Nothing Special   »   [go: up one dir, main page]

JP2010085079A - Sunlight thermal converting device - Google Patents

Sunlight thermal converting device Download PDF

Info

Publication number
JP2010085079A
JP2010085079A JP2009202714A JP2009202714A JP2010085079A JP 2010085079 A JP2010085079 A JP 2010085079A JP 2009202714 A JP2009202714 A JP 2009202714A JP 2009202714 A JP2009202714 A JP 2009202714A JP 2010085079 A JP2010085079 A JP 2010085079A
Authority
JP
Japan
Prior art keywords
heat
carbon material
black carbon
tin
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009202714A
Other languages
Japanese (ja)
Other versions
JP5417090B2 (en
Inventor
Katsushige Nakamura
勝重 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2009202714A priority Critical patent/JP5417090B2/en
Publication of JP2010085079A publication Critical patent/JP2010085079A/en
Application granted granted Critical
Publication of JP5417090B2 publication Critical patent/JP5417090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/30Solar heat collectors for heating objects, e.g. solar cookers or solar furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sunlight thermal converting device capable of efficiently converting sunlight into heat. <P>SOLUTION: A black carbon material 10 is floated on a surface of tin 7 as a heat medium of low-melting point held on a heat-resistant container 6. Since the black carbon material 10 receives the sunlight L, an absorption rate of the sunlight L is high. Since the sunlight L can be efficiently converted into heat by the black carbon material 10, and the tin 7 is melted by the heat, a prescribed amount of a heat source can be formed there. Though the black carbon material 10 generally ia burnt at a high temperature in air, it is not burnt in the device since the device has a nitrogen gas atmosphere. As the tin 7 is melted to be a liquid heat source, any form can be taken according to the shape of the heat-resistant container 6, and the tin can be easily utilized as heat. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は太陽光線熱変換装置に関するものである。   The present invention relates to a solar heat conversion apparatus.

太陽光線をヘリオスタットと称される複数の反射ミラーで、高いタワーの頂部に支持されたセンターミラーへ向けて反射し、センターミラーから下向きに反射された太陽光線を一点に集めて熱を得るビームダウン式の太陽集光装置が知られている(例えば、特許文献1参照)。   A beam that reflects sunlight toward a center mirror supported by the top of a high tower with a plurality of reflecting mirrors called heliostats, and collects the sun rays reflected downward from the center mirror at one point to obtain heat. A down-type solar condensing device is known (for example, see Patent Document 1).

この種のビームダウン構造の場合、下向きに反射された太陽光線で金属製のコイル等を直接加熱し、内部に循環した水を水蒸気に変換したりするのが一般的である。   In the case of this type of beam-down structure, it is common to directly heat a metal coil or the like with sunlight reflected downward to convert water circulated inside into water vapor.

特開平11−119105号公報JP-A-11-119105

しかしながら、従来のように、太陽光線で金属コイルを直接加熱する構造では、金属コイルの表面の金属色により太陽光線が反射され、効率の良い熱変換を行うことができない。金属コイルの表面は太陽光線により高温になるため、表面に黒色塗装を施しても剥がれやすい。   However, in the conventional structure in which the metal coil is directly heated by sunlight, the sunlight is reflected by the metal color on the surface of the metal coil, and efficient heat conversion cannot be performed. Since the surface of the metal coil is heated by sunlight, it is easily peeled off even if the surface is painted black.

本発明は、このような従来の技術に着目してなされたものであり、太陽光線を効率良く熱に変換することができる太陽光線熱変換装置を提供するものである。   This invention is made paying attention to such a prior art, and provides the solar ray heat conversion apparatus which can convert a solar ray efficiently into heat.

請求項1記載の発明は、上部開放型の耐熱容器内に低融点熱媒体を保持し、耐熱容器の上部を耐熱透明ガラスでカバーすると共に、耐熱透明ガラスと低融点熱媒体との間の空間を希ガス雰囲気又は真空雰囲気にし、低融点熱媒体の表面に黒色炭素材料を浮かべた構造であって、下向きに反射された太陽光線を耐熱透明ガラスを介して黒色炭素材料で受光することを特徴とする。   According to the first aspect of the present invention, a low melting point heat medium is held in an open top heat resistant container, the upper part of the heat resistant container is covered with heat resistant transparent glass, and a space between the heat resistant transparent glass and the low melting point heat medium is provided. Is a structure in which a black carbon material is floated on the surface of a low melting point heat medium in a rare gas atmosphere or a vacuum atmosphere, and sunlight reflected downward is received by the black carbon material through a heat-resistant transparent glass. And

請求項2記載の発明は、低融点熱媒体が、錫、鉛、半田の何れかの低融点金属であることを特徴とする。   The invention described in claim 2 is characterized in that the low melting point heat medium is a low melting point metal of any one of tin, lead and solder.

請求項3記載の発明は、低融点熱媒体が、溶融塩であることを特徴とする。   The invention described in claim 3 is characterized in that the low melting point heat medium is a molten salt.

請求項4記載の発明は、希ガスが窒素ガスであることを特徴とする。   The invention according to claim 4 is characterized in that the rare gas is nitrogen gas.

請求項5記載の発明は、黒色炭素材料が粉状であることを特徴とする。   The invention according to claim 5 is characterized in that the black carbon material is powdery.

請求項6記載の発明は、黒色炭素材料が固体であることを特徴とする。   The invention described in claim 6 is characterized in that the black carbon material is solid.

請求項7記載の発明は、黒色炭素材料が板状であることを特徴とする。   The invention according to claim 7 is characterized in that the black carbon material is plate-shaped.

請求項8記載の発明は、低融点金属内に熱交換用のパイプが設けられていることを特徴とする。   The invention described in claim 8 is characterized in that a pipe for heat exchange is provided in the low melting point metal.

請求項1記載の発明によれば、低融点熱媒体の表面に黒色炭素材料を浮かべ、その黒色炭素材料が太陽光線を受けるため、太陽光線の吸収率が高い。従って、黒色炭素材料により太陽光線は効率良く熱に変換され、その熱により低融点熱媒体が溶解するため、所定の量の熱源をそこに形成することができる。黒色炭素材料は一般大気中では高温で燃焼するが、本装置では希ガス雰囲気又は真空雰囲気のため、燃焼することはない。低融点熱媒体は、溶解して液状の熱源となるため、耐熱容器の形状に応じていかなる形態をとることも可能で、熱交換も容易であり、熱として利用し易い。   According to the first aspect of the present invention, the black carbon material is floated on the surface of the low-melting-point heat medium, and the black carbon material receives sunlight, so that the absorption rate of sunlight is high. Therefore, sunlight is efficiently converted into heat by the black carbon material, and the low melting point heat medium is dissolved by the heat, so that a predetermined amount of heat source can be formed therein. The black carbon material burns at a high temperature in the general atmosphere, but in this apparatus, it does not burn because it is a rare gas atmosphere or a vacuum atmosphere. Since the low-melting-point heat medium dissolves to become a liquid heat source, it can take any form depending on the shape of the heat-resistant container, heat exchange is easy, and it is easy to use as heat.

請求項2記載の発明によれば、低融点熱媒体が、錫、鉛、半田の何れかの低融点金属であるため、高い温度の液状熱源が得られる。   According to the invention described in claim 2, since the low melting point heat medium is a low melting point metal of tin, lead, or solder, a high temperature liquid heat source can be obtained.

請求項3記載の発明によれば、低融点熱媒体が溶融塩であるため、コストの面で有利であり、装置の大型化が容易である。   According to the invention described in claim 3, since the low melting point heat medium is a molten salt, it is advantageous in terms of cost, and the apparatus can be easily enlarged.

請求項4記載の発明によれば、希ガスが窒素ガスのため、コストの面で有利である。   According to the invention of claim 4, since the rare gas is nitrogen gas, it is advantageous in terms of cost.

請求項5記載の発明によれば、黒色炭素材料が粉状であるため、低融点熱媒体の表面を隙間なく覆うことができる。   According to the invention described in claim 5, since the black carbon material is powdery, the surface of the low melting point heat medium can be covered without any gap.

請求項6及び7記載の発明によれば、黒色炭素材料が板状等の固体であるため、黒色炭素材料が取り扱い易い。   According to invention of Claim 6 and 7, since black carbon material is solid, such as plate shape, black carbon material is easy to handle.

請求項8記載の発明によれば、低融点熱媒体内に熱交換用のパイプが設けられているため、パイプは溶解した低融点熱媒体と隙間なく接し、低融点熱媒体とパイプとの間の熱交換効率が高い。   According to the eighth aspect of the invention, since the heat exchange pipe is provided in the low melting point heat medium, the pipe is in contact with the melted low melting point heat medium without any gap, and between the low melting point heat medium and the pipe. High heat exchange efficiency.

本発明の第1実施形態に係る太陽光線熱変換装置を適用した太陽集光装置を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the solar condensing device to which the solar radiation heat conversion apparatus which concerns on 1st Embodiment of this invention is applied. 熱変換装置を示す断面図。Sectional drawing which shows a heat converter. 黒色炭素材料を錫の表面に浮かべた状態を示す断面図。Sectional drawing which shows the state which floated the black carbon material on the surface of tin. 本発明の第2実施形態に係る黒色炭素材料を錫の表面に浮かべた状態を示す断面図。Sectional drawing which shows the state which floated the black carbon material which concerns on 2nd Embodiment of this invention on the surface of tin.

(第1実施形態)
図1〜図3は、本発明の第1実施形態を示す図である。符号1は楕円鏡で、支持タワー2により所定の高さ位置に下向き状態で設置されている。楕円鏡1はその鏡面形状が楕円体の一部で、下方には、第1焦点Aと、第2焦点Bが存在する。この楕円鏡1の下方には、太陽光線Lを熱エネルギーに変換するための熱変換装置3が設置されており、該熱変換装置3の上部には、テーパ筒状の集光鏡4が設置されている。そして、熱変換装置3の周囲の地上には、楕円鏡1を取り囲んだ状態で、多数のヘリオスタット5が設けられている。
(First embodiment)
1-3 is a figure which shows 1st Embodiment of this invention. Reference numeral 1 denotes an elliptical mirror, which is installed in a downward state at a predetermined height by a support tower 2. The elliptical mirror 1 has a mirror surface that is part of an ellipsoid, and a first focal point A and a second focal point B exist below. Below the elliptical mirror 1, a heat conversion device 3 for converting the sunlight L into heat energy is installed, and above the heat conversion device 3, a tapered cylindrical condensing mirror 4 is installed. Has been. A large number of heliostats 5 are provided on the ground around the heat conversion device 3 so as to surround the elliptical mirror 1.

各ヘリオスタット5は、反射された太陽光線Lが第1焦点Aを通過するように図示せぬセンサーにより制御される。ヘリオスタット5で反射された太陽光線Lが第1焦点Aを通過しさえすれば、楕円鏡1で下向きに反射されて、必ず第2焦点Bに集光され、集光鏡4を経由して熱変換装置3に到達する。   Each heliostat 5 is controlled by a sensor (not shown) so that the reflected sunlight L passes through the first focal point A. As long as the sunlight L reflected by the heliostat 5 passes through the first focal point A, it is reflected downward by the elliptical mirror 1, and is always collected at the second focal point B, via the condenser mirror 4. The heat conversion device 3 is reached.

次に、熱変換装置3の説明をする。   Next, the heat conversion apparatus 3 will be described.

鉄製の耐熱容器6は上部開放型で、内部には低融点熱媒体としての錫7が保持されている。耐熱容器6の周囲は耐火レンガ8により囲まれており、耐熱容器6の熱が外部へ逃げないようにされている。耐火レンガ8の周囲を更にALC(軽量気泡コンクリート)で囲んでも良いし、耐火レンガ8に代えてALCを利用しても良い。   The heat-resistant container 6 made of iron is an open top type, and tin 7 as a low melting point heat medium is held inside. The periphery of the heat-resistant container 6 is surrounded by refractory bricks 8 so that the heat of the heat-resistant container 6 does not escape to the outside. The refractory brick 8 may be further surrounded by ALC (lightweight cellular concrete), or ALC may be used instead of the refractory brick 8.

耐熱容器6の上部は耐熱透明ガラス9によりカバーされ、錫7と耐熱透明ガラス9との空間Sには窒素ガスが充満されている。窒素ガスは空間Sの一方の図示せぬ入口から少量ずつ供給され且つ他方の図示せぬ出口から少量ずつ排出され、常に窒素ガスが充満した状態になっている。空間Sは窒素ガス以外の希ガス(例えばアルゴン)を充満させても良い。また、空間S内を真空にしても良い。   The upper part of the heat-resistant container 6 is covered with a heat-resistant transparent glass 9, and the space S between the tin 7 and the heat-resistant transparent glass 9 is filled with nitrogen gas. Nitrogen gas is supplied little by little from one inlet (not shown) of the space S and discharged little by little from the other outlet (not shown), so that the nitrogen gas is always filled. The space S may be filled with a rare gas other than nitrogen gas (for example, argon). Further, the space S may be evacuated.

錫7の表面には、粉末状の黒色炭素材料(カーボン)10が浮かべた状態で設けられている。黒色炭素材料10の方が錫7よりも比重が小さいため、必ず錫7の表面に浮かんだ状態となり、錫7の内部へ沈下することはない。黒色炭素材料10の粉体は所定の厚さで錫7の表面全体を覆っている。   A powdery black carbon material (carbon) 10 is floated on the surface of the tin 7. Since the specific gravity of the black carbon material 10 is smaller than that of the tin 7, the black carbon material 10 always floats on the surface of the tin 7 and does not sink into the tin 7. The powder of the black carbon material 10 covers the entire surface of the tin 7 with a predetermined thickness.

耐熱容器6の内部には、錫7を蛇行しながら通過する熱交換用のパイプ11が設けられている。パイプ11内には、一方側から水Wが供給されるようになっている。   Inside the heat-resistant container 6, a heat exchange pipe 11 that passes through the tin 7 while meandering is provided. Water W is supplied into the pipe 11 from one side.

以上のような熱変換装置3に対して、下向きに反射された太陽光線Lが照射されると、太陽光線Lは耐熱透明ガラス9を透過して黒色炭素材料10に受光される。黒色炭素材料10が黒色のため、高い吸収率(約95%)で吸収され熱に変換される。黒色炭素材料10は熱伝導率が良いため、変換された熱は錫7に伝達される。温度が融点(232°C)に達すると、錫7は溶解して液状になる。黒色炭素材料10が粉体であるため、錫7の表面を浮遊して隙間なく覆うことができ、太陽光線Lを効率良く熱に変換することができる。また、局所的な対流等により粉体のムラができて錫7の表面の一部が露出した場合には、その部分の熱吸収効率が低下して対流を抑制する作用が機能するため一様な粉体の分布を維持することができる。   When the sunlight rays L reflected downward are irradiated to the heat conversion device 3 as described above, the sunlight rays L pass through the heat-resistant transparent glass 9 and are received by the black carbon material 10. Since the black carbon material 10 is black, it is absorbed at a high absorption rate (about 95%) and converted to heat. Since the black carbon material 10 has good thermal conductivity, the converted heat is transferred to the tin 7. When the temperature reaches the melting point (232 ° C.), the tin 7 dissolves and becomes liquid. Since the black carbon material 10 is a powder, the surface of the tin 7 can be floated and covered without a gap, and the sunlight L can be efficiently converted into heat. Further, when unevenness of the powder is caused by local convection or the like and a part of the surface of the tin 7 is exposed, the heat absorption efficiency of the portion is lowered and the function of suppressing the convection functions so that it is uniform. A fine powder distribution can be maintained.

黒色炭素材料10は大気中では高温になると燃焼して酸化するが、熱変換装置3では窒素ガス雰囲気中のため、燃焼することはない。尚、真空雰囲気にした場合も、黒色炭素材料10の燃焼は防止される。   The black carbon material 10 burns and oxidizes at high temperatures in the atmosphere, but does not burn in the heat conversion device 3 because it is in a nitrogen gas atmosphere. Even in a vacuum atmosphere, the black carbon material 10 is prevented from burning.

錫7が溶解することにより、錫7は所定の量の熱源となり、錫7の中に設けられたパイプ11を通過する水Wを水蒸気Vに変換して、他方側より排出する。排出された水蒸気Vによりタービンを回して発電することができる。特に、溶解した錫7は濡れ性にすぐれパイプ11に対して隙間なく接するため、錫7とパイプ11との間の熱交換効率が良く、錫7の熱により効率良く水蒸気Vを発生させることができる。   As the tin 7 is dissolved, the tin 7 becomes a heat source of a predetermined amount, and the water W passing through the pipe 11 provided in the tin 7 is converted into the water vapor V and discharged from the other side. Power can be generated by rotating the turbine with the discharged steam V. In particular, since the dissolved tin 7 is excellent in wettability and comes into contact with the pipe 11 without a gap, the heat exchange efficiency between the tin 7 and the pipe 11 is good, and the steam V can be efficiently generated by the heat of the tin 7. it can.

錫7は、溶解して液状の熱源となるため、耐熱容器の形状に応じていかなる形態をとることも可能で、溶解した錫7を熱移動流体として、他の装置に循環することもできる。   Since the tin 7 dissolves to become a liquid heat source, it can take any form depending on the shape of the heat-resistant container, and the dissolved tin 7 can be circulated as a heat transfer fluid to other devices.

また、パイプ11内に熱移動流体として空気を通過させても良い。パイプ11を通過した空気は高温となり、他の装置に循環することにより、その装置に錫7の熱を移動させることができる。   Further, air may be passed through the pipe 11 as a heat transfer fluid. The air that has passed through the pipe 11 becomes hot and circulates to another device, whereby the heat of the tin 7 can be transferred to that device.

更に、低融点熱媒体として、錫7の代わりに、鉛、半田等の低融点金属を使用することも可能である。また、黒色炭素材料10としては、通常のカーボンだけでなく、いわゆるカーボンナノチューブも含む。   Further, a low melting point metal such as lead or solder can be used as the low melting point heat medium instead of tin 7. The black carbon material 10 includes not only normal carbon but also so-called carbon nanotubes.

(第2実施形態)
図4は、本発明の第2実施形態を示す図である。本実施形態は、前記第1実施形態と同様の構成要素を備えている。よって、それら同様の構成要素については共通の符号を付すとともに、重複する説明を省略する。
(Second Embodiment)
FIG. 4 is a diagram showing a second embodiment of the present invention. This embodiment includes the same components as those in the first embodiment. Therefore, the same constituent elements are denoted by common reference numerals, and redundant description is omitted.

この実施形態では、低融点熱媒体として、錫7に代えて溶融塩13を利用した。溶融塩13は、硝酸カリウムと硝酸ナトリウムの混合物で、融点である約140°C程度で液状になる。溶融塩13の表面に板状に成形した黒色炭素材料12を複数浮かべた。黒色炭素材料12が板状に成形された固体であるため、黒色炭素材料12の取り扱いが容易である。板状の黒色炭素材料12の形状はいかなる形状でも良い。また、板状の他にも、複数のボール状、或いは繊維状の固体にして浮かべても良い。   In this embodiment, a molten salt 13 is used in place of the tin 7 as the low melting point heat medium. The molten salt 13 is a mixture of potassium nitrate and sodium nitrate and becomes liquid at about 140 ° C., which is the melting point. A plurality of black carbon materials 12 formed into a plate shape were floated on the surface of the molten salt 13. Since the black carbon material 12 is a solid formed into a plate shape, the black carbon material 12 can be easily handled. The shape of the plate-like black carbon material 12 may be any shape. In addition to the plate shape, it may be floated in the form of a plurality of balls or fibers.

溶融塩13は、それだけを使用しても良いし、加熱しても溶解しない固体蓄熱材を混ぜて使用しても良い。   The molten salt 13 may be used alone or in combination with a solid heat storage material that does not dissolve even when heated.

1 楕円鏡
2 支持タワー
3 熱変換装置
4 集光鏡
5 ヘリオスタット
6 耐熱容器
7 錫(低融点熱媒体)
8 耐火レンガ
9 耐熱透明ガラス
10 黒色炭素材料
11 パイプ
12 黒色炭素材料
13 溶融塩(低融点熱媒体)
A 第1焦点
B 第2焦点
L 太陽光線
S 空間
W 水
V 水蒸気
DESCRIPTION OF SYMBOLS 1 Elliptical mirror 2 Support tower 3 Heat conversion apparatus 4 Condensing mirror 5 Heliostat 6 Heat-resistant container 7 Tin (low melting-point heat medium)
8 Fire brick 9 Heat resistant transparent glass 10 Black carbon material 11 Pipe 12 Black carbon material 13 Molten salt (low melting point heat medium)
A 1st focus B 2nd focus L Sun rays S Space W Water V Water vapor

Claims (8)

上部開放型の耐熱容器内に低融点熱媒体を保持し、
耐熱容器の上部を耐熱透明ガラスでカバーすると共に、耐熱透明ガラスと低融点熱媒体との間の空間を希ガス雰囲気又は真空雰囲気にし、
低融点熱媒体の表面に黒色炭素材料を浮かべた構造であって、
下向きに反射された太陽光線を耐熱透明ガラスを介して黒色炭素材料で受光することを特徴とする太陽光線熱変換装置。
Hold the low-melting-point heat medium in an open top heat-resistant container,
Cover the top of the heat-resistant container with heat-resistant transparent glass, and make the space between the heat-resistant transparent glass and the low melting point heat medium a rare gas atmosphere or a vacuum atmosphere,
A structure in which a black carbon material is floated on the surface of a low melting point heat medium,
A solar ray heat conversion device characterized by receiving sunlight reflected downward by a black carbon material through a heat-resistant transparent glass.
低融点熱媒体が、錫、鉛、半田の何れかの低融点金属であることを特徴とする請求項1記載の太陽光線熱変換装置。   The solar light heat conversion device according to claim 1, wherein the low melting point heat medium is a low melting point metal of tin, lead, or solder. 低融点熱媒体が、溶融塩であることを特徴とする請求項1記載の太陽光線熱変換装置。   The solar heat converter according to claim 1, wherein the low-melting-point heat medium is a molten salt. 希ガスが窒素ガスであることを特徴とする請求項1〜3のいずれか1項に記載の太陽光線熱変換装置。   The solar radiation heat conversion apparatus according to any one of claims 1 to 3, wherein the rare gas is nitrogen gas. 黒色炭素材料が粉体であることを特徴とする請求項1〜4のいずれか1項に記載の太陽光線熱変換装置。   The solar carbon heat conversion device according to any one of claims 1 to 4, wherein the black carbon material is powder. 黒色炭素材料が固体であることを特徴とする請求項1〜4のいずれか1項に記載の太陽光線熱変換装置。   The solar carbon heat conversion apparatus according to any one of claims 1 to 4, wherein the black carbon material is solid. 黒色炭素材料が板状であることを特徴とする請求項6記載の太陽光線熱変換装置。   The solar radiation heat conversion apparatus according to claim 6, wherein the black carbon material is plate-shaped. 低融点熱媒体内に熱交換用のパイプが設けられていることを特徴とする請求項1〜7のいずれか1項に記載の太陽光線熱変換装置。   The solar radiation heat conversion apparatus according to any one of claims 1 to 7, wherein a pipe for heat exchange is provided in the low melting point heat medium.
JP2009202714A 2008-09-03 2009-09-02 Solar heat converter Expired - Fee Related JP5417090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202714A JP5417090B2 (en) 2008-09-03 2009-09-02 Solar heat converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008225856 2008-09-03
JP2008225856 2008-09-03
JP2009202714A JP5417090B2 (en) 2008-09-03 2009-09-02 Solar heat converter

Publications (2)

Publication Number Publication Date
JP2010085079A true JP2010085079A (en) 2010-04-15
JP5417090B2 JP5417090B2 (en) 2014-02-12

Family

ID=42249209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202714A Expired - Fee Related JP5417090B2 (en) 2008-09-03 2009-09-02 Solar heat converter

Country Status (1)

Country Link
JP (1) JP5417090B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117716A (en) * 2010-11-30 2012-06-21 Jfe Engineering Corp Solar power generation system
CN103629827A (en) * 2013-12-11 2014-03-12 青海大学 Large-capacity well type solar heat collection-storage device
JP2015049015A (en) * 2013-09-04 2015-03-16 日立造船株式会社 Collector
CN105423258A (en) * 2015-12-24 2016-03-23 广东石油化工学院 Compound parabolic solar concentration type molten salt steam generator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130138U (en) * 1975-07-05 1976-10-20
US4116223A (en) * 1977-01-18 1978-09-26 Michael Vasilantone Solar energy unit
JPS53138529A (en) * 1977-05-09 1978-12-04 Pedone Angelo Solar energy converter
JPS5869355A (en) * 1981-10-19 1983-04-25 Sumitomo Metal Ind Ltd Solar heat collector
US4402306A (en) * 1980-03-27 1983-09-06 Mcelroy Jr Robert C Thermal energy storage methods and processes
US4619244A (en) * 1983-03-25 1986-10-28 Marks Alvin M Solar heater with cavity and phase-change material
JP2000356417A (en) * 1998-08-19 2000-12-26 Sekisui Chem Co Ltd Solar energy converting device
US20080066736A1 (en) * 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130138U (en) * 1975-07-05 1976-10-20
US4116223A (en) * 1977-01-18 1978-09-26 Michael Vasilantone Solar energy unit
JPS53138529A (en) * 1977-05-09 1978-12-04 Pedone Angelo Solar energy converter
US4402306A (en) * 1980-03-27 1983-09-06 Mcelroy Jr Robert C Thermal energy storage methods and processes
JPS5869355A (en) * 1981-10-19 1983-04-25 Sumitomo Metal Ind Ltd Solar heat collector
US4619244A (en) * 1983-03-25 1986-10-28 Marks Alvin M Solar heater with cavity and phase-change material
JP2000356417A (en) * 1998-08-19 2000-12-26 Sekisui Chem Co Ltd Solar energy converting device
US20080066736A1 (en) * 2006-07-25 2008-03-20 Yanong Zhu Method and apparatus for solar energy storage system using gas and rock

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117716A (en) * 2010-11-30 2012-06-21 Jfe Engineering Corp Solar power generation system
JP2015049015A (en) * 2013-09-04 2015-03-16 日立造船株式会社 Collector
CN103629827A (en) * 2013-12-11 2014-03-12 青海大学 Large-capacity well type solar heat collection-storage device
CN103629827B (en) * 2013-12-11 2017-01-18 青海大学 Large-capacity well type solar heat collection-storage device
CN105423258A (en) * 2015-12-24 2016-03-23 广东石油化工学院 Compound parabolic solar concentration type molten salt steam generator

Also Published As

Publication number Publication date
JP5417090B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5156842B2 (en) Solar heat converter
US4033118A (en) Mass flow solar energy receiver
JP4829407B2 (en) Solar energy concentrator and converter and combinations thereof
EP1826505B1 (en) Solar collector with concentration
US9404674B2 (en) Absorber tube
JP2002529925A5 (en)
JPWO2014038553A1 (en) Thermal energy storage system using sunlight
JP5417090B2 (en) Solar heat converter
JP5417091B2 (en) Solar heat converter
JP2010203624A (en) Trough type light collecting unit
JP5337612B2 (en) Heat exchange structure for solar heat converter
US9732988B1 (en) Thermal storage device including a plurality of discrete canisters
US20180040794A1 (en) Realizing the Dream of Green Energy and Making the Impossible Possible
JP2010144956A (en) Solar furnace device
JP2016061485A (en) Powder heating type solar heat reduction furnace
TWI834069B (en) Solar energy storage system
Durisch et al. Advances in gas-fired thermophotovoltaic systems
JP2003322419A (en) Sunlight composite focusing machine of electric power generation system for house
TWI831716B (en) Solar energy storage system
WO2023061426A1 (en) Solar energy storage and power generation system
Lakshmipathy et al. Influence of Cavity Materials and Selective Surface Coatings on the Performance of SCC
JPS642864B2 (en)
JP2018091554A (en) Heat storage device
JP2024003880A (en) heat storage device
Adkins et al. Development of a 75-kW heat-pipe receiver for solar heat-engines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees