, with reference to FIG.3 and FIG.5, while comprising a part of fabric 10 with the conductive wire 20, the other part of the fabric 10 is comprised with an insulating fiber. At this time, the restraining tissue portion T1 and the yarn skipping tissue portion T2 are formed by the insulating fibers (21, 22).
In the present embodiment, an example in which a part of the weft 22 is configured by the conductive wire 20 will be described (details of the arrangement position of the conductive wire 20 will be described later). In this embodiment, the arrangement direction of the conductive wire 20 (conduction direction D1) is the arrangement direction of the wefts 22.
In the present embodiment, most of the warp 21 and the weft 22 are made of insulating fibers. In the woven fabric 10, the warp yarns 21 and the weft yarns 22 may regularly intersect, and the warp yarns 21 may jump over the weft yarns 22. Therefore, in the present embodiment, the number of wefts 22 over which the warp 21 jumps is referred to as “the number of warp jumps”.
(拘束組織部)
拘束組織部T1とは、導電方向D1に対して直交する向き(直交方向D2)に経糸21と緯糸22が密に交錯する組織であり、織物10のD2方向の収縮代が少ない部分である。この拘束組織部T1では、視覚的には織物表面において導電線材20が凸部をなしている。
そして拘束組織部T1では、直交方向D2において「経糸の飛び本数」が1〜3本である。ここで拘束組織部T1を効果的に凸状とするためには、上記「経糸の飛び本数」を1〜2本とすることが好ましい。
(Restricted Organization Department)
The restraint structure portion T1 is a structure in which the warp yarn 21 and the weft yarn 22 are closely crossed in a direction orthogonal to the conductive direction D1 (orthogonal direction D2), and is a portion where the shrinkage allowance of the fabric 10 in the D2 direction is small. In this restraint structure part T1, the conductive wire 20 has formed the convex part visually on the fabric surface.
In the constrained tissue portion T1, the “number of warped yarns” is 1 to 3 in the orthogonal direction D2. Here, in order to effectively make the constrained tissue portion T1 have a convex shape, it is preferable to set the “number of warp jumps” to 1 to 2.
(糸飛ばし組織部(収縮部))
糸飛ばし組織部T2とは、織物10の収縮代が大きい部分であり、直交方向D2に経糸21と緯糸22が疎に交錯する組織である。この糸飛ばし組織部T2では、視覚的には織物表面において導電線材20が凹部をなしている。
そして糸飛ばし組織部T2では、直交方向D2において、「経糸の飛び本数」が拘束組織部T1よりも多く、例えば拘束組織部T1の2倍以上であることがより好ましい。典型的な糸飛ばし組織部T2では、上記「経糸の飛び本数」が2〜10本である(例えば図3中のT2では、「経糸の飛び本数」が7本である)。ここで「経糸の飛び本数」が10より多いとスナッグが悪化したり、織物10の耐摩耗性に悪影響を及ぼしたりするおそれがある。
(Thread skipping tissue part (contraction part))
The yarn skipping tissue portion T2 is a portion where the shrinkage allowance of the woven fabric 10 is large, and the warp yarn 21 and the weft yarn 22 are loosely mixed in the orthogonal direction D2. In the yarn skipping tissue portion T2, the conductive wire 20 visually forms a concave portion on the fabric surface.
In the yarn skipping tissue portion T2, in the orthogonal direction D2, it is more preferable that the “number of warp jumps” is larger than that of the constraining tissue portion T1, for example, twice or more that of the constraining tissue portion T1. In the typical yarn skipping structure portion T2, the “number of warp skips” is 2 to 10 (for example, the number of warp skips is 7 at T2 in FIG. 3). Here, if the “number of warp jumps” is more than 10, the snag may be deteriorated or the abrasion resistance of the fabric 10 may be adversely affected.
そして本実施形態では、織物10の組織を市松模様状に形成する(図3及び図5を参照)。すなわち拘束組織部T1と糸飛ばし組織部T2を直交方向D2に交互に形成する。また拘束組織部T1と糸飛ばし組織部T2を導電方向D1に交互に形成する。なお図3では、完全組織(実線で囲った部分)中において、拘束組織部T1と糸飛ばし組織部T2を破線によって区分けする。
ここで糸飛ばし組織部T2の幅寸法W2(直交方向D2の寸法)や、拘束組織部T1の幅寸法W3は特に限定しない。なお表皮材4Sの意匠性を考慮して、織物10に好適な凹凸感を出したい場合には、両組織部の幅寸法(W2,W3)を2〜20mmとすることが好ましい。またいずれの組織部も1本の経糸21にて構成することができる(各組織部の導電方向D1の長さ寸法は、経糸21の寸法以上となる)。
And in this embodiment, the structure | tissue of the textile fabric 10 is formed in checkered pattern shape (refer FIG.3 and FIG.5). That is, the restraining tissue portions T1 and the yarn skipping tissue portions T2 are alternately formed in the orthogonal direction D2. Further, the constraining tissue portions T1 and the yarn skipping tissue portions T2 are alternately formed in the conductive direction D1. In FIG. 3, the constrained tissue portion T1 and the yarn skipping tissue portion T2 are separated by a broken line in the complete structure (portion surrounded by a solid line).
Here, the width dimension W2 (dimension in the orthogonal direction D2) of the yarn skipping tissue portion T2 and the width dimension W3 of the restraining tissue portion T1 are not particularly limited. In addition, in consideration of the design of the skin material 4S, when it is desired to give a concavo-convex feeling suitable for the fabric 10, it is preferable that the width dimensions (W2, W3) of both the tissue portions are 2 to 20 mm. In addition, any of the textured portions can be constituted by a single warp 21 (the length dimension in the conductive direction D1 of each textured portion is equal to or greater than the dimension of the warp 21).
(導電線材の配置)
そして導電線材20(緯糸)を、複数又は単数の絶縁繊維(緯糸)毎に打込む。このとき導電線材20を、拘束組織部T1と糸飛ばし組織部T2の間に配置する(図3及び図5を参照)。より具体的には、導電線材20は、拘束組織部T1の中心を通る緯糸(第一緯糸22a)と、糸飛ばし組織部T2の中心を通る緯糸(第二緯糸22c)の間に配置することができる。この位置に導電線材20を配置することで、糸飛ばし組織部T2の収縮によって、糸飛ばし組織部T2側に導電線材20が引張される。
(Disposition of conductive wire)
Then, the conductive wire 20 (weft) is driven for each of a plurality or a single insulating fiber (weft). At this time, the conductive wire 20 is disposed between the restraining tissue portion T1 and the yarn skipping tissue portion T2 (see FIGS. 3 and 5). More specifically, the conductive wire 20 is disposed between the weft thread (first weft thread 22a) passing through the center of the restraining tissue portion T1 and the weft thread (second weft thread 22c) passing through the center of the yarn skipping tissue section T2. Can do. By disposing the conductive wire 20 in this position, the conductive wire 20 is pulled toward the yarn skipping tissue portion T2 due to the shrinkage of the yarn skipping tissue portion T2.
さらに好ましくは、上述の導電線材20を、糸飛ばし組織部T2と拘束組織部T1の境界部に配置する。
ここで境界部とは、糸飛ばし組織部T2と拘束組織部T1が接する部分(糸飛ばし組織部T2の最端部)を構成する緯糸(中間緯糸22b)と、この中間緯糸22bの両隣二本の緯糸である。この境界部に導電線材20を配置することで、糸飛ばし組織部T2の収縮によって、糸飛ばし組織部T2側に導電線材20が好適に引張される。
そして中間緯糸22b(糸飛ばし組織部の最端部)の位置に導電線材20を配置することが最も好ましく、こうすることで糸飛ばし組織部T2側に導電線材20が最も強く引張される。このように導電線材20は、拘束組織部T1と糸飛ばし組織部T2の収縮力の差によって、織物10の面方向に向けて撓み変形して配置することとなる。
More preferably, the above-described conductive wire 20 is disposed at the boundary between the yarn skipping tissue portion T2 and the restraining tissue portion T1.
Here, the boundary portion refers to a weft (intermediate weft 22b) constituting a portion where the yarn skipping tissue portion T2 and the restraining tissue portion T1 are in contact (the endmost portion of the yarn skipping tissue portion T2), and two adjacent yarns on both sides of the intermediate weft 22b. The weft. By disposing the conductive wire 20 at the boundary portion, the conductive wire 20 is suitably pulled toward the yarn skipping tissue portion T2 due to the shrinkage of the yarn skipping tissue portion T2.
It is most preferable to dispose the conductive wire 20 at the position of the intermediate weft 22b (the endmost portion of the yarn skipping tissue portion). In this way, the conductive wire 20 is most strongly pulled toward the yarn skipping tissue portion T2. As described above, the conductive wire 20 is arranged to bend and deform toward the surface direction of the fabric 10 due to a difference in contraction force between the restraining tissue portion T1 and the yarn skipping tissue portion T2.
ここで織物中の導電線材20の配置本数は特に限定しないが、表皮材として織物10を用いる場合には、複数の導電線材20を平行に配置することが好ましい(図2を参照)。例えば織物10にヒータ機能を持たせる場合、導電線材20同士の間隔寸法(W1)を3mm〜60mmに設定することが好ましい。
また織物10に電極機能を持たせる場合、導電線材20同士の間隔寸法(W1)は60mmの範囲内に設定することが望ましい。間隔寸法(W1)が60mmを超えると、織物10のセンサ機能が悪化(静電容量が低下)して電極として機能しないおそれがある。好ましくは導電線材20の間隔寸法(W1)の上限値を30mmとすることで、導電化された織物10がより好適なセンサ機能(静電容量)を備える。
Here, the number of conductive wires 20 in the fabric is not particularly limited, but when the fabric 10 is used as the skin material, it is preferable to arrange a plurality of conductive wires 20 in parallel (see FIG. 2). For example, when the fabric 10 is provided with a heater function, it is preferable to set the interval dimension (W1) between the conductive wire members 20 to 3 mm to 60 mm.
Moreover, when giving the electrode function to the textile fabric 10, it is desirable to set the space | interval dimension (W1) between the conductive wire materials 20 in the range of 60 mm. If the distance dimension (W1) exceeds 60 mm, the sensor function of the fabric 10 is deteriorated (capacitance is reduced) and may not function as an electrode. Preferably, the conductive fabric 10 has a more suitable sensor function (capacitance) by setting the upper limit value of the interval dimension (W1) of the conductive wire 20 to 30 mm.
(織物の仕上げ処理)
上述のように織物10を製織したのち、所定の仕上げ処理を行う。この仕上げ処理として、精練工程と、染色工程と、熱セット工程と、風合い出し工程と、後加工剤付与工程と、仕上げセット工程を例示することができる。織物10の仕上げ処理においては、上述の工程を全て行うことでも、1又は複数の工程を省略こともできる。
そして上記各工程では織物10に熱処理を施すことが多く、例えば精練では100℃前後、仕上げセットでは150℃前後の熱処理が施されることが多い。
(Textile finishing)
After weaving the fabric 10 as described above, a predetermined finishing process is performed. Examples of the finishing treatment include a scouring process, a dyeing process, a heat setting process, a texture-making process, a post-processing agent application process, and a finishing setting process. In the finishing process of the fabric 10, it is possible to perform all the above steps or to omit one or a plurality of steps.
In each of the above steps, the fabric 10 is often subjected to heat treatment. For example, heat treatment is often performed at around 100 ° C. for scouring and around 150 ° C. for finishing sets.
そして上述の織物10の仕上げ処理(加熱処理)によって、織物10中の絶縁繊維(21,22)が収縮する(図3〜図5を参照)。このとき拘束組織部T1の絶縁繊維の収縮よりも、糸飛ばし組織部T2(収縮部)が大きく収縮する。
これら拘束組織部T1と糸飛ばし組織部T2(収縮部)の加熱時の収縮差によって、直交方向D2に導電線材20を引張する。こうすることで導電線材20を、糸飛ばし組織部T2(収縮部)の収縮に追従させて、(織物表面から突出させることなく)織物10の面方向に向けて好適に撓み変形させて配置することができる。
And the insulating fiber (21, 22) in the fabric 10 contracts by the finishing process (heating process) of the fabric 10 described above (see FIGS. 3 to 5). At this time, the yarn skipping tissue portion T2 (contracted portion) contracts more than the contraction of the insulating fibers of the constrained tissue portion T1.
The conductive wire 20 is pulled in the orthogonal direction D2 by the shrinkage difference during heating of the restraint tissue portion T1 and the yarn skipping tissue portion T2 (contraction portion). In this way, the conductive wire 20 is disposed so as to follow the contraction of the yarn skipping tissue part T2 (contracted part) and bend and deform appropriately in the plane direction of the fabric 10 (without protruding from the fabric surface). be able to.
そして本実施形態の織物10は、糸飛ばし組織部T2と拘束組織部T1が、導電方向D1と直交方向D2に互い違いに(市松模様状に)配置する(図3及び図4を参照)。
このため導電線材20は、導電方向D1に沿って(市松模様状に)配置する複数の糸飛ばし組織部T2によって、ちょうど波形となるように(互い違いに)引張されて織物10に配置することとなる。
In the fabric 10 of this embodiment, the yarn skipping tissue portion T2 and the restraining tissue portion T1 are alternately arranged (in a checkered pattern) in the conductive direction D1 and the orthogonal direction D2 (see FIGS. 3 and 4).
For this reason, the conductive wire 20 is stretched (staggered) so as to have a waveform by a plurality of yarn skipping tissue portions T2 arranged (in a checkered pattern) along the conductive direction D1 and arranged in the fabric 10. Become.
(表皮材の作製)
表皮材4Sは、典型的に複数の表皮ピースから構成される。本実施形態では、表皮材4Sの着座側をなす表皮ピースに織物10を使用する。
そして織物10を表皮材4Sに用いる場合、後工程通過性やシートの着座性を考慮して、織物10の裏面にバッキングを施したのち(樹脂層を形成したのち)、パッド材14や裏基布16を配設することが好ましい(図2を参照)。
この種のパッド材14は、柔軟性を備える多孔性の部材であり、例えば含気率の高いウレタンパッドや、軟質ウレタンフォームからなるスラブウレタンフォームを用いることができる。また裏基布16は、例えば織編物や不織布にて構成することができる。
(Production of skin material)
The skin material 4S is typically composed of a plurality of skin pieces. In this embodiment, the fabric 10 is used for the skin piece that forms the seating side of the skin material 4S.
When the fabric 10 is used for the skin material 4S, the back surface of the fabric 10 is backed (after the resin layer is formed) in consideration of the post-process passability and the seating property, and then the pad material 14 and the back base A cloth 16 is preferably provided (see FIG. 2).
This type of pad material 14 is a porous member having flexibility. For example, a urethane pad having a high air content or a slab urethane foam made of a flexible urethane foam can be used. Moreover, the back base fabric 16 can be comprised, for example with a knitted fabric or a nonwoven fabric.
そして織物10とパッド材14と裏基布16をこの順で積層して接合手段により一体化したのち、所定の形状にカットする(表皮ピースを形成する)。接合手段としては、ラミネート加工(溶着)、縫着、接着などの手法を例示することができる。 Then, the fabric 10, the pad material 14, and the back base fabric 16 are laminated in this order and integrated by the joining means, and then cut into a predetermined shape (forms a skin piece). Examples of the joining means include methods such as laminating (welding), sewing, and adhesion.
[通電手段]
そして通電手段18は、導電線材20と電源9を電気的につなげる部材であり、導電糸、導電テープ、導電化された布体を例示することができる(図2を参照)。
この通電手段18によって導電線材20に電力を供給することで、織物10が、センサの電極又はヒータとして機能することができる。例えば導電線材20の両端に通電手段18をつないで通電することで、ヒータとして織物10を使用することができる。また導電線材20の片側に通電手段18をつなぐことで、センサの電極として織物10を使用することができる。
[Energizing means]
The energizing means 18 is a member that electrically connects the conductive wire 20 and the power source 9, and can be exemplified by a conductive thread, a conductive tape, and a conductive cloth body (see FIG. 2).
By supplying electric power to the conductive wire 20 by the energizing means 18, the fabric 10 can function as an electrode or a heater of the sensor. For example, the fabric 10 can be used as a heater by connecting the current-carrying means 18 to both ends of the conductive wire 20 and energizing it. Moreover, the textile fabric 10 can be used as an electrode of a sensor by connecting the energizing means 18 to one side of the conductive wire 20.
例えば本実施形態では、帯状の布体18aと、メッキ層(図示省略)と、導線18bを備える通電手段18を用いる(図2を参照)。
布体18aは、導線18bの配置方向に長尺な帯状(例えばシート前後方向に長尺な帯状)であり、布帛や不織布にて構成することができる。また布体18aによって導電線材20とより広い面積で接着することができ接触抵抗を低減できる。
またメッキ層は、電気伝導性を有する金属又は合金を有する層であり、布体18a(被めっき体)に設けられる。メッキ層は、布体18a全体に形成してもよく、布体18aの一面(導電線材を臨む面)にのみ形成してもよい。
そして導線18bとして、金属や合金などの導電糸、メッキ線材を例示できる。なお導線18bは、布体18a上に直線状に配置されていてもよいが、例えば周期的に揺動させるなどして波状に配置することもできる。
For example, in this embodiment, the energization means 18 provided with the strip | belt-shaped cloth body 18a, a plating layer (illustration omitted), and the conducting wire 18b is used (refer FIG. 2).
The cloth body 18a has a strip shape that is long in the arrangement direction of the conductive wires 18b (for example, a strip shape that is long in the front-rear direction of the sheet), and can be composed of a cloth or a nonwoven fabric. Further, the cloth 18a can be bonded to the conductive wire 20 in a wider area, and the contact resistance can be reduced.
The plated layer is a layer having a metal or alloy having electrical conductivity, and is provided on the cloth body 18a (a body to be plated). The plating layer may be formed on the entire cloth body 18a, or may be formed only on one surface of the cloth body 18a (the surface facing the conductive wire).
The conductive wire 18b can be exemplified by a conductive thread such as metal or alloy, or a plated wire. The conducting wire 18b may be arranged in a straight line on the cloth body 18a, but may be arranged in a wave shape by, for example, periodically swinging.
(通電手段の配設)
図2を参照して、織物10両端部からパッド材14と裏基布16と樹脂層を除去して、導電線材20の両端を露出させる。そして一対の通電手段18を複数の導電線材20の両端に各々配置したのち、通電手段18を織物10の裏面に縫着して、複数の導電線材20の両端を電気的に並列につなげる。そして一対の通電手段18に、各々電源ケーブル9aの端子をつなげて、複数の導電線材20の並列回路を織物10に形成する。
本実施形態では、一対の通電手段18によって、複数の導電線材20の並列回路を形成することにより、比較的省電力で複数の導電線材20を通電(発熱)させることができる。
(Disposition of energizing means)
With reference to FIG. 2, the pad material 14, the back base fabric 16, and the resin layer are removed from both ends of the fabric 10 to expose both ends of the conductive wire 20. And after arrange | positioning a pair of electricity supply means 18 to the both ends of the some conductive wire 20, respectively, the electricity supply means 18 is sewn on the back surface of the textile fabric 10, and the both ends of the some conductive wire 20 are electrically connected in parallel. And the terminal of the power cable 9a is connected to a pair of electricity supply means 18, respectively, and the parallel circuit of the some conductive wire 20 is formed in the textile fabric 10. FIG.
In the present embodiment, by forming a parallel circuit of the plurality of conductive wires 20 by the pair of energization means 18, the plurality of conductive wires 20 can be energized (heated) with relatively low power consumption.
以上説明したように、本実施形態では、導電線材20の一部又は全部を、糸飛ばし組織部T2(収縮部)の収縮力によって、織物10の面方向に撓み変形させて(例えば波状又は湾曲状に)配置した(図4を参照)。また本実施形態では、加熱処理時における糸飛ばし組織部T2と拘束組織部T1の収縮力の差を利用して、導電線材20の一部又は全部を、織物10の面方向に好適に撓み変形させて配置することとした。
このため本実施形態によれば、導電線材20の突出を極力抑えて、織物10の耐久性を向上させることができる。
そして本実施形態の織物10は、優れた耐久性を有するとともに、静電容量式センサの電極又はヒータとして機能することができる。このため本実施形態の織物10は、車両用シート2の表皮材4Sとして好適に使用することができる。
As described above, in the present embodiment, a part or all of the conductive wire 20 is bent and deformed in the surface direction of the fabric 10 by the contraction force of the yarn skipping tissue portion T2 (contraction portion) (for example, wavy or curved). (See FIG. 4). In the present embodiment, a part or all of the conductive wire 20 is suitably bent and deformed in the surface direction of the fabric 10 by using the difference in contraction force between the yarn skipping tissue portion T2 and the restraining tissue portion T1 during the heat treatment. We decided to arrange them.
For this reason, according to this embodiment, the protrusion of the conductive wire 20 can be suppressed as much as possible, and the durability of the fabric 10 can be improved.
And the textile fabric 10 of this embodiment has the outstanding durability, and can function as an electrode or a heater of an electrostatic capacitance type sensor. For this reason, the fabric 10 of this embodiment can be suitably used as the skin material 4S of the vehicle seat 2.
また拘束組織部T1と糸飛ばし組織部T2を形成することで、織物10の表面に意匠的な凹凸感を表現することができる。特に本実施形態では、乾熱収縮率の低い導電線材20を織物10の面方向に撓み変形させたことで、導電線材20の非伸縮性によるつっぱり感を低減して、織物10の感触や伸縮性を向上させることができる。さらに織物10に過度の力が掛った際、導電線材20の断線を好適に防止又は低減できる。 In addition, by forming the constrained tissue portion T1 and the yarn skipping tissue portion T2, a design unevenness can be expressed on the surface of the fabric 10. In particular, in the present embodiment, the conductive wire 20 having a low dry heat shrinkage rate is bent and deformed in the surface direction of the fabric 10, thereby reducing the feeling of tension due to the non-stretchability of the conductive wire 20, and the feel and expansion / contraction of the fabric 10. Can be improved. Furthermore, when an excessive force is applied to the fabric 10, disconnection of the conductive wire 20 can be suitably prevented or reduced.
以下、本実施形態を実施例に基づいて説明するが、本発明は実施例に限定されない。
[実施例1]
実施例1の導電線材として、炭素繊維の芯部と、ナイロン6のカバリング糸(22dtex−7フィラメント)を用いた。炭素繊維として、東レ社製の「トレカ(登録商標)T300−1K−50A」(比抵抗:1.7×10-3Ω・cm、乾熱収縮率0%)を用いた。そしてカバリング糸の撚数を400T/mに設定して、芯部に対してS撚シングルカバリングを行ったものを実施例1の加熱線とした。
Hereinafter, although this embodiment is described based on an example, the present invention is not limited to the example.
[Example 1]
As the conductive wire of Example 1, a carbon fiber core and a nylon 6 covering yarn (22 dtex-7 filament) were used. As the carbon fiber, “Torayca (registered trademark) T300-1K-50A” (specific resistance: 1.7 × 10 −3 Ω · cm, dry heat shrinkage 0%) manufactured by Toray Industries, Inc. was used. The heating wire of Example 1 was obtained by setting the twist number of the covering yarn to 400 T / m and performing S-twisting single covering on the core.
また織物を構成する糸として、ポリエステル(PET)1ヒータ仮撚加工糸(100dtex−288フィラメント、180T/m実撚糸、乾熱収縮率9.4%)の経糸と、PET1ヒータ仮撚加工糸(336dtex−96フィラメント)の第1緯糸と、PET2ヒータ仮撚加工糸(336dtex−96フィラメント、乾熱収縮率9.0%)の第2緯糸を使用した。
そして経糸を整経したのち、第1緯糸と第2緯糸と導電線材を打ち込み、図3に示す織物組織にて製織した。このとき図3において、第1緯糸を符号22○の緯糸位置に配置し、第2緯糸を符号22b△の緯糸位置に配置し、炭素繊維を符号22b×の緯糸位置に配置した。織機上密度は、緯/経=198/80(本/2.54cm)であった。そして最後に織物に対して、150℃の仕上げセットを行った。
Further, as yarns constituting the fabric, polyester (PET) 1 heater false twisted yarn (100 dtex-288 filament, 180 T / m actual twist yarn, dry heat shrinkage 9.4%) warp yarn, PET1 heater false twisted yarn ( A first weft of 336 dtex-96 filament) and a second weft of PET2 heater false twisted yarn (336 dtex-96 filament, dry heat shrinkage 9.0%) were used.
Then, after warping the warp, the first weft, the second weft and the conductive wire were driven and woven with the woven structure shown in FIG. At this time, in FIG. 3, the first weft is arranged at the weft position indicated by reference numeral 22 ◯, the second weft is arranged at the weft position indicated by reference numeral 22bΔ, and the carbon fiber is arranged at the weft position indicated by reference numeral 22b ×. The density on the loom was weft / warp = 198/80 (books / 2.54 cm). Finally, a finishing set at 150 ° C. was performed on the fabric.
[実施例2]
実施例2の導電線材として、ステンレス繊維(日本精線社製「ナスロン(登録商標)TOW−12−100PV」、比抵抗:72μΩ・cm、乾熱収縮率0%)を用いた。
また織物を構成する糸として、実施例1の経糸と第1緯糸と第2緯糸を使用した。
そして経糸を整経したのち、第1緯糸と第2緯糸と導電線材を打ち込み、図3に示す織物組織を作製した。このとき図3において、第1緯糸を符号22○の緯糸位置に配置し、第2緯糸を符号22b△の緯糸位置に配置し、ステンレス繊維を符号22b×の緯糸位置に配置した。そして最後に織物に対して、150℃の仕上げセットを行った。
[Example 2]
As the conductive wire of Example 2, stainless fiber (“Naslon (registered trademark) TOW-12-100PV” manufactured by Nippon Seisen Co., Ltd., specific resistance: 72 μΩ · cm, dry heat shrinkage 0%) was used.
Further, the warp, the first weft, and the second weft of Example 1 were used as yarns constituting the woven fabric.
Then, after warping the warp, the first weft, the second weft, and the conductive wire were driven in to produce the woven fabric structure shown in FIG. At this time, in FIG. 3, the first weft was arranged at the weft position indicated by reference numeral 22o, the second weft was arranged at the weft position indicated by reference numeral 22bΔ, and the stainless fiber was arranged at the weft position indicated by reference numeral 22b ×. Finally, a finishing set at 150 ° C. was performed on the fabric.
[比較例1]
比較例1の導電線材として、実施例1の炭素繊維を用いた。また織物を構成する糸として、実施例1の経糸と第1緯糸と第2緯糸を使用した。
そして経糸を整経したのち、第1緯糸と第2緯糸と導電線材を打ち込み、8枚朱子織物を作製した。各緯糸の配置位置は実施例1と同一とした。織機上密度は、緯/経=198/80(本/2.54cm)であった。そして最後に織物に対して、150℃の仕上げセットを行った。
[Comparative Example 1]
As the conductive wire of Comparative Example 1, the carbon fiber of Example 1 was used. Further, the warp, the first weft, and the second weft of Example 1 were used as yarns constituting the woven fabric.
Then, after warping the warp, the first weft, the second weft, and the conductive wire material were driven in to produce an 8 satin fabric. The position of each weft was the same as in Example 1. The density on the loom was weft / warp = 198/80 (books / 2.54 cm). Finally, a finishing set at 150 ° C. was performed on the fabric.
[吸収された糸長差の算出方法]
吸収された糸長差は、以下の計算式により求めた。なお織物幅とは、導電線材の配置方向(導電方向D1)における織物の寸法である(図3を参照)。
「吸収された糸長差」(%)=(「導電線材の長さ」−「仕上げ後の織物幅」)/(導電線材の長さ)×100
[Calculation method of absorbed yarn length difference]
The absorbed yarn length difference was determined by the following calculation formula. The fabric width is a dimension of the fabric in the arrangement direction of the conductive wire (conductive direction D1) (see FIG. 3).
“Absorbed yarn length difference” (%) = (“Conductive wire length” − “Finish width after finishing”) / (Conductive wire length) × 100
[結果及び考察]
実施例1の織物では、織機上では炭素繊維(導電線材)が直線状に配置していたが、織機から取り外すと、炭素繊維が波状に配置された。また実施例2の織物でも、織機上ではステンレス繊維(導電線材)が直線状に配置していたが、織機から取り外すと、ステンレス繊維が波状に配置された。
そして各実施例の織物では、仕上げセット後においても導電繊維が波状に配置して、撓み変形した導電線材が織物表面から突出することはなかった。このとき実施例1の織物によると、9.5%の糸長差を吸収できた。また実施例2の織物によると、9.5%の糸長差を吸収できた。このことから本実施形態の織物によると、10%前後の糸長差を吸収できることがわかった。
以上の結果を総合すると、本実施例によれば、導電線材の突出(摩耗や断線)を極力抑えて、織物の耐久性を向上させることができることがわかった。このため各実施例の織物は、車両用シートの表皮材として好適に使用できることがわかった。
[Results and discussion]
In the woven fabric of Example 1, carbon fibers (conductive wires) were arranged in a straight line on the loom, but when removed from the loom, the carbon fibers were arranged in a wave shape. Also in the woven fabric of Example 2, the stainless steel fibers (conductive wires) were arranged in a straight line on the loom, but when removed from the loom, the stainless fibers were arranged in a wave shape.
In the woven fabrics of the respective examples, the conductive fibers were arranged in a wavy shape even after finishing setting, and the conductive wire material that was bent and deformed did not protrude from the fabric surface. At this time, according to the fabric of Example 1, a yarn length difference of 9.5% could be absorbed. Further, according to the fabric of Example 2, a yarn length difference of 9.5% could be absorbed. From this, it was found that the yarn length difference of about 10% can be absorbed by the fabric of this embodiment.
Summing up the above results, it has been found that according to this example, the protrusion (wear and breakage) of the conductive wire can be suppressed as much as possible, and the durability of the fabric can be improved. For this reason, it turned out that the textile fabric of each Example can be used conveniently as a skin material of a vehicle seat.
これとは異なり、比較例1の織物では、織機上では炭素繊維が直線状に配置していたが、織機から取り外すと、炭素繊維が織物裏面に撓みとなって浮き出ていた。そして比較例の織物では、仕上げセット後において導電線材一部が織物表面から多数突出した。
このため比較例の織物は耐久性が低く、車両用シートの表皮材として不向きであることがわかった。
Unlike this, in the woven fabric of Comparative Example 1, the carbon fibers were arranged in a straight line on the loom, but when the carbon fibers were removed from the loom, the carbon fibers were bent and raised on the back of the woven fabric. In the woven fabric of the comparative example, a large number of conductive wire members protruded from the surface of the woven fabric after finishing set.
For this reason, it turned out that the textile fabric of a comparative example has low durability, and is unsuitable as a skin material of a vehicle seat.
本実施形態の織物は、上述した実施形態に限定されるものではなく、その他各種の実施形態を取り得る。
(1)本実施形態では、緯糸22の一部を導電線材20にて構成する例を説明した。これとは異なり、経糸の一部を導電線材にて構成することができる。この形態では、導電線材20の配置方向(導電方向)は経糸21の配置方向となる(図3を参照)。そしてこの導電方向に応じて、上述の拘束組織部と糸飛ばし組織部を織物に形成する。
また可能であるならば、経糸21と緯糸22の双方の一部を導電線材20にて構成してもよい。
The fabric of the present embodiment is not limited to the above-described embodiment, and can take various other embodiments.
(1) In the present embodiment, an example in which a part of the weft 22 is configured by the conductive wire 20 has been described. In contrast to this, a part of the warp can be formed of a conductive wire. In this form, the arrangement direction (conductive direction) of the conductive wire 20 is the arrangement direction of the warps 21 (see FIG. 3). And according to this conductive direction, the above-mentioned restraint structure part and the yarn skipping structure part are formed in the woven fabric.
If possible, a part of both the warp 21 and the weft 22 may be constituted by the conductive wire 20.
(2)また本実施形態では、拘束組織部と糸飛ばし組織部の形成例(市松模様状の形成例)を例示したが、各組織部の形状、大きさ及び形成数は、導電線材の配置数などに応じて適宜変更可能である。また布材の製織等において、織密度、使用糸繊度、使用織機に制限はない。
例えば拘束組織部と糸飛ばし組織部の少なくとも一つが織物に形成されておればよい。単数の糸飛ばし組織部(収縮部)を織物に形成することで、導電線材の少なくとも一部を引張することができる。また単数の拘束組織部を織物に形成した場合、この拘束組織部以外の部分が収縮部となり導電線材を引張することができる。
(2) In the present embodiment, the formation example of the restraint tissue part and the yarn skipping tissue part (checkered pattern-like formation example) is exemplified, but the shape, size, and number of formations of each tissue part are the arrangement of the conductive wires. It can be appropriately changed according to the number. Further, in the weaving of the cloth material, there are no restrictions on the weaving density, the used yarn fineness, and the used loom.
For example, at least one of the restraining tissue portion and the yarn skipping tissue portion may be formed on the woven fabric. At least a part of the conductive wire can be pulled by forming a single yarn-splitting tissue part (contracted part) in the woven fabric. Further, when a single constraining tissue part is formed on a woven fabric, a part other than the constraining tissue part becomes a contraction part, and the conductive wire can be pulled.
(3)また本実施形態では、織物10に対して導電線材20を波状に配設した。この導電線材は、織物中の収縮部の配置位置や大きさなどに応じて、導電線材一部が湾曲することもあり、波状類似の形状(ジグザグ状や蛇行状)で織物に配置することもある。
(4)また本実施形態では、織物10に対して、複数の導電線材20をシート幅方向に並列配置する例を説明した。複数の導電線材の配置関係は特に限定されるものではなく、例えばシート前後方向に並列配置してもよい。この場合には一対の通電手段をシート前後に配置する。
(3) Moreover, in this embodiment, the conductive wire 20 was arrange | positioned with respect to the textile fabric 10 by the waveform. Depending on the arrangement position and size of the contraction part in the fabric, this conductive wire may be partially curved, or it may be arranged on the fabric in a wave-like shape (zigzag or meandering). is there.
(4) Moreover, in this embodiment, the example which arrange | positions the some conductive wire 20 in parallel with respect to the textile fabric 10 in the sheet | seat width direction was demonstrated. The arrangement relationship of the plurality of conductive wires is not particularly limited, and may be arranged in parallel in the front-rear direction of the seat, for example. In this case, a pair of energizing means is arranged in front of and behind the seat.
(5)また本実施形態では、シートクッション4の着座側の表皮材4Sとして織物10を使用する例を説明した。本実施形態の織物10は、天板メイン部、天板サイド部、かまち部、背裏部、及びヘッドレスト8部などの車両用シート2の各種構成の表皮材(例えば4S,6S,8S)として使用することができる。また車両用シートのほか、天井部、ドア部、ハンドルなどの車両の各種構成の表皮材として使用することができる。
また本実施形態では、表皮材4Sの着座側に織物10を用いた。これとは異なり、裏基布16として織物10を用いてもよい。
(5) Moreover, in this embodiment, the example which uses the textile fabric 10 as the skin material 4S of the seating side of the seat cushion 4 was demonstrated. The fabric 10 of the present embodiment is used as a skin material (for example, 4S, 6S, 8S) of various configurations of the vehicle seat 2 such as a top plate main portion, a top plate side portion, a stile portion, a back portion, and a headrest 8 portion. Can be used. Moreover, it can be used as a skin material for various configurations of a vehicle such as a ceiling portion, a door portion, and a handle in addition to a vehicle seat.
In the present embodiment, the fabric 10 is used on the seating side of the skin material 4S. Unlike this, the woven fabric 10 may be used as the back base fabric 16.
2 車両用シート
4 シートクッション
6 シートバック
8 ヘッドレスト
10 織物
14 パッド材
16 裏基布
18 通電手段
20 導電線材
21 経糸
22 緯糸
22a 第一緯糸
22b 中間緯糸(境界部)
22c 第二緯糸
T1 拘束組織部
T2 糸飛ばし組織部
2 Vehicle Seat 4 Seat Cushion 6 Seat Back 8 Headrest 10 Fabric 14 Pad Material 16 Back Base Fabric 18 Conducting Means 20 Conductive Wire 21 Warp 22 Weft 22a First Weft 22b Intermediate Weft (Boundary)
22c 2nd weft T1 restraint structure part T2 yarn skipping structure part
Claims (3)
前記織物に、他の織物部分よりも収縮しやすい収縮部を設けて、前記導電線材の一部又は全部を、前記収縮部の収縮力によって、前記織物の面方向に撓み変形させて配置した織物。 In a woven fabric provided with a conductive wire that can be energized and an energizing means capable of supplying power to the conductive wire, a part of the woven fabric is made of a conductive wire having a dry heat shrinkage rate of 2% or less, and the part The other part of the woven fabric different from the above is composed of insulating fibers, and at least a part of the insulating fibers are insulating fibers having a dry heat shrinkage rate of 5% or more,
A woven fabric in which a contracted portion that is more easily contracted than other fabric portions is provided in the woven fabric, and a part or all of the conductive wire is bent and deformed in the surface direction of the woven fabric by the contracting force of the contracted portion. .
前記糸飛ばし組織部の収縮力によって前記導電線材を引張する構成とした請求項1に記載の織物。 In the insulating fiber, a constrained structure portion where warps and wefts closely cross in a direction perpendicular to the arrangement direction of the conductive wire material, and a yarn flying structure as the contraction portion where warps and wefts cross loosely in the orthogonal direction Forming part,
The woven fabric according to claim 1, wherein the conductive wire is pulled by a contraction force of the yarn skipping tissue part.
The woven fabric according to claim 2, wherein the conductive wire is disposed at a boundary portion between the yarn skipping tissue portion and the restraint tissue portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009111236A JP5282647B2 (en) | 2009-04-30 | 2009-04-30 | fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009111236A JP5282647B2 (en) | 2009-04-30 | 2009-04-30 | fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010261116A true JP2010261116A (en) | 2010-11-18 |
JP5282647B2 JP5282647B2 (en) | 2013-09-04 |
Family
ID=43359439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009111236A Expired - Fee Related JP5282647B2 (en) | 2009-04-30 | 2009-04-30 | fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5282647B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012241293A (en) * | 2011-05-18 | 2012-12-10 | Toyota Boshoku Corp | Fabric |
DE102013205204A1 (en) | 2012-03-28 | 2013-10-02 | Toyota Boshoku Kabushiki Kaisha | tissue |
JP2014125696A (en) * | 2012-12-26 | 2014-07-07 | Toyota Boshoku Corp | Fabric material and method for manufacturing the same |
WO2014138167A1 (en) * | 2013-03-06 | 2014-09-12 | Federal-Mogul Powertrain, Inc. | Heat-shrunk textile sleeve with extended electro-functional yarn and method of construction thereof |
KR102011841B1 (en) * | 2018-08-17 | 2019-08-19 | 윤석천 | Embossed fabric with dike-shaped protrusion |
JP2019148022A (en) * | 2018-02-26 | 2019-09-05 | 新日本無線株式会社 | Fiber structure |
JP2019183365A (en) * | 2018-03-30 | 2019-10-24 | セーレン株式会社 | Conductive woven fabric, conductive member, and method for producing conductive woven fabric |
JP2021140951A (en) * | 2020-03-05 | 2021-09-16 | 株式会社東海理化電機製作所 | Detection mechanism |
CN113545167A (en) * | 2019-02-26 | 2021-10-22 | Iee国际电子工程股份公司 | Flexible and stretchable electric heater based on conductive fabric material and manufacturing method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03241035A (en) * | 1990-02-15 | 1991-10-28 | Toyobo Co Ltd | Antistatic woven cloth |
JPH06131916A (en) * | 1992-10-15 | 1994-05-13 | Kitagawa Ind Co Ltd | Heat contraction conducting sheet |
JPH11261290A (en) * | 1998-03-16 | 1999-09-24 | Teijin Ltd | Bonded fabric in which electromagnetic shielding performance is improved |
JPH11279895A (en) * | 1998-03-30 | 1999-10-12 | Kuwano Shinken Sangyo Kk | Crape woven fabric |
JPH11350296A (en) * | 1998-03-31 | 1999-12-21 | Seiren Co Ltd | Woven fabric having excellent electrical conductivity and antistaticity and dustfree wear |
JP2003529901A (en) * | 2000-04-03 | 2003-10-07 | ブルーネル ユニバーシティ | Conductive fabric |
WO2007015333A1 (en) * | 2005-08-01 | 2007-02-08 | Showa Glove Co. | Composite fiber and cut-resistant gloves made by using the same |
JP2008013874A (en) * | 2006-07-05 | 2008-01-24 | Nippon Ester Co Ltd | Electroconductive composite yarn and electroconductive fabric |
-
2009
- 2009-04-30 JP JP2009111236A patent/JP5282647B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03241035A (en) * | 1990-02-15 | 1991-10-28 | Toyobo Co Ltd | Antistatic woven cloth |
JPH06131916A (en) * | 1992-10-15 | 1994-05-13 | Kitagawa Ind Co Ltd | Heat contraction conducting sheet |
JPH11261290A (en) * | 1998-03-16 | 1999-09-24 | Teijin Ltd | Bonded fabric in which electromagnetic shielding performance is improved |
JPH11279895A (en) * | 1998-03-30 | 1999-10-12 | Kuwano Shinken Sangyo Kk | Crape woven fabric |
JPH11350296A (en) * | 1998-03-31 | 1999-12-21 | Seiren Co Ltd | Woven fabric having excellent electrical conductivity and antistaticity and dustfree wear |
JP2003529901A (en) * | 2000-04-03 | 2003-10-07 | ブルーネル ユニバーシティ | Conductive fabric |
WO2007015333A1 (en) * | 2005-08-01 | 2007-02-08 | Showa Glove Co. | Composite fiber and cut-resistant gloves made by using the same |
JP2008013874A (en) * | 2006-07-05 | 2008-01-24 | Nippon Ester Co Ltd | Electroconductive composite yarn and electroconductive fabric |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012241293A (en) * | 2011-05-18 | 2012-12-10 | Toyota Boshoku Corp | Fabric |
DE102013205204B4 (en) * | 2012-03-28 | 2015-10-22 | Toyota Boshoku Kabushiki Kaisha | tissue |
DE102013205204A1 (en) | 2012-03-28 | 2013-10-02 | Toyota Boshoku Kabushiki Kaisha | tissue |
US20130260630A1 (en) * | 2012-03-28 | 2013-10-03 | Toyota Boshoku Kabushiki Kaisha | Woven fabric |
JP2013204172A (en) * | 2012-03-28 | 2013-10-07 | Toyota Boshoku Corp | Woven fabric |
CN103361822A (en) * | 2012-03-28 | 2013-10-23 | 丰田纺织株式会社 | Woven fabric |
JP2014125696A (en) * | 2012-12-26 | 2014-07-07 | Toyota Boshoku Corp | Fabric material and method for manufacturing the same |
CN105283590A (en) * | 2013-03-06 | 2016-01-27 | 费德罗-莫格尔动力系公司 | Heat-shrunk textile sleeve with extended electro-functional yarn and method of construction thereof |
WO2014138167A1 (en) * | 2013-03-06 | 2014-09-12 | Federal-Mogul Powertrain, Inc. | Heat-shrunk textile sleeve with extended electro-functional yarn and method of construction thereof |
US9290876B2 (en) | 2013-03-06 | 2016-03-22 | Federal-Mogul Powertrain, Inc. | Heat-shrunk textile sleeve with extended electro-functional yarn and method of construction thereof |
CN105283590B (en) * | 2013-03-06 | 2017-05-24 | 费德罗-莫格尔动力系有限责任公司 | Heat-shrunk textile sleeve with extended electro-functional yarn and method of construction thereof |
JP2019148022A (en) * | 2018-02-26 | 2019-09-05 | 新日本無線株式会社 | Fiber structure |
JP2019183365A (en) * | 2018-03-30 | 2019-10-24 | セーレン株式会社 | Conductive woven fabric, conductive member, and method for producing conductive woven fabric |
JP7320361B2 (en) | 2018-03-30 | 2023-08-03 | セーレン株式会社 | Conductive fabric, conductive member, and method for producing conductive fabric |
KR102011841B1 (en) * | 2018-08-17 | 2019-08-19 | 윤석천 | Embossed fabric with dike-shaped protrusion |
CN113545167A (en) * | 2019-02-26 | 2021-10-22 | Iee国际电子工程股份公司 | Flexible and stretchable electric heater based on conductive fabric material and manufacturing method thereof |
JP2021140951A (en) * | 2020-03-05 | 2021-09-16 | 株式会社東海理化電機製作所 | Detection mechanism |
JP7425630B2 (en) | 2020-03-05 | 2024-01-31 | 株式会社東海理化電機製作所 | Detection mechanism |
US12103581B2 (en) | 2020-03-05 | 2024-10-01 | Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho | Sensing mechanism |
Also Published As
Publication number | Publication date |
---|---|
JP5282647B2 (en) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5282647B2 (en) | fabric | |
US6888112B2 (en) | Electric heating/warming woven fibrous articles | |
EP1201806B1 (en) | Electric heating/warming fabric articles | |
US5484983A (en) | Electric heating element in knitted fabric | |
US6215111B1 (en) | Electric heating/warming fabric articles | |
EP1234903A1 (en) | Electrical heating/warming fibrous articles | |
WO2012160995A1 (en) | Planar heating body | |
JP2012087434A (en) | Heat generating yarn and woven or knitted fabric using the same | |
JP5708045B2 (en) | Cloth material | |
JP2011074538A (en) | Cloth material | |
JP2016216836A (en) | Harness for conduction | |
JP5463776B2 (en) | Skin material for vehicle interior parts | |
KR101588893B1 (en) | Electric conduction woven fabrics and manufacturing method threrof | |
JP6657526B2 (en) | Conductive knitted fabric | |
JP2014132128A (en) | Woven fabric | |
JP5526570B2 (en) | Cloth material | |
KR101766465B1 (en) | Mesh heating device of serial-parallel carbon fiber and Manufacturing methods thereof | |
JP2016017241A (en) | Cloth material | |
JP2015199438A (en) | seat belt | |
JP2017106134A (en) | Conductive composite textured yarn and conductive woven fabric | |
JP2010247810A (en) | Cloth material | |
JP5945960B2 (en) | Cloth material and manufacturing method thereof | |
JP6503934B2 (en) | Cloth | |
KR102125395B1 (en) | Electric conduction planar element | |
JP2014084540A (en) | Fabric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121225 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130430 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130513 |
|
LAPS | Cancellation because of no payment of annual fees |