JP2010015717A - Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it - Google Patents
Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it Download PDFInfo
- Publication number
- JP2010015717A JP2010015717A JP2008172472A JP2008172472A JP2010015717A JP 2010015717 A JP2010015717 A JP 2010015717A JP 2008172472 A JP2008172472 A JP 2008172472A JP 2008172472 A JP2008172472 A JP 2008172472A JP 2010015717 A JP2010015717 A JP 2010015717A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- group
- aqueous electrolyte
- general formula
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、電池用非水電解液及びそれを備えた非水電解液二次電池に関し、特には、不燃性を有する電池用非水電解液、及び高温環境下でも保存安定性に優れ、高い安全性を有する非水電解液二次電池に関するものである。 The present invention relates to a battery non-aqueous electrolyte and a non-aqueous electrolyte secondary battery including the same, and in particular, a non-flammable battery non-aqueous electrolyte and excellent storage stability even in a high temperature environment, and high The present invention relates to a non-aqueous electrolyte secondary battery having safety.
非水電解液は、リチウム電池やリチウムイオン二次電池、電気二重層キャパシタ等の電解質として使用されており、これらデバイスは、高電圧、高エネルギー密度を有することから、パソコン及び携帯電話等の駆動電源として広く用いられている。そして、これら非水電解液としては、一般にエステル化合物及びエーテル化合物等の非プロトン性有機溶媒に、LiPF6等の支持塩を溶解させたものが用いられている。しかしながら、非プロトン性有機溶媒は、可燃性であるため、上記デバイスから漏液した際に引火・燃焼する可能性があり、安全面での問題を有している。 Non-aqueous electrolytes are used as electrolytes for lithium batteries, lithium-ion secondary batteries, electric double layer capacitors, etc., and these devices have high voltage and high energy density, so they drive personal computers and mobile phones. Widely used as a power source. As these nonaqueous electrolytic solutions, generally used are solutions in which a supporting salt such as LiPF 6 is dissolved in an aprotic organic solvent such as an ester compound and an ether compound. However, since the aprotic organic solvent is flammable, it may ignite and burn when it leaks from the device, and has a safety problem.
この問題に対して、非水電解液を難燃化する方法が検討されており、例えば、非水電解液にリン酸トリメチル等のリン酸エステル類を用いたり、非プロトン性有機溶媒にリン酸エステル類を添加したりする方法が提案されている(特許文献1〜3参照)。しかしながら、これらリン酸エステル類は、充放電を繰り返すことで、徐々に負極で還元分解され、充放電効率及びサイクル特性等の電池特性が大きく劣化するという問題がある。また、非水電解液にリン酸エステルを用いた電池を充電状態で保存した場合、高い電池電圧によってリン酸エステルの分解反応が進行してしまうため、保存後の充放電容量が大きく低下してしまうという問題もある。 To solve this problem, methods for making non-aqueous electrolytes flame-retardant have been studied. For example, phosphoric acid esters such as trimethyl phosphate are used for non-aqueous electrolytes, or phosphoric acid is used for aprotic organic solvents. Methods for adding esters have been proposed (see Patent Documents 1 to 3). However, these phosphate esters have a problem in that they are gradually reduced and decomposed at the negative electrode by repeating charge and discharge, and battery characteristics such as charge and discharge efficiency and cycle characteristics are greatly deteriorated. In addition, when a battery using a phosphate ester in a non-aqueous electrolyte is stored in a charged state, the decomposition reaction of the phosphate ester proceeds with a high battery voltage, so the charge / discharge capacity after storage is greatly reduced. There is also a problem of end.
この問題に対して、非水電解液にリン酸エステルの分解を抑制する化合物を更に添加したり、リン酸エステルそのものの分子構造を工夫する等の方法も試みられている(特許文献4〜6参照)。しかしながら、この場合も、添加量に制限があり、また、リン酸エステル自体の難燃性の低下等の理由から、電解液が自己消火性になる程度で、電解液の安全性を十分に確保することができない。 In order to solve this problem, methods such as further adding a compound that suppresses the decomposition of the phosphate ester to the nonaqueous electrolytic solution or devising the molecular structure of the phosphate ester itself have been tried (Patent Documents 4 to 6). reference). However, in this case as well, there is a limit to the amount of addition, and the safety of the electrolyte is sufficiently ensured to the extent that the electrolyte is self-extinguishing due to a decrease in the flame retardancy of the phosphate ester itself. Can not do it.
また、特開平6−13108号公報(特許文献7)には、非水電解液に難燃性を付与するために、非水電解液にホスファゼン化合物を添加する方法が開示されている。該ホスファゼン化合物は、概して高い難燃性を示すものの、支持塩の溶解性が低いものが多く、添加量を多くすると、他の電解液成分の含量が少なくなり、また、その電解液成分に溶解している支持塩の相対的な濃度も高くなる。結果として温度環境や電池作動電圧条件によっては、電解液成分や支持塩の劣化や分解が進みやすく、サイクル特性、電気容量、耐久性などの電池特性に支障をきたすことがある。 Japanese Patent Application Laid-Open No. 6-13108 (Patent Document 7) discloses a method of adding a phosphazene compound to a nonaqueous electrolytic solution in order to impart flame retardancy to the nonaqueous electrolytic solution. The phosphazene compounds generally exhibit high flame retardancy, but many of them have low solubility of the supporting salt. If the amount added is increased, the content of other electrolyte components decreases, and the phosphazene compounds dissolve in the electrolyte components. The relative concentration of the supporting salt is also high. As a result, depending on the temperature environment and battery operating voltage conditions, deterioration and decomposition of the electrolyte component and the supporting salt are likely to proceed, which may hinder battery characteristics such as cycle characteristics, electric capacity, and durability.
リチウム電池、リチウムイオン二次電池、電気二重層キャパシタ等のデバイスは、安全性が高いことはもとより、より広範囲の温度領域で安定した性能を確保できる耐久性が求められるが、このような電解液を用いる従来技術では、電池特性において必ずしも満足できるものではなく、電池性能の低下を起こさないリチウム二次電池用電解液が望まれている。 Devices such as lithium batteries, lithium ion secondary batteries, and electric double layer capacitors are required to have high safety and durability that can ensure stable performance in a wider temperature range. In the prior art using the battery, the battery characteristics are not always satisfactory, and an electrolytic solution for a lithium secondary battery that does not cause deterioration in battery performance is desired.
そこで、本発明の目的は、上記従来技術の問題を解決し、不燃性を有する電池用非水電解液と、該電池用非水電解液を備え、高温耐久性に優れ、かつ高い安全性を有する非水電解液二次電池を提供することにある。 Accordingly, an object of the present invention is to solve the above-described problems of the prior art, and to provide a non-flammable battery non-aqueous electrolyte and the battery non-aqueous electrolyte, which have excellent high-temperature durability and high safety. It is in providing the nonaqueous electrolyte secondary battery which has.
本発明者は、上記目的を達成するために鋭意検討した結果、特定の環状ホスファゼン化合物と非水溶媒に、さらに特定の不飽和カーボネート化合物を組み合わせて非水電解液を構成することにより、電解液に高い難燃性を付与することができ、また、該電解液を用いた非水電解液二次電池が高温に長時間さらされても、優れた電池性能を維持できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventor has constructed a non-aqueous electrolyte by combining a specific cyclic phosphazene compound and a non-aqueous solvent with a specific unsaturated carbonate compound, thereby forming an electrolyte solution. It was found that the present invention can maintain high battery performance even when a non-aqueous electrolyte secondary battery using the electrolytic solution is exposed to a high temperature for a long time. It came to complete.
即ち、本発明の電池用非水電解液は、
・下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物と、
・非水溶媒と、
・下記一般式(II):
を含むことを特徴とする。
That is, the non-aqueous electrolyte for a battery of the present invention is
-The following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 independently represents a fluorine, an alkoxy group or an aryloxy group; n represents 3 to 4], and a cyclic phosphazene compound represented by:
A non-aqueous solvent,
-The following general formula (II):
本発明の電池用非水電解液において、前記環状ホスファゼン化合物としては、前記一般式(I)において、R1のうち少なくとも4つがフッ素である化合物が好ましい。 In the non-aqueous electrolyte for a battery of the present invention, the cyclic phosphazene compound is preferably a compound in which at least four of R 1 in the general formula (I) are fluorine.
本発明の電池用非水電解液の好適例においては、前記一般式(I)で表される環状ホスファゼン化合物の含有量が電池用非水電解液全体の10〜60体積%である。 In a preferred example of the battery non-aqueous electrolyte of the present invention, the content of the cyclic phosphazene compound represented by the general formula (I) is 10 to 60% by volume of the whole battery non-aqueous electrolyte.
本発明の電池用非水電解液の他の好適例においては、前記不飽和カーボネート化合物の含有量が電池用非水電解液全体の0.5〜3質量%である。 In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the content of the unsaturated carbonate compound is 0.5 to 3% by mass of the whole battery non-aqueous electrolyte.
本発明の電池用非水電解液の他の好適例においては、前記非水溶媒が、非プロトン性有機溶媒であり、該非プロトン性有機溶媒としてエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びプロピオン酸メチルからなる群から選択される少なくとも1種含むことが更に好ましい。 In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the non-aqueous solvent is an aprotic organic solvent, and the aprotic organic solvent includes ethylene carbonate (EC), ethyl methyl carbonate (EMC), and More preferably, at least one selected from the group consisting of methyl propionate is included.
本発明の電池用非水電解液は、更に、支持塩を含むことが好ましい。なお、式(I)で表される環状ホスファゼン化合物、非水溶媒、式(II)で表される不飽和カーボネート化合物及び支持塩のみからなる電池用非水電解液は、本発明の電池用非水電解液の好適一態様である。 It is preferable that the nonaqueous electrolytic solution for a battery of the present invention further contains a supporting salt. Note that the nonaqueous electrolyte for a battery consisting only of the cyclic phosphazene compound represented by the formula (I), the nonaqueous solvent, the unsaturated carbonate compound represented by the formula (II) and the supporting salt is a non-aqueous electrolyte for a battery of the present invention. This is a preferred embodiment of the water electrolyte.
また、本発明の非水電解液二次電池は、上記電池用非水電解液と、正極と、負極とを備えることを特徴とする。 Moreover, the non-aqueous electrolyte secondary battery of the present invention comprises the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode.
本発明によれば、非水溶媒に特定の環状ホスファゼン化合物を加え、好ましくは10体積%以上加えることにより不燃性を有し、さらに特定の不飽和カーボネート化合物を組み合わせて用いることにより、非水電解液二次電池に使用した際に高温条件に長時間さらされても電池特性の低下を抑制することが可能な非水電解液を提供することができる。また、該非水電解液を備えた、高い安全性と優れた電池特性を有する非水電解液二次電池を提供することができる。 According to the present invention, a specific cyclic phosphazene compound is added to a non-aqueous solvent, preferably non-flammable by adding 10% by volume or more, and further using a specific unsaturated carbonate compound in combination. When used in a liquid secondary battery, it is possible to provide a non-aqueous electrolyte capable of suppressing deterioration of battery characteristics even when exposed to high temperature conditions for a long time. Moreover, the nonaqueous electrolyte secondary battery provided with this nonaqueous electrolyte and having high safety and excellent battery characteristics can be provided.
本発明の電池用非水電解液においては、環状ホスファゼン化合物の反応、熱分解により生じる高不燃性ガス成分が、高い難燃性を発現するものと考えられる。また、理由は必ずしも明らかではないが、上記環状ホスファゼン化合物と不飽和カーボネート化合物との2つの化合物の相乗効果により耐熱性の高い皮膜が電極表面に形成され、該皮膜が電解液や支持塩の分解を効果的に抑制できるため、高温条件で保存しても優れた充放電性能を維持できるものと考えられる。 In the non-aqueous electrolyte for batteries of the present invention, it is considered that a highly incombustible gas component produced by reaction and thermal decomposition of a cyclic phosphazene compound exhibits high flame retardancy. Further, although the reason is not necessarily clear, a film having high heat resistance is formed on the electrode surface by the synergistic effect of the two compounds of the cyclic phosphazene compound and the unsaturated carbonate compound, and the film decomposes the electrolytic solution and the supporting salt. Therefore, it is considered that excellent charge / discharge performance can be maintained even when stored under high temperature conditions.
<電池用非水電解液>
以下に、本発明の電池用非水電解液を詳細に説明する。本発明に係る電池用非水電解液は、上記一般式(I)で表される環状ホスファゼン化合物と、非水溶媒と、上記一般式(II)で表される不飽和カーボネート化合物とを含むことを特徴とし、更に、非水溶媒として、非プロトン性有機溶媒を含有することが好ましい。
<Non-aqueous electrolyte for batteries>
Below, the non-aqueous electrolyte for batteries of the present invention will be described in detail. The non-aqueous electrolyte for a battery according to the present invention contains a cyclic phosphazene compound represented by the general formula (I), a non-aqueous solvent, and an unsaturated carbonate compound represented by the general formula (II). Further, it is preferable to contain an aprotic organic solvent as the non-aqueous solvent.
本発明の電池用非水電解液に含まれる環状ホスファゼン化合物は、上記一般式(I)で表される。式(I)中のR1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し、nは3〜4を表す。 The cyclic phosphazene compound contained in the nonaqueous electrolytic solution for batteries of the present invention is represented by the above general formula (I). R 1 in formula (I) each independently represent fluorine, an alkoxy group or an aryloxy radical, n represents 3-4.
式(I)のR1におけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等、またはメトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。更に、R1におけるアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、キシレノキシ基(即ち、キシリルオキシ基)、メトキシフェノキシ基等が挙げられる。上記アルコキシ基及びアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。また、式(I)中のR1は他のR1と連結していてもよく、この場合、2つのR1は、互いに結合して、アルキレンジオキシ基、アリーレンジオキシ基又はオキシアルキレンアリーレンオキシ基を形成し、かかる二価の基としては、エチレンジオキシ基、プロピレンジオキシ基、フェニレンジオキシ基等が挙げられる。 Examples of the alkoxy group in R 1 of the formula (I) include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, or an alkoxy-substituted alkoxy such as a methoxyethoxy group and a methoxyethoxyethoxy group. Groups and the like. Furthermore, examples of the aryloxy group in R 1 include a phenoxy group, a methylphenoxy group, a xylenoxy group (that is, a xylyloxy group), a methoxyphenoxy group, and the like. The hydrogen element in the alkoxy group and aryloxy group may be substituted with a halogen element, and is preferably substituted with fluorine. R 1 in formula (I) may be linked to other R 1, and in this case, two R 1 are bonded to each other to form an alkylenedioxy group, an aryleneoxy group or an oxyalkylene arylene. Examples of the divalent group that forms an oxy group include an ethylenedioxy group, a propylenedioxy group, and a phenylenedioxy group.
上記一般式(I)中のR1は、同一でも異なってもよい。また、式(I)のR1は、不燃性及び低粘性の両立の点で、R1のうち4つ以上がフッ素であることが好ましい。 R 1 in the general formula (I) may be the same or different. Further, R 1 in the formula (I) is preferably 4 or more of R 1 in terms of both nonflammability and low viscosity.
また、式(I)のnは、3〜4であり、上記環状ホスファゼン化合物は、1種単独で使用してもよいし、2種以上を混合して用いてもよい。 Moreover, n of Formula (I) is 3-4, The said cyclic phosphazene compound may be used individually by 1 type, and may mix and use 2 or more types.
本発明の電池用非水電解液において、上記環状ホスファゼン化合物の含有量は、電池用非水電解液全体の5〜70体積%であることが好ましい。環状ホスファゼン化合物の含有量が70体積%を超えると、環状ホスファゼン化合物の構造にもよるが、電池の容量や負荷特性が低下してしまう傾向があるため好ましくなく、5体積%未満では、引火点の低い有機溶媒を電解液に使用した場合に、不燃性を発現できないことがある。また、過充電条件下での電池安全性と電池特性のバランスの観点から、上記環状ホスファゼン化合物の含有量は、電池用非水電解液全体の10〜60体積%の範囲が更に好ましい。 In the battery non-aqueous electrolyte of the present invention, the content of the cyclic phosphazene compound is preferably 5 to 70% by volume of the whole battery non-aqueous electrolyte. If the content of the cyclic phosphazene compound exceeds 70% by volume, although depending on the structure of the cyclic phosphazene compound, it is not preferable because the battery capacity and load characteristics tend to decrease. When an organic solvent having a low concentration is used for the electrolytic solution, incombustibility may not be exhibited. Moreover, from the viewpoint of the balance between battery safety and battery characteristics under overcharge conditions, the content of the cyclic phosphazene compound is more preferably in the range of 10 to 60% by volume of the whole non-aqueous electrolyte for batteries.
本発明の電池用非水電解液は、更に上記一般式(II)で表わされる不飽和カーボネート化合物を含むことを特徴とする。式(II)において、R2は炭素数1〜2のアルキル基であり、R3はアリル基又はビニル基であり、R3及びR4は互いに結合して環を形成してもよく、またR3及びR4の置換基中の水素元素は、フッ素で置換されていてもよい。ここで、R3におけるアルキル基としては、メチル基及びエチル基が挙げられ、R2及びR3が結合して形成する基としては、ビニレン基、ビニルエチレン基等の二価の不飽和炭化水素基が挙げられる。 The nonaqueous electrolytic solution for a battery of the present invention is characterized by further containing an unsaturated carbonate compound represented by the above general formula (II). In the formula (II), R 2 is an alkyl group having 1 to 2 carbon atoms, R 3 is an allyl group or a vinyl group, R 3 and R 4 may be bonded to each other to form a ring, The hydrogen element in the substituents R 3 and R 4 may be substituted with fluorine. Here, examples of the alkyl group in R 3 include a methyl group and an ethyl group, and examples of the group formed by combining R 2 and R 3 include divalent unsaturated hydrocarbons such as vinylene group and vinylethylene group. Groups.
式(II)の不飽和カーボネート化合物の具体例としては、メチルビニルカーボネート、エチルビニルカーボネート、アリルメチルカーボネート、アリルエチルカーボネート、ビニレンカーボネート、フルオロビニレンカーボネート、ビニルエチレンカーボネート等が挙げられる。これらの中でも、メチルビニルカーボネート、アリルエチルカーボネート、ビニレンカーボネート、フルオロビニレンカーボネート、ビニルエチレンカーボネートが好ましい。これら不飽和カーボネート化合物は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 Specific examples of the unsaturated carbonate compound of the formula (II) include methyl vinyl carbonate, ethyl vinyl carbonate, allyl methyl carbonate, allyl ethyl carbonate, vinylene carbonate, fluoro vinylene carbonate, vinyl ethylene carbonate and the like. Among these, methyl vinyl carbonate, allyl ethyl carbonate, vinylene carbonate, fluoro vinylene carbonate, and vinyl ethylene carbonate are preferable. These unsaturated carbonate compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.
上記不飽和カーボネート化合物の含有量は、電池用非水電解液全体の0.2〜5質量%の範囲が好ましく、電池性能のバランスの観点から、0.5〜3質量%の範囲が更に好ましい。 The content of the unsaturated carbonate compound is preferably in the range of 0.2 to 5% by mass with respect to the entire battery non-aqueous electrolyte, and more preferably in the range of 0.5 to 3% by mass from the viewpoint of balance of battery performance.
本発明の電池用非水電解液において、非水溶媒としては、本発明の目的を損なわない範囲で従来より二次電池用非水電解液に使用されている種々の非プロトン性有機溶媒を使用することができる。なお、非水溶媒の含有量は、電池用非水電解液全体の30〜95体積%であることが好ましく、安全性と電池特性のバランスの観点から、40〜90体積%の範囲が更に好ましい。 In the non-aqueous electrolyte for batteries of the present invention, various non-protonic organic solvents conventionally used in non-aqueous electrolytes for secondary batteries are used as the non-aqueous solvent as long as the object of the present invention is not impaired. can do. The content of the non-aqueous solvent is preferably 30 to 95% by volume of the entire non-aqueous electrolyte for batteries, and more preferably in the range of 40 to 90% by volume from the viewpoint of the balance between safety and battery characteristics. .
上記非プロトン性有機溶媒として具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の飽和カーボネート類、酢酸メチル、プロピオン酸メチル、酪酸メチル等のカルボン酸エステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)等のエーテル類、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホン類、エチレンスルフィド等のスルフィド類等が挙げられる。これらの中でも、環状ホスファゼン化合物との相溶性、および電池性能のバランスの点で、飽和カーボネート類、カルボン酸エステル類を用いることが好ましく、中でもエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、プロピオン酸メチルを用いることがより好ましい。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を混合して用いてもよい。 Specific examples of the aprotic organic solvent include saturated carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC). Carboxylic acid esters such as methyl acetate, methyl propionate and methyl butyrate, ethers such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF) and diethyl ether (DEE), γ-butyrolactone (GBL), γ -Lactones such as valerolactone, nitriles such as acetonitrile, amides such as dimethylformamide, sulfones such as dimethyl sulfoxide, sulfides such as ethylene sulfide, and the like. Among these, it is preferable to use saturated carbonates and carboxylic acid esters from the viewpoint of the compatibility with the cyclic phosphazene compound and the balance of battery performance. Among them, ethylene carbonate (EC), ethyl methyl carbonate (EMC), propion are preferable. More preferably, methyl acid is used. These aprotic organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
本発明の電池用非水電解液は、支持塩を含むことが好ましく、該支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiBC4O8、LiPF6、LiCF3SO3、LiAsF6、LiC4F9SO3、Li(FSO2)2N、Li(CF3SO2)2N及びLi(C2F5SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性および電池性能に優れる点で、LiPF6、Li(FSO2)2N、Li(CF3SO2)2Nがより好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。 The nonaqueous electrolytic solution for a battery of the present invention preferably contains a supporting salt, and the supporting salt is preferably a supporting salt that serves as an ion source of lithium ions. The supporting salt is not particularly limited. For example, LiClO 4 , LiBF 4 , LiBC 4 O 8 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (FSO 2 ) 2 N Suitable examples include lithium salts such as Li (CF 3 SO 2 ) 2 N and Li (C 2 F 5 SO 2 ) 2 N. Among these, LiPF 6 , Li (FSO 2 ) 2 N, and Li (CF 3 SO 2 ) 2 N are more preferable in terms of excellent nonflammability and battery performance. These supporting salts may be used alone or in combination of two or more.
上記非水電解液中の支持塩の総濃度としては、0.3〜2.5 mol/L(M)が好ましく、0.8〜2.0 mol/L(M)が更に好ましい。支持塩の総濃度が0.3 mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、2.5 mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。 The total concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.3 to 2.5 mol / L (M), more preferably 0.8 to 2.0 mol / L (M). If the total concentration of the supporting salt is less than 0.3 mol / L, the conductivity of the electrolyte cannot be sufficiently secured, which may hinder battery discharge characteristics and charge characteristics. As the viscosity of the electrolyte increases and the mobility of lithium ions cannot be sufficiently secured, the conductivity of the electrolyte cannot be sufficiently secured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. is there.
また、非水電解液二次電池の形成に際して、本発明の電池用非水電解液は、そのまま用いることも可能であるが、例えば、適当なポリマーや多孔性支持体、或いはゲル状物質に含浸させる等して保持させる方法等で用いることもできる。 Further, when forming a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte for a battery of the present invention can be used as it is. For example, an appropriate polymer, a porous support, or a gel material is impregnated. It can also be used by a method of holding it.
<非水電解液二次電池>
次に、本発明の非水電解液二次電池を詳細に説明する。本発明の非水電解液二次電池は、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液二次電池の技術分野で通常使用されている他の部材を備える。なお、本発明の非水電解液二次電池には、非水電解液二次電池の他に、正極に分極性炭素電極、負極に予めリチウムイオンを吸蔵し、リチウムイオンを可逆的に吸蔵・脱離し得る非分極性炭素電極を用いた電気二重層キャパシタ(リチウムイオンキャパシタ又はハイブリッドキャパシタ)も含まれる。
<Nonaqueous electrolyte secondary battery>
Next, the nonaqueous electrolyte secondary battery of the present invention will be described in detail. The non-aqueous electrolyte secondary battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of a non-aqueous electrolyte secondary battery such as a separator as necessary. It includes other members that are used. In addition to the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery of the present invention includes a polarizable carbon electrode in the positive electrode and lithium ions in the negative electrode in advance and reversibly occludes lithium ions. An electric double layer capacitor (lithium ion capacitor or hybrid capacitor) using a nonpolarizable carbon electrode that can be detached is also included.
本発明の非水電解液二次電池の正極活物質としては、V2O5、V6O13、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn2O4、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー、活性炭等の炭素材料等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co、Al及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiMnxCoyNi(1-x-y)O2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiMnxNi(1-x)O2[式中、0≦x<1]、LiMnxCo(1-x)O2[式中、0≦x<1]、LiCoxNi(1-x)O2[式中、0≦x<1]、LiCoxNiyAl(1-x-y)O2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiFexCoyNi(1-x-y)O2[式中、0≦x<1、0≦y<1、0<x+y≦1]、或いはLiMnxFeyO2-x-y等で表される。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO Preferred examples include lithium-containing composite oxides such as 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , conductive polymers such as polyaniline, and carbon materials such as activated carbon. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, Al, and Ni. In this case, the composite oxide LiMn x Co y Ni (1-xy) O 2 [where 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], LiMn x Ni (1-x) O 2 [wherein , 0 ≦ x <1], LiMn x Co (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni y Al [wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1] (1-xy) O 2, LiFe x Co y Ni (1-xy) O 2 [ wherein , 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], or LiMn x Fe y O 2 -xy . These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
本発明の非水電解液二次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si、Pb又はZn等との合金、リチウムイオンをドープしたTiO2等の金属酸化物、TiO2−P2O4等の金属酸化物複合材料、黒鉛等の炭素材料等が好適に挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the negative electrode active material of the non-aqueous electrolyte secondary battery of the present invention, lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb, Zn or the like, metal oxide such as TiO 2 doped with lithium ions And metal oxide composite materials such as TiO 2 —P 2 O 4 , carbon materials such as graphite, and the like. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。 The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.
本発明の非水電解液二次電池に使用できる他の部材としては、非水電解液二次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらは、単体でも、混合物でも、共重合体でもよい。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常二次電池に使用されている公知の各部材が好適に使用できる。 Other members that can be used in the non-aqueous electrolyte secondary battery of the present invention include a separator interposed in the non-aqueous electrolyte secondary battery between positive and negative electrodes to prevent current short-circuit due to contact between both electrodes. It is done. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. These may be a single substance, a mixture or a copolymer. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in secondary batteries can be suitably used.
以上に説明した本発明の非水電解液二次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液二次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これにシート状の負極を重ね合わせて巻き上げる等して、非水電解液二次電池を作製することができる。 The form of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are available. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte secondary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte secondary battery is manufactured by, for example, preparing a sheet-like positive electrode, sandwiching a current collector, and superimposing and winding up the sheet-like negative electrode on the current collector. Can do.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
上記一般式(I)においてnが3であって、全R1のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物 10体積%と、エチレンカーボネート 13体積%と、ジエチルカーボネート 37体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiPF6を1.2 mol/Lになるように溶解させて、これにアリルエチルカーボネート 0.5質量%を添加して非水電解液を調製した。次に、得られた非水電解液の難燃性を下記の方法で評価し、表1に示す結果を得た。
Example 1
10% by volume of cyclic phosphazene compound in which n is 3 in the above general formula (I), one of R 1 is ethoxy group and 5 is fluorine, 13% by volume of ethylene carbonate, 37% by volume of diethyl carbonate Then, LiPF 6 was dissolved in a mixed solvent consisting of 40% by volume of methyl propionate so as to be 1.2 mol / L, and 0.5% by mass of allyl ethyl carbonate was added thereto to prepare a nonaqueous electrolytic solution. Next, the flame retardancy of the obtained non-aqueous electrolyte was evaluated by the following method, and the results shown in Table 1 were obtained.
(1)難燃性の評価
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼長及び燃焼時間を測定・評価した。具体的には、UL試験基準に基づき、127 mm×12.7 mmのSiO2シートに上記電解液 1.0 mLを染み込ませて試験片を作製して評価を行った。以下に不燃性・難燃性・自己消火性・燃焼性の評価基準を示す。
<不燃性の評価>試験炎を点火しても全く着火しなかった場合(燃焼長:0 mm)を不燃性ありと評価した。
<難燃性の評価>着火した炎が、装置の25 mmラインまで到達せず且つ網からの落下物にも着火が認められなかった場合を難燃性ありと評価した。
<自己消火性の評価>着火した炎が25〜100 mmラインで消火し且つ網からの落下物にも着火が認められなかった場合を自己消火性ありと評価した。
<燃焼性の評価>着火した炎が、100 mmラインを超えた場合を燃焼性と評価した。
(1) Flame Retardancy Evaluation The combustion length and combustion time of a flame ignited in an atmospheric environment were measured and evaluated by a method in which the UL94HB method of UL (Underwriting Laboratory) standard was arranged. Specifically, based on the UL test standard, a 127 mm × 12.7 mm SiO 2 sheet was impregnated with 1.0 mL of the electrolytic solution, and a test piece was prepared and evaluated. The evaluation criteria for nonflammability, flame retardancy, self-extinguishing properties, and flammability are shown below.
<Evaluation of nonflammability> When the test flame was ignited, it was not ignited at all (burning length: 0 mm).
<Evaluation of Flame Retardancy> The case where the ignited flame did not reach the 25 mm line of the apparatus and the fallen object from the net was not ignited was evaluated as flame retardant.
<Evaluation of self-extinguishing property> When the ignited flame was extinguished on the 25 to 100 mm line and no ignition was observed on the falling object from the net, it was evaluated as having self-extinguishing property.
<Evaluation of flammability> The case where the ignited flame exceeded the 100 mm line was evaluated as flammability.
(2)電池の作製
正極活物質としてLiCo0.2Ni0.8O2を用い、該酸化物と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比94:3:3で混合し、これをN-メチルピロリドンに分散させてスラリーとしたものを、正極集電体としてのアルミニウム箔に塗布した後、乾燥・プレスを施すことで、厚さ70μmの正極シートを得た。これを矩形(4 cm×50 cm)に切り取り、アルミニウム箔の集電タブを溶接して正極を作製した。また、負極活物質として人造グラファイトを用い、該人造グラファイトと、結着剤であるポリフッ化ビニリデンとを質量比90:10で混合し、これを有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)に分散させてスラリーとしたものを、負極集電体としての銅箔に塗布した後、乾燥・プレスを施すことで、厚さ50μmの負極シートを得た。これを矩形(4 cm×50 cm)に切り取り、ニッケル箔の集電タブを溶接して負極を作製した。次いで、セパレーター(微孔性フィルム:ポリエチレン製)を矩形(4 cm×50 cm)に切り取り、これを正極と負極とを介して挟み込み、4 cm×3 cmのスペーサーをベースに平巻きにした後、熱融着アルミラミネートフィルム(ポリエチレンテレフタレート/アルミニウム/ポリプロピレン)からなる外装材の中に挿入し、電解液を注入後、真空にしてすばやくヒートシールすることにより平板状ラミネート電池(非水電解液二次電池)を作製した。
(2) Production of Battery Using LiCo 0.2 Ni 0.8 O 2 as a positive electrode active material, the oxide, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are in a mass ratio of 94: 3: 3 The slurry was dispersed in N-methylpyrrolidone and applied to an aluminum foil as a positive electrode current collector, followed by drying and pressing to obtain a positive electrode sheet having a thickness of 70 μm. . This was cut into a rectangle (4 cm × 50 cm), and an aluminum foil current collecting tab was welded to produce a positive electrode. Further, artificial graphite is used as the negative electrode active material, and the artificial graphite and polyvinylidene fluoride as a binder are mixed at a mass ratio of 90:10, and this is mixed with an organic solvent (50/50 mass of ethyl acetate and ethanol). % Mixed solvent) was applied to a copper foil as a negative electrode current collector, followed by drying and pressing to obtain a negative electrode sheet having a thickness of 50 μm. This was cut into a rectangle (4 cm × 50 cm), and a nickel foil current collecting tab was welded to produce a negative electrode. Next, the separator (microporous film: made of polyethylene) is cut into a rectangle (4 cm x 50 cm), sandwiched between the positive electrode and the negative electrode, and flattened using a 4 cm x 3 cm spacer as a base Inserted into a heat-sealed aluminum laminate film (polyethylene terephthalate / aluminum / polypropylene) exterior material, injected the electrolyte, vacuumed and quickly heat-sealed to obtain a flat laminate battery (non-aqueous electrolyte 2 Secondary battery).
(3)高温耐久性評価
上記のようにして作製したラミネート電池を用い、40℃の環境下で、上限電圧4.2V、下限電圧3.0V、0.25 mA/cm2の電流密度による充放電サイクルを2回繰り返し、この時の放電容量を既知の正極重量で除することにより初期放電容量(mAh/g)を求めた。さらに4.2Vまで充電を行った後、電池を60℃の環境下で、20日間保存した。その後40℃の環境に取り出した後、同様の充放電条件で放電と充放電をさらに20サイクル行ったときの放電容量を求め、下記の式:
容量保持率=高温保存後の放電容量/初期放電容量×100(%)
に従って容量保持率を算出し、高温耐久性評価の指標とした。
(3) High-temperature durability evaluation Using the laminated battery produced as described above, two charge / discharge cycles with an upper limit voltage of 4.2 V, a lower limit voltage of 3.0 V, and a current density of 0.25 mA / cm 2 were performed in an environment of 40 ° C. The initial discharge capacity (mAh / g) was determined by repeating this operation and dividing the discharge capacity at this time by the known positive electrode weight. After further charging to 4.2 V, the battery was stored in an environment at 60 ° C. for 20 days. Then, after taking out to 40 degreeC environment, the discharge capacity when performing 20 cycles of discharge and charging / discharging on the same charging / discharging conditions was calculated | required, and the following formula:
Capacity retention = discharge capacity after high temperature storage / initial discharge capacity × 100 (%)
The capacity retention rate was calculated according to the above and used as an index for evaluating high temperature durability.
(4)過充電安全性試験
上記と同じラミネート電池を作製し、過充電条件による電池安全性試験を行った。過充電試験の方法は、20℃の環境下で、4.2〜3.0Vの電圧範囲で、0.25 mA/cm2の電流密度による充放電サイクルを2回繰り返し、さらに4.2Vまで充電を行った後、該電池を温度調節機能つき電池ホルダー(ステンレス製)上に置き、20℃の電池温度条件で5.0 mA/cm2の電流密度により12.0Vまで充電を行い、同電圧でさらに0.25 mA/cm2の電流密度になるまで充電を継続し、破裂、発火の有無を調べた。結果を表1に示す。
(4) Overcharge safety test The same laminated battery as the above was produced, and the battery safety test by overcharge conditions was conducted. In the overcharge test method, a charge / discharge cycle with a current density of 0.25 mA / cm 2 was repeated twice in a voltage range of 4.2 to 3.0 V in an environment of 20 ° C., and further charged to 4.2 V. Place the cell on temperature control with battery holders (stainless steel), 20 by the current density of the battery temperature 5.0 mA / cm 2 of ℃ was charged to 12.0 V, yet 0.25 mA / cm 2 at the same voltage Charging was continued until the current density reached, and the presence or absence of rupture or ignition was examined. The results are shown in Table 1.
(実施例2)
上記一般式(I)においてnが3であって、全R1がフッ素である環状ホスファゼン化合物 10体積%と、上記一般式(I)においてnが3であって、全R1のうち2つがメトキシ基で、4つがフッ素である環状ホスファゼン化合物 20体積%と、エチレンカーボネート 14体積%と、エチルメチルカーボネート 56体積%とからなる混合溶媒に、LiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これにメチルビニルカーボネート 1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 2)
In the above general formula (I), n is 3, and the cyclic phosphazene compound 10% by volume in which all R 1 is fluorine, and in the above general formula (I), n is 3, and two of all R 1 are LiTFSI [Li (CF 3 SO 2 ) 2 N] was added to a mixed solvent consisting of 20% by volume of a cyclic phosphazene compound having four methoxy groups and four fluorines, 14% by volume of ethylene carbonate, and 56% by volume of ethyl methyl carbonate. It dissolved so that it might become 1.0 mol / L, methyl vinyl carbonate 1 mass% was added to this, the nonaqueous electrolyte solution was prepared, and the flame retardance of the obtained nonaqueous electrolyte solution was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
(実施例3)
上記一般式(I)においてnが3であって、全R1のうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 40体積%と、エチレンカーボネート 5体積%と、エチルメチルカーボネート 55体積%とからなる混合溶媒に、LiPF6を1.0 mol/Lになるように溶解させて、これにフルオロビニレンカーボネート 2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 3)
In the above general formula (I), n is 3 and one of all R 1 is a propoxy group and 5 is fluorine. 40% by volume of cyclic phosphazene compound, 5% by volume of ethylene carbonate, 55% by volume of ethyl methyl carbonate % Of LiPF 6 is dissolved at 1.0 mol / L in a mixed solvent consisting of 2% by weight, and a non-aqueous electrolyte is prepared by adding 2% by mass of fluorovinylene carbonate to the resulting solution. The flame retardancy of was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
(実施例4)
上記一般式(I)においてnが4であって、全R1のうち1つがトリフルオロエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これにビニルエチレンカーボネート 1質量%とビニレンカーボネート 2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
Example 4
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of all R 1 is a trifluoroethoxy group and seven is fluorine, 60% by volume, 5% by volume of ethylene carbonate, methyl propionate, In a mixed solvent of 35% by volume, LiPF 6 is dissolved at 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved at 1.0 mol / L. % And vinylene carbonate 2% by mass were added to prepare a non-aqueous electrolyte, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
(比較例1)
エチレンカーボネート 20体積%と、ジエチルカーボネート 40体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiPF6を1.2 mol/Lになるように溶解させて、これにアリルエチルカーボネート 0.5質量%を添加して非水電解液非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Comparative Example 1)
LiPF 6 was dissolved in a mixed solvent consisting of 20% by volume of ethylene carbonate, 40% by volume of diethyl carbonate and 40% by volume of methyl propionate so as to be 1.2 mol / L, and 0.5% by mass of allyl ethyl carbonate was dissolved therein. Was added to prepare a non-aqueous electrolyte and a non-aqueous electrolyte, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
(比較例2)
上記一般式(I)においてnが4であって、全R1のうち1つがトリフルオロエトキシ基で、7つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Comparative Example 2)
In the above general formula (I), n is 4, cyclic phosphazene compound in which one of all R 1 is a trifluoroethoxy group and seven is fluorine, 60% by volume, 5% by volume of ethylene carbonate, methyl propionate, In a mixed solvent consisting of 35% by volume, LiPF 6 is dissolved at 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved at 1.0 mol / L to prepare a non-aqueous electrolyte, The flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
(実施例5)
上記一般式(I)においてnが3であって、全R1のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物 4体積%と、エチレンカーボネート 14体積%と、ジエチルカーボネート 42体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiPF6を1.2 mol/Lになるように溶解させて、これにアリルエチルカーボネート 0.5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 5)
In the above general formula (I), n is 3, cyclic phosphazene compound in which one of all R 1 is an ethoxy group and five is fluorine, 4 volume%, ethylene carbonate 14 volume%, diethyl carbonate 42 volume% LiPF 6 is dissolved in a mixed solvent consisting of 40% by volume of methyl propionate so as to be 1.2 mol / L, and 0.5% by mass of allyl ethyl carbonate is added thereto to prepare a non-aqueous electrolyte. The flame retardancy of the obtained non-aqueous electrolyte was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
(実施例6)
上記一般式(I)においてnが3であって、全R1のうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 75体積%と、エチルメチルカーボネート 25体積%とからなる混合溶媒に、LiPF6を0.8 mol/Lになるように溶解させて、これにフルオロビニレンカーボネート 2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 6)
In the above general formula (I), a mixed solvent comprising 75% by volume of a cyclic phosphazene compound in which n is 3 and one of all R 1 is a propoxy group and 5 is fluorine, and 25% by volume of ethyl methyl carbonate. , LiPF 6 was dissolved to 0.8 mol / L, and 2% by mass of fluorovinylene carbonate was added thereto to prepare a non-aqueous electrolyte, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. . Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
(実施例7)
上記一般式(I)においてnが3であって、全R1のうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 40体積%と、エチレンカーボネート 5体積%と、エチルメチルカーボネート 55体積%とからなる混合溶媒に、LiPF6を1.0 mol/Lになるように溶解させて、これにフルオロビニレンカーボネート 0.1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 7)
In the above general formula (I), n is 3 and one of all R 1 is a propoxy group and 5 is fluorine. 40% by volume of cyclic phosphazene compound, 5% by volume of ethylene carbonate, 55% by volume of ethyl methyl carbonate % Of LiPF 6 is dissolved at 1.0 mol / L in a mixed solvent containing 0.1% by weight of fluorovinylene carbonate to prepare a non-aqueous electrolyte, and the resulting non-aqueous electrolyte is obtained. The flame retardancy of was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
(実施例8)
上記一般式(I)においてnが3であって、全R1のうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 40体積%と、エチレンカーボネート 5体積%と、エチルメチルカーボネート 55体積%とからなる混合溶媒に、LiPF6を1.0 mol/Lになるように溶解させて、これにフルオロビニレンカーボネート 6質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温耐久性評価および過充電安全性試験をそれぞれ実施した。結果を表1に示す。
(Example 8)
In the above general formula (I), n is 3 and one of all R 1 is a propoxy group and 5 is fluorine. 40% by volume of cyclic phosphazene compound, 5% by volume of ethylene carbonate, 55% by volume of ethyl methyl carbonate % Of LiPF 6 is dissolved at 1.0 mol / L in a mixed solvent consisting of 5% by weight, and 6% by mass of fluorovinylene carbonate is added to prepare a non-aqueous electrolyte, and the resulting non-aqueous electrolyte is obtained. The flame retardancy of was evaluated. Moreover, the nonaqueous electrolyte secondary battery was produced like Example 1, and high temperature durability evaluation and the overcharge safety test were implemented, respectively. The results are shown in Table 1.
表1の実施例1〜4に示すように、式(I)の化合物と式(II)で表される不飽和カーボネート化合物を含む非水電解液が不燃性を示すと共に、該非水電解液を用いた電池が満充電条件での高温保存や高温での充放電サイクル後でも優れた電池性能を維持していることが分かる。このように本発明の非水電解液により、不燃性を発現しつつ、高温耐久性および安全性に優れた非水電解液二次電池が得られることが確認された。 As shown in Examples 1 to 4 of Table 1, the non-aqueous electrolyte containing the compound of formula (I) and the unsaturated carbonate compound represented by formula (II) is non-flammable, and the non-aqueous electrolyte is It can be seen that the used battery maintains excellent battery performance even after high-temperature storage under full charge conditions and charge / discharge cycles at high temperatures. Thus, it was confirmed that the nonaqueous electrolyte solution of the present invention can provide a nonaqueous electrolyte secondary battery that exhibits nonflammability and is excellent in high temperature durability and safety.
なお、比較例2に示すように、式(II)の不飽和カーボネート化合物を添加しない場合においては、実施例4と比較して、高温保存後の容量保持率が劣っていることが分かる。 In addition, as shown in Comparative Example 2, it can be seen that when the unsaturated carbonate compound of the formula (II) is not added, the capacity retention after high-temperature storage is inferior compared with Example 4.
更に、実施例5に示すように、式(I)で表される化合物の含有量が5体積%未満では、不燃性が発現されず、過充電安全性試験においても破裂を抑制できなかった。 Furthermore, as shown in Example 5, when the content of the compound represented by the formula (I) is less than 5% by volume, nonflammability was not exhibited, and bursting could not be suppressed even in the overcharge safety test.
一方、実施例6に示すように、式(I)で表される化合物の含有量が70体積%を超える場合には、不燃性や電池安全性に問題はないものの、初期容量が小さくなる傾向が認められた。従って、式(I)の環状ホスファゼン化合物の含有量は、10〜60体積%程度が好ましいことが分かる。 On the other hand, as shown in Example 6, when the content of the compound represented by the formula (I) exceeds 70% by volume, there is no problem in nonflammability and battery safety, but the initial capacity tends to be small. Was recognized. Therefore, it can be seen that the content of the cyclic phosphazene compound of the formula (I) is preferably about 10 to 60% by volume.
また、実施例7に示すように、式(II)で表される不飽和カーボネート化合物の添加量が0.2質量%未満の場合には、高温条件での高温耐久性評価における改善効果が小さく、実施例8に示すように、5質量%を超える場合には、初期容量が低下する傾向が認められた。従って、式(II)で表される不飽和カーボネート化合物の添加量は、0.5〜3質量%程度が好ましいことが分かる。 In addition, as shown in Example 7, when the amount of the unsaturated carbonate compound represented by the formula (II) is less than 0.2% by mass, the improvement effect in high temperature durability evaluation under high temperature conditions is small. As shown in Example 8, when the amount exceeds 5% by mass, the initial capacity tends to decrease. Therefore, it can be seen that the amount of the unsaturated carbonate compound represented by the formula (II) is preferably about 0.5 to 3% by mass.
以上の結果から、式(I)で表される環状ホスファゼン化合物と非水溶媒と式(II)で表される不飽和カーボネート化合物を含有することを特徴とする非水電解液を用いることにより、優れた高温耐久性と安全性能を両立させた非水電解液二次電池を提供できることが分かる。 From the above results, by using a non-aqueous electrolyte characterized by containing a cyclic phosphazene compound represented by formula (I), a non-aqueous solvent and an unsaturated carbonate compound represented by formula (II), It can be seen that a non-aqueous electrolyte secondary battery having both excellent high-temperature durability and safety performance can be provided.
Claims (8)
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物と、非水溶媒と、下記一般式(II):
(NPR 1 2 ) n ... (I)
[Wherein R 1 independently represents fluorine, an alkoxy group or an aryloxy group; n represents 3 to 4], a non-aqueous solvent, the following general formula (II ):
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008172472A JP2010015717A (en) | 2008-07-01 | 2008-07-01 | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008172472A JP2010015717A (en) | 2008-07-01 | 2008-07-01 | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010015717A true JP2010015717A (en) | 2010-01-21 |
Family
ID=41701668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008172472A Withdrawn JP2010015717A (en) | 2008-07-01 | 2008-07-01 | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010015717A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012033044A1 (en) * | 2010-09-06 | 2012-03-15 | 新神戸電機株式会社 | Lithium-ion battery |
JP2012094432A (en) * | 2010-10-28 | 2012-05-17 | Nippon Chem Ind Co Ltd | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same |
JP5379688B2 (en) * | 2007-08-27 | 2013-12-25 | 株式会社ブリヂストン | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same |
WO2014057888A1 (en) * | 2012-10-11 | 2014-04-17 | 富士フイルム株式会社 | Electrolytic solution for non-aqueous secondary battery, and non-aqueous electrolytic solution secondary battery |
JP2014522077A (en) * | 2011-04-11 | 2014-08-28 | ビーエーエスエフ コーポレーション | Non-aqueous electrolyte solution and electrochemical cell containing the non-aqueous electrolyte solution |
-
2008
- 2008-07-01 JP JP2008172472A patent/JP2010015717A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5379688B2 (en) * | 2007-08-27 | 2013-12-25 | 株式会社ブリヂストン | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same |
WO2012033044A1 (en) * | 2010-09-06 | 2012-03-15 | 新神戸電機株式会社 | Lithium-ion battery |
JP2012059391A (en) * | 2010-09-06 | 2012-03-22 | Ntt Facilities Inc | Lithium ion battery |
JP2012094432A (en) * | 2010-10-28 | 2012-05-17 | Nippon Chem Ind Co Ltd | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same |
JP2014522077A (en) * | 2011-04-11 | 2014-08-28 | ビーエーエスエフ コーポレーション | Non-aqueous electrolyte solution and electrochemical cell containing the non-aqueous electrolyte solution |
US10056649B2 (en) | 2011-04-11 | 2018-08-21 | Shenzhen Capchem Technology Co., Ltd. | Non-aqueous electrolytic solutions and electrochemical cells comprising the same |
WO2014057888A1 (en) * | 2012-10-11 | 2014-04-17 | 富士フイルム株式会社 | Electrolytic solution for non-aqueous secondary battery, and non-aqueous electrolytic solution secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5314885B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same | |
JP5738011B2 (en) | Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP2008053212A (en) | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it | |
JP2008053211A (en) | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it | |
JP4911888B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same | |
JP2008300126A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same | |
JP2007200605A (en) | Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it | |
JP2008041296A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same | |
WO2006109443A1 (en) | Nonaqueous electrolyte solution for battery and nonaqueous electrolyte secondary battery comprising same | |
WO2006038614A1 (en) | Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same | |
JP2010015719A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it | |
JP2008041413A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same | |
JP2008258022A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery equipped with it | |
JP2010050021A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same | |
JP5738010B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP4458841B2 (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same | |
JP4671693B2 (en) | Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery | |
JP2004006301A (en) | Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same | |
JP2010015717A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it | |
JP2008300125A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same | |
JP2006179458A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same | |
JP2008047480A (en) | Nonaqueous electrolyte for cell, and nonaqueous electrolyte cell equipped with the same | |
JP5093992B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same | |
JP2010050026A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same | |
JP2010015720A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110906 |