Nothing Special   »   [go: up one dir, main page]

JP2009254974A - Pneumatic membrane structure - Google Patents

Pneumatic membrane structure Download PDF

Info

Publication number
JP2009254974A
JP2009254974A JP2008107078A JP2008107078A JP2009254974A JP 2009254974 A JP2009254974 A JP 2009254974A JP 2008107078 A JP2008107078 A JP 2008107078A JP 2008107078 A JP2008107078 A JP 2008107078A JP 2009254974 A JP2009254974 A JP 2009254974A
Authority
JP
Japan
Prior art keywords
water
air
evaporator
condenser
membrane structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008107078A
Other languages
Japanese (ja)
Inventor
Yutaka Katsuhara
豊 勝原
Yukiko Iwasaki
由紀子 岩崎
Toshiaki Sugimoto
敏明 杉本
Yuji Hagiwara
勇士 萩原
Tetsuro Nishii
哲郎 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2008107078A priority Critical patent/JP2009254974A/en
Priority to PCT/JP2009/055292 priority patent/WO2009128320A1/en
Publication of JP2009254974A publication Critical patent/JP2009254974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Greenhouses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic membrane structure having a large-scale closed arable space into which moist air is supplied from a water source unsuitable for irrigation and fresh water necessary for vegetation is supplied. <P>SOLUTION: The pneumatic membrane structure 1 comprises a dome 2, a blower 7, a water evaporator 4 and a water condenser 5. Further the pneumatic membrane structure 1 comprises a means of passing air for supporting a film, sent from the blower through the water evaporator to obtain moist air with increased moisture content, and a means of passing a flow of the moist air through the water condenser and recovering moisture from the air as fresh water to send air with a larger moisture content than outside air into an inside space of the pneumatic membrane structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内部環境の改善された空気膜構造体に関し、より詳しくは、乾燥地域において灌漑に不適な水資源を用いて真水と湿潤空気を内部空間に供給することのできる空気膜構造体に関する。   The present invention relates to an air film structure having an improved internal environment, and more particularly, to an air film structure capable of supplying fresh water and humid air to an internal space using a water resource unsuitable for irrigation in an arid region. .

水はすべての生き物にとってなくてはならないものである。水の供給は生活、農業、工業の発展の要ともいえる。しかし、水は優れた溶媒であるため好ましくない汚染物の受け皿ともなる。農業用に地下水をくみ上げることは土壌の劣化や沈泥による肥料分の減少、枯渇、それに塩害を引き起こす。     Water is a must for all living creatures. Water supply is the key to the development of life, agriculture and industry. However, since water is an excellent solvent, it also serves as a receptacle for undesirable contaminants. Pumping up groundwater for agriculture causes soil degradation, silt reduction, depletion, and salt damage.

土地の灌漑、特に砂漠の灌漑は砂漠の緑化をもたらしその土地の農業生産性を著しく改善することになる。しかし、砂漠地域での灌漑技術はごく限られたものである。そもそも、水は少ないのだから。遠く離れたところから真水を配水することは資材やシステムのコスト面から制約で通常は有効でなく、移送中の蒸発によるロスもある。また灌漑により一旦地中に浸透した水は地表からの盛んな蒸発により毛管現象で下から上に引き上げられ蒸発する。このとき地中で水に溶解した塩類は地表での蒸発に伴い析出し、塩類が地表に滞積する現象を招き、植生に適さない土壌へと変質させ所謂塩害を引き起こす。さらに乾燥地域の地下水には通常微量の塩分が含まれているため、灌漑に使用するといずれ土地は塩害をこうむることになる。そうして、灌漑した土壌から洗い流すのに十分な量の豊富な良質の水がない限り、灌漑地は結局植生に適した土壌環境としては使えなくなる。     Land irrigation, especially desert irrigation, will result in desert greening and significantly improve the agricultural productivity of the land. However, irrigation technology in desert areas is very limited. In the first place, there is little water. Distributing fresh water from a distant location is usually not effective due to material and system cost constraints, and there is a loss due to evaporation during transport. Water that has once penetrated into the ground by irrigation is evaporated from the bottom by capillarity due to active evaporation from the ground surface. At this time, the salt dissolved in water in the ground is precipitated with evaporation on the ground surface, causing a phenomenon that the salt accumulates on the ground surface, and transforms into soil that is not suitable for vegetation, thereby causing so-called salt damage. In addition, since groundwater in arid areas usually contains trace amounts of salt, the land will eventually suffer salt damage when used for irrigation. Thus, unless there is a sufficient amount of good quality water to wash away from the irrigated soil, the irrigated land will eventually be unusable as a suitable soil environment for vegetation.

閉空間を包み込み内部の気候を穏やかにする構造体(Large Climate Moderating Envelope、 LCME)のアイデアは古く1960年代に発表されている(非特許文献1)。直径2kmに及ぶ布製エアドーム(1971年)やジェッダ空港ターミナル(425、000m2)といった大規模なLCMEの建設、あるいはアリゾナの砂漠にLCMEを作って農耕地化したケースの経済評価(1983年)が発表されている。これらはいずれも空間内部の気候を穏やかにすることで植生や省エネルギーを提案するにとどまるもので、水の供給までを提案するものではなかった。   The idea of a structure (Large Climate Moderating Envelope, LCME) that encloses a closed space and calms the internal climate has been published in the 1960s (Non-Patent Document 1). An economic evaluation (1983) of the construction of large-scale LCMEs such as a fabric air dome (1971) and a Jeddah Airport terminal (425,000 m2) that spans 2 km in diameter, or the production of LCME in the Arizona desert as agricultural land was announced. Has been. All of these suggested only vegetation and energy conservation by calming the climate inside the space, but not to supply water.

空気を媒体とした蒸留方法であって、水蒸発器と水凝縮器を組み合わせて造水とともに冷気を生成して、水と冷気を温室に供給する植物育成装置が特許に開示されている(特許文献1)
Proceedings of ISES 1983 Solar World Congress, (1983) vol.1 1217-1221 特開平4−156990号公報
A plant growth apparatus that is a distillation method using air as a medium, generates cold air together with fresh water by combining a water evaporator and a water condenser, and supplies water and cold air to a greenhouse is disclosed in a patent (patent) Reference 1)
Proceedings of ISES 1983 Solar World Congress, (1983) vol.1 1217-1221 JP-A-4-156990

大規模な空間を有する空気膜構造体において、灌漑に不適な水資源から湿潤な空気を供給するとともに、植生に必要な真水を供給する手段を提供することを課題とする。   An object of the present invention is to provide a means for supplying moist air from a water resource unsuitable for irrigation and supplying fresh water necessary for vegetation in an air membrane structure having a large space.

本発明は、次のいずれか1項に記載の発明である。
[1]ドーム、送風機、水蒸発器及び水凝縮器を有する空気膜構造体であって、送風機により送入される膜支持用の空気を水蒸発器に通じて水分含有量を増大させた湿り空気とする手段と、空気の流れを水凝縮器に通じ、その空気から水分を真水として回収する手段とを有する、膜支持用の空気の水分含有量を外気よりも高めた空気膜構造体。
[2]ドーム、送風機、水蒸発器及び水凝縮器を有する空気膜構造体であって、送風機により送入される膜支持用の空気を水蒸発器と水凝縮器に順次通じ、水蒸発器において水分含有量を増大させた空気とする手段と、次いで水凝縮器においてその空気から水分を真水として回収する手段と、残余の水分を含む空気をドーム内部空間へ送入する手段とを有する空気膜構造体。
[3]水蒸発器において、送風機により送入される膜支持用の空気を原水と直接接触させて水分含有量を増大させるとともに使用後の原水を系外に排出するようにした請求項1又は2に記載の空気膜構造体。
[4]高温循環液通路と熱交換可能に結合された熱交換プレートを介して外気通路が形成された水蒸発器が高温循環液を熱媒体としてヒートポンプの冷媒凝縮器と熱的に接続され、水蒸発器の外気通路内の熱交換プレートの表面を濡らすように原水を流下させて外気を湿り空気に変換し、低温循環液通路と熱交換可能に接続された熱交換プレートを介して湿り空気通路が形成された水凝縮器が低温循環液を熱媒体としてヒートポンプの冷媒蒸発器と熱的に接続され、湿り空気から水を凝縮させ真水として回収するようにされている請求項1又は2に記載の空気膜構造体。
[5]冷媒吐出管に接続されたヒートポンプの冷媒凝縮器として外気通路が形成された水蒸発器の表面を濡らすように原水を流下させて接触させることで外気を湿り空気に変換し、冷媒吸入管に接続されたヒートポンプの冷媒蒸発器として湿り空気通路が形成された水凝縮器の表面において湿り空気から水を凝縮させて真水として回収するようにされている請求項1又は2に記載の空気膜構造体。
[6]原水循環路の中間部に設けた加熱器により水蒸発器へ供給する原水又は循環原水を加熱するに際し、加熱器がヒートポンプの冷媒凝縮器であることを特徴とする請求項1又は2に記載の空気膜構造体。
[7]原水循環路の中間部に設けた加熱器により水蒸発器へ供給する原水又は循環原水を加熱するに際し、加熱器がヒートポンプの冷媒凝縮器と高温循環液を介して熱的に接続していることを特徴とする請求項1又は2に記載の空気膜構造体。
[8]少なくとも水蒸発器の熱交換プレートの外気通路側表面が親水性を有することを特徴とする請求項1〜7のいずれか1項に記載の空気膜構造体。
[9]空気膜構造体のドームの側壁がドームを構成する膜材により形成されている請求項1〜8のいずれか1項に記載の空気膜構造体。
[10]空気膜構造体の膜がポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリエステル又はフッ素樹脂からなることを特徴とする請求項1〜9のいずれか1項に記載の空気膜構造体。
[11]請求項1〜10のいずれか1項に記載の空気膜構造体を用いた灌漑方法であって、回収した真水を空気膜構造体内部の土壌の灌漑に利用することを特徴とする灌漑方法。
[12]請求項1〜11のいずれか1項に記載の空気膜構造体を用いた灌漑方法であって、空気膜構造体内部空間を植物育成に利用することを特徴とする灌漑方法。
[13]植物を育成することのできる内部空間を有するドームと、
太陽光または風力発電により発電する発電設備と、
発電設備により発電された電気エネルギーを動力源とするヒートポンプと、
塩分を含む水源から原水を採取する水源設備と、
ヒートポンプにより水を蒸発、凝縮させて水分を含んだ空気と真水を製造する送風・造水装置とからなる、
送風・造水装置で発生した水分を含んだ空気を空気膜構造体のドームの支持用空気とし、併せて、送風・造水装置で製造された真水を空気膜構造体の内部空間の灌漑に用いる灌漑システム。
This invention is invention of any one of the following.
[1] An air membrane structure having a dome, a blower, a water evaporator and a water condenser, wherein the moisture for increasing the moisture content is obtained by passing the film-supporting air fed by the blower through the water evaporator An air membrane structure having a means for making air, and means for passing a flow of air through a water condenser and collecting water from the air as fresh water, wherein the moisture content of the air for supporting the membrane is higher than that of the outside air.
[2] An air membrane structure having a dome, a blower, a water evaporator and a water condenser, wherein the air for supporting the membrane fed by the blower is sequentially passed through the water evaporator and the water condenser, and the water evaporator Air having a moisture content increased in the air, means for recovering moisture from the air as fresh water in the water condenser, and means for sending the air containing the remaining moisture into the interior space of the dome Membrane structure.
[3] In the water evaporator, the membrane supporting air fed by the blower is brought into direct contact with the raw water to increase the water content and discharge the used raw water out of the system. 2. The air membrane structure according to 2.
[4] The water evaporator in which the outside air passage is formed through the heat exchange plate coupled to the high-temperature circulating fluid passage so as to be capable of exchanging heat is thermally connected to the refrigerant condenser of the heat pump using the high-temperature circulating fluid as a heat medium, Raw water is flowed down to wet the surface of the heat exchange plate in the outside air passage of the water evaporator to convert the outside air into moist air, and the humid air passes through the heat exchange plate connected to the low-temperature circulating fluid passage so as to be able to exchange heat. The water condenser in which the passage is formed is thermally connected to a refrigerant evaporator of a heat pump using a low-temperature circulating liquid as a heat medium, and condenses water from wet air and recovers it as fresh water. The air membrane structure described.
[5] The raw air is made to flow and come into contact with the surface of a water evaporator in which an outside air passage is formed as a refrigerant condenser of a heat pump connected to the refrigerant discharge pipe, thereby converting the outside air into moist air and sucking the refrigerant. The air according to claim 1 or 2, wherein water is condensed from the humid air and collected as fresh water on a surface of a water condenser in which a humid air passage is formed as a refrigerant evaporator of a heat pump connected to a pipe. Membrane structure.
[6] When heating raw water or circulating raw water supplied to the water evaporator by a heater provided in an intermediate part of the raw water circulation path, the heater is a refrigerant condenser of a heat pump. An air membrane structure according to the above.
[7] When heating raw water or circulating raw water supplied to the water evaporator by a heater provided in an intermediate portion of the raw water circulation path, the heater is thermally connected to the refrigerant condenser of the heat pump via the high-temperature circulating liquid. The air film structure according to claim 1, wherein the air film structure is provided.
[8] The air film structure according to any one of claims 1 to 7, wherein at least a surface on the outside air passage side of the heat exchange plate of the water evaporator is hydrophilic.
[9] The air film structure according to any one of claims 1 to 8, wherein a side wall of the dome of the air film structure is formed of a film material constituting the dome.
[10] The air film structure according to any one of claims 1 to 9, wherein the film of the air film structure is made of polyethylene, polypropylene, vinyl chloride resin, polyester, or fluororesin.
[11] An irrigation method using the air membrane structure according to any one of claims 1 to 10, wherein the collected fresh water is used for irrigation of soil inside the air membrane structure. Irrigation method.
[12] An irrigation method using the air membrane structure according to any one of claims 1 to 11, wherein the inner space of the air membrane structure is used for plant growth.
[13] A dome having an internal space in which plants can be grown;
Power generation facilities that generate solar or wind power;
A heat pump powered by electrical energy generated by the power generation facility;
A water source facility that collects raw water from a water source containing salt;
It consists of air containing water by evaporating and condensing water with a heat pump and a blower / fresh water device that produces fresh water.
Air containing water generated by the blower / fresh water device is used as support air for the dome of the air membrane structure, and fresh water produced by the blower / fresh water device is used for irrigation of the internal space of the air film structure. Irrigation system used.

請求項1〜3のいずれか1項に記載の発明は、空気膜構造体に必須の加圧空気を発生させる送風を水の蒸留に用いることで、真水を調製するために全く独立に必要な脱塩設備や蒸留設備を必要とせず、さらに、水の沸点において操業する通常の蒸留のような高温を使わないのでエネルギー消費が少なく、安全性が高い上に、一旦蒸発させた水は真水または空気中の水分として余すところなく利用できるという効果がある。     The invention according to any one of claims 1 to 3 is completely independent for preparing fresh water by using air blowing for generating pressurized air essential to the air membrane structure for distillation of water. There is no need for desalination equipment or distillation equipment, and since high temperatures such as ordinary distillation that operates at the boiling point of water are not used, energy consumption is low, safety is high, and once evaporated water is pure water or There is an effect that it can be used as a moisture in the air.

この空気中の水分と真水を利用して、植物の育成を自然水に乏しい砂漠地帯などにおいて促進でき、その緑化に貢献できる。   By using the moisture and fresh water in the air, plant growth can be promoted in desert areas where natural water is scarce and contribute to the greening of the plant.

請求項第4記載の発明においては、圧縮機で発生する熱を水蒸発器で外気又は水を含んだ空気の温度を高めるために利用するためエネルギーの消費を減らすことができる。   According to the fourth aspect of the present invention, the heat generated by the compressor is used by the water evaporator to increase the temperature of the outside air or the air containing water, so that energy consumption can be reduced.

請求項第5記載の発明においては、水蒸発器と水凝縮器をそれぞれヒートポンプの冷媒凝縮器と冷媒蒸発器として機能させるため、エネルギー効率を高めることができる。   According to the fifth aspect of the invention, the water evaporator and the water condenser function as the refrigerant condenser and the refrigerant evaporator of the heat pump, respectively, so that the energy efficiency can be improved.

請求項6又は7記載の発明においては、ヒートポンプの圧縮工程で発生する熱を原水の加熱に利用できるため、蒸発効率を容易に高めることができ、また、水蒸発器の水蒸発媒体として織物、不織布などを用いる簡単な構造をとることができる。   In the invention of claim 6 or 7, since the heat generated in the compression process of the heat pump can be used for heating the raw water, the evaporation efficiency can be easily increased, and the fabric as a water evaporation medium of the water evaporator, A simple structure using a nonwoven fabric or the like can be taken.

請求項8に記載の発明においては、水蒸発媒体表面に薄い水の膜を形成できるので原水・外気の接触面積を実質的に拡大できるため蒸発効率を高めることができる。   In the invention described in claim 8, since a thin water film can be formed on the surface of the water evaporation medium, the contact area between the raw water and the outside air can be substantially enlarged, so that the evaporation efficiency can be increased.

請求項9に記載の発明においては、高ライズ型空気膜構造体は、建設が容易で低ライズ型の側壁のような構造物を要しないので、砂漠などのインフラストラクチャーに乏しい地域では特に有効である。   In the invention according to claim 9, the high-rise type air film structure is easy to construct and does not require a structure such as a low-rise type side wall, so that it is particularly effective in an area with poor infrastructure such as a desert. is there.

請求項10に記載の発明においては、高耐候性のフッ素樹脂、低コストのポリオレフィン(ポリエチレン、ポリプロピレンなど)、塩化ビニル樹脂又はポリエステル樹脂を使用することでそれぞれの特徴を生かすことができる。   In the invention according to the tenth aspect, each feature can be utilized by using a highly weather-resistant fluororesin, a low-cost polyolefin (polyethylene, polypropylene, etc.), a vinyl chloride resin or a polyester resin.

請求項11又は12に記載の発明においては、請求項1〜10で提供する空気膜構造体を用いることで内部空間に耕作可能な空間を提供できるという効果を奏する。   In invention of Claim 11 or 12, there exists an effect that the space which can be cultivated can be provided to internal space by using the air film | membrane structure provided in Claims 1-10.

請求項13に記載の発明においては、砂漠などのインフラの整備されていない地域においても、空気膜構造体を用いてドーム部分、発電設備、ヒートポンプ、水源設備、送風・造水装置をシステム化することで内部に植物育成可能な空間を提供できるという効果を奏する。   In the invention of claim 13, even in areas where infrastructure is not maintained such as deserts, the air dome structure, the power generation facility, the heat pump, the water source facility, and the blower / fresh water generator are systematized using the air film structure. This has the effect of providing a space in which plants can be grown.

[空気膜構造体]
本発明の空気膜構造体1を説明する。空気膜構造体1は、ドーム2とドーム形状を維持するための加圧空気を送入する送風機7を備える。図1に示す空気膜構造体1は、送風機7は水蒸発器4と水凝縮器5をダクト6により結合された送風・造水装置3に組み込まれている。また、図2に示す空気膜構造体1では、送風機7は水蒸発器4のドーム側(内部側)に設けられているが、外部側であってもよく、一方、水凝縮器5はドーム2からの排気が流通するように設けられている。
[Air film structure]
The air membrane structure 1 of the present invention will be described. The air membrane structure 1 includes a dome 2 and a blower 7 for feeding pressurized air for maintaining the dome shape. In the air membrane structure 1 shown in FIG. 1, a blower 7 is incorporated in a blower / fresh water generator 3 in which a water evaporator 4 and a water condenser 5 are coupled by a duct 6. In the air membrane structure 1 shown in FIG. 2, the blower 7 is provided on the dome side (inside side) of the water evaporator 4, but may be on the outside side, while the water condenser 5 is provided on the dome side. 2 is provided so that the exhaust from 2 circulates.

空気膜構造体1は、耐候性を有し可撓性または柔軟性のある膜材によって室内の気密性を高めることができるように形成したものであって、室内を送風機7によって常時送風し、排気用ダンパ(図示せず)を経て適宜排気(換気)させながら室内空気圧を外気圧よりやや高く維持するようにされている。   The air membrane structure 1 is formed so as to be able to improve the air tightness of the room by a weather resistant and flexible or flexible film material, and the room is always blown by the blower 7, The room air pressure is kept slightly higher than the outside air pressure while appropriately exhausting (ventilating) through an exhaust damper (not shown).

空気膜構造体1のドーム2には、側壁を有しそれに固定される形式の低ライズ型と、側壁を有さず膜材が地面に実質的に直接接する形式の高ライズ型があるが、本発明の空気膜構造体としては、高ライズ型が経済性から好ましく用いられる。   The dome 2 of the air membrane structure 1 includes a low-rise type that has a side wall and is fixed to the dome 2 and a high-rise type that does not have a side wall and the membrane material substantially directly contacts the ground. As the air membrane structure of the present invention, a high rise type is preferably used from the viewpoint of economy.

空気膜構造体1のドーム2の構造は、膜構造として単膜構造、二重膜構造などの公知の構造のものが使用できる。膜材は、通常、合成樹脂シートを使用し、積層構造をとることもでき、合成樹脂膜とガラス繊維、合成樹脂繊維を積層して強度を高めた積層シートを使用できる。膜材の材質は過酷な気象条件、たとえば、砂漠の気候、日射への耐候性、飛砂、暴風に対する機械的強度を有することが求められる。また、膜材自体は透明または不透明なものが使用されるが、その外面側に遮光膜などの遮光部材を設けることができる。膜材に用いる樹脂としては、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合樹脂、ポリヘキサフルオロプロピレン樹脂、フッ化ビニリデン(VDF)とヘキサフルオロプロピレン(HFP)の二元共重合体、VDFとHFPとテトラフルオロエチレン(TFE)の三元共重合体、およびVDFとクロロトリフルオロエチレン(CTFE)の二元共重合体などのフッ素樹脂、塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂などが使用できるが、前記フッ素樹脂が耐候性の点で好ましいものとして挙げられるが、比較的短期間の使用を目的とする場合にはポリオレフィン(ポリエチレン、ポリプロピレンなど)、塩化ビニル樹脂やポリエステル樹脂が経済性から選択される。   As the structure of the dome 2 of the air film structure 1, a known structure such as a single film structure or a double film structure can be used as the film structure. As the membrane material, a synthetic resin sheet is usually used to have a laminated structure, and a laminated sheet in which a synthetic resin film, glass fibers, and synthetic resin fibers are laminated to increase the strength can be used. The material of the film material is required to have mechanical strength against severe weather conditions such as desert climate, weather resistance to solar radiation, flying sand, and storms. The film material itself is transparent or opaque, and a light shielding member such as a light shielding film can be provided on the outer surface side. Examples of the resin used for the film material include polyvinyl fluoride resin, polyvinylidene fluoride resin, polytetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer resin, polyhexafluoropropylene resin, vinylidene fluoride (VDF) and hexafluoropropylene ( Fluorine resin, vinyl chloride resin such as binary copolymer of HFP), ternary copolymer of VDF, HFP and tetrafluoroethylene (TFE), and binary copolymer of VDF and chlorotrifluoroethylene (CTFE) Polyethylene resin, polypropylene resin, polyester resin, etc. can be used, but the fluororesin is mentioned as preferable in terms of weather resistance, but polyolefin (polyethylene, polypropylene, etc. ), Vinyl chloride resin and plastic Ester resin is selected from the economy.

上記膜材によって形成された屋根部の重量は、膜材、膜固定金物、ケーブル等の部材の種類により異なるが、通常2〜30kg/m2、一般的には5〜10kg/m2である。この屋根を支持するためには、構造体の内外圧差(内圧)を大気圧より高く保てばよい。しかし、突風によって膜がバタつく(フラックリング)のを防ぐため、また、積雪による負荷で変形または破損することのないだけの余裕を持たせることが必要である。   The weight of the roof formed by the membrane material is usually 2 to 30 kg / m 2, and generally 5 to 10 kg / m 2, although it varies depending on the type of members such as the membrane material, membrane fixing hardware, and cable. In order to support the roof, the internal / external pressure difference (internal pressure) of the structure may be kept higher than the atmospheric pressure. However, in order to prevent the film from fluttering due to gusts, it is also necessary to provide a margin sufficient to prevent deformation or breakage due to a load due to snow.

空気膜構造体1内部の空気は、200mm水柱以下の圧力を保持する。使用する環境に応じて、例えば、5〜10mm水柱だけ大気圧よりも高く保てばよいことになるが、通常、内圧は10〜80mm水柱程度とし、また、沙漠、海岸などでは数十ないし百数十mm水柱とするのが好ましい。   The air inside the air film structure 1 maintains a pressure of 200 mm water column or less. Depending on the environment to be used, for example, only a 5-10 mm water column should be kept higher than the atmospheric pressure, but the internal pressure is usually about 10-80 mm water column. A water column of several tens of mm is preferable.

また、この種の空気膜構造体1は、ドアの開閉や換気等のため、常時、漏気されており、これらの漏気量は、気候、天候、昼夜などの使用状況によって変化する。従って、これらの漏気量の変化に備えて前記内圧を維持するために、補助用又は予備用の送風機を備えることができる。   In addition, this type of air membrane structure 1 is constantly leaking air for opening and closing the door, ventilation, and the like, and the amount of air leakage varies depending on the usage conditions such as climate, weather, day and night. Therefore, in order to maintain the internal pressure in preparation for these changes in the amount of air leakage, an auxiliary or auxiliary blower can be provided.

空気膜構造体1を支持する空気を送入する送風機7は、次に述べる送風・造水装置3の水蒸発器4と水凝縮器5との位置関係は任意であり、送風・造水装置3に外気の気流を導入することができればよい。例えば、外気取入口8、空気吐出口9、水蒸発器4と水凝縮器5の中間に設置することができる。また、送風機7は、送風・造水装置3とは別に付加的に設置することもできる。さらに、送風・造水装置3に使用する送風機の気流の一部をバイパスさせて直接空気膜構造体内部に送入することもできる。
[送風・造水装置]
図1に示す送風・造水装置3について図3を用いて説明する。水蒸発器4と水凝縮器5が分離した図2の場合も蒸留の作用は同様である。送風・造水装置3は送風機7と水蒸発器4と水凝縮器5並びに水蒸発器4と水凝縮器5との間で熱交換するための熱交換サイクルからなる。水蒸発器4は上部より原水として海水や汽水、鹹水などの潅概用に適さない水を供給し、水蒸発器4を流下する間に空気の流れと接触させ、水を蒸発させて空気中の相対湿度を上昇させる装置である。原水として真水を用いることもできる。
The blower 7 for sending in air that supports the air membrane structure 1 has an arbitrary positional relationship between the water evaporator 4 and the water condenser 5 of the blower / fresh water generator 3 described below. It is only necessary that an air flow of outside air can be introduced into 3. For example, it can be installed between the outside air inlet 8, the air outlet 9, the water evaporator 4 and the water condenser 5. Further, the blower 7 can be additionally installed separately from the blower / fresh water generator 3. Furthermore, a part of the airflow of the blower used for the blower / fresh water generator 3 can be bypassed and sent directly into the air membrane structure.
[Blower and fresh water generator]
The blower / fresh water device 3 shown in FIG. 1 will be described with reference to FIG. In the case of FIG. 2 where the water evaporator 4 and the water condenser 5 are separated, the action of distillation is the same. The blower / fresh water generator 3 includes a blower 7, a water evaporator 4, a water condenser 5, and a heat exchange cycle for exchanging heat between the water evaporator 4 and the water condenser 5. The water evaporator 4 supplies water not suitable for irrigation such as seawater, brackish water, brine, etc. as raw water from the upper part, is brought into contact with the air flow while flowing down the water evaporator 4, and evaporates the water in the air It is a device that raises the relative humidity. Fresh water can also be used as raw water.

水蒸発器4ではドーム2に送風する空気の相対湿度を上昇させる。水蒸発器4を上から下に流下する水とそれを横切って送風される空気とが接触する時間は極短いため、空気への水分の単位時間当たりの移動速度を大きくすることが装置の形状から重要である。水蒸発器4の効率を良くするためには、形状的に水と空気の接触面積を大きくすることで相対的な接触時間の増大を図ることができる。また、流下させる水の膜を薄くすることで流下する海水や汽水、鹹水等の原水のうち単位水量あたりの蒸発水量を大きくすることができ、循環原水量を減らせるので効率的であり好ましい。   In the water evaporator 4, the relative humidity of the air blown to the dome 2 is increased. Since the time for which the water flowing down from the top of the water evaporator 4 and the air blown across it are in contact with each other is extremely short, it is necessary to increase the moving speed of moisture to the air per unit time. Is important. In order to improve the efficiency of the water evaporator 4, it is possible to increase the relative contact time by increasing the contact area between water and air in terms of shape. Moreover, it is efficient and preferable because it is possible to increase the amount of evaporated water per unit water amount of raw water such as seawater, brackish water, and flooded water by making the film of water to flow down thin, and to reduce the amount of circulating water.

即ち貴重な水資源を水蒸発器で蒸発させるに際して水蒸発器を流下する水膜を可能な限り薄くすることにより、(1)熱交換を効率的に行う、(2)水資源の供給に用いるエネルギーを最小にする、(3)濃縮を高度に行うことにより供給水中に溶存した塩類を有利に回収することができる。   That is, when evaporating precious water resources with a water evaporator, the water film flowing down the water evaporator is made as thin as possible to (1) efficiently perform heat exchange, and (2) used for supplying water resources. By minimizing energy and (3) highly concentrated, salts dissolved in the feed water can be advantageously recovered.

水蒸発器の原水との接触面は、親水性表面である。特に水の接触角がほとんど0°である超親水性表面とすることがより好ましい。液体の固体上への広がりは、一般に固体の表面エネルギーと液体の表面エネルギーおよび固体表面の微細形状により決まる。したがって、親水性表面は大きな表面エネルギーをもった物質を微少な凹凸を持った形状に平面上に形成させて得られる。   The contact surface of the water evaporator with the raw water is a hydrophilic surface. In particular, a superhydrophilic surface having a water contact angle of almost 0 ° is more preferable. The spread of a liquid onto a solid is generally determined by the surface energy of the solid, the surface energy of the liquid, and the fine shape of the solid surface. Accordingly, the hydrophilic surface can be obtained by forming a substance having a large surface energy on a plane in a shape having minute irregularities.

親水表面を有する水蒸発器4では、上部から供給された水は速やかに水蒸発器4の表面に広がり、薄膜を形成して流下するため、気液の接触効率および熱交換効率は飛躍的に向上しドームに送風する空気中の相対湿度の上昇を飛躍的に大きくすることができる。   In the water evaporator 4 having a hydrophilic surface, the water supplied from the upper part quickly spreads on the surface of the water evaporator 4 to form a thin film and flows down, so that the gas-liquid contact efficiency and the heat exchange efficiency are dramatically increased. The increase in relative humidity in the air that is improved and blown to the dome can be dramatically increased.

水の蒸発量は温度に大きく依存することが知られている。即ち、空気中の飽和水蒸気量は1立米当たり20℃では約17g、40℃では約51g、60℃では約130gである。水蒸発器4で流下する水から水分が蒸発する際、気化熱が奪われ、水蒸発器4の温度は低下する。水蒸発器4の温度が低下すると水の蒸発が抑制され好ましくない。そのため、水蒸発器4は温度を上昇させる仕組みをもたせることができる。例えば、水凝縮器4との熱交換によるヒートポンプの利用が好適である。また、流下させる水をあらかじめ加熱しておくこともでき、熱源としては太陽光も利用できる。   It is known that the amount of water evaporation greatly depends on the temperature. That is, the amount of saturated water vapor in the air is about 17 g at 20 ° C. per square meter, about 51 g at 40 ° C., and about 130 g at 60 ° C. When water evaporates from the water flowing down in the water evaporator 4, the heat of vaporization is removed, and the temperature of the water evaporator 4 decreases. If the temperature of the water evaporator 4 decreases, the evaporation of water is suppressed, which is not preferable. Therefore, the water evaporator 4 can have a mechanism for increasing the temperature. For example, use of a heat pump by heat exchange with the water condenser 4 is suitable. Moreover, the water to flow down can be heated in advance, and sunlight can be used as a heat source.

加熱は下記の実施例1のように水蒸発器4で行うこともできるが、原水循環路15の中間部とすることもできる。例えば、原水槽12、上部水槽11、又は原水循環路15の任意の位置であってもよく、形状も限られない。熱交換を水蒸発器4で行う必要がない場合、水蒸発器4の原水・外気接触媒体として織物、不織布、フィルターなどの表面に微細構造を有する材料を使用することができる。   Although heating can also be performed by the water evaporator 4 as in Example 1 below, it can also be an intermediate part of the raw water circulation path 15. For example, any position of the raw water tank 12, the upper water tank 11, or the raw water circulation path 15 may be used, and the shape is not limited. When it is not necessary to perform heat exchange with the water evaporator 4, a material having a fine structure on the surface, such as a woven fabric, a nonwoven fabric, or a filter, can be used as the raw water / outside air contact medium of the water evaporator 4.

水分を蒸発し濃縮された海水や汽水、鹹水は水蒸発器4の下部より排出され、原水槽12に回収される。濃縮された海水や汽水、鹹水はさらなる濃縮工程を経て塩類を回収することで資源として利用することできる。また、濃縮された海水や汽水、鹹水をドーム内の開放水路に導き、自然蒸発によりドームに内に水分を供給するとともに海水や汽水、鹹水をさらに濃縮し、以後の塩類の回収を容易にすることもできる。 Seawater, brackish water and brine concentrated by evaporating water are discharged from the lower part of the water evaporator 4 and collected in the raw water tank 12. Concentrated sea water or brackish water, brine may be utilized as a resource by recovering the salt through a further concentration step. Concentrated seawater, brackish water, and brine are guided to the open channel in the dome, and water is supplied to the dome by natural evaporation, and the seawater, brackish water, and brine are further concentrated to facilitate subsequent recovery of salts. You can also

水蒸発器4の形状は流下する原水とそれを通過する空気が効率よく接触することと、流下する水の気化熱による温度低下を補償する熱交換を効率よく行うことに留意され決定される。具体的には多数の薄板(フィン)と熱媒体通路から構成される広く熱交換器に採用されているラヂエータ形や熱媒体通路が熱交換プレートに密接して設置された形などが推奨される。   The shape of the water evaporator 4 is determined in consideration of efficient contact between the raw water flowing down and the air passing therethrough and efficient heat exchange that compensates for a temperature drop due to the heat of vaporization of the flowing water. Specifically, it is recommended to use a radiator type that is widely used in heat exchangers composed of a large number of thin plates (fins) and heat medium passages, or a shape in which the heat medium passages are installed in close contact with the heat exchange plate. .

水蒸発器4では、水凝縮器5の間にフィルターなどを配置することで飛沫同伴による塩類の同伴を防ぐことが好ましい。その場合、空気中に水蒸気として同伴される水や回収された水を真水として植生に利用し易くなる。   In the water evaporator 4, it is preferable to prevent the entrainment of salts due to entrainment by disposing a filter or the like between the water condenser 5. In that case, it becomes easy to use the water entrained in the air as water vapor or the recovered water as fresh water for vegetation.

水蒸発器4を通過した空気は、そのまま空気膜構造体1のドーム2に導入してもよく、次に述べる水凝縮器5に通じて、含有する水の一部を液体の真水として回収し、凝縮しなかった水を含有する空気として空気膜構造体1に導入することもできる。導入される空気は、外気が含有するよりも多くの水を含むように水凝縮器5の操業条件を決めることが好ましい。   The air that has passed through the water evaporator 4 may be introduced into the dome 2 of the air membrane structure 1 as it is, and is passed through the water condenser 5 described below to recover a part of the contained water as liquid fresh water. The air film structure 1 can also be introduced as air containing water that has not been condensed. It is preferable to determine the operating conditions of the water condenser 5 so that the introduced air contains more water than the outside air contains.

水蒸発器4で加湿された空気を水凝縮器5に通過させて冷却することで空気中の相対湿度を上昇させて飽和させ水を凝縮させる。短い接触時間で効率的に湿り空気を冷却するために、水凝縮器5の表面と通過する湿り空気との温度差をできるだけ大きくして熱の移動効率を大きくする。また、このように形状的に空気と凝縮器の接触する面積を大きくすることで接触時間の増大を図る一方、凝縮した水を液滴とし水凝縮器から速やかに排出することができる。   By passing the air humidified by the water evaporator 4 through the water condenser 5 and cooling it, the relative humidity in the air is increased and saturated to condense the water. In order to efficiently cool the humid air in a short contact time, the temperature difference between the surface of the water condenser 5 and the passing humid air is made as large as possible to increase the heat transfer efficiency. In addition, by increasing the contact area between the air and the condenser in this way, the contact time can be increased, while condensed water can be quickly discharged from the water condenser as droplets.

水凝縮器5は、水蒸発器4との熱交換によるヒートポンプの利用により冷却する。また、独立の冷凍機により調製した冷媒により冷却することもできる。   The water condenser 5 is cooled by using a heat pump by exchanging heat with the water evaporator 4. Moreover, it can also cool with the refrigerant | coolant prepared with the independent refrigerator.

水凝縮器5は、空気圧を一定に保つために空気膜構造体1から外部へ排気される気流を用いて行うこともできる。この場合、冷却された空気が排気されるので、適度の湿度を伴ったエアコンディショニングに利用することができる。   The water condenser 5 can also be performed using an air flow exhausted from the air membrane structure 1 to keep the air pressure constant. In this case, since the cooled air is exhausted, it can be used for air conditioning with moderate humidity.

本発明の空気膜構造体を用いて灌漑システムを構成することができる。すなわち、空気膜構造体のドーム部分、発電設備、ヒートポンプ、水源設備、送風・造水装置からなり
、これらの要素設備を機能させることで内部に植物育成可能な空間を有する空気膜構造体を中心とする灌漑システムを構成できる。
An irrigation system can be configured using the air membrane structure of the present invention. That is, it consists of a dome part of an air membrane structure, a power generation facility, a heat pump, a water source facility, a blower / fresh water generator, and the air membrane structure having a space where plants can be grown inside by functioning these element facilities. An irrigation system can be configured.

ここで、発電設備としては、太陽光発電や、風力発電に依存できない夜間や荒天時に備え、または安定した電源を確保するために蓄電設備を設けることもできる。蓄電設備としては、従来から使用されている鉛蓄電池などのほか、大型リチウムイオン二次電池や超伝導蓄電システム等を使用するができる。   Here, as the power generation facility, a power storage facility can be provided in order to prepare for a solar power generation, a nighttime or stormy weather that cannot depend on wind power generation, or a stable power source. As a power storage facility, a large-sized lithium ion secondary battery, a superconducting power storage system, or the like can be used in addition to a conventionally used lead storage battery.

次に、本発明の実施の形態について説明するが、本発明はこれらに限られるものではない。
<実施例1>
第1図に本発明の一実施例を示す。空気膜構造体1は、ドーム2とドーム形状を維持するための加圧空気を送入する送風機7を備えた送風・造水装置3から構成される。ドーム2は、適当な強度,耐候性及び気密性を有すると共に、日射光のうち可視光が透過可能で、且つ赤外線等の熱線を遮断可能な所謂選択透過性を備えた素材、例えば透明フッ素樹脂フィルム等の膜材からなる。
Next, embodiments of the present invention will be described, but the present invention is not limited to these.
<Example 1>
FIG. 1 shows an embodiment of the present invention. The air film structure 1 includes a dome 2 and a blower / fresh water generator 3 including a blower 7 for sending in pressurized air for maintaining the dome shape. The dome 2 has a suitable strength, weather resistance, and airtightness, and is a material having so-called selective permeability capable of transmitting visible light of sunlight and blocking heat rays such as infrared rays, such as a transparent fluororesin. It consists of a film material such as a film.

図3に送風・造水装置3の一例を示す。送風機の位置や原水の受入れおよび回収された原水の受入れなどの方法はこの例に限られるものではない。送風・造水装置3は全体として、一端に外気取り入れ口8を、その他端には空気吐出口9を設けたエアダクト6とから構成され、この両端の中間部分でこのエアダクト6内には送風機7が配設してある。この送風機7の吸気側で送風機7と外気取入口8との中間に水蒸発器4が配設してあり、また、この送風機7の排気側で送風機7と空気吐出口12との中間に水凝縮器5が配設してある。水蒸発器4には、原水を一時貯留する上部水槽11と、原水槽12が付属する。原水槽12は、井戸、海洋などから取り込んだ原水を受け入れ、また、水蒸発器4で蒸発しないで回収された原水を受ける。   FIG. 3 shows an example of the blower / fresh water device 3. Methods such as the position of the blower and the reception of raw water and the reception of recovered raw water are not limited to this example. The blower / fresh water generator 3 as a whole is composed of an air duct 6 provided with an outside air intake port 8 at one end and an air discharge port 9 at the other end, and a blower 7 is placed in the air duct 6 at an intermediate portion between both ends. Is arranged. A water evaporator 4 is disposed between the blower 7 and the outside air intake 8 on the intake side of the blower 7, and water is disposed between the blower 7 and the air outlet 12 on the exhaust side of the blower 7. A condenser 5 is provided. An upper water tank 11 for temporarily storing raw water and a raw water tank 12 are attached to the water evaporator 4. The raw water tank 12 receives raw water taken from a well, the ocean, and the like, and receives raw water collected without being evaporated by the water evaporator 4.

水蒸発器4は冷凍機10の冷媒凝縮器18から高温循環液通路16を通って送られてくる高温循環液が流通する高温循環液通路30と、外気通路31とが熱交換プレート32を介して隣接して構成されている(図5、図6)。   The water evaporator 4 includes a high-temperature circulating fluid passage 30 through which a high-temperature circulating fluid sent from the refrigerant condenser 18 of the refrigerator 10 through the high-temperature circulating fluid passage 16 circulates, and an outside air passage 31 via a heat exchange plate 32. Are adjacent to each other (FIGS. 5 and 6).

水凝縮器5は、冷凍機10の冷媒蒸発器19から低温循環液通路17を通って送られてくる低温循環液が流通する低温循環液通路33と、これら低温循環液通路33間に熱交換プレート35を介して構成された湿り空気通路32とからなり、エアダクト6の底部でこの水凝縮器5の下部には凝縮した水を受ける真水溜(図示せず)が設けられている(図5、図7)。   The water condenser 5 exchanges heat between the low-temperature circulation liquid passage 33 through which the low-temperature circulation liquid sent from the refrigerant evaporator 19 of the refrigerator 10 passes through the low-temperature circulation liquid passage 17 and the low-temperature circulation liquid passage 33. The wet air passage 32 is formed through a plate 35, and a fresh water reservoir (not shown) for receiving condensed water is provided at the bottom of the air duct 6 at the bottom of the water condenser 5 (FIG. 5). , FIG. 7).

水蒸発器4では、高温循環液通路30は熱交換プレート32を介して外気通路31と熱交換可能に結合し、熱交換プレート32に密接して形成した通路として構成され、熱交換プレート32を複数枚間隔をおいて垂直に並設し、隣接する熱交換プレート32間に外気通路31が形成されており、水蒸発器4の熱交換プレート32の空気通路側表面が親水性を有している(図6)。   In the water evaporator 4, the high-temperature circulating fluid passage 30 is coupled to the outside air passage 31 through the heat exchange plate 32 so as to be able to exchange heat, and is configured as a passage formed in close contact with the heat exchange plate 32. A plurality of sheets are arranged vertically side by side, an outside air passage 31 is formed between adjacent heat exchange plates 32, and the air passage side surface of the heat exchange plate 32 of the water evaporator 4 has hydrophilicity. (Fig. 6).

また、水凝縮器5における低温循環液通路33は、熱交換プレート35内に形成した通路として構成してあり、熱交換プレート35を複数枚間隔をおいて垂直に並設し、隣接する熱交換プレート35間に湿り空気通路34が形成されている(図7)。   In addition, the low-temperature circulating fluid passage 33 in the water condenser 5 is configured as a passage formed in the heat exchange plate 35, and a plurality of heat exchange plates 35 are vertically arranged at intervals to adjoin adjacent heat exchange plates. A humid air passage 34 is formed between the plates 35 (FIG. 7).

原水の通路としては、原水槽12から原水ポンプ13で汲み上げて上部水槽11に供給・貯留し、水蒸発器4へ流下させて外気通路31で外気と気液接触させ蒸発しなかった一部の原水が、原水槽12に回収される原水循環路15が配管されている(図6)。また、高温循環水と低温循環水の通路としては、冷凍機10の冷媒吐出側に接続された冷媒凝縮器21で加熱された高温循環液を水蒸発器4の高温循環液通路30へ高温循環液ポンプ26で送液し、原水と間接接触することで冷却された高温循環液を冷媒凝縮器21に戻す高温循環路16と、この冷凍機10の冷媒吸入側に接続された冷媒蒸発器19で冷却された低温循環液を水凝縮器5の低温循環液通路33へ低温循環液ポンプ27で送液し、水蒸発器4から送られてくる湿り空気を間接的に冷却した後、自身は加温された状態で冷凍機10の冷媒蒸発器19に戻り再度冷却される低温循環路17とが配管されている(図5)。   The raw water passage is a portion of the raw water that has been pumped up from the raw water tank 12 by the raw water pump 13 and supplied to and stored in the upper water tank 11, then flows down to the water evaporator 4 and is brought into gas-liquid contact with the outside air and has not evaporated A raw water circulation path 15 through which raw water is collected in the raw water tank 12 is piped (FIG. 6). Further, as the passage of the high-temperature circulating water and the low-temperature circulating water, the high-temperature circulating liquid heated by the refrigerant condenser 21 connected to the refrigerant discharge side of the refrigerator 10 is hot-circulated to the high-temperature circulating liquid path 30 of the water evaporator 4. The high-temperature circulation path 16 that returns the high-temperature circulating liquid that has been sent by the liquid pump 26 and cooled by indirect contact with the raw water to the refrigerant condenser 21, and the refrigerant evaporator 19 that is connected to the refrigerant suction side of the refrigerator 10. After the low-temperature circulating liquid cooled in step 1 is sent to the low-temperature circulating liquid passage 33 of the water condenser 5 by the low-temperature circulating liquid pump 27 and the humid air sent from the water evaporator 4 is indirectly cooled, A low-temperature circulation path 17 that returns to the refrigerant evaporator 19 of the refrigerator 10 and is cooled again in a heated state is provided (FIG. 5).

送風機7の運転によりエアダクト6内にその一端の外気取り入れ口8から外気を取り入れる一方、原水を原水ポンプ13により汲み上げ上部水槽11から、水蒸発器4の熱交換プレート32の空気通路側表面を流下させ、外気と気液接触させ原水の一部を蒸発させて、この蒸発した水分を含む湿り空気を水凝縮器5へ送風機7により供給する。次いで、一部が蒸発された原水の残りを原水槽12に回収しそれから再度上部水槽11へ戻し循環使用する(図6)。   While the blower 7 is operated, outside air is taken into the air duct 6 from the outside air intake 8 at one end thereof, while raw water is pumped by the raw water pump 13 and flows down from the upper water tank 11 to the air passage side surface of the heat exchange plate 32 of the water evaporator 4. Then, the raw air is brought into gas-liquid contact to evaporate a part of the raw water, and the humid air containing the evaporated water is supplied to the water condenser 5 by the blower 7. Next, the remainder of the raw water partially evaporated is collected in the raw water tank 12, and then returned to the upper water tank 11 for circulation (FIG. 6).

一方、冷凍機10の冷媒凝縮器18において加温された高温循環液を水蒸発器4の高温循環液通路30へ供給し、原水と熱交換プレートを介して間接接触させ、この原水加熱の顕熱及びその気化の潜熱の移動により若干冷却された高温循環液を冷凍機10の冷媒凝縮器21に戻して、この冷凍機10の冷媒凝縮器18で冷媒を冷却することで、自身は再び加熱され昇温した後、水蒸発器4の高温循環液通路30へ供給し循環する。   On the other hand, the high-temperature circulating liquid heated in the refrigerant condenser 18 of the refrigerator 10 is supplied to the high-temperature circulating liquid passage 30 of the water evaporator 4 and indirectly contacted with the raw water via the heat exchange plate, and this raw water heating is manifested. The high-temperature circulating liquid that has been slightly cooled by the movement of heat and its latent heat of vaporization is returned to the refrigerant condenser 21 of the refrigerator 10, and the refrigerant is cooled by the refrigerant condenser 18 of the refrigerator 10. After the temperature is raised, the water is supplied to the high-temperature circulating liquid passage 30 of the water evaporator 4 and circulated.

更に冷凍機10の冷媒吸入側に接続された冷媒蒸発器19で冷却された低温循環液を水凝縮器5の低温循環液通路33へ低温循環液ポンプ27で送液し、この水凝縮器5における湿り空気通路34内に流れる湿り空気をこの低温循環液で熱交換プレート35を介して間接的に冷却し冷気とすると共に、この湿り空気中の水分を凝縮させて真水としダクト6底部で水凝縮器5の下部に形成された真水溜(図示せず)に滴下させ、ダクト外部に設けられた真水貯槽14に回収する。   Further, the low-temperature circulating liquid cooled by the refrigerant evaporator 19 connected to the refrigerant suction side of the refrigerator 10 is sent to the low-temperature circulating liquid passage 33 of the water condenser 5 by the low-temperature circulating liquid pump 27, and this water condenser 5 The humid air flowing in the humid air passage 34 is cooled with the low-temperature circulating liquid indirectly through the heat exchange plate 35 to cool it, and the moisture in the humid air is condensed to obtain fresh water. It is dropped in a fresh water reservoir (not shown) formed in the lower part of the condenser 5 and collected in a fresh water storage tank 14 provided outside the duct.

水凝縮器5を通過した水分を含む空気をエアダクト6のドーム側に形成した空気吐出口9から吐出し、空気膜構造体1の内部を外部よりも高い空気圧に保つ。
<実施例2>
第2図は本発明の一実施例を示す。本実施例は、送風・造水装置3を構成する水蒸発器4及び水凝縮器5が分離して設置されている点で実施例1と異なる。
Air containing water that has passed through the water condenser 5 is discharged from an air discharge port 9 formed on the dome side of the air duct 6 to keep the inside of the air membrane structure 1 at a higher air pressure than the outside.
<Example 2>
FIG. 2 shows an embodiment of the present invention. The present embodiment is different from the first embodiment in that the water evaporator 4 and the water condenser 5 constituting the blower / fresh water generator 3 are separately installed.

水凝縮器5は、送風機により駆動される湿り空気の代わりに空気膜構造体1の内部圧力を調整するために行う排気による空気膜構造体1内部の空気の気流を利用する。   The water condenser 5 uses an air flow inside the air film structure 1 by exhausting to adjust the internal pressure of the air film structure 1 instead of the humid air driven by the blower.

実施例2では、水蒸発器4で調製された湿り空気をそのままドーム内部に供給することになるため、空気膜構造体1への水分の供給は主として水蒸気として行われ、内部で自然に凝縮し、または植物により吸収された水分を除いた部分が水凝縮器5で回収され、灌漑等に利用することができる。
<実施例3>
本発明の一実施例を示す。本実施例は、送風・造水装置3を構成する水蒸発器4及び水凝縮器5の加熱冷却が、冷凍機10の圧縮機20を作動する冷媒で直接加熱、直接冷却すること以外は実施例1と同様である。
In Example 2, since the humid air prepared by the water evaporator 4 is supplied to the inside of the dome as it is, the supply of moisture to the air film structure 1 is mainly performed as water vapor, and is naturally condensed inside. Or the part except the water | moisture content absorbed by the plant is collect | recovered with the water condenser 5, and can be utilized for irrigation etc.
<Example 3>
1 shows an embodiment of the present invention. This embodiment is carried out except that the water evaporator 4 and the water condenser 5 constituting the blower / fresh water generator 3 are directly heated and cooled by the refrigerant that operates the compressor 20 of the refrigerator 10. Similar to Example 1.

水蒸発器4は、冷媒が流通する液冷媒通路21に密接して形成した熱交換プレート32と熱交換プレート32を複数枚間隔をおいて垂直に並設し、隣接する熱交換プレート間に外気通路31が形成されており、水蒸発器4の熱交換プレート32の外気通路側表面は親水性を有している(図8)。原水循環路については実施例1と同様である。   The water evaporator 4 includes a plurality of heat exchange plates 32 and heat exchange plates 32 that are formed in close contact with the liquid refrigerant passage 21 through which the refrigerant flows and arranged vertically in parallel with each other. A passage 31 is formed, and the surface of the heat exchange plate 32 of the water evaporator 4 on the outside air passage side has hydrophilicity (FIG. 8). The raw water circuit is the same as in the first embodiment.

水凝縮器5は圧縮機20で加圧・凝縮して水凝縮器4の液冷媒通路21を通った液化冷媒を毛細管23で減圧冷却したガス冷媒が流通するガス冷媒通路22に密接して形成した熱交換プレート35と、熱交換プレート35を複数枚間隔をおいて垂直に並設し、隣接する熱交換プレート間に湿り空気通路34が形成されている 。エアダクト6の底部でこの水凝縮器5の下部には真水溜(図示せず)が設けられている(図9)。   The water condenser 5 is formed in close contact with the gas refrigerant passage 22 through which the gas refrigerant, which is pressurized and condensed by the compressor 20 and passes through the liquid refrigerant passage 21 of the water condenser 4 and cooled under reduced pressure by the capillary tube 23 circulates. A plurality of the heat exchange plates 35 and the heat exchange plates 35 are vertically arranged at intervals, and a humid air passage 34 is formed between adjacent heat exchange plates. A fresh water reservoir (not shown) is provided at the bottom of the air condenser 6 at the bottom of the air condenser 6 (FIG. 9).

圧縮機20には、冷媒蒸発器19(水凝縮器5)が冷媒吸入管25に連結されている。また、冷媒蒸発器19(水凝縮器5)は毛細管23を介して冷媒凝縮器18(水蒸発器4)と連結している。冷媒吐出管24は冷媒凝縮器18(水蒸発器4)と圧縮機20を連結している(図5)。   In the compressor 20, a refrigerant evaporator 19 (water condenser 5) is connected to a refrigerant suction pipe 25. The refrigerant evaporator 19 (water condenser 5) is connected to the refrigerant condenser 18 (water evaporator 4) via a capillary tube 23. The refrigerant discharge pipe 24 connects the refrigerant condenser 18 (water evaporator 4) and the compressor 20 (FIG. 5).

圧縮機20は冷媒吸入管25を介して冷媒蒸発器19のガス冷媒通路22を通った低圧のガス冷媒を吸入し圧縮して高温高圧のガス冷媒とする。高温高圧のガス冷媒は冷媒吐出管24から液冷媒通路21を通って冷媒凝縮器18に導かれ熱交換プレート32を介して原水と熱交換により凝縮潜熱を放出し液化して高圧の液冷媒になる。高圧の液冷媒は毛細管23により断熱膨脹して低温低圧の液冷媒となり冷媒蒸発器19に導かれる。低温低圧の液冷媒は冷媒蒸発器19の表面をその圧力を飽和圧力とする温度に保持し、蒸発潜熟により熱交換プレート35を介して湿り空気を冷却するためにガス冷媒となり再び圧縮機20に吸引される。この時冷媒凝縮器18の下部に配置した原水槽12の原水を原水ポンプ13により吸引して上部水槽11により冷媒凝縮器18の上方から流下させる。流下された水は冷媒凝縮器18の表面を濡らしながら降下する間に冷媒の凝縮潜熱を放出している冷媒凝縮器18により加熱されて蒸発し、空気を多湿にする。   The compressor 20 sucks and compresses the low-pressure gas refrigerant that has passed through the gas refrigerant passage 22 of the refrigerant evaporator 19 through the refrigerant suction pipe 25 to obtain a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant is led from the refrigerant discharge pipe 24 through the liquid refrigerant passage 21 to the refrigerant condenser 18 and releases heat of heat condensation with the raw water through the heat exchange plate 32 to liquefy and condense it into high-pressure liquid refrigerant. Become. The high-pressure liquid refrigerant is adiabatically expanded by the capillary tube 23 to become a low-temperature and low-pressure liquid refrigerant and is led to the refrigerant evaporator 19. The low-temperature and low-pressure liquid refrigerant maintains the surface of the refrigerant evaporator 19 at a temperature at which the pressure is saturated, and becomes a gas refrigerant in order to cool the humid air through the heat exchange plate 35 due to the evaporation latency, and again becomes the compressor 20. Sucked into. At this time, the raw water in the raw water tank 12 disposed below the refrigerant condenser 18 is sucked by the raw water pump 13 and is caused to flow down from the upper side of the refrigerant condenser 18 by the upper water tank 11. While the water that has flowed down falls while wetting the surface of the refrigerant condenser 18, it is heated and evaporated by the refrigerant condenser 18 that releases the latent heat of condensation of the refrigerant, making the air humid.

多湿になった湿り空気は送風機7により水凝縮器5に導かれ低温の冷媒蒸発器19の熱交換プレート35の表面を通過する間に冷媒と熱交換して冷却され、空気中に含まれている水分量は冷却後の空気温度に対応する飽和水分量以上となり残余の水分は冷媒蒸発器19の表面に凝縮して順次滴下し、冷媒蒸発器19の下方に配置した真水貯槽14に集められる。
<実施例4>
本実施例の水蒸発器4を図10に示す。実施例1においては高温循環液通路30が水蒸発器の熱交換プレート32に密接して形成されているのに対し、実施例4では多数の薄板(フィン)38を垂直に並設し高温循環液通路30が貫通して形成されている点で異なっている。上部水槽11から水蒸発器4への原水の導入部には、分散板37を設けて薄板38の表面への水の展開を容易にしてある。
The humid air that has become humid is guided to the water condenser 5 by the blower 7 and is cooled by exchanging heat with the refrigerant while passing through the surface of the heat exchange plate 35 of the low-temperature refrigerant evaporator 19, and is contained in the air. The amount of water is equal to or greater than the saturated water amount corresponding to the air temperature after cooling, and the remaining water is condensed and dripped onto the surface of the refrigerant evaporator 19 and collected in a fresh water storage tank 14 disposed below the refrigerant evaporator 19. .
<Example 4>
A water evaporator 4 of this embodiment is shown in FIG. In the first embodiment, the high-temperature circulating liquid passage 30 is formed in close contact with the heat exchange plate 32 of the water evaporator, whereas in the fourth embodiment, a large number of thin plates (fins) 38 are arranged vertically in parallel. The difference is that the liquid passage 30 is formed so as to penetrate therethrough. A dispersion plate 37 is provided in the introduction portion of the raw water from the upper water tank 11 to the water evaporator 4 to facilitate the development of water on the surface of the thin plate 38.

また、本実施例の水凝縮器5を図11に示す。実施例1においては低温循環液通路33が水蒸発器の熱交換プレートに密接して形成されているのに対し、実施例4では多数の薄板(フィン)38を垂直に並設し低温循環液通路33が貫通して形成されている点で異なっている。   Moreover, the water condenser 5 of a present Example is shown in FIG. In the first embodiment, the low-temperature circulating fluid passage 33 is formed in close contact with the heat exchange plate of the water evaporator, whereas in the fourth embodiment, a large number of thin plates (fins) 38 are arranged vertically in parallel. The difference is that the passage 33 is formed through.

水蒸発器4の薄板はアルミ表面に特開2007-308602明細書に記載された方法と同様の方法で親水化処理して使用した。   The thin plate of the water evaporator 4 was used after hydrophilizing the aluminum surface in the same manner as described in JP-A-2007-308602.

風量2.2 m3/分(ダクト内風速1m/秒)、供給水量517mL/分、高温循環液温度40℃、低温循環液温度4℃、気温23℃、湿度60%(13g/m3)の時、毎時3.6kgの水がドーム内に持ち込まれた。このうち1.0kgの水が水凝縮器の下から液体の水として回収された。供給水として海水(塩素濃度18.8g/L)を用いたところ河川水レベルの塩濃度(塩素濃度0.18g/L)まで脱塩され灌漑用水として十分使用出来る水が回収された。液体および気体の形でドーム内に持ち込まれた水分量は交換空気量1回/時間としたとき、面積5千平米(体積5万立米)のドーム(奈良シクルロード博エアドーム会場規模)で換算すると年間雨量2400mm(南九州の平均雨量)に相当することを意味し、ドーム内に十分な植生を可能とする環境が形成されることを示唆するものであった。   Air flow 2.2 m3 / min (wind speed 1m / sec in duct), water supply 517mL / min, high temperature circulating fluid temperature 40 ° C, low temperature circulating fluid temperature 4 ° C, air temperature 23 ° C, humidity 60% (13g / m3), hourly 3.6kg of water was brought into the dome. Of this, 1.0 kg of water was recovered as liquid water from under the water condenser. When seawater (chlorine concentration: 18.8 g / L) was used as the supply water, it was desalted to the salt concentration (chlorine concentration: 0.18 g / L) at the river water level, and water that could be used as irrigation water was recovered. The amount of water brought into the dome in the form of liquid and gas is converted into an annual dome of 5,000 square meters (50,000 square meters in volume) when the exchanged air volume is 1 time / hour. This means that it corresponds to a rainfall of 2400mm (average rainfall in South Kyushu), suggesting that an environment that allows sufficient vegetation to form inside the dome is formed.

農耕に適した水資源入手の困難な乾燥地域や沙漠などにおいて、閉空間内に灌漑された農耕地を開発できる。
In dry areas and deserts where it is difficult to obtain water resources suitable for farming, it is possible to develop farmland that is irrigated in a closed space.

実施例1の空気膜構造体の全体を表す概略図である。It is the schematic showing the whole air film structure of Example 1. FIG. 実施例2の空気膜構造体の全体を表す概略図である。It is the schematic showing the whole air film structure of Example 2. FIG. 送風・造水装置を表す概略図である。It is the schematic showing an air blower and fresh water generator. 実施例1の水蒸発器と水凝縮器の熱交換を表す概略図である。It is the schematic showing the heat exchange of the water evaporator and water condenser of Example 1. FIG. 実施例3の水蒸発器と水凝縮器の熱交換を表す概略図である。It is the schematic showing the heat exchange of the water evaporator and water condenser of Example 3. 実施例1の水蒸発器を表す概略図である。1 is a schematic diagram illustrating a water evaporator according to Embodiment 1. FIG. 実施例1の水凝縮器を表す概略図である。1 is a schematic diagram illustrating a water condenser according to Example 1. FIG. 実施例3の水蒸発器を表す概略図である。6 is a schematic diagram illustrating a water evaporator according to Embodiment 3. FIG. 実施例3の水凝縮器を表す概略図である。6 is a schematic diagram illustrating a water condenser of Example 3. FIG. 実施例4の水蒸発器を表す概略図である。It is the schematic showing the water evaporator of Example 4. FIG. 実施例4の水凝縮器を表す概略図である。6 is a schematic diagram illustrating a water condenser of Example 4. FIG.

符号の説明Explanation of symbols

1・・空気膜構造体 2・・ドーム 3・・送風・造水装置 4・・水蒸発器 5・・水凝縮器 6・・ダクト 7・・送風機 8・・外気取入口 9・・空気吐出口 10・・冷凍機 11・・上部水槽 12・・原水槽 13・・原水ポンプ 14・・真水貯槽 15・・原水循環路 16・・高温循環路 17・・低温循環路 18・・冷媒凝縮器 19・・冷媒蒸発器 20・・圧縮機 21・・液冷媒通路 22・・ガス冷媒通路 23・・毛細管 24・・冷媒吐出管 25・・冷媒吸入管 26・・高温循環液ポンプ 27・・低温循環液ポンプ 30・・高温循環液通路 31・・外気通路 32・・熱交換プレート(蒸発器) 33・・低温循環液通路 34・・湿り空気通路 35・・熱交換プレート(凝縮器) 37・・分散板 38・・薄板(フィン)

A・・外気 B・・湿り空気 C・・含水空気 D・・排出空気 E・・高温循環液 F・・低温循環液 G・・液冷媒 H・・ガス冷媒
1 .... Air membrane structure 2 .... Dome 3 .... Blowing and fresh water generator 4 .... Water evaporator 5 .... Water condenser 6 .... Duct 7 .... Blower 8 .... Outside air inlet 9 .... Air discharge Exit 10 ··· Refrigerator 11 · · · Upper water tank 12 · · Raw water tank 13 · · Raw water pump 14 · · Fresh water storage tank 15 · · Raw water circuit 16 · · High temperature circuit 17 · · Low temperature circuit 18 · · Refrigerant condenser 19 .... Refrigerant evaporator 20 .... Compressor 21 ... Liquid refrigerant passage 22 .... Gas refrigerant passage 23 ... Capillary tube 24 ... Refrigerant discharge pipe 25 ... Refrigerant suction pipe 26 ... High temperature circulating fluid pump 27 ... Low temperature Circulating fluid pump 30 .. High temperature circulating fluid passage 31 .. Outside air passage 32 .. Heat exchange plate (evaporator) 33 .. Low temperature circulating fluid passage 34 .. Wet air passage 35 .. Heat exchange plate (condenser) 37.・ Dispersion plate 38 ・ ・ Thin plate (fin)

A ・ ・ Outside air B ・ ・ Moist air C ・ ・ Water-containing air D ・ ・ Exhaust air E ・ ・ High-temperature circulating fluid F ・ ・ Low-temperature circulating fluid G ・ ・ Liquid refrigerant H ・ ・ Gas refrigerant

Claims (13)

ドーム、送風機、水蒸発器及び水凝縮器を有する空気膜構造体であって、送風機により送入される膜支持用の空気を水蒸発器に通じて水分含有量を増大させた湿り空気とする手段と、空気の流れを水凝縮器に通じ、その空気から水分を真水として回収する手段とを有する、膜支持用の空気の水分含有量を外気よりも高めた空気膜構造体。 An air membrane structure having a dome, a blower, a water evaporator, and a water condenser, wherein the air for supporting the membrane fed by the blower is passed through the water evaporator to make the moisture content increased. An air membrane structure in which the moisture content of the air for supporting the membrane is higher than that of the outside air, having means and means for passing the air flow through the water condenser and collecting water from the air as fresh water. ドーム、送風機、水蒸発器及び水凝縮器を有する空気膜構造体であって、送風機により送入される膜支持用の空気を水蒸発器と水凝縮器に順次通じ、水蒸発器において水分含有量を増大させた空気とする手段と、次いで水凝縮器においてその空気から水分を真水として回収する手段と、残余の水分を含む空気をドーム内部空間へ送入する手段とを有する空気膜構造体。 An air membrane structure having a dome, a blower, a water evaporator and a water condenser, wherein the air for supporting the membrane sent by the blower is sequentially passed through the water evaporator and the water condenser, and contains water in the water evaporator. An air membrane structure having means for increasing the amount of air, means for recovering moisture from the air as fresh water in a water condenser, and means for feeding air containing residual moisture into the interior space of the dome . 水蒸発器において、送風機により送入される膜支持用の空気を原水と直接接触させて水分含有量を増大させるとともに使用後の原水を系外に排出するようにした請求項1又は2に記載の空気膜構造体。 3. The water evaporator according to claim 1 or 2, wherein the membrane supporting air fed by a blower is brought into direct contact with the raw water to increase the water content and discharge the used raw water out of the system. Air membrane structure. 高温循環液通路と熱交換可能に結合された熱交換プレートを介して外気通路が形成された水蒸発器が高温循環液を熱媒体としてヒートポンプの冷媒凝縮器と熱的に接続され、水蒸発器の外気通路内の熱交換プレートの表面を濡らすように原水を流下させて外気を湿り空気に変換し、低温循環液通路と熱交換可能に接続された熱交換プレートを介して湿り空気通路が形成された水凝縮器が低温循環液を熱媒体としてヒートポンプの冷媒蒸発器と熱的に接続され、湿り空気から水を凝縮させ真水として回収するようにされている請求項1又は2に記載の空気膜構造体。 A water evaporator in which an outside air passage is formed through a heat exchange plate coupled to the high-temperature circulating fluid passage so as to be capable of exchanging heat is thermally connected to the refrigerant condenser of the heat pump using the high-temperature circulating fluid as a heat medium. Raw water is flowed down to wet the surface of the heat exchange plate in the outside air passage to convert the outside air into humid air, and a humid air passage is formed through a heat exchange plate connected to the low-temperature circulating fluid passage so as to be able to exchange heat. The air according to claim 1 or 2, wherein the water condenser is thermally connected to a refrigerant evaporator of a heat pump using a low-temperature circulating liquid as a heat medium, and condenses water from the humid air and recovers it as fresh water. Membrane structure. 冷媒吐出管に接続されたヒートポンプの冷媒凝縮器として外気通路が形成された水蒸発器の熱交換プレートの表面を濡らすように原水を流下させて接触させることで外気を湿り空気に変換し、冷媒吸入管に接続されたヒートポンプの冷媒蒸発器として湿り空気通路が形成された水凝縮器の表面において湿り空気から水を凝縮させて真水として回収するようにされている請求項1又は2に記載の空気膜構造体。 As the refrigerant condenser of the heat pump connected to the refrigerant discharge pipe, the raw water flows down and comes into contact so as to wet the surface of the heat exchanger plate of the water evaporator where the outside air passage is formed, and the outside air is converted into moist air. 3. The water according to claim 1, wherein water is condensed from the humid air and collected as fresh water on a surface of a water condenser in which a humid air passage is formed as a refrigerant evaporator of a heat pump connected to the suction pipe. Air membrane structure. 原水循環路の中間部に設けた加熱器により水蒸発器へ供給する原水又は循環原水を加熱するに際し、加熱器がヒートポンプの冷媒凝縮器であることを特徴とする請求項1又は2に記載の空気膜構造体。 The heater is a refrigerant condenser of a heat pump when heating the raw water supplied to the water evaporator or the circulating raw water by a heater provided in an intermediate part of the raw water circulation path. Air membrane structure. 原水循環路の中間部に設けた加熱器により水蒸発器へ供給する原水又は循環原水を加熱するに際し、加熱器がヒートポンプの冷媒凝縮器と高温循環液を介して熱的に接続していることを特徴とする請求項1又は2に記載の空気膜構造体。 When the raw water or circulating raw water supplied to the water evaporator is heated by the heater provided in the middle part of the raw water circulation path, the heater is thermally connected to the heat pump through the refrigerant condenser and the high-temperature circulating liquid. The air film structure according to claim 1 or 2. 少なくとも水蒸発器の熱交換プレートの外気通路側表面が親水性を有することを特徴とする請求項1〜7のいずれか1項に記載の空気膜構造体。 The air membrane structure according to any one of claims 1 to 7, wherein at least a surface on the outside air passage side of the heat exchange plate of the water evaporator has hydrophilicity. 空気膜構造体のドームの側壁がドームを構成する膜材により形成されている請求項1〜8のいずれか1項に記載の空気膜構造体。 The air film structure according to any one of claims 1 to 8, wherein a side wall of the dome of the air film structure is formed of a film material constituting the dome. 空気膜構造体の膜がポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリエステル又はフッ素樹脂からなることを特徴とする請求項1〜9のいずれか1項に記載の空気膜構造体。 The film of an air film structure consists of polyethylene, a polypropylene, a vinyl chloride resin , polyester, or a fluororesin, The air film structure of any one of Claims 1-9 characterized by the above-mentioned. 請求項1〜10のいずれか1項に記載の空気膜構造体を用いた灌漑方法であって、回収した真水を空気膜構造体内部の土壌の灌漑に利用することを特徴とする灌漑方法。 An irrigation method using the air membrane structure according to any one of claims 1 to 10, wherein the collected fresh water is used for irrigation of soil inside the air membrane structure. 請求項1〜11のいずれか1項に記載の空気膜構造体を用いた灌漑方法であって、空気膜構造体内部空間を植物育成に利用することを特徴とする灌漑方法。 An irrigation method using the air membrane structure according to any one of claims 1 to 11, wherein the inner space of the air membrane structure is used for plant growth. 植物を育成することのできる内部空間を有するドームと、
太陽光または風力発電により発電する発電設備と、
発電設備により発電された電気エネルギーを動力源とするヒートポンプと、
塩分を含む水源から原水を採取する水源設備と、
ヒートポンプにより水を蒸発、凝縮させて水分を含んだ空気と真水を製造する送風・造水装置とからなる、
送風・造水装置で発生した水分を含んだ空気を空気膜構造体のドームの支持用空気とし、併せて、送風・造水装置で製造された真水を空気膜構造体の内部空間の灌漑に用いる灌漑システム。
A dome having an internal space in which plants can be grown;
Power generation facilities that generate solar or wind power;
A heat pump powered by electrical energy generated by the power generation facility;
A water source facility that collects raw water from a water source containing salt;
It consists of air containing water by evaporating and condensing water with a heat pump and a blower / fresh water device that produces fresh water.
Air containing water generated by the blower / fresh water device is used as support air for the dome of the air membrane structure, and fresh water produced by the blower / fresh water device is used for irrigation of the internal space of the air film structure. Irrigation system used.
JP2008107078A 2008-04-16 2008-04-16 Pneumatic membrane structure Pending JP2009254974A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008107078A JP2009254974A (en) 2008-04-16 2008-04-16 Pneumatic membrane structure
PCT/JP2009/055292 WO2009128320A1 (en) 2008-04-16 2009-03-18 Pneumatic membrane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107078A JP2009254974A (en) 2008-04-16 2008-04-16 Pneumatic membrane structure

Publications (1)

Publication Number Publication Date
JP2009254974A true JP2009254974A (en) 2009-11-05

Family

ID=41199020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107078A Pending JP2009254974A (en) 2008-04-16 2008-04-16 Pneumatic membrane structure

Country Status (2)

Country Link
JP (1) JP2009254974A (en)
WO (1) WO2009128320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615297B1 (en) 2011-05-16 2016-04-25 마빈 피에르 Hydraulic desalination device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540452B2 (en) * 2016-12-14 2023-01-03 Mankaew MUANCHART Air movement control and air source device for cultivation
US11565214B1 (en) * 2019-01-10 2023-01-31 Florida A&M University Osmotic system and method for food and oxygen production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134915A (en) * 1982-01-30 1983-08-11 カネボウ株式会社 Agricultural double covering house
JPH04156990A (en) * 1990-10-18 1992-05-29 Shinwa Sangyo Kk Method and device for making water and forming chill and plant growing device utilizing this method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615297B1 (en) 2011-05-16 2016-04-25 마빈 피에르 Hydraulic desalination device and method

Also Published As

Publication number Publication date
WO2009128320A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
US20230249123A1 (en) Atmospheric water generation systems and methods
Khalil et al. A review: dew water collection from radiative passive collectors to recent developments of active collectors
AU2012230190B2 (en) Solar desalination plant for sea water, brines or waste water and desalination method
El-Ghonemy RETRACTED: Fresh water production from/by atmospheric air for arid regions, using solar energy
CN103708573A (en) Reinforced convection heat transfer type solar distillation sea water desalting device
KR102035098B1 (en) Solar evaporative desalination aparatus of sea water using heat pump
CN103626249A (en) Sea water desalting device and method for solar photovoltaic semiconductor refrigeration
WO2009128320A1 (en) Pneumatic membrane structure
Lindblom Solar thermal technologies for seawater desalination: state of the art
CN105299783A (en) Solar-driven solution membrane concentration and solution dehumidification device and dehumidification method
CA2719496A1 (en) Condensation system for dehumidification and desalination
CN108328684A (en) A kind of multistage seawater desalination system based on change carrier gas humidity
US20140034477A1 (en) Water Supply Systems
Picinardi Cogeneration of cooling energy and fresh water
Chaibi et al. Solar thermal processes: A review of solar thermal energy technologies for water desalination
CN105258250A (en) Solar-driven solution membrane energy storage and membrane dehumidification system and dehumidification method
JPH09220031A (en) Environment adjusting facility
CN207277427U (en) Island air water fetching device
CN208617605U (en) A kind of equipment of marine production fresh water
US11578476B2 (en) Evaporative cooler and moisture condenser with vapor recovery and method
US6349563B1 (en) Device and method for desalinating salt water and method of producing carbon dioxide exhausting means
KR102254829B1 (en) Evaporative desalination aparatus of sea water
US20160219797A1 (en) Air water agricultural system
CN220875263U (en) Solar greenhouse coupling forward osmosis brackish water desalination and saline-alkali soil improvement system
GB2472033A (en) Greenhouse system utilising recovered heat

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326