Nothing Special   »   [go: up one dir, main page]

JP2010130666A - Predistorter - Google Patents

Predistorter Download PDF

Info

Publication number
JP2010130666A
JP2010130666A JP2008306806A JP2008306806A JP2010130666A JP 2010130666 A JP2010130666 A JP 2010130666A JP 2008306806 A JP2008306806 A JP 2008306806A JP 2008306806 A JP2008306806 A JP 2008306806A JP 2010130666 A JP2010130666 A JP 2010130666A
Authority
JP
Japan
Prior art keywords
distortion compensation
signal
coefficient
polynomial
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008306806A
Other languages
Japanese (ja)
Other versions
JP5299958B2 (en
Inventor
Takaki Shibata
孝基 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2008306806A priority Critical patent/JP5299958B2/en
Publication of JP2010130666A publication Critical patent/JP2010130666A/en
Application granted granted Critical
Publication of JP5299958B2 publication Critical patent/JP5299958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a predistorter capable of increasing the tracking speed and convergence speed and also capable of obtaining sufficient distortion compensation accuracy. <P>SOLUTION: This predistorter has a distortion compensation circuit 11 and a control unit 13. The distortion compensation circuit 11 outputs a predistortion compensation signal generated by substituting an input signal into a distortion compensation polynominal equation to a compensated circuit 401. The control unit 13 receives an input signal X and an output signal Y of the compensated circuit 401 as input and updates the coefficient value of the distortion compensation polynominal equation based on a differential between the signal generated by substituting the input signal A into the distortion compensation polynominal equation and the signal generated by substituting the output signal Y into the distortion compensation polynominal equation and a variable update coefficient. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、信号増幅器などの被補償回路のメモリ効果による歪を補償するプリディストータに関するものである。   The present invention relates to a predistorter that compensates for distortion due to a memory effect of a compensated circuit such as a signal amplifier.

従来のプリディストータは、歪補償用のプリディストーション信号を生成するためのルックアップテーブルを備えており、ルックアップテーブルの歪補償値をアドレス毎に更新している(例えば、特許文献1を参照。)。特許文献1のプリディストータは、適応信号処理を用いてアドレス毎にルックアップテーブルの歪補償値の更新をするため、アドレス数(入力信号の振幅又は電力を量子化した値の数)に比例してメモリ量及び計算量が大幅に増えることになる。   A conventional predistorter includes a lookup table for generating a distortion predistortion signal, and updates a distortion compensation value in the lookup table for each address (see, for example, Patent Document 1). .) Since the predistorter of Patent Document 1 uses adaptive signal processing to update the distortion compensation value of the lookup table for each address, it is proportional to the number of addresses (the number of values obtained by quantizing the amplitude or power of the input signal). As a result, the amount of memory and the amount of calculation are greatly increased.

このため、適応信号処理による歪補償値の計算量及びメモリ量を減らす目的で、更新する際にアドレス数を減らして歪補償値を算出し、後にアドレスの間の歪補償値を補間するプリディストータが知られている(例えば、特許文献2を参照。)。また、複数の入力信号と出力信号の組から算出したルックアップテーブルの歪補償値を入力信号の強度(電力、または振幅)に対応するアドレス毎に平均化し、その平均化されたルックアップテーブルのアドレスと歪補償値の関係から歪補償多項式を推定し、その歪補償多項式から改めて歪補償値を推定し、高精度かつアドレス間の歪補償値を補間したルックアップテーブルを作成し、入力信号の強度から歪補償値を引用するプリディストータも知られている(例えば、特許文献3を参照。)。
特許第3560398号 特開2002−223171号公報 特開2006−093947号公報
For this reason, in order to reduce the amount of calculation of the distortion compensation value by adaptive signal processing and the amount of memory, a pre-displacement that calculates the distortion compensation value by reducing the number of addresses when updating and then interpolates the distortion compensation value between addresses. Tota is known (see, for example, Patent Document 2). Also, the distortion compensation value of the lookup table calculated from a set of a plurality of input signals and output signals is averaged for each address corresponding to the intensity (power or amplitude) of the input signal, and the averaged lookup table Estimate the distortion compensation polynomial from the relationship between the address and distortion compensation value, estimate the distortion compensation value again from the distortion compensation polynomial, create a lookup table that interpolates the distortion compensation value between addresses with high accuracy, and A predistorter that quotes the distortion compensation value from the intensity is also known (see, for example, Patent Document 3).
Japanese Patent No. 3560398 JP 2002-223171 A JP 2006-093947 A

従来のプリディストータは、歪補償多項式の係数値を更新する際に用いている更新係数μは一定(固定値)である。このため、更新係数μを大きくすると、追従速度、および収束速度は速いものの雑音の影響が誤差に直接反映されるので歪補償の精度を高くできず、逆に更新係数μを小さくすると歪補償の精度を高くできるものの収束が遅くなるという課題があった。   In the conventional predistorter, the update coefficient μ used when updating the coefficient value of the distortion compensation polynomial is constant (fixed value). Therefore, if the update coefficient μ is increased, the follow-up speed and convergence speed are fast, but the effect of noise is directly reflected in the error, so the accuracy of distortion compensation cannot be increased. Conversely, if the update coefficient μ is decreased, distortion compensation There was a problem that convergence could be slow although accuracy could be increased.

そこで、本発明は、上記課題を解決するためになされたもので、追従速度、および収束速度を速くすることもでき、十分な歪補償精度を得ることもできるプリディストータを提供することを目的とする。   Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to provide a predistorter that can increase the follow-up speed and the convergence speed, and can obtain sufficient distortion compensation accuracy. And

前記目的を達成するために、本発明に係るプリディストータは、歪補償多項式の係数値を更新する際に用いる更新係数μを固定値ではなく可変値とした。   In order to achieve the above object, in the predistorter according to the present invention, the update coefficient μ used when updating the coefficient value of the distortion compensation polynomial is not a fixed value but a variable value.

具体的には、本発明に係るプリディストータは、入力信号を歪補償多項式に代入して生成した予歪補償信号を被補償回路へ出力する歪補償回路と、前記入力信号及び前記被補償回路の出力信号が入力され、歪補償多項式に前記入力信号を代入して生成した信号と前記歪補償多項式に前記出力信号を代入して生成した信号との差分及び可変な更新係数に基づいて前記歪補償多項式の係数値を更新する制御部と、を備える。   Specifically, the predistorter according to the present invention includes a distortion compensation circuit that outputs a predistortion compensation signal generated by substituting an input signal into a distortion compensation polynomial to the compensation circuit, and the input signal and the compensation circuit. The distortion signal is input based on a difference between a signal generated by substituting the input signal into a distortion compensation polynomial and a signal generated by substituting the output signal into the distortion compensation polynomial and a variable update coefficient. A control unit that updates the coefficient value of the compensation polynomial.

また、本発明に係る他のプリディストータは、入力信号を歪補償多項式に代入して生成した予歪補償信号を被補償回路へ出力する歪補償回路と、前記予歪補償信号及び前記被補償回路の出力信号が入力され、前記予歪補償信号と前記歪補償多項式に前記出力信号を代入して生成した信号との差分及び可変な更新係数に基づいて前記歪補償多項式の係数値を更新する制御部と、を備える。   Another predistorter according to the present invention includes a distortion compensation circuit that outputs a predistortion compensation signal generated by substituting an input signal into a distortion compensation polynomial to the compensated circuit, the predistortion compensation signal, and the compensated compensation. An output signal of the circuit is input, and a coefficient value of the distortion compensation polynomial is updated based on a difference between the predistortion compensation signal and a signal generated by substituting the output signal into the distortion compensation polynomial and a variable update coefficient. A control unit.

本発明に係るプリディストータは、更新係数μを大きくすることで追従速度、および収束速度を速くすることができ、更新係数μを小さくすることで十分な歪補償精度を得ることができる。   The predistorter according to the present invention can increase the follow-up speed and the convergence speed by increasing the update coefficient μ, and can obtain sufficient distortion compensation accuracy by decreasing the update coefficient μ.

本発明に係るプリディストータの前記制御部は、前記歪補償回路が前記歪補償値を更新した回数に基づいて前記歪補償多項式の係数を更新する際に用いる前記更新係数を決定することが好ましい。更新開始時には更新係数の値を大きくしておき、更新が進むにつれて更新係数の値を小さくすると、収束速度が速く、かつ収束後の歪補償の精度を高める制御が可能となる。   The control unit of the predistorter according to the present invention preferably determines the update coefficient to be used when updating the coefficient of the distortion compensation polynomial based on the number of times the distortion compensation circuit has updated the distortion compensation value. . If the value of the update coefficient is increased at the start of the update, and the value of the update coefficient is decreased as the update proceeds, it is possible to perform control that increases the convergence speed and increases the accuracy of distortion compensation after convergence.

本発明に係るプリディストータの前記制御部は、前記入力信号と前記被補償回路の出力信号との差分に基づいて前記歪補償多項式の係数を更新する際に用いる前記更新係数を決定することとしてもよい。入力信号と出力信号との誤差が大きいときは更新係数を大きくして追従速度、および収束速度が速くなるように動作し、誤差が小さいときは更新係数を小さくして歪補償の精度を高める制御が可能となる。   The control unit of the predistorter according to the present invention determines the update coefficient to be used when updating the coefficient of the distortion compensation polynomial based on a difference between the input signal and the output signal of the compensated circuit. Also good. When the error between the input signal and the output signal is large, the update coefficient is increased to increase the tracking speed and the convergence speed. When the error is small, the update coefficient is decreased to increase the accuracy of distortion compensation. Is possible.

本発明は、追従速度、および収束速度を速くすることもでき、十分な歪補償精度を得ることもできるプリディストータを提供することができる。   The present invention can provide a predistorter that can increase the follow-up speed and the convergence speed and can obtain sufficient distortion compensation accuracy.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。また、枝番号を付さない符号での説明は該符号に枝番号を付した構成要素や信号全てに共通する説明である。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. In the present specification and drawings, the same reference numerals denote the same components. In addition, the description with the reference numerals without the branch numbers is the description common to all the components and signals with the reference numerals assigned with the branch numbers.

図1は、本実施例のプリディストータ301の構成を説明するブロック図である。プリディストータ301は、入力信号Xに対して歪補償多項式を用いて生成した予歪補償信号Aを被補償回路401へ出力する歪補償回路11と、入力信号X及び被補償回路401の出力信号Yが入力され、歪補償多項式に入力信号Aを代入して生成した信号と歪補償多項式に出力信号Yを代入して生成した信号との差分及び可変な更新係数に基づいて歪補償多項式の係数値を更新する制御部13と、を備える。   FIG. 1 is a block diagram illustrating the configuration of the predistorter 301 of this embodiment. The predistorter 301 outputs a predistortion compensation signal A generated by using a distortion compensation polynomial to the input signal X to the compensated circuit 401, the input signal X, and the output signal of the compensated circuit 401. Y is input, and the relationship between the distortion compensation polynomial based on the difference between the signal generated by substituting the input signal A for the distortion compensation polynomial and the signal generated by substituting the output signal Y for the distortion compensation polynomial and the variable update coefficient. And a control unit 13 for updating the numerical value.

図2は、本実施例のプリディストータ302の構成を説明するブロック図である。プリディストータ302は、入力信号Xに対して歪補償多項式を用いて生成した予歪補償信号Aを被補償回路401へ出力する歪補償回路11と、予歪補償信号A及び被補償回路401の出力信号Yが入力され、予歪補償信号Aと歪補償多項式に出力信号Yを代入して生成した信号との差分及び可変な更新係数に基づいて歪補償多項式の係数値を更新する制御部13と、を備える。   FIG. 2 is a block diagram illustrating the configuration of the predistorter 302 of this embodiment. The predistorter 302 outputs a predistortion compensation signal A generated from the input signal X using a distortion compensation polynomial to the compensated circuit 401, and the predistortion signal A and the compensated circuit 401. The control unit 13 that receives the output signal Y and updates the coefficient value of the distortion compensation polynomial based on the difference between the predistortion signal A and the signal generated by substituting the output signal Y into the distortion compensation polynomial and the variable update coefficient. And comprising.

例えば、被補償回路401は増幅器である。以下の説明は、被補償回路401が増幅器として説明する。   For example, the compensated circuit 401 is an amplifier. In the following description, the compensated circuit 401 is described as an amplifier.

図3は、プリディストータ301及びプリディストータ302の歪補償回路11を説明するブロック図である。歪補償回路11は、入力信号Xを用いて予歪補償信号Aを算出する。予歪補償信号Aは、被補償回路401の歪特性の逆歪特性(歪補償特性)が加えられているので、被補償回路401の出力信号Yの歪を小さくすることができる。   FIG. 3 is a block diagram for explaining the distortion compensation circuit 11 of the predistorter 301 and the predistorter 302. The distortion compensation circuit 11 calculates a predistortion compensation signal A using the input signal X. Since the predistortion compensation signal A is added with the inverse distortion characteristic (distortion compensation characteristic) of the distortion characteristic of the compensated circuit 401, the distortion of the output signal Y of the compensated circuit 401 can be reduced.

制御部13は、図3に図示されない歪補償多項式に入力信号Xを代入して生成した信号又は予歪補償信号Aと歪補償多項式に出力信号Yを代入して生成した信号との差分が0に近づくように歪補償多項式の係数値を更新する。また、制御部13は、歪補償値の更新時に0より大きく、且つ1以下の更新係数を乗算して制御不能の状態に陥ることを回避する。例えば、制御部13は、歪補償回路11で用いる歪補償多項式の係数値を更新した回数に基づいて、歪補償多項式の係数値を更新する際に用いる更新係数を決定する。また、制御部13は、入力信号Xと被補償回路401の出力信号Yとの差分に基づいて歪補償多項式の係数値を更新する際に用いる更新係数を決定してもよい。   The control unit 13 has a difference between a signal generated by substituting the input signal X into a distortion compensation polynomial (not shown in FIG. 3) or a signal generated by substituting the output signal Y into the distortion compensation polynomial and the predistortion compensation signal A is 0. The coefficient value of the distortion compensation polynomial is updated so as to approach. Further, the control unit 13 avoids falling into an uncontrollable state by multiplying an update coefficient that is greater than 0 and less than or equal to 1 when the distortion compensation value is updated. For example, the control unit 13 determines an update coefficient used when updating the coefficient value of the distortion compensation polynomial based on the number of times the coefficient value of the distortion compensation polynomial used in the distortion compensation circuit 11 is updated. Further, the control unit 13 may determine an update coefficient used when updating the coefficient value of the distortion compensation polynomial based on the difference between the input signal X and the output signal Y of the compensated circuit 401.

(更新量の算出の説明)
複数の増幅器で構成された増幅器は、図4のようにモデル化できる。入力信号Xを周期Tでサンプリングした離散時間信号をx(nT)とし、出力信号Yを周期Tでサンプリングした離散時間信号をy(nT)とし、表記を簡単にするためにそれぞれをx(n),y(n)で表すこととする。また、x(n)及びy(n)は実数成分と虚数成分を持つ複素数信号であり、x(n)及びy(n)に対する乗算及び加算は、それぞれ複素乗算及び複素加算を示すものとする。すなわち、先に説明した図1および図2においては歪補償回路11と被補償回路401との間には図示しない直交変調器、D/A変換器、およびアップコンバータがあり、被補償回路401と制御部の間には図示しないダウンコンバータ、A/D変換器、および直交復調器がある。このとき、増幅器を構成する要素増幅器513の歪特性を表す歪特性多項式をそれぞれ

Figure 2010130666
とおく。ここで、jは要素増幅器513の番号であり、Jは要素増幅器513の個数である。また、dは入力信号の正規化先行時間、または正規化遅延時間を表し、D1はj番目の要素増幅器の最大正規化先行時間、D2はj番目の要素増幅器の最大正規化遅延時間、kは次数であり、Kはj番目の要素増幅器の歪成分の最大次数を表す。 (Description of calculation of update amount)
An amplifier composed of a plurality of amplifiers can be modeled as shown in FIG. A discrete time signal obtained by sampling the input signal X with a period T s is represented by x (nT s ), and a discrete time signal obtained by sampling the output signal Y with a period T s is represented by y (nT s ). X (n), y (n). Also, x (n) and y (n) are complex signals having a real component and an imaginary component, and multiplication and addition for x (n) and y (n) indicate complex multiplication and complex addition, respectively. . That is, in FIG. 1 and FIG. 2 described above, there are a quadrature modulator, a D / A converter, and an upconverter (not shown) between the distortion compensation circuit 11 and the compensated circuit 401. There are a down converter, an A / D converter, and a quadrature demodulator (not shown) between the control units. At this time, each of the distortion characteristic polynomials representing the distortion characteristics of the element amplifier 513 constituting the amplifier is
Figure 2010130666
far. Here, j is the number of the element amplifier 513, and J is the number of the element amplifiers 513. Also, d represents the normalization lead time of the input signal, or the normalization delay time, D1 j is the maximum normalization lead time of the jth element amplifier, D2 j is the maximum normalization delay time of the jth element amplifier, k is the order, and K j represents the maximum order of the distortion component of the j-th element amplifier.

また、要素増幅器513を合成する比率を入力信号Xの振幅値の関数(合成多項式)

Figure 2010130666
とおく。ここで、rは入力信号の正規化先行時間、または正規化遅延時間を表し、R1はj番目の要素増幅器に対する合成する比率において関係する入力信号の最大正規化先行時間、R2はj番目の要素増幅器に対する合成する比率において関係する入力信号の最大正規化遅延時間、lは次数であり、Lはj番目の要素増幅器に対する合成する比率において関係する入力信号の最大次数から1次高い次数を表す。このとき、増幅器の出力は
Figure 2010130666
Further, the ratio of combining the element amplifiers 513 is a function of the amplitude value of the input signal X (combining polynomial).
Figure 2010130666
far. Here, r represents the normalization leading time of the input signal, or the normalization delay time, R1 j is the maximum normalization leading time of the input signal related in the combining ratio with respect to the jth element amplifier, and R2 j is the jth The maximum normalized delay time of the input signal related in the combining ratio with respect to the element amplifier of L, l is the order, and L j is the first order higher than the maximum order of the input signal related in the ratio of combining with the j-th element amplifier. Represents. At this time, the output of the amplifier is
Figure 2010130666

ここで、数式3を整理する。まず、異なる増幅器(異なるj)の同じ項をまとめると

Figure 2010130666
である。ここで、max(c,c,…,c)はc,c,…,cの最大値を表す。 Here, Formula 3 is arranged. First, the same terms for different amplifiers (different j)
Figure 2010130666
It is. Here, max (c 1, c 2 , ..., c J) are c 1, c 2, ..., representing the maximum value of c J.

次に、数式4のr=dの項をまとめると

Figure 2010130666
である。 Next, if the term of r = d of Formula 4 is put together,
Figure 2010130666
It is.

また、数式5は、

Figure 2010130666
Equation 5 is
Figure 2010130666

更に、

Figure 2010130666
Furthermore,
Figure 2010130666

すなわち、図4のようにモデル化できる増幅器の歪特性を推定するには、複素数係数h’d,k、係数h’r,d,l、および係数h’r,d,l,kを算出すれば良い。係数h’d,k、係数h’r,d,l、および係数h’r,d,l,kを算出するには入力信号Xおよび出力信号Yを数式7のモデルに適用して最小二乗法を用いればよい。 That is, in order to estimate the distortion characteristics of an amplifier that can be modeled as shown in FIG. 4, complex coefficients h ′ d, k , coefficients h ′ r, d, l , and coefficients h ′ r, d, l, k are calculated. Just do it. In order to calculate the coefficient h ′ d, k , the coefficient h ′ r, d, l , and the coefficient h ′ r, d, l, k , the input signal X and the output signal Y are applied to the model of Equation 7 and the minimum two Multiplication may be used.

(歪補償方法)
次に、図4のモデルに基づいた増幅装置の歪補償方法について説明する。増幅装置全体の入出力信号の関係は

Figure 2010130666

となり、線形であるのが理想的である。但し、Gは増幅装置の利得を表す実数定数である。ここでは、以降の議論を簡単にする目的で、G=1とおくこととする。 (Distortion compensation method)
Next, a distortion compensation method for the amplification device based on the model of FIG. 4 will be described. The relationship between the input and output signals of the entire amplifier is
Figure 2010130666

Ideally, it should be linear. Here, G is a real constant representing the gain of the amplifier. Here, G = 1 is set for the purpose of simplifying the following discussion.

しかし、実際の増幅装置では、入力信号の振幅(もしくは電力)が大きくなると入出力信号の関係は線形ではなく数式3または数式7で表現されるように非線形となる。一方、数式3又は数式7において入力信号と出力信号の関係が理想的になるときy(n)=x(n)の関係が成立する。従って、図4のモデルに基づいた増幅回路を歪補償するには、図4のモデルを数式で表現した歪特性多項式である数式3または数式7において入力信号Xと出力信号Yを入れ替えた歪補償多項式

Figure 2010130666
である。 However, in an actual amplifying apparatus, when the amplitude (or power) of the input signal increases, the relationship between the input and output signals is not linear but nonlinear as expressed by Equation 3 or Equation 7. On the other hand, when the relationship between the input signal and the output signal is ideal in Equation 3 or Equation 7, the relationship y (n) = x (n) is established. Therefore, in order to compensate the distortion of the amplifier circuit based on the model of FIG. 4, the distortion compensation is performed by exchanging the input signal X and the output signal Y in Equation 3 or Equation 7, which is a distortion characteristic polynomial expressing the model of FIG. Polynomial
Figure 2010130666
It is.

数式3から数式7に整理したのと同様に、数式9を整理すると、

Figure 2010130666
Similar to the arrangement from Equation 3 to Equation 7,
Figure 2010130666

この数式10の複素数係数w’d,k、w’r,d,l、及びw’r,d,l,kを最小二乗法を用いて推定し、入力信号Xを歪補償多項式に従って補償すればよい。最小二乗法により複素数係数w’d,k、w’r,d,l、及びw’r,d,l,kを算出するに際しては、複素数係数w’d,k、w’r,d,l、及びw’r,d,l,kの総数よりも多くの入力信号X及び出力信号Yをサンプリングしたx(n)とy(n)の組を用いる。 The complex coefficients w ′ d, k , w ′ r, d, l , and w ′ r, d, l, k of Equation 10 are estimated using the least square method, and the input signal X is compensated according to the distortion compensation polynomial. That's fine. In calculating the complex coefficients w ′ d, k , w ′ r, d, l and w ′ r, d, l, k by the least square method, the complex coefficients w ′ d, k , w ′ r, d, l, and w 'r, d, l, than the total number of k by sampling the many input signals X and output signal Y x (n) and using a set of y (n).

すなわち、最小2乗法を用いて得られた数式10の係数を用いて増幅装置の入出力関係を線形にする目的で、増幅装置の前段に設けてある増幅装置の非線形な歪特性(歪値)に対する逆歪特性(歪補償値)を生成するプリディストータ301、あるいは302において、入力信号Xに歪補償値を予め与えた予歪補償信号Aを生成して増幅装置に入力する。このとき、増幅装置の出力信号Yがy(n)=x(n)となる予歪補償信号Aを得るために、プリディストータ301、あるいは302は、数式11で表される歪補償多項式で入力信号Xに歪補償値を予め与えて予歪補償信号Aを生成して増幅装置に入力する。

Figure 2010130666
That is, for the purpose of linearizing the input / output relationship of the amplifying apparatus using the coefficient of Equation 10 obtained using the least square method, the nonlinear distortion characteristic (distortion value) of the amplifying apparatus provided in the preceding stage of the amplifying apparatus. In a predistorter 301 or 302 that generates a reverse distortion characteristic (distortion compensation value) for the input signal X, a predistortion compensation signal A in which a distortion compensation value is given in advance to the input signal X is generated and input to the amplifying apparatus. At this time, in order to obtain the predistortion compensation signal A in which the output signal Y of the amplifier is y (n) = x (n), the predistorter 301 or 302 is a distortion compensation polynomial expressed by Equation 11. A distortion compensation value is given in advance to the input signal X to generate a predistortion compensation signal A and input it to the amplifying apparatus.
Figure 2010130666

図4のモデルを数式で表現した歪特性多項式である数式3または数式7で与えられる非線形な歪を補償する逆歪特性(歪補償特性)を与える予歪補償信号A、すなわち数式11のa(n)を得るには、数式3または数式7においてx(n)とy(n)を入れ替えた数式9または数式10の関係を満たす係数w’j,r,d,l,k、または、係数w’d,k、w’r,d,l、及びw’r,d,l,kを得ればよい。 A predistortion compensation signal A that gives an inverse distortion characteristic (distortion compensation characteristic) that compensates for the non-linear distortion given by the mathematical expression 3 or 7, which is a distortion characteristic polynomial expressing the model of FIG. In order to obtain n), a coefficient w ′ j, r, d, l, k that satisfies the relationship of Expression 9 or Expression 10 in which x (n) and y (n) are replaced in Expression 3 or 7 or coefficient What is necessary is to obtain w ′ d, k , w ′ r, d, l , and w ′ r, d, l, k .

(歪補償多項式の係数の算出方法)
ここで、数式10を利用して歪補償多項式の係数を求める方法について説明する。但し、ここでは、表現の簡単のためにDa=0、R1=0、D1=0とおく。複素数係数w’d,k、w’r,d,l、及びw’r,d,l,kをすべて並べた係数のベクトルを

Figure 2010130666
とおく。ここで、Tは行列の転置を表す。 (Calculation method of distortion compensation polynomial coefficients)
Here, a method for obtaining the coefficient of the distortion compensation polynomial using Expression 10 will be described. However, here, for simplicity of expression, Da = 0, R1 = 0, and D1 = 0. A vector of coefficients in which complex coefficients w ′ d, k , w ′ r, d, l , and w ′ r, d, l, k are all arranged
Figure 2010130666
far. Here, T represents transposition of the matrix.

次に、w、w、・・・、wを求める方法について説明する。数式12の歪補償多項式の係数w0,w1,・・・,wを求めるには、異なるnにおけるQ+1個以上の数式10が必要である。ここで、数式10を行列表現すると数式13となる。

Figure 2010130666
但し、
Figure 2010130666
歪補償多項式の係数を推定する際に使用する異なるnに対する数式10の個数はN(N≧Q+1)であり、数式10をN個まとめると数式13は数式15の連立方程式となる。
Figure 2010130666
Figure 2010130666
Next, a method for obtaining w 0 , w 1 ,..., W Q will be described. In order to obtain the coefficients w 0 , w 1 ,..., W Q of the distortion compensation polynomial in Expression 12, Q + 1 or more Expressions 10 in different n are required. Here, when Expression 10 is expressed as a matrix, Expression 13 is obtained.
Figure 2010130666
However,
Figure 2010130666
The number of Equations 10 for different n used to estimate the coefficient of the distortion compensation polynomial is N (N ≧ Q + 1). When N of Equations 10 are combined, Equation 13 becomes the simultaneous equations of Equation 15.
Figure 2010130666
Figure 2010130666

数式15又は数式17の連立方程式を解くことで、係数w,w,・・・,wが求まる。数式15又は数式17の連立方程式を解くには掃き出し法を用いても良いし、最小二乗法を用いて数式18としても良い。

Figure 2010130666
Figure 2010130666
但し、Hは行列の複素共役転置を表す。このようにして得られた係数w,w,・・・,wをa(n)に適用し、x(n)に応じた歪補償値を算出すれば歪補償ができる。 The coefficients w 0 , w 1 ,..., W Q are obtained by solving the simultaneous equations of Expression 15 or Expression 17. In order to solve the simultaneous equations of Formula 15 or Formula 17, the sweep-out method may be used, or Formula 18 may be used by using the least square method.
Figure 2010130666
Figure 2010130666
Where H represents the complex conjugate transpose of the matrix. Distortion compensation can be performed by applying the coefficients w 0 , w 1 ,..., W Q thus obtained to a (n) and calculating a distortion compensation value corresponding to x (n).

歪補償回路11は、制御部13が算出した係数を受け取り、歪補償多項式に適用する。プリディストータ301は、この係数を適用した歪補償多項式で入力信号Xから予歪補償信号Aを生成する。歪補償回路11が記憶する歪補償多項式は被補償回路401を適切にモデル化し、そのモデルの歪特性から得られたものであるため、プリディストータ301は少ない計算量で歪補償値を算出でき、歪補償の精度を高くすることができる。但し、プリディストータ301の係数である数式12の初期値は、

Figure 2010130666
である。 The distortion compensation circuit 11 receives the coefficient calculated by the control unit 13 and applies it to the distortion compensation polynomial. The predistorter 301 generates a predistortion compensation signal A from the input signal X using a distortion compensation polynomial to which this coefficient is applied. Since the distortion compensation polynomial stored in the distortion compensation circuit 11 is obtained by appropriately modeling the compensated circuit 401 and obtained from the distortion characteristics of the model, the predistorter 301 can calculate the distortion compensation value with a small amount of calculation. The accuracy of distortion compensation can be increased. However, the initial value of Equation 12, which is the coefficient of the predistorter 301, is
Figure 2010130666
It is.

(更新アルゴリズム)
歪補償多項式の係数を1回で正確に求めるには、想定している入力信号の振幅(または電力)の全てを網羅するような信号を実際に増幅装置に入力した際の入力信号と、入力信号に対応する出力信号の組を用いて歪補償多項式の係数を最小二乗法を用いて算出する必要があり、計算量が膨大なものとなる問題がある。すなわち、歪補償多項式の係数を正確に算出するには、サンプリングした入力信号と出力信号を非常に多く用いる必要がある。
(Update algorithm)
In order to accurately obtain the coefficient of the distortion compensation polynomial at one time, the input signal when the signal that covers all the amplitude (or power) of the assumed input signal is actually input to the amplifying device, and the input It is necessary to calculate the coefficient of the distortion compensation polynomial using the least square method using a set of output signals corresponding to the signal, and there is a problem that the amount of calculation becomes enormous. That is, in order to accurately calculate the coefficient of the distortion compensation polynomial, it is necessary to use a very large number of sampled input signals and output signals.

また、温度、および湿度、並びに経年変化により増幅装置の歪補償多項式の係数も変化する問題がある。さらに、増幅装置の歪補償をしながら歪補償多項式の係数を時刻の経過とともに更新していく必要がある。そこで、歪補償多項式の係数を時刻の経過とともに更新する更新アルゴリズムをここで示す。   Further, there is a problem that the coefficient of the distortion compensation polynomial of the amplifying device also changes due to temperature, humidity, and aging. Furthermore, it is necessary to update the coefficient of the distortion compensation polynomial with the passage of time while performing distortion compensation of the amplifier. An update algorithm for updating the coefficient of the distortion compensation polynomial with the passage of time is shown here.

増幅装置の歪補償をしながら歪補償多項式の係数を更新する場合、増幅装置への入力信号はx(n)ではなく、増幅装置の出力信号Yであるy(n)をx(n)に近づけるように歪補償した数式11の予歪補償信号Aが入力信号になっている。   When updating the coefficient of the distortion compensation polynomial while compensating for distortion of the amplifying device, the input signal to the amplifying device is not x (n), but y (n) which is the output signal Y of the amplifying device is changed to x (n). The predistortion compensation signal A of Formula 11 that has been subjected to distortion compensation so as to be close to each other is an input signal.

このとき、正確に増幅装置の歪補償がなされていれば、y(n)=x(n)が成立するので、数式11において

Figure 2010130666
も成立する。ここで、
Figure 2010130666
とおく。但し、w’d,k(i)、w’r,d,l(i)、およびw’r,d,l,k(i)はi回目の更新で得られた係数w’d,k、w’r,d,l、およびw’r,d,l,kをそれぞれ表す。 At this time, if distortion compensation of the amplifying apparatus is accurately performed, y (n) = x (n) is established.
Figure 2010130666
Also holds. here,
Figure 2010130666
far. However, w ′ d, k (i), w ′ r, d, l (i) and w ′ r, d, l, k (i) are the coefficients w ′ d, k obtained in the i-th update. , W ′ r, d, l and w ′ r, d, l, k respectively.

もし、増幅装置の歪補償が十分でなければ、y(n)=x(n)とはならず、

Figure 2010130666
とおくと、誤差
Figure 2010130666
が得られる。この誤差e(n)が零になるように歪補償多項式の係数を更新する。 If the distortion compensation of the amplifying device is not sufficient, y (n) = x (n) does not hold,
Figure 2010130666
Error
Figure 2010130666
Is obtained. The coefficient of the distortion compensation polynomial is updated so that this error e (n) becomes zero.

すなわち、増幅装置全体の入出力関係を線形とする条件y(n)=x(n)を満たす係数w’d,k(i)、w’r,d,l(i)、およびw’r,d,l,k(i)は数式10を満たす。ここで、係数w’d,k、w’r,d,l、およびw’r,d,l,kを全て並べた係数は数式12によりw、w、・・・、wで表されるので、i回目の更新で得られた係数w、w、・・・、wをそれぞれw(i)、w(i)、・・・、w(i)とおくと、増幅回路全体の入出力関係を線形とする条件y(n)=x(n)を満たす係数w(i)、w(i)、・・・、w(i)は数式10を満たす。従って、a’(n)とa”(n)が一致するように、w(i)、w(i)、・・・、w(i)を求めればよい。 That is, the coefficients w ′ d, k (i), w ′ r, d, l (i), and w ′ r satisfying the condition y (n) = x (n) that makes the input / output relationship of the entire amplification device linear. , D, l, k (i) satisfies Equation (10). Here, the coefficients w ′ d, k , w ′ r, d, l , and w ′ r, d, l, k are all arranged as w 0 , w 1 ,. because represented, i-th coefficient w 0 obtained updates, w 1, ···, w Q each w 0 (i), w 1 (i), ···, w Q (i) and In other words, the coefficients w 0 (i), w 1 (i),..., W Q (i) satisfying the condition y (n) = x (n) that makes the input / output relationship of the entire amplifier circuit linear are mathematical expressions. 10 is satisfied. Accordingly, w 0 (i), w 1 (i),..., W Q (i) may be obtained so that a ′ (n) and a ″ (n) match.

ここで、w,w,・・・wの更新について説明する。

Figure 2010130666
とおく。但し、i≧0である。なお、数式24の係数w(i)の初期値としては、w(0)=(1,0,・・・,0)を用いるか、同じ被補償部に対して十分な取り込み点数Nのときに数式15、数式17または数式18を用いて予め求めておいた係数wをw(0)=wとして用いるか、同じ被補償部に対して十分に更新回数を確保して予め求めておいた係数の行列w(∞)をw(0)=w(∞)として用いればよい。 Here, the update of w 0 , w 1 ,... W Q will be described.
Figure 2010130666
far. However, i ≧ 0. As an initial value of the coefficient w (i) in Expression 24, w (0) = (1, 0,..., 0) T is used, or a sufficient number N of acquisition points for the same compensated portion is used. Sometimes the coefficient w obtained in advance using Expression 15, Expression 17 or Expression 18 is used as w (0) = w, or it is obtained in advance by ensuring a sufficient number of updates for the same compensated portion. The matrix w (∞) of the coefficients may be used as w (0) = w (∞).

ここでは、表現の簡単のためにDa=0、R1=0、D1=0とおいた場合、w(i),w(i),・・・,w(i)に対応した入力信号X及び出力信号Yの行列は、それぞれ数式25及び数式29とおくことができる。

Figure 2010130666
である。
また、行x(i)を構成するベクトルx1(i)、x2(i)およびx3(i)はそれぞれ数式26、数式27及び数式28で表せる。
Figure 2010130666
Figure 2010130666
Figure 2010130666
Figure 2010130666
Figure 2010130666
である。
また、行y(i)を構成するベクトルy1(i)、y2(i)およびy3(i)はそれぞれ数式30、数式31及び数式32で表せる。
Figure 2010130666
Figure 2010130666
Figure 2010130666
Figure 2010130666
但し、Nは歪補償値を推定する際に使用する入出力信号の取り込み点数、Mは次の多項式係数の更新時に用いる入出力信号の取り込み開始までのサンプリング間隔数である。 Here, in order to simplify the expression, when Da = 0, R1 = 0, and D1 = 0, input signals corresponding to w 0 (i), w 1 (i),..., W Q (i) The matrixes of X and output signal Y can be expressed as Equation 25 and Equation 29, respectively.
Figure 2010130666
It is.
Further, the vectors x1 n (i), x2 n (i), and x3 n (i) constituting the row x n (i) can be expressed by Expression 26, Expression 27, and Expression 28, respectively.
Figure 2010130666
Figure 2010130666
Figure 2010130666
Figure 2010130666
Figure 2010130666
It is.
Further, the vectors y1 n (i), y2 n (i), and y3 n (i) constituting the row y n (i) can be expressed by Expression 30, Expression 31, and Expression 32, respectively.
Figure 2010130666
Figure 2010130666
Figure 2010130666
Figure 2010130666
Here, N is the number of input / output signal capture points used when estimating the distortion compensation value, and M is the number of sampling intervals until the start of input / output signal capture used when updating the next polynomial coefficient.

また、

Figure 2010130666
Figure 2010130666
Figure 2010130666
とおくと、連立方程式
Figure 2010130666
によりw(i)を更新すればよい。但し、μは0<μ≦1.0を満たす更新係数である。 Also,
Figure 2010130666
Figure 2010130666
Figure 2010130666
Then, simultaneous equations
Figure 2010130666
The w (i) may be updated by However, μ is an update coefficient that satisfies 0 <μ ≦ 1.0.

本発明では更新回数、または誤差信号e(i)の電力に応じて更新係数μを適応的に変化させる。例えば、本発明の例として更新係数μを更新回数に応じて変化させる場合には、更新係数を

Figure 2010130666
とする(図5)。但し、0<μMIN<μMAX≦1.0であり、0≦IMIN<IMAXである。このように、更新開始時には更新係数の値を大きくしておき、更新が進むにつれて更新係数の値を小さくすると、収束速度が速く、かつ収束後の歪補償の精度を高める制御が可能となる。尚、数式37は更新係数μを適応的に変える関数の一例であり、更新係数μを適応的に変える関数としては更新の回数iを変数とした関数であれば他の形でもよい。 In the present invention, the update coefficient μ is adaptively changed according to the number of updates or the power of the error signal e (i). For example, when the update coefficient μ is changed according to the number of updates as an example of the present invention, the update coefficient is
Figure 2010130666
(FIG. 5). However, 0 <μ MINMAX ≦ 1.0 and 0 ≦ I MIN <I MAX . As described above, if the value of the update coefficient is increased at the start of the update and the value of the update coefficient is decreased as the update progresses, it is possible to perform control that increases the convergence speed and increases the accuracy of distortion compensation after convergence. Note that Formula 37 is an example of a function that adaptively changes the update coefficient μ, and the function that adaptively changes the update coefficient μ may be any other form as long as the function uses the number of updates i as a variable.

また、本発明の別の例として更新係数μを誤差e(i(N+M)+n)の電力|e(i(N+M)+n)|に応じて変化させる場合には、誤差電力の総和を下式とおくと、

Figure 2010130666
更新係数を数式38の関数である
Figure 2010130666
とする(図6)。但し、0<μMIN<μMAX≦1.0であり、0<STH1≦STH2である。このように、更新係数μを誤差電力の関数として誤差電力に応じて更新係数を変化させると誤差電力が大きいときは更新係数を大きくして追従速度、および収束速度が速くなるように動作し、誤差電力が小さいときは更新係数を小さくして歪補償の精度を高める制御が可能となる。尚、数式39は更新係数μを適応的に変える関数の一例であり、更新係数μを適応的に変える関数としては誤差信号e(i(N+M)+n)の電力|e(i(N+M)+n)|を変数とした関数であれば他の形でもよい。 As another example of the present invention, when the update coefficient μ is changed according to the power | e (i (N + M) + n) | 2 of the error e (i (N + M) + n), the total error power is reduced. With the formula,
Figure 2010130666
The update coefficient is a function of Equation 38.
Figure 2010130666
(FIG. 6). However, a 0 <μ MIN <μ MAX ≦ 1.0, is 0 <S TH1S TH2. In this way, when the update coefficient μ is changed as a function of the error power and the update coefficient is changed according to the error power, when the error power is large, the update coefficient is increased and the tracking speed and the convergence speed are increased. When the error power is small, it is possible to perform control to increase the accuracy of distortion compensation by reducing the update coefficient. Equation 39 is an example of a function that adaptively changes the update coefficient μ. The function that adaptively changes the update coefficient μ is the power | e (i (N + M) + n of the error signal e (i (N + M) + n). ) | Other forms may be used as long as the function has 2 as a variable.

本発明に係るプリディストータは、移動体通信基地局などに用いられる無線送信機の電力増幅器に適用することができる。   The predistorter according to the present invention can be applied to a power amplifier of a radio transmitter used in a mobile communication base station or the like.

本発明に係るプリディストータの構成を説明するブロック図である。It is a block diagram explaining the structure of the predistorter which concerns on this invention. 本発明に係るプリディストータの構成を説明するブロック図である。It is a block diagram explaining the structure of the predistorter which concerns on this invention. 本発明に係るプリディストータの歪補償回路を説明するブロック図である。It is a block diagram explaining the distortion compensation circuit of the predistorter concerning the present invention. 複数の増幅器で構成された増幅回路をモデル化した図である。It is the figure which modeled the amplifier circuit comprised with the some amplifier. 数式37を説明する図である。It is a figure explaining Numerical formula 37. 数式39を説明する図である。It is a figure explaining Numerical formula 39.

符号の説明Explanation of symbols

301、302:プリディストータ
11:歪補償回路
13:制御部
401:被補償回路
511:遅延素子
512−j:振幅値関数(jは自然数)
513:要素増幅器
514:複素乗算器
515:積算器
X:入力信号
Y:出力信号
A:予歪補償信号
301, 302: Predistorter 11: Distortion compensation circuit 13: Control unit 401: Compensated circuit 511: Delay element 512-j: Amplitude value function (j is a natural number)
513: Element amplifier 514: Complex multiplier 515: Integrator X: Input signal Y: Output signal A: Predistortion compensation signal

Claims (4)

入力信号を歪補償多項式に代入して生成した予歪補償信号を被補償回路へ出力する歪補償回路と、
前記入力信号及び前記被補償回路の出力信号が入力され、歪補償多項式に前記入力信号を代入して生成した信号と前記歪補償多項式に前記出力信号を代入して生成した信号との差分及び可変な更新係数に基づいて前記歪補償多項式の係数値を更新する制御部と、
を備えるプリディストータ。
A distortion compensation circuit for outputting a predistortion compensation signal generated by substituting an input signal into a distortion compensation polynomial to a compensated circuit;
The input signal and the output signal of the compensated circuit are input, and the difference and variable between the signal generated by substituting the input signal into a distortion compensation polynomial and the signal generated by substituting the output signal into the distortion compensation polynomial A control unit for updating a coefficient value of the distortion compensation polynomial based on an update coefficient;
A predistorter comprising:
入力信号を歪補償多項式に代入して生成した予歪補償信号を被補償回路へ出力する歪補償回路と、
前記予歪補償信号及び前記被補償回路の出力信号が入力され、前記予歪補償信号と前記歪補償多項式に前記出力信号を代入して生成した信号との差分及び可変な更新係数に基づいて前記歪補償多項式の係数値を更新する制御部と、
を備えるプリディストータ。
A distortion compensation circuit for outputting a predistortion compensation signal generated by substituting an input signal into a distortion compensation polynomial to a compensated circuit;
The predistortion compensation signal and the output signal of the circuit to be compensated are input, and based on a difference between the predistortion compensation signal and a signal generated by substituting the output signal into the distortion compensation polynomial and a variable update coefficient A control unit for updating the coefficient value of the distortion compensation polynomial;
A predistorter comprising:
前記制御部は、前記歪補償回路が前記歪補償値を更新した回数に基づいて前記歪補償多項式の係数を更新する際に用いる前記更新係数を決定することを特徴とする請求項1又は2に記載のプリディストータ。   The said control part determines the said update coefficient used when updating the coefficient of the said distortion compensation polynomial based on the frequency | count that the said distortion compensation circuit updated the said distortion compensation value, The Claim 1 or 2 characterized by the above-mentioned. The predistorter described. 前記制御部は、前記入力信号と前記被補償回路の出力信号との差分に基づいて前記歪補償多項式の係数を更新する際に用いる前記更新係数を決定することを特徴とする請求項1又は2に記載のプリディストータ。   The control unit determines the update coefficient to be used when updating a coefficient of the distortion compensation polynomial based on a difference between the input signal and an output signal of the compensated circuit. The predistorter described in 1.
JP2008306806A 2008-12-01 2008-12-01 Predistorter Active JP5299958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008306806A JP5299958B2 (en) 2008-12-01 2008-12-01 Predistorter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008306806A JP5299958B2 (en) 2008-12-01 2008-12-01 Predistorter

Publications (2)

Publication Number Publication Date
JP2010130666A true JP2010130666A (en) 2010-06-10
JP5299958B2 JP5299958B2 (en) 2013-09-25

Family

ID=42330656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306806A Active JP5299958B2 (en) 2008-12-01 2008-12-01 Predistorter

Country Status (1)

Country Link
JP (1) JP5299958B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095005A (en) * 2010-10-25 2012-05-17 Japan Radio Co Ltd Predistorter
WO2012086379A1 (en) * 2010-12-22 2012-06-28 住友電気工業株式会社 Amplifier circuit and wireless communication device
JP2015076720A (en) * 2013-10-09 2015-04-20 富士通株式会社 Distortion compensation device and distortion compensation method
JP2017509179A (en) * 2013-12-26 2017-03-30 大唐移▲動▼通信▲設▼▲備▼有限公司 Method for obtaining digital predistortion parameter and predistortion system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223171A (en) * 2001-01-29 2002-08-09 Fujitsu Ltd Nonlinear distortion compensating transmitter correcting and interpolating distortion compensation coefficient
JP2003188656A (en) * 2001-12-21 2003-07-04 Nec Corp Distortion compensating circuit
JP2006270246A (en) * 2005-03-22 2006-10-05 Fujitsu Ltd Distortion compensation device
JP2008125133A (en) * 1999-12-28 2008-05-29 Fujitsu Ltd Distortion compensating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125133A (en) * 1999-12-28 2008-05-29 Fujitsu Ltd Distortion compensating apparatus
JP2002223171A (en) * 2001-01-29 2002-08-09 Fujitsu Ltd Nonlinear distortion compensating transmitter correcting and interpolating distortion compensation coefficient
JP2003188656A (en) * 2001-12-21 2003-07-04 Nec Corp Distortion compensating circuit
JP2006270246A (en) * 2005-03-22 2006-10-05 Fujitsu Ltd Distortion compensation device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012031237; D.R.Morgan, Z.Ma, J.Kim, M.G.Zierdt, J.Pastalan: '"A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers"' IEEE TRANSACTION ON SIGNAL PROCESSING VOL.54, NO.10, 200610, Page 3852-3860, IEEE *
JPN6012044580; M.A.Nizamuddin,P.J.Balister, W.H.Tranter, J.H.Reed: '"Nonlinear Tapped Delay Line Digital Predistorter for Power Amplifiers with Memory"' Wireless Communications and Networking,2003 Vol.1, 2003, page(s):607-611, IEEE *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095005A (en) * 2010-10-25 2012-05-17 Japan Radio Co Ltd Predistorter
WO2012086379A1 (en) * 2010-12-22 2012-06-28 住友電気工業株式会社 Amplifier circuit and wireless communication device
US9257943B2 (en) 2010-12-22 2016-02-09 Sumitomo Electric Industries, Ltd. Amplifier circuit and wireless communication equipment
JP2015076720A (en) * 2013-10-09 2015-04-20 富士通株式会社 Distortion compensation device and distortion compensation method
JP2017509179A (en) * 2013-12-26 2017-03-30 大唐移▲動▼通信▲設▼▲備▼有限公司 Method for obtaining digital predistortion parameter and predistortion system

Also Published As

Publication number Publication date
JP5299958B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4909261B2 (en) Model-based distortion reduction in power amplifiers
US8787494B2 (en) Modeling digital predistorter
JP4255849B2 (en) Power series digital predistorter
US20070237260A1 (en) Digital predistortion transmitter
JP5420887B2 (en) Distortion compensation device
JP2009213113A (en) Apparatus and method for identifying reverse characteristic of nonlinear system, power amplifier, and predistorter of power amplifier
JP2013542696A (en) Nonlinear model with tap output normalization
JP2009177668A (en) Distortion compensating apparatus and power amplifier with the same
JP2012090158A (en) Power amplification device, distortion compensation coefficient updating method for the same, and transmission apparatus
KR101386239B1 (en) Predistorter for compensating of nonlinear distortion and method for the same
JP5299958B2 (en) Predistorter
JP2014127829A (en) Distortion compensation device and distortion compensation method
JP5336134B2 (en) Predistorter
JP5160344B2 (en) Predistorter
US20150077179A1 (en) Distortion compensation apparatus, transmission apparatus, and distortion compensation method
JP5238461B2 (en) Predistorter
JP5260335B2 (en) Predistorter
JP5221260B2 (en) Predistorter
KR100865886B1 (en) Apparatus for calibrating non-linearity of amplifier
JP5290698B2 (en) Predistorter
JP5238564B2 (en) Predistorter
JP5706129B2 (en) Predistorter
JP5115979B2 (en) Predistorter
JP2010114655A (en) Predistorter
JP2005079935A (en) Adaptive predistortion type distortion compensation power amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5299958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150