JP2009068612A - Vibration control damper - Google Patents
Vibration control damper Download PDFInfo
- Publication number
- JP2009068612A JP2009068612A JP2007238282A JP2007238282A JP2009068612A JP 2009068612 A JP2009068612 A JP 2009068612A JP 2007238282 A JP2007238282 A JP 2007238282A JP 2007238282 A JP2007238282 A JP 2007238282A JP 2009068612 A JP2009068612 A JP 2009068612A
- Authority
- JP
- Japan
- Prior art keywords
- viscoelastic body
- adhesive
- damper
- damping damper
- interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000853 adhesive Substances 0.000 claims abstract description 50
- 230000001070 adhesive effect Effects 0.000 claims abstract description 32
- 238000013016 damping Methods 0.000 claims description 56
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 10
- 229920001971 elastomer Polymers 0.000 claims description 9
- 239000000806 elastomer Substances 0.000 claims description 7
- 239000003822 epoxy resin Substances 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 6
- 230000033001 locomotion Effects 0.000 claims description 3
- 239000003973 paint Substances 0.000 claims description 3
- 238000010008 shearing Methods 0.000 claims description 2
- 229920003244 diene elastomer Polymers 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 2
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
本発明は、ビルや住宅等の建物に風や地震等の外力が作用したときに、その振動エネルギーを吸収させて建物の揺れ動きや振動を減衰させるように、建物における構造用骨組内に組み込んで用いられる制震ダンパーに関するものである。 The present invention is incorporated in a structural framework in a building so that when external force such as wind or earthquake acts on a building such as a building or a house, the vibration energy is absorbed and the shaking motion and vibration of the building are attenuated. It relates to the damping damper used.
住宅等の建物においては、柱と横架材とから形成される軸組フレーム内に、制震ダンパーを対角線状に架設して、当該制震ダンパーにより振動エネルギーを熱エネルギーに変換することにより、振動エネルギーの吸収を図る技術が開発されている(特許文献1)。そして、そのような制震ダンパーとしては、オイルダンパー、粘性ダンパー、鋼材ダンパー、摩擦ダンパー等が実用化されている。 In a building such as a house, a damping damper is installed diagonally in a frame frame formed of columns and horizontal members, and vibration energy is converted into thermal energy by the damping damper. A technique for absorbing vibration energy has been developed (Patent Document 1). As such a vibration damper, an oil damper, a viscous damper, a steel damper, a friction damper, and the like have been put into practical use.
制震ダンパーを設置した軸組フレームにおいて、地震等が原因で振動が生じた際には、制震ダンパーの復元力特性曲線(変位−荷重曲線)は図8のR1の如き楕円となる。また、規模の大きい地震等により、制震ダンパーにかかる荷重が大きくなった場合には、復元力特性曲線はR2 の如く大きな楕円となる。その結果、軸組フレームにおいて制震ダンパーを固定している固定部材や軸組フレームを固定している梁等の周囲の構造部材に加わる荷重が、破壊限界値Cを越えた過大なものとなり、制震ダンパー自体が壊れたり、周囲の構造部材を破損させたりする事態が発生する。 When vibration is generated due to an earthquake or the like in the frame frame where the damping damper is installed, the restoring force characteristic curve (displacement-load curve) of the damping damper becomes an ellipse as indicated by R 1 in FIG. In addition, the large earthquake like scale, when the load applied to the vibration control damper becomes large, restoring force characteristic curve becomes large ellipse as R 2. As a result, the load applied to the surrounding structural members such as the fixing member fixing the damping damper and the beam fixing the frame frame in the frame frame becomes excessive, exceeding the fracture limit C, There is a situation in which the damping damper itself is broken or the surrounding structural members are damaged.
それゆえ、そのような不具合を是正するための制震ダンパーとして、特許文献2の如く、振動を減衰させる第一ダンパー(たとえば、オイルダンパー)と、その第一ダンパーに加わる負荷が一定値以上となったときに当該負荷が第一ダンパーに伝達されるのを遮断する第二ダンパー(たとえば、摩擦ダンパー)とを直列に接続した制震ダンパーが開発されている。
Therefore, as a damping damper for correcting such a malfunction, as in
しかしながら、上記特許文献2の如き制震ダンパーは、構造が複雑であるため、安価に製造することができない。また、第一ダンパーおよび第二ダンパーに十分な機能を発現させるためには大きなものとせざるを得ず、設置される場所が限定されてしまう、という不具合がある。
However, the damping damper as in
本発明の目的は、上記従来の制震ダンパーが有する問題点を解消し、安価に製造することができ、設置場所が限定されない上、中小規模の地震等の際には、振動を効果的に減衰させることができるとともに、大規模な地震等により過度の荷重が加わった場合には、摩擦ダンパーとして機能し、荷重の増大を抑えて、壊れたり周囲の構造部材を破損させたりする事態を防止することができ、安全性が高く、修理、交換などのコストがかからない実用的な制震ダンパーを提供することにある。 The object of the present invention is to solve the above-mentioned problems of the conventional damping damper, can be manufactured at a low cost, and the installation location is not limited. In addition to being able to attenuate, when an excessive load is applied due to a large-scale earthquake, etc., it functions as a friction damper, preventing an increase in load and preventing a situation where it breaks or damages surrounding structural members The object is to provide a practical damping damper that is safe and has high safety and does not cost repair or replacement.
かかる本発明の内、請求項1に記載された発明は、第一部材と、その第一部材と同一直線状に配置されて部分的に重合する第二部材と、それらの2つの部材の重合部分の間に設置される粘弾性体とからなり、前記第一部材と前記第二部材との相反方向への動作によって前記粘弾性体を剪断変形させて減衰作用を生じさせる制震ダンパーであって、前記第一部材と前記粘弾性体との界面、あるいは前記第二部材と前記粘弾性体との界面の内のいずれかにおいては、前記部材の表面と粘弾性体とが接着剤によって接着されているとともに、他方の界面においては、前記部材の表面と粘弾性体とが接着剤によって接着されておらず、粘弾性体が自己粘着力によって前記部材の表面に粘着していることを特徴とするものである。
Among the present inventions, the invention described in
請求項2に記載された発明は、請求項1に記載された発明において、前記接着剤による単位面積当たりの接着力が粘弾性体の単位面積当たりの自己粘着力よりも大きいことを特徴とするものである。
The invention described in
請求項3に記載された発明は、請求項1、または請求項2に記載された発明において、粘弾性体の自己粘着力が5N/cm2以上50N/cm2以下に調整されていることを特徴とするものである。
The invention described in
請求項4に記載された発明は、請求項1〜3のいずれかに記載された発明において、接着剤によって接着された界面の耐剪断強度が、粘弾性体の耐剪断強度よりも大きいことを特徴とするものである。
The invention described in
請求項5に記載された発明は、請求項1〜4のいずれかに記載された発明において、粘弾性体が、スチレン系エラストマー、ジエン系エラストマーであることを特徴とするものである。
The invention described in claim 5 is the invention described in any one of
請求項6に記載された発明は、請求項1〜5のいずれかに記載された発明において、前記第一部材および第二部材にエポキシ樹脂塗料が塗布されていることを特徴とするものである。
The invention described in claim 6 is characterized in that in the invention described in any one of
[作用]
本発明の制震ダンパー(粘弾性ダンパー)は、構造骨組内において、地震等により粘弾性体の自己粘着力に満たない負荷が加わった場合には、部材と粘弾性体との界面において相対位置がずれないので、粘弾性体が剪断変形することによって、振動エネルギーを熱エネルギーに変換する。また、粘弾性体の自己粘着力を上回る大きな荷重が加わった場合には、部材と粘弾性体との非接着界面(粘着界面)において、部材が粘弾性体の自己粘着力に抗して粘弾性体の表面を滑り出す。それゆえ、本発明の制震ダンパーの復元力特性曲線は図1の如きものとなり、従来の制震ダンパー(部材と粘弾性体との全ての界面を接着したもの)に比べて、加わる荷重の最大値(すなわち、図1におけるC、以下、閾値という)が低い。
[Action]
The damping damper (viscoelastic damper) of the present invention is a relative position at the interface between the member and the viscoelastic body when a load less than the self-adhesive force of the viscoelastic body is applied due to an earthquake or the like in the structural framework. Therefore, the vibrational energy is converted into thermal energy by shear deformation of the viscoelastic body. In addition, when a large load exceeding the self-adhesive force of the viscoelastic body is applied, the member resists the self-adhesive force of the viscoelastic body at the non-adhesive interface (adhesive interface) between the member and the viscoelastic body. Slide out the surface of the elastic body. Therefore, the restoring force characteristic curve of the damping damper of the present invention is as shown in FIG. 1, and compared with the conventional damping damper (all the interfaces between the member and the viscoelastic body are bonded) The maximum value (that is, C in FIG. 1, hereinafter referred to as a threshold) is low.
したがって、加わる荷重の大きさが閾値Cに達しない場合(たとえば、復元力特性曲線がR1として得られる場合)には、粘弾性体が振動エネルギー(復元力特性曲線R1で囲まれた面積に相当するもの)を熱エネルギーに変換することによって吸収する。また、加わる荷重の大きさが閾値Cを上回る場合(たとえば、復元力特性曲線がR2として得られる場合)には、部材が粘弾性体の表面を滑ることによって振動エネルギーを吸収し、荷重の増大を抑制する。 Therefore, when the magnitude of the applied load does not reach the threshold value C (for example, when the restoring force characteristic curve is obtained as R 1 ), the viscoelastic body has vibration energy (the area surrounded by the restoring force characteristic curve R 1). Is absorbed by converting it into thermal energy. When the applied load exceeds the threshold C (for example, when the restoring force characteristic curve is obtained as R 2 ), the member absorbs vibration energy by sliding on the surface of the viscoelastic body, and the load Suppress the increase.
それゆえ、制震ダンパーを構造骨組内に設置する際に、制震ダンパー自体の破壊限界力、および、制震ダンパーの周囲の構造部材(固定部材や柱や梁等)の破壊限界力を超えないように荷重の閾値Cを設定することにより、制震ダンパー自体や周囲の構造部材の破損を防止することが可能となる。 Therefore, when the damping damper is installed in the structural frame, it exceeds the breaking limit force of the damping damper itself and the breaking limit force of the structural members (fixed members, columns, beams, etc.) around the damping damper. By setting the load threshold value C so that there is no damage, it is possible to prevent damage to the damping damper itself and surrounding structural members.
請求項1に記載の制震ダンパーは、荷重(閾値に満たない荷重)が加わると、粘弾性体の剪断変形によって振動エネルギーを吸収して振動を減衰させることができる。また、所定量以上の荷重(閾値を上回る荷重)が加わった場合には、片方の部材の表面と粘弾性体との非接着界面において、部材が粘弾性体との接触面上を摺動することにより摩擦ダンパーとして機能し、過大な荷重によって破損したり周囲の構造部材を破損させたりする事態を防止することができる。したがって、請求項1に記載の制震ダンパーによれば、そのもの自体や周辺構造部材を修理、交換する必要がなくなるため、メンテナンスのコストや手間を低減することができる。加えて、負荷の閾値を任意に設定することによって、安全性を確保しながら十分な制震効果を発現させることができる。その反面、他方の部材の表面と粘弾性体との界面が接着剤によって強固に接着されているので、振動を減衰させる機能を何度でも安定して発現させることができる。 When a load (a load less than a threshold value) is applied, the vibration damping damper according to the first aspect can absorb vibration energy and attenuate the vibration by shear deformation of the viscoelastic body. Further, when a load of a predetermined amount or more (a load exceeding a threshold value) is applied, the member slides on the contact surface with the viscoelastic body at the non-adhesive interface between the surface of one member and the viscoelastic body. Thus, it functions as a friction damper, and it is possible to prevent a situation in which it is damaged by an excessive load or a surrounding structural member is damaged. Therefore, according to the seismic damper according to the first aspect, it is not necessary to repair and replace itself and the surrounding structural members, so that maintenance costs and labor can be reduced. In addition, by setting the threshold value of the load arbitrarily, a sufficient seismic control effect can be exhibited while ensuring safety. On the other hand, since the interface between the surface of the other member and the viscoelastic body is firmly bonded with the adhesive, the function of damping the vibration can be stably expressed any number of times.
請求項2に記載の制震ダンパーは、接着剤による単位面積当たりの接着力が粘弾性体の単位面積当たりの自己粘着力よりも大きいため、片方の部材の表面と粘弾性体との非接着界面において部材が粘弾性体との接触面上を摺動するよりも前に、他方の部材の表面と粘弾性体との接着界面において接着破壊が生じる、という事態が発生しない。したがって、制震ダンパーとしての機能の信頼性が高い。
In the vibration damping damper according to
請求項3に記載の制震ダンパーは、粘弾性体の自己粘着力が5N/cm2以上50N/cm2以下に調整されているため、非常に低い揺れが生じただけで、片方の部材の表面と粘弾性体との非接着界面において、部材が粘弾性体との接触面上を摺動する事態や、強い揺れが生じたにも拘わらず、部材が粘弾性体との接触面上を摺動しないため過大な荷重が加わる事態が生じない。
Seismic Damper according to
請求項4に記載の制震ダンパーは、接着剤によって接着された界面の耐剪断強度が、粘弾性体の耐剪断強度よりも大きいため、揺れが生じた際に、粘弾性体が剪断強度によって破損する前に、制震部材の表面と粘弾性体との接着界面において接着破壊が生じ、制震部材が粘弾性体との接触面上を摺動する、という事態が生じない。したがって、振動エネルギーを減衰させる機能を安定して発現させることができる。
In the damping damper according to
請求項5に記載の制震ダンパーは、粘弾性体が、スチレン系エラストマー、ジエン系エラストマーであるため、温度依存性(0〜40℃)が少なく、バネと減衰の変化および自己粘着力の変化が少なく調整が容易である。そのため、第一部材、第二部材に対する粘弾性体の自己粘着力の調整も容易である。 In the vibration damping damper according to claim 5, since the viscoelastic body is a styrene-based elastomer or a diene-based elastomer, the temperature dependency (0 to 40 ° C.) is small, and the spring and damping change and self-adhesive force change are small. There are few and adjustment is easy. Therefore, it is easy to adjust the self-adhesive force of the viscoelastic body with respect to the first member and the second member.
請求項6に記載の制震ダンパーは、第一部材および第二部材にエポキシ樹脂塗料が塗布されているため、表面状態が均一化(安定化)し、第一部材、第二部材に対する粘弾性体の自己粘着力の調整がきわめて容易である。 In the vibration damping damper according to claim 6, since the epoxy resin paint is applied to the first member and the second member, the surface state becomes uniform (stabilized), and the viscoelasticity with respect to the first member and the second member It is very easy to adjust the self-adhesion of the body.
以下、本発明の制震ダンパーの一実施形態について図面に基づいて説明する。 Hereinafter, an embodiment of a vibration damper according to the present invention will be described with reference to the drawings.
[制震ダンパーの構造]
図2(a)は、本発明に係る制震ダンパー(粘弾性ダンパー)の正面を示したものであり、図2(b)は、制震ダンパーの側面を示したものである。制震ダンパー1は、第一部材2、第一部材2の外側に配置された第二部材3,3、第一部材2と第二部材3,3との間に取り付けられた粘弾性体4,4等によって構成されている。
[Structure of vibration control damper]
Fig.2 (a) shows the front of the damping damper (viscoelastic damper) based on this invention, FIG.2 (b) shows the side surface of the damping damper. The
第一部材2は、鋼板によって矩形の板状に形成されており、長さ×幅×高さ(厚さ)=150mm×80mm×9mmの大きさを有している。また、第一部材2の表面には、カチオン電着塗装によって、エポキシ樹脂がコーティングされている。一方、第二部材3は、第一部材2と同様な鋼板によって、第一部材2と同一形状に形成されている。さらに、第二部材3の表面には、第一部材2と同様に、カチオン電着塗装によって、エポキシ樹脂がコーティングされている。また、粘弾性体4は、スチレン系エラストマーによって矩形の板状に形成されており、長さ×幅×高さ(厚さ)=75mm×75mm×5mmの大きさを有している。
The
制震ダンパー1は、第一部材2の左側の部分の表裏に、粘弾性体4,4を粘着させ(粘弾性体4,4の有する自己粘着力によって粘着させ)、それらの粘弾性体4,4の第二部材3,3側に、それぞれ、第二部材3,3の右側の部分を、接着剤(ゴム糊;天然ゴムあるいは合成ゴムを有機溶剤に溶かしたもの)7で接着することによって一体的に組み付けられている。そして、第一部材2の左側の部分の上下に、2枚の第二部材3,3が積層されており、第一部材2と上側の第二部材3との積層部分の略中央、および、第一部材2と下側の第二部材3との積層部分の略中央に、それぞれ、粘弾性体4,4が介在した状態になっている。
The
なお、制震ダンパー1においては、第一部材2の表面と粘弾性体4,4との界面における粘着強度が20N/cm2に調整されており、第二部材3,3の表面と粘弾性体4,4との界面における接着強度が50N/cm2以上かつ接着破断強度以下に調整されている。加えて、制震ダンパー1においては、接着剤によって接着された界面の耐剪断強度(すなわち、接着界面において剪断応力を加えた場合に、接着破壊を生じない最大の剪断強度)が50N/cm2以上かつ接着破断強度以下に調整されており、各粘弾性体4,4の耐剪断強度(すなわち、粘弾性体4に剪断応力を加えた場合に、粘弾性体4が破損しない最大の剪断強度)が50N/cm2以上かつ接着破断強度以下に調整されている。
In the
[制震ダンパーの性能]
上記の如く構成された制震ダンパー1を水平方向に変形させ、そのときの復元力特性曲線(変位−荷重曲線)を測定した。また、比較のために、部材(第一部材および第二部材)と粘弾性体との全ての界面を接着剤によって接着した制震ダンパーを形成し、その制震ダンパーを同一の条件で水平方向に変形させたときの復元力特性曲線も測定した。それらの測定結果を図3に示す。図3より、第二部材3と粘弾性体4,4との界面を接着していない制震ダンパー1によれば、荷重の最大値(閾値)を低減できることが分かる。
[Performance of vibration control damper]
The damping
[制震ダンパーの変更例]
本発明の制震ダンパーの構成は、上記実施形態の態様に何ら限定されるものではなく、部材(第一部材、第二部材)、粘弾性体、接着剤の材質・形状・構造等の構成を、本発明の趣旨を逸脱しない範囲で適宜変更することができる。
[Change example of seismic damper]
The structure of the vibration damper of the present invention is not limited to the aspect of the above-described embodiment, and the structure of the member (first member, second member), viscoelastic body, adhesive material, shape, structure, etc. Can be appropriately changed without departing from the gist of the present invention.
たとえば、制震ダンパーは、上記実施形態の如く、矩形で板状の第一部材の表裏両側にそれぞれ粘弾性体を介在させて矩形で板状の第二部材を積層したものに限定されず、図4の如く、中空の四角柱状の第一部材2’の外周を中空の四角柱状の第二部材3’で覆い、それらの部材の間に粘弾性体4’を介在させたものや、図5の如く、小径の円筒状の第一部材2”の外周を大径の円筒状の第二部材3”で覆い、それらの部材の間に粘弾性体4”を介在させたもの等に変更することも可能である(なお、図6は、図4の制震ダンパー1’、図5の制震ダンパー1”の長手方向に沿った断面を示したものである)。加えて、制震ダンパーを、上記実施形態の如く、矩形で板状の第一部材の表裏両側に粘弾性体を介在させて矩形で板状の第二部材を積層したものとする場合には、ネジ等により第二部材同士の間隔を所定の間隔に保つように構成することも可能である。
For example, the damping damper is not limited to the rectangular plate-shaped second member laminated on both the front and back sides of the rectangular plate-shaped first member as in the above embodiment, As shown in FIG. 4, the outer periphery of a hollow quadrangular prism-shaped
また、制震ダンパーは、上記実施形態の如く、第一部材と粘弾性体との間を粘弾性体の自己粘着力によって粘着するとともに第二部材と粘弾性体との間を接着したものに限定されず、図7の如く、第一部材2と粘弾性体4,4との間を接着剤7で接着するとともに第二部材3と粘弾性体4,4との間を粘弾性体4,4の自己粘着力によって粘着したものに変更することも可能である。
Further, as in the above-described embodiment, the vibration damping damper adheres between the first member and the viscoelastic body by the self-adhesive force of the viscoelastic body and adheres between the second member and the viscoelastic body. Without being limited, as shown in FIG. 7, the
また、部材は、鋼板によって形成されたものに限定されず、ステンレスやアルミニウム等のその他の金属によって形成されたもの等に変更することも可能である。なお、上記実施形態の如き鋼製の部材を用いた場合には、部材が錆びたりしないようにエポキシ樹脂塗料の塗布によるカチオン電着塗装や溶融亜鉛メッキの処理をすることによって、長期間に亘って性能が変化しないものとなる。加えて、表面状態が均一化(安定化)するため、表面摩擦力が一定になることにより、粘弾性体の制震部材に対する自己粘着力の調整が容易となる。 Moreover, a member is not limited to what was formed with the steel plate, It is also possible to change into what was formed with other metals, such as stainless steel and aluminum. In addition, when a steel member such as the above embodiment is used, a cationic electrodeposition coating or hot-dip galvanizing treatment by applying an epoxy resin coating is performed so that the member does not rust, and a long period of time can be obtained. The performance will not change. In addition, since the surface state is made uniform (stabilized), the surface friction force becomes constant, so that the self-adhesion force of the viscoelastic body to the vibration control member can be easily adjusted.
一方、第一部材と第二部材との間に介在させる粘弾性体の材質は、スチレン系エラストマーに限定されず、その他のウレタン系エラストマー、アクリル系エラストマー、合成ゴムや天然ゴム等に変更することも可能である。加えて、部材と粘弾性体を接着する接着剤もゴム糊に限定されず、粘弾性体の材質に合わせて適宜変更することができる。 On the other hand, the material of the viscoelastic body interposed between the first member and the second member is not limited to styrene elastomers, but may be changed to other urethane elastomers, acrylic elastomers, synthetic rubbers, natural rubbers, etc. Is also possible. In addition, the adhesive that bonds the member and the viscoelastic body is not limited to the rubber paste, and can be appropriately changed according to the material of the viscoelastic body.
1・・制震ダンパー
2・・第一部材
3・・第二部材
4・・粘弾性体
7・・接着剤
1 .... Damping
Claims (6)
前記第一部材と前記粘弾性体との界面、あるいは前記第二部材と前記粘弾性体との界面の内のいずれかにおいては、前記部材の表面と粘弾性体とが接着剤によって接着されているとともに、
他方の界面においては、前記部材の表面と粘弾性体とが接着剤によって接着されておらず、粘弾性体が自己粘着力によって前記部材の表面に粘着していることを特徴とする制震ダンパー。 A first member, a second member arranged in the same straight line as the first member and partially overlapping, and a viscoelastic body installed between the overlapping portions of the two members, A damping damper that causes a damping action by shearing and deforming the viscoelastic body by a reciprocal movement between one member and the second member,
In any one of the interface between the first member and the viscoelastic body or the interface between the second member and the viscoelastic body, the surface of the member and the viscoelastic body are bonded by an adhesive. And
At the other interface, the vibration damper is characterized in that the surface of the member and the viscoelastic body are not adhered by an adhesive, and the viscoelastic body is adhered to the surface of the member by self-adhesive force. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007238282A JP5002383B2 (en) | 2007-09-13 | 2007-09-13 | Damping damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007238282A JP5002383B2 (en) | 2007-09-13 | 2007-09-13 | Damping damper |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009068612A true JP2009068612A (en) | 2009-04-02 |
JP5002383B2 JP5002383B2 (en) | 2012-08-15 |
Family
ID=40605090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007238282A Active JP5002383B2 (en) | 2007-09-13 | 2007-09-13 | Damping damper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5002383B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011051515A (en) * | 2009-09-03 | 2011-03-17 | Sumitomo Precision Prod Co Ltd | Marine propeller |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005213956A (en) * | 2004-01-30 | 2005-08-11 | Tokai Rubber Ind Ltd | Damping structure of building |
JP2006063759A (en) * | 2004-08-30 | 2006-03-09 | Sekisui Chem Co Ltd | Vibration damping material constructing method and its constructing tool |
JP2006349064A (en) * | 2005-06-16 | 2006-12-28 | Tokai Rubber Ind Ltd | Vibration control device and its manufacturing method |
-
2007
- 2007-09-13 JP JP2007238282A patent/JP5002383B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005213956A (en) * | 2004-01-30 | 2005-08-11 | Tokai Rubber Ind Ltd | Damping structure of building |
JP2006063759A (en) * | 2004-08-30 | 2006-03-09 | Sekisui Chem Co Ltd | Vibration damping material constructing method and its constructing tool |
JP2006349064A (en) * | 2005-06-16 | 2006-12-28 | Tokai Rubber Ind Ltd | Vibration control device and its manufacturing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011051515A (en) * | 2009-09-03 | 2011-03-17 | Sumitomo Precision Prod Co Ltd | Marine propeller |
Also Published As
Publication number | Publication date |
---|---|
JP5002383B2 (en) | 2012-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1948878B1 (en) | Structure with increased damping by means of fork configuration dampers | |
JP5426048B1 (en) | Damping wall structure | |
US20170268224A1 (en) | Inter-element joint structure | |
JP4737056B2 (en) | Damper device, damper device design method, damping structure, damping method | |
JP2009150181A (en) | Friction damper | |
JP5132892B2 (en) | Seismic support device | |
JP5752843B1 (en) | Damping wall structure that can be displaced vertically in buildings | |
JP5002383B2 (en) | Damping damper | |
KR20140034268A (en) | Aseismic damper | |
JP2006241934A (en) | Damper device | |
US20190376306A1 (en) | Viscoelastic bracing damper | |
JP2009150514A (en) | Friction damper | |
JP5076874B2 (en) | Friction damper | |
JP6635607B2 (en) | Energy absorption mechanism and wooden building | |
JP4074858B2 (en) | Building vibration control structure | |
JP5803024B2 (en) | Bracing damper structure | |
JP5713962B2 (en) | Vibration control device | |
JP2017115553A (en) | Vibration control device and vibration control structure for building | |
JP5752844B1 (en) | Cantilever damping wall structure of building | |
JP4878338B2 (en) | Reinforcement structure of buildings and structures | |
JP2019019516A (en) | Compound damper, viscoelastic damper | |
JP7221673B2 (en) | Vibration damping member with jig and mounting method of vibration damping member | |
JP3262630B2 (en) | Dynamic absorber for buildings and buildings | |
JP2012180635A (en) | Joint damper and structure of joint damper part | |
JP6037298B1 (en) | Energy absorption mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120501 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120521 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5002383 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140418 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |