JP2009182048A - Manufacturing method of electrochemical capacitor - Google Patents
Manufacturing method of electrochemical capacitor Download PDFInfo
- Publication number
- JP2009182048A JP2009182048A JP2008017940A JP2008017940A JP2009182048A JP 2009182048 A JP2009182048 A JP 2009182048A JP 2008017940 A JP2008017940 A JP 2008017940A JP 2008017940 A JP2008017940 A JP 2008017940A JP 2009182048 A JP2009182048 A JP 2009182048A
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- welding agent
- electrode body
- tip
- electrochemical capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6563—Gases with forced flow, e.g. by blowers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6566—Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、活性炭等の分極性電極と電解液の界面である電気二重層に電気を蓄積する電気二重層キャパシタ等の電気化学キャパシタを、効率よく製造する方法に関する。 The present invention relates to a method for efficiently producing an electrochemical capacitor such as an electric double layer capacitor that accumulates electricity in an electric double layer that is an interface between a polarizable electrode such as activated carbon and an electrolytic solution.
近年、活性炭等の分極性電極と電解液の界面である電気二重層に電気を蓄積する電気二重層キャパシタ等の電気化学キャパシタが、蓄電媒体として実用化され始めている。電気化学キャパシタの一般的な構成としては、金属箔等の集電体及び活性炭等の分極性電極からなる電極シートと、セパレータが交互に積層されて積層体が形成され、さらに電解液が含浸された積層体が容器に密封されて電気化学キャパシタとされる。 In recent years, electrochemical capacitors such as an electric double layer capacitor that accumulates electricity in an electric double layer that is an interface between a polarizable electrode such as activated carbon and an electrolytic solution have been put into practical use as a power storage medium. As a general structure of an electrochemical capacitor, an electrode sheet made of a current collector such as a metal foil and a polarizable electrode such as activated carbon and a separator are alternately laminated to form a laminate, and further impregnated with an electrolyte. The laminated body is sealed in a container to form an electrochemical capacitor.
また、電気化学キャパシタの製造は、電極シートとセパレータの積層体を、角型の電気化学キャパシタにおいてはサンドウィッチ状に、円筒型の電気化学キャパシタにおいてはロール状に形成し、集電体(正極体及び負極体)のリード部を各々の端子に接続し、積層体を容器に収納した後、容器の開口部から電解液を注入して積層体に電解液を含浸し、電極端子の先端を外部に露出した状態で容器を密封する方法が多く実施されている。 In addition, an electrochemical capacitor is manufactured by forming a laminate of an electrode sheet and a separator into a sandwich shape for a square electrochemical capacitor and a roll shape for a cylindrical electrochemical capacitor. And the lead portion of the negative electrode body) are connected to the respective terminals, the laminated body is accommodated in the container, the electrolytic solution is injected from the opening of the container, the laminated body is impregnated with the electrolytic solution, and the tip of the electrode terminal is external Many methods have been implemented to seal the container while exposed to water.
このような電気化学キャパシタにおいては、電解液として、大きなエネルギー密度が得られる有機系電解液が一般的に用いられているが、微量の吸湿により耐電圧が低下し劣化しやすくなるという不都合が生じるので、電解液を注入する前に積層体を充分に乾燥させ、その後の操作は容器を密封するまで不活性ガス雰囲気下で行なわれている。また、容器の密封は、通常は予め電極端子部に溶着剤を設けておき、加熱された2本のヒートシールバーで、容器を挟んだ状態で押圧してヒートシールすることにより行なわれている。 In such an electrochemical capacitor, an organic electrolytic solution capable of obtaining a large energy density is generally used as the electrolytic solution. However, there is a disadvantage in that the withstand voltage decreases due to a small amount of moisture absorption and is likely to deteriorate. Therefore, the laminate is sufficiently dried before injecting the electrolytic solution, and the subsequent operation is performed in an inert gas atmosphere until the container is sealed. In addition, the container is usually sealed by preliminarily providing a welding agent on the electrode terminal portion and pressing and heat-sealing with two heated heat seal bars sandwiching the container. .
容器の電極端子露出側のシールは、ヒートシールの際に、電極端子の厚み等により均一な加圧ができず、ヒートシールを良好に行なうことが難しいため、この部分から湿気が容器内に入り込み、キャパシタの寿命が短くなることが懸念されていた。また、容器の外装材の樹脂フィルムが電極端子の角部により傷められ、その切口から露出する金属箔が、電極端子と接触して短絡することが懸念されていた。このような問題点の解決策の一例として、特許文献1には、容器のヒートシールを行なう際に、ヒートシール用の溶着剤により容器の樹脂フィルムの端面に被さる盛り上がり部を形成することが開示されている。このような構成により、ヒートシールで簡便に容器を密封処理できることが記載されている。
しかしながら、特許文献1に記載されたように、過剰の溶着剤を使用し、ヒートシールにより余分な溶着剤を容器のシール部の縁部から押し出して、被さる盛り上がり部を形成する方法は、容器内の気密性が向上し短絡を防止できるが、溶着剤が冷えて硬化するまで後工程の作業を行なうことが困難であり、また場合によっては溶融して容器の外部に無秩序にはみ出した溶着剤を除去する必要があり、連続工程を実施する上で不都合を生じるものである。
従って、本発明が解決しようとする課題は、電極端子周辺部において高気密性が維持できるヒートシールを、効率よく実施することが可能な電気化学キャパシタの製造方法を提供することである。
However, as described in
Therefore, the problem to be solved by the present invention is to provide an electrochemical capacitor manufacturing method capable of efficiently performing heat sealing that can maintain high airtightness in the periphery of electrode terminals.
本発明者らは、これらの課題を解決すべく鋭意検討した結果、電極端子部に溶着剤を配置し、これを加熱してヒートシールを行なうことにより、積層体を偏平状の容器に密封する電気化学キャパシタの製造方法において、(1)ヒートシールの際に、端子先端側の溶着剤は低温度の加熱乃至冷却を行なうことにより、(2)端子先端側に、溶融温度が高い溶着剤を配置することにより、あるいは(3)溶着剤の端子先端側に、熱硬化性樹脂を配置することにより、ヒートシールの際に余分な溶着剤が溶融して容器の外部に無秩序にはみ出すことを防止でき、高気密性が維持できるヒートシールを、効率よく実施することが可能なことを見出し本発明に到達した。 As a result of intensive studies to solve these problems, the inventors of the present invention seal the laminate in a flat container by placing a welding agent on the electrode terminal portion and heating it to perform heat sealing. In the method for manufacturing an electrochemical capacitor, (1) during heat sealing, the welding agent on the terminal tip side is heated or cooled at a low temperature, and (2) a welding agent having a high melting temperature is applied to the terminal tip side. (3) By placing a thermosetting resin on the terminal end side of the welding agent, it is possible to prevent excess welding agent from melting and sticking out to the outside of the container during heat sealing. It has been found that heat sealing that can be performed and can maintain high airtightness can be carried out efficiently, and has reached the present invention.
すなわち本発明は、正極体、負極体、及びセパレータからなる積層体を、正極体の端子の先端及び負極体の端子の先端が外部に露出された状態で、予め端子部に配置された溶着剤を加熱してヒートシールを行なうことにより、偏平状の容器に密封してなる電気化学キャパシタの製造方法において、ヒートシールは、端子先端側の溶着剤を、先端と反対側の溶着剤の加熱温度よりも低い温度の加熱乃至冷却をしながら行なうことを特徴とする電気化学キャパシタの製造方法である。 That is, the present invention relates to a laminate composed of a positive electrode body, a negative electrode body, and a separator, and a welding agent previously disposed on a terminal portion in a state where the front end of the positive electrode body terminal and the front end of the negative electrode body terminal are exposed to the outside. In the method of manufacturing an electrochemical capacitor that is sealed in a flat container by heating and heat sealing, the heat sealing is performed by using the welding agent on the terminal tip side and the heating temperature of the welding agent on the opposite side to the tip. A method for producing an electrochemical capacitor, which is performed while heating or cooling at a lower temperature.
また、本発明は、正極体、負極体、及びセパレータからなる積層体を、正極体の端子の先端及び負極体の端子の先端が外部に露出された状態で、予め端子部に配置された溶着剤を加熱してヒートシールを行なうことにより、偏平状の容器に密封してなる電気化学キャパシタの製造方法において、ヒートシールは、端子先端側の溶着剤として、先端と反対側の溶着剤よりも溶融温度が高い溶着剤を配置して行なうことを特徴とする電気化学キャパシタの製造方法である。 Further, the present invention provides a laminate comprising a positive electrode body, a negative electrode body, and a separator, in which the tip of the terminal of the positive electrode body and the tip of the terminal of the negative electrode body are exposed to the outside and are previously disposed on the terminal portion. In the method of manufacturing an electrochemical capacitor that is sealed in a flat container by heating the agent and heat-sealing, the heat seal is used as a welding agent on the terminal tip side than the welding agent on the side opposite to the tip. An electrochemical capacitor manufacturing method is characterized in that a welding agent having a high melting temperature is disposed.
また、本発明は、正極体、負極体、及びセパレータからなる積層体を、正極体の端子の先端及び負極体の端子の先端が外部に露出された状態で、予め端子部に配置された溶着剤を加熱してヒートシールを行なうことにより、偏平状の容器に密封してなる電気化学キャパシタの製造方法において、ヒートシールは、溶着剤の端子先端側に熱硬化性樹脂を配置して行なうことを特徴とする電気化学キャパシタの製造方法である。 Further, the present invention provides a laminate comprising a positive electrode body, a negative electrode body, and a separator, in which the tip of the terminal of the positive electrode body and the tip of the terminal of the negative electrode body are exposed to the outside and are previously disposed on the terminal portion. In the method of manufacturing an electrochemical capacitor that is sealed in a flat container by heating the agent and performing heat sealing, the heat sealing is performed by placing a thermosetting resin on the terminal end side of the welding agent. This is a method for manufacturing an electrochemical capacitor.
本発明の電気化学キャパシタの製造方法においては、積層体をヒートシールにより容器に密封するための溶着剤を過剰に使用しても、余分な溶着剤が溶融して容器の外部にはみ出すことを防止できるので、高気密性が維持できるヒートシールを、溶着剤が冷えて硬化するまで後工程の作業を待機することなく、また容器の外部の溶着剤を除去することなく、効率よく実施することが可能である。また、端子先端側の溶着剤または熱硬化性樹脂の一部を、偏平状の容器から露出した状態でヒートシールを行なうことが可能となり、電極端子と容器の電気絶縁性を向上させることができる。 In the method for producing an electrochemical capacitor of the present invention, even if an excessive amount of a welding agent for sealing the laminate to the container by heat sealing is used, the excess welding agent is prevented from melting and protruding to the outside of the container. Therefore, heat sealing that can maintain high airtightness can be carried out efficiently without waiting for subsequent work until the welding agent cools and hardens, and without removing the welding agent outside the container. Is possible. In addition, it becomes possible to perform heat sealing in a state where a part of the welding agent or thermosetting resin on the tip side of the terminal is exposed from the flat container, and the electrical insulation between the electrode terminal and the container can be improved. .
本発明の電気化学キャパシタの製造方法は、正極体、負極体、及びセパレータからなる積層体を、正極体の端子の先端及び負極体の端子の先端が外部に露出された状態で、予め端子部に配置された溶着剤を加熱してヒートシールを行なうことにより、偏平状の容器に密封してなる電気二重層キャパシタ等の電気化学キャパシタの製造方法に適用される。
以下、本発明の電気化学キャパシタの製造方法を、図1〜図6に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。
The method for producing an electrochemical capacitor of the present invention includes a laminated body composed of a positive electrode body, a negative electrode body, and a separator, with a terminal portion in advance in a state where the tip of the terminal of the positive electrode body and the tip of the terminal of the negative electrode body are exposed to the outside. It is applied to a method of manufacturing an electrochemical capacitor such as an electric double layer capacitor which is sealed in a flat container by heating the welding agent disposed in the container and performing heat sealing.
Hereinafter, although the manufacturing method of the electrochemical capacitor of this invention is demonstrated in detail based on FIGS. 1-6, this invention is not limited by these.
本発明の電気化学キャパシタの製造方法においては、図1に示すような、溶着剤の成型体からなる溶着剤板2が、正極体の端子3及び負極体の端子4に配置され一体化された電極端子部材1、あるいは溶着剤板2と正極体の端子3が一体化された電極端子部材、溶着剤板2と負極体の端子4が一体化された電極端子部材が用いられる。さらに、図1に示すような電極端子部材1の中央部に、圧力開放弁(圧力開放筒)が備えられた電極端子部材も用いることができる。以下、図1に示すような電極端子部材1を例に挙げて説明するが、本発明においては、溶着剤板と正極体の端子が一体化された電極端子部材、溶着剤板と負極体の端子が一体化された電極端子部材、圧力開放弁(圧力開放筒)が備えられた電極端子部材も、図1に示す電極端子部材と同様の方法で用いることができる。
In the method for manufacturing an electrochemical capacitor according to the present invention, as shown in FIG. 1, a
本発明において、正極体、負極体、及びセパレータからなる積層体としては、図2に示すように、正極体のリード部8及び負極体のリード部9が、各々前記の電極端子部材1の端子3、端子4に接続できるような構成の積層体7が用いられる。積層体7はリード部8、9において電極端子部材1の電極端子3、4に溶接等により接着され、図3に示すように、開口部11を有するプラスチックフィルムで被覆された金属箔製の偏平状の容器10に収納される。尚、この間、積層体及び容器は乾燥処理が行なわれる。
In the present invention, as shown in FIG. 2, the laminate composed of the positive electrode body, the negative electrode body, and the separator includes a
次に容器に電解液を注入して電気化学キャパシタセルに電解液を含浸させるとともに、容器内を減圧処理して分極性電極に吸着されているガスを除去する操作が行なわれる。このようにすることにより、積層体に電解液を効率よく含浸することができる。また、必要に応じて、電解液の注入から容器の密封までの間に、分極性電極に含まれる水分や官能基を電気分解し除去するために、電極端子に通電して電解精製が行なわれる。その後、電極端子部材の端子部に配置された溶着剤を加熱してヒートシールすることにより容器の密封が行なわれ、電気化学キャパシタが製造されるが、本発明においてはこのヒートシールの方法について以下のような特徴を有する。 Next, an operation of injecting the electrolytic solution into the container and impregnating the electrochemical capacitor cell with the electrolytic solution, and removing the gas adsorbed on the polarizable electrode by reducing the pressure in the container is performed. By doing in this way, a laminated body can be efficiently impregnated with electrolyte solution. In addition, if necessary, in order to electrolyze and remove moisture and functional groups contained in the polarizable electrode between the injection of the electrolyte and the sealing of the container, the electrode terminal is energized and subjected to electrolytic purification. . Then, the container is sealed by heating and heat-sealing the welding agent disposed on the terminal portion of the electrode terminal member, and an electrochemical capacitor is manufactured. In the present invention, the heat sealing method is described below. It has the following features.
すなわち、本発明の第1の形態の電気化学キャパシタの製造方法は、ヒートシールの際、電極端子部材1の端子先端側の溶着剤5を、先端と反対側の溶着剤6の加熱温度よりも低い温度の加熱乃至冷却をしながら行なうことを特徴とするものである。
第1の形態の製造方法におけるヒートシールは、例えば図3、図4に示すように、溶着剤(5、6)からなる溶着剤板と容器の開口部11の内側を接触した状態に保持した後、加熱された2本のヒートシールバーで、容器の開口部を挟んだ状態で押圧することにより行なわれるが、その際、端子先端側の溶着剤5の温度が、先端と反対側の溶着剤6の温度よりも、5℃以上低くなるように、好ましくは10℃以上低くなるようにコントロールされる。このようなヒートシールは、ヒートシールバーの端子先端側の溶着剤に対応する部分の加熱を弱くする、停止する、または冷却する等の方法により行なわれる。
That is, in the manufacturing method of the electrochemical capacitor according to the first aspect of the present invention, the heat of the
For example, as shown in FIGS. 3 and 4, the heat seal in the manufacturing method of the first embodiment is held in a state where the welding agent plate made of the welding agent (5, 6) and the inside of the opening 11 of the container are in contact with each other. Thereafter, the heating is performed by pressing the two opening portions of the container with two heated heat seal bars. At this time, the temperature of the
また、本発明の第2の形態の電気化学キャパシタの製造方法は、ヒートシールを、予め電極端子部材1の端子先端側の溶着剤5として、先端と反対側の溶着剤6よりも溶融温度が高い溶着剤を配置して行なうことを特徴とするものである。
第2の形態の製造方法における電極端子部材の溶着剤は、端子先端側の溶着剤とその反対側の溶着剤の溶融温度の差が5℃以上となるように、好ましくは10℃以上となるように選定される。尚、本発明のいずれの形態の製造方法においても、溶着剤として、通常は50〜200℃程度で溶融する熱可塑性樹脂が用いられるが、その中でもポリエチレン、ポリプロピレン等のポリオレフィン系の樹脂が好ましい。第2の形態の製造方法におけるヒートシールは、例えば図3、図4に示すように、前記のような溶着剤5及び溶着剤6からなる溶着剤板の側面と容器の開口部11の内側を接触した状態に保持した後、ほぼ均一に加熱された2本のヒートシールバーで、容器の開口部を挟んだ状態で押圧することにより行なわれる。
Moreover, the manufacturing method of the electrochemical capacitor of the 2nd form of this invention uses a heat seal as the
The electrode terminal member welding agent in the manufacturing method of the second embodiment is preferably 10 ° C. or more so that the difference in melting temperature between the terminal tip side welding agent and the opposite side welding agent is 5 ° C. or more. Is selected as follows. In any of the production methods of the present invention, a thermoplastic resin that normally melts at about 50 to 200 ° C. is used as the welding agent, and among them, polyolefin resins such as polyethylene and polypropylene are preferable. For example, as shown in FIGS. 3 and 4, the heat seal in the manufacturing method of the second embodiment forms the side surface of the welding agent plate made of the
また、本発明の第3の形態の電気化学キャパシタの製造方法は、ヒートシールを、予め溶着剤板2の端子先端側に熱硬化性樹脂12の成型体を配置した図5に示すような電極端子部材1を用いて行なうことを特徴とするものである。
第3の形態の製造方法におけるヒートシールは、例えば図6に示すように、溶着剤板2と熱硬化性樹脂の成型体12の側面を、容器の開口部11の内側と接触した状態に保持した後、ほぼ均一に加熱された2本のヒートシールバーで、容器の開口部を挟んだ状態で押圧することにより行なわれる。その際、端子先端側の熱硬化性樹脂の成型体12の一部を、図6に示すように、偏平状の容器から露出した状態でヒートシールを行なうことにより、電極端子と容器の電気絶縁性を向上させることができる。
尚、本発明においては、いずれの形態の製造方法においても、電解液の注入から容器の密封まで、不活性ガス雰囲気下で行なわれる。
Moreover, the manufacturing method of the electrochemical capacitor of the 3rd form of this invention is the electrode as shown in FIG. 5 which has arrange | positioned the molded object of the
For example, as shown in FIG. 6, the heat seal in the manufacturing method of the third embodiment holds the side surfaces of the
In the present invention, in any form of the manufacturing method, the process from injection of the electrolytic solution to sealing of the container is performed in an inert gas atmosphere.
次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.
[実施例1]
(電極端子部材の製作)
溶融した合成樹脂を流して電極端子部材を成型するために、図7に示すような組立式のステンレス製の金型を製作した。この金型の内部に離型剤を塗布し、側面のスリット状の間隙にアルミニウム製の正極体の端子3及び負極体の端子4(いずれも長さ60mm、幅30mm、厚さ0.5mm)を、図7に示すように金型13を貫通してセットした後、130℃に溶融した低密度ポリエチレン樹脂(融点106〜108℃)を、金型の内部に流した。樹脂を冷却して固体状にした後、金型を分解し、成形体を取出した。合成樹脂の表面のバリを除去し端部の角を削って、長さ150mm、幅15mm、厚さ3mmの溶着剤板2を有する図1に示すような電極端子部材1を得た。
[Example 1]
(Production of electrode terminal members)
In order to mold the electrode terminal member by flowing the molten synthetic resin, an assembly-type stainless steel mold as shown in FIG. 7 was manufactured. A mold release agent is applied to the inside of the mold, and a positive
(電気二重層キャパシタの製作)
活性炭、カーボンブラック等を含む塗工液を、アルミ箔に塗布、乾燥して得られた電極シートと、紙製のセパレータ(厚さ50μm)を、リード部が交互に前記の電極端子部材の正極及び負極の電極端子に接続できるように、合計30枚積層させて、リード部を除いた一辺が100mmの正方形の積層体(厚さ10mm)を製作した。次に、積層体の正極体のリード部及び負極体のリード部を、各々電極端子部材の電極端子に溶接により接着した後、真空乾燥機を用いてこれらを160℃で24時間減圧乾燥した。
また、表面がプラスチックフィルムで被覆されたアルミ箔を基材とする一辺が150mmの正方形の偏平状の容器を、真空乾燥機を用いて105℃で15時間減圧乾燥した。この偏平状の容器は、一辺に開口部を有するものであった。
(Production of electric double layer capacitor)
An electrode sheet obtained by applying and drying a coating liquid containing activated carbon, carbon black, etc. on an aluminum foil, and a paper separator (thickness 50 μm), the lead portion of the electrode terminal member positive electrode alternately A total of 30 layers were laminated so that they could be connected to the negative electrode terminal, and a square laminate (
In addition, a square flat container having a side of 150 mm and having an aluminum foil whose surface was covered with a plastic film as a base material was dried under reduced pressure at 105 ° C. for 15 hours using a vacuum dryer. This flat container has an opening on one side.
積層体及び電極端子部材、偏平状の容器を、窒素雰囲気下で室温まで冷却した後、図3に示すように、電極端子部材の溶着剤板が容器の開口部内側と接触するように、積層体を容器に挿入した。溶着剤板の上部は、電極端子と容器の電気絶縁性を向上させるために、2mmの幅で容器から露出した状態にした。次に、プロピレンカーボネート溶媒にアンモニウム塩等を溶解させた電解液90mlを、偏平状の容器の開口部から注入した。電解液の注入を終了した後、30分間真空ポンプにより減圧にして、積層体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。 After the laminate, the electrode terminal member, and the flat container are cooled to room temperature under a nitrogen atmosphere, as shown in FIG. 3, the electrode terminal member is laminated so that the welding agent plate is in contact with the inside of the opening of the container. The body was inserted into the container. The upper part of the welding agent plate was exposed from the container with a width of 2 mm in order to improve the electrical insulation between the electrode terminal and the container. Next, 90 ml of an electrolytic solution in which an ammonium salt or the like was dissolved in a propylene carbonate solvent was injected from the opening of a flat container. After completing the injection of the electrolytic solution, the laminate was decompressed by a vacuum pump for 30 minutes, and the laminate was decompressed. During this period, the electrode terminal was energized to perform electrolytic purification.
その後、上下別々に温度コントロールが可能な2本のヒートシールバーを用いて、容器の開口部を挟んだ状態で押圧しながら、先端と反対側の溶着剤のみをヒートシールバーの温度で132℃に加熱してヒートシールし、偏平状の容器を密封して電気二重層キャパシタを得た。
偏平状の容器は、余分な溶着剤が溶融して容器の外部にはみ出すことなく、また高気密性が維持されて密封されていることが確認された。
Then, using two heat seal bars that can be controlled separately at the top and bottom, while pressing with the opening of the container sandwiched, only the welding agent on the side opposite to the tip is 132 ° C. at the temperature of the heat seal bar. And heat sealed, and the flat container was sealed to obtain an electric double layer capacitor.
It was confirmed that the flat container was sealed while the excess welding agent melted and did not protrude outside the container, and the airtightness was maintained.
[実施例2]
(電極端子部材の製作)
実施例1の電極端子部材の製作において、図7に示す金型の内部を二分割し、端子先端側(幅5mm)に150℃に溶融した高密度ポリエチレン樹脂(融点132〜134℃)を流した後、二分割の仕切りを取り除き、端子先端と反対側(幅25mm)に130℃に溶融した低密度ポリエチレン樹脂(融点106〜108℃)を流したほかは実施例1と同様にして電極端子部材を製作した。
[Example 2]
(Production of electrode terminal members)
In the manufacture of the electrode terminal member of Example 1, the inside of the mold shown in FIG. 7 was divided into two parts, and a high-density polyethylene resin (melting point: 132 to 134 ° C.) melted at 150 ° C. was flown to the terminal tip side (
(電気二重層キャパシタの製作)
次に、積層体の製作から、電解液の注入、積層体の減圧処理、電解精製までを実施例1と同様にして行なった。
その後、2本のヒートシールバーを用いて、容器の開口部を挟んだ状態で押圧しながら、先端側の溶着剤と反対側の溶着剤の加熱が均一となるように、ヒートシールバーの温度で132℃に加熱してヒートシールし、偏平状の容器を密封して電気二重層キャパシタを得た。
偏平状の容器は、余分な溶着剤が溶融して容器の外部にはみ出すことなく、また高気密性が維持されて密封されていることが確認された。
(Production of electric double layer capacitor)
Next, from the production of the laminate to the injection of the electrolytic solution, the reduced pressure treatment of the laminate, and the electrolytic purification were performed in the same manner as in Example 1.
Thereafter, the temperature of the heat seal bar is set so that the heating of the welding agent on the side opposite to the welding agent on the tip side becomes uniform while pressing with the two heat seal bars sandwiching the opening of the container. To 132 ° C. and heat sealed, and the flat container was sealed to obtain an electric double layer capacitor.
It was confirmed that the flat container was sealed while the excess welding agent melted and did not protrude outside the container, and the airtightness was maintained.
[実施例3]
(電極端子部材の製作)
実施例1の電極端子部材の製作において、図7に示す金型の内部を二分割し、端子先端側(幅5mm)にフェノール樹脂(熱硬化性)を配置した後、端子先端と反対側(幅25mm)に130℃に溶融した低密度ポリエチレン樹脂(融点106〜108℃)を流したほかは実施例1と同様にして電極端子部材を製作した。
[Example 3]
(Production of electrode terminal members)
In the manufacture of the electrode terminal member of Example 1, the inside of the mold shown in FIG. 7 was divided into two parts, and after phenol resin (thermosetting) was placed on the terminal tip side (
(電気二重層キャパシタの製作)
次に、積層体の製作から、電解液の注入、積層体の減圧処理、電解精製までを実施例1と同様にして行なった。
その後、2本のヒートシールバーを用いて、容器の開口部を挟んだ状態で押圧しながら、先端側の溶着剤と反対側の溶着剤の加熱が均一となるように、ヒートシールバーの温度で132℃に加熱してヒートシールし、偏平状の容器を密封して電気二重層キャパシタを得た。
偏平状の容器は、余分な溶着剤が溶融して容器の外部にはみ出すことなく、また高気密性が維持されて密封されていることが確認された。
(Production of electric double layer capacitor)
Next, from the production of the laminate to the injection of the electrolytic solution, the reduced pressure treatment of the laminate, and the electrolytic purification were performed in the same manner as in Example 1.
Thereafter, the temperature of the heat seal bar is set so that the heating of the welding agent on the side opposite to the welding agent on the tip side becomes uniform while pressing with the two heat seal bars sandwiching the opening of the container. To 132 ° C. and heat sealed, and the flat container was sealed to obtain an electric double layer capacitor.
It was confirmed that the flat container was sealed while the excess welding agent melted and did not protrude outside the container, and the airtightness was maintained.
[比較例1]
実施例1の電気二重層キャパシタの製作において、端子先端側の溶着剤と先端と反対側の溶着剤を、共にヒートシールバーの温度で132℃に加熱してヒートシールしたほかは実施例1と同様にして電気二重層キャパシタを製作した。
偏平状の容器は、余分な溶着剤が溶融して容器の外部に無秩序にはみ出して密封されていることが確認された。
[Comparative Example 1]
In the production of the electric double layer capacitor of Example 1, both the welding agent on the terminal tip side and the welding agent on the opposite side to the tip were both heated to 132 ° C. at the temperature of the heat seal bar and heat sealed. Similarly, an electric double layer capacitor was manufactured.
It was confirmed that the flat container was sealed by the excessive welding agent melting and protruding out of the container.
以上のように、本発明の実施例の電気化学キャパシタは、ヒートシールの際に余分な溶着剤が溶融して容器の外部にはみ出すことを防止でき、高気密性が維持可能なヒートシールを、効率よく実施できることが確認できた。 As described above, the electrochemical capacitor according to the embodiment of the present invention can prevent the excessive welding agent from melting and protruding to the outside of the container at the time of heat sealing, and a heat seal capable of maintaining high airtightness. It was confirmed that it could be implemented efficiently.
1 電極端子部材
2 溶着剤板
3 電極端子部材の正極体の端子
4 電極端子部材の負極体の端子
5 端子先端側の溶着剤
6 先端と反対側の溶着剤
7 積層体
8 積層体の正極体のリード部
9 積層体の負極体のリード部
10 偏平状の容器
11 偏平状の容器の開口部
12 熱硬化性樹脂
13 成型金型
DESCRIPTION OF
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008017940A JP2009182048A (en) | 2008-01-29 | 2008-01-29 | Manufacturing method of electrochemical capacitor |
DE200910006419 DE102009006419A1 (en) | 2008-01-29 | 2009-01-28 | Vehicle power source device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008017940A JP2009182048A (en) | 2008-01-29 | 2008-01-29 | Manufacturing method of electrochemical capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009182048A true JP2009182048A (en) | 2009-08-13 |
Family
ID=40936486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008017940A Pending JP2009182048A (en) | 2008-01-29 | 2008-01-29 | Manufacturing method of electrochemical capacitor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009182048A (en) |
DE (1) | DE102009006419A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3509517B2 (en) | 1997-12-18 | 2004-03-22 | 本田技研工業株式会社 | Cooling structure of battery and electric parts in electric vehicle |
JP2008017904A (en) | 2006-07-11 | 2008-01-31 | Takao:Kk | Pinball game machine |
-
2008
- 2008-01-29 JP JP2008017940A patent/JP2009182048A/en active Pending
-
2009
- 2009-01-28 DE DE200910006419 patent/DE102009006419A1/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
DE102009006419A1 (en) | 2009-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100740021B1 (en) | Method for making electrochemical device and electrochemical device | |
JP5561507B2 (en) | Winding type battery and manufacturing method thereof | |
KR20020019003A (en) | Thin lithium battery with slurry cathode | |
WO2011027683A1 (en) | Flat-wound electricity storage device cell and flat-wound electricity storage device module | |
JP2009289661A (en) | Tape wound body manufacturing device | |
JP2009146602A (en) | Method for manufacturing lamination type secondary battery | |
JPWO2017158986A1 (en) | Battery cell | |
CN104241731A (en) | Cathode structre of lithium-air battery and method for manufacturing cathode of lithium-air battery | |
JP2017027652A (en) | Nonaqueous electrolyte secondary battery and manufacturing method for the same | |
KR20140019753A (en) | Terminal lead | |
JP2009182048A (en) | Manufacturing method of electrochemical capacitor | |
JP2003077545A (en) | Method of manufacturing nonaqueous electrolyte battery | |
KR20100094898A (en) | Lithium battery and its assembly method | |
JP2005252003A (en) | Electric double-layer capacitor electrode terminal member, electric double-layer capacitor using it, and manufacturing method of the electric double-layer capacitor | |
US20180174765A1 (en) | Electrochemical device | |
KR102616553B1 (en) | Method of manufacturing electrode assembly, electrode assembly, and battery cell including one or more electrode assemblies | |
JP2004006124A (en) | Battery and its manufacturing method | |
JP2006196562A (en) | Electric double layer capacitor | |
JP2017154760A (en) | Seal bar, seal bar system, and method of manufacturing bag-like article | |
JPH10144574A (en) | Electrolytic capacitor | |
JP2003331798A (en) | Cladding film for sealing electrode body and sealing method of cladding film | |
JP2011228400A (en) | Electrochemical device and manufacturing method for the same | |
JP2003077530A (en) | Method of manufacturing nonaqueous electrolyte battery | |
JP2019192625A (en) | Manufacturing method for power storage module and power storage module | |
JP5966891B2 (en) | Method for manufacturing power storage device |