Nothing Special   »   [go: up one dir, main page]

JP2008310229A - レジスト下層膜材料およびこれを用いたパターン形成方法 - Google Patents

レジスト下層膜材料およびこれを用いたパターン形成方法 Download PDF

Info

Publication number
JP2008310229A
JP2008310229A JP2007159992A JP2007159992A JP2008310229A JP 2008310229 A JP2008310229 A JP 2008310229A JP 2007159992 A JP2007159992 A JP 2007159992A JP 2007159992 A JP2007159992 A JP 2007159992A JP 2008310229 A JP2008310229 A JP 2008310229A
Authority
JP
Japan
Prior art keywords
resist
group
layer film
pattern
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007159992A
Other languages
English (en)
Other versions
JP4745298B2 (ja
Inventor
Jun Hatakeyama
畠山  潤
Takeshi Watanabe
武 渡辺
Takeshi Kanou
剛 金生
Toshihiko Fujii
俊彦 藤井
Tsutomu Ogiwara
勤 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007159992A priority Critical patent/JP4745298B2/ja
Publication of JP2008310229A publication Critical patent/JP2008310229A/ja
Application granted granted Critical
Publication of JP4745298B2 publication Critical patent/JP4745298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)

Abstract

【課題】短波長の露光において、最適なn値、k値を有し、かつ基板エッチング条件でのエッチング耐性にも優れ、例えば、珪素含有2層レジストプロセス、あるいは珪素含有中間層膜による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望なレジスト下層膜材料を提供する。
【解決手段】リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、下記一般式(1)で示される繰り返し単位を有することを特徴とするレジスト下層膜材料。
【化37】
Figure 2008310229

【選択図】なし

Description

本発明は、半導体素子などの製造工程における微細加工に用いられる反射防止膜材料として有効なレジスト下層膜材料に関し、特に、遠紫外線、ArFエキシマレーザー光(193nm)、F2レーザー光(157nm)、Kr2レーザー光(146nm)、Ar2レーザー光(126nm)、軟X線(EUV、13.5nm)、電子線(EB)等での露光に好適な多層レジスト膜のレジスト下層膜材料に関するものである。さらに、本発明は、これを用いてリソグラフィーにより基板にパターンを形成する方法に関するものである。
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
レジストパターン形成の際に使用するリソグラフィー用の光源として、水銀灯のg線(436nm)もしくはi線(365nm)を光源とする光露光が広く用いられており、更なる微細化のための手段として、露光光を短波長化する方法が有効とされてきた。このため、64MビットDRAM加工方法の量産プロセスには、露光光源としてi線(365nm)に代わって短波長のKrFエキシマレーザー(248nm)が利用された。しかし、更に微細な加工技術(加工寸法が0.13μm以下)を必要とする集積度1G以上のDRAMの製造には、より短波長の光源が必要とされ、特にArFエキシマレーザー(193nm)を用いたリソグラフィーが検討されてきている。
一方、従来、段差基板上に高アスペクト比のパターンを形成するには2層レジスト法が優れていることが知られており、更に、2層レジスト膜を一般的なアルカリ現像液で現像するためには、ヒドロキシ基やカルボキシル基等の親水基を有する高分子シリコーン化合物が必要である。
シリコーン系化学増幅ポジ型レジスト材料としては、安定なアルカリ可溶性シリコーンポリマーであるポリヒドロキシベンジルシルセスキオキサンのフェノール性水酸基の一部をt−Boc基で保護したものをベース樹脂として使用し、これと酸発生剤とを組み合わせたKrFエキシマレーザー用シリコーン系化学増幅ポジ型レジスト材料が提案された(特許文献1、非特許文献1等参照)。また、ArFエキシマレーザー用としては、シクロヘキシルカルボン酸を酸不安定基で置換したタイプのシルセスキオキサンをベースにしたポジ型レジスト材料が提案されている(特許文献2,3、非特許文献2等参照)。更に、F2レーザー用としては、ヘキサフルオロイソプロパノールを溶解性基として持つシルセスキオキサンをベースにしたポジ型レジスト材料が提案されている(特許文献4等参照)。上記ポリマーは、トリアルコキシシラン、又はトリハロゲン化シランの縮重合によるラダー骨格を含むポリシルセスキオキサンを主鎖に含むものである。
珪素が側鎖にペンダントされたレジスト用ベースポリマーとしては、珪素含有(メタ)アクリルエステル系ポリマーが提案されている(特許文献5、非特許文献3等参照)。
2層レジスト法の下層膜としては、酸素ガスによるエッチングが可能な炭化水素化合物であり、更にその下の基板をエッチングする場合におけるマスクになるため、高いエッチング耐性を有することが必要である。酸素ガスエッチングにおいては、珪素原子を含まない炭化水素のみで構成される必要がある。また、上層膜の珪素含有レジスト膜の線幅制御性を向上させ、定在波によるパターン側壁の凹凸とパターンの崩壊を低減させるためには、反射防止膜としての機能も有し、具体的には下層膜からレジスト上層膜内への反射率を1%以下に抑える必要がある。
ここで、最大500nmの膜厚までの反射率を計算した結果を図1,2に示す。露光波長は193nm、レジスト上層膜のn値を1.74、k値を0.02と仮定し、図1ではレジスト下層膜のk値を0.3に固定し、縦軸にn値を1.0〜2.0、横軸に膜厚0〜500nmの範囲で変動させたときの基板反射率を示す。膜厚が300nm以上の2層レジスト用レジスト下層膜を想定した場合、レジスト上層膜と同程度かあるいはそれよりも少し屈折率が高い1.6〜1.9の範囲で反射率を1%以下にできる最適値が存在する。
また、図2では、レジスト下層膜のn値を1.5に固定し、k値を0〜0.8の範囲で変動させたときの反射率を示す。k値が0.24〜0.15の範囲で反射率を1%以下にすることが可能である。一方、40nm程度の薄膜で用いられる単層レジスト用の反射防止膜の最適k値は0.4〜0.5であり、300nm以上で用いられる2層レジスト用のレジスト下層膜の最適k値とは異なる。2層レジスト用のレジスト下層膜では、より低いk値、即ちより高透明なレジスト下層膜が必要であることが示されている。
ここで、波長193nm用のレジスト下層膜材料として、非特許文献4に紹介されているようにポリヒドロキシスチレンとアクリル酸エステルの共重合体が検討されている。ポリヒドロキシスチレンは193nmに非常に強い吸収を持ち、そのもの単独ではk値が0.6前後と高い値である。そこで、k値が殆ど0であるアクリル酸エステルと共重合させることによって、k値を0.25前後に調整しているのである。
しかしながら、ポリヒドロキシスチレンに対して、アクリル酸エステルの基板エッチングにおけるエッチング耐性は弱く、しかもk値を下げるためにかなりの割合のアクリル酸エステルを共重合せざるを得ず、結果的に基板エッチングの耐性はかなり低下する。エッチングの耐性は、エッチング速度だけでなく、エッチング後の表面ラフネスの発生にも現れてくる。アクリル酸エステルの共重合によってエッチング後の表面ラフネスの増大が深刻なほど顕著になっている。
ベンゼン環よりも波長193nmにおける透明性が高く、エッチング耐性が高いものの一つにナフタレン環がある。例えば、特許文献6にナフタレン環、アントラセン環を有するレジスト下層膜が提案されている。しかしながら、ナフトール共縮合ノボラック樹脂、ポリビニルナフタレン樹脂は、更に透明性を上げなくてはならない。また、ナフトール共縮合ノボラック樹脂、ポリビニルナフタレン樹脂の波長193nmにおけるn値は低く、本発明者らの測定した結果では、ナフトール共縮合ノボラック樹脂で1.4、ポリビニルナフタレン樹脂に至っては1.2である。例えば、特許文献7、特許文献8で示されるアセナフチレン重合体においても、波長248nmに比べて193nmにおけるn値が低く、k値は高く、共に目標値には達していない。n値が高く、k値が低く透明でかつエッチング耐性が高い下層膜が求められている。
一方、珪素を含まない単層レジストをレジスト上層膜、その下に珪素を含有するレジスト中間層膜、更にその下に有機膜のレジスト下層膜を積層する3層プロセスが提案されている(例えば、非特許文献5参照)。
一般的には珪素含有レジストより単層レジストの方が解像性に優れ、3層プロセスでは高解像な単層レジストを露光イメージング層として用いることができる。
レジスト中間層膜としては、スピンオングラス(SOG)膜が用いられ、多くのSOG膜が提案されている。
ここで3層プロセスにおける基板反射を抑えるための最適な下層膜の光学定数は2層プロセスにおけるそれとは異なっている。
基板反射をできるだけ抑え、具体的には1%以下にまで低減させる目的は2層プロセスも3層プロセスも変わらないのであるが、2層プロセスは下層膜だけに反射防止効果を持たせるのに対して、3層プロセスは中間層膜と下層膜のどちらか一方あるいは両方に反射防止効果を持たせることができる。
反射防止効果を付与させた珪素含有層材料が、特許文献9、特許文献10に提案されている。
一般的に単層の反射防止膜よりも多層反射防止膜の方が反射防止効果が高く、光学材料の反射防止膜として広く工業的に用いられている。
レジスト中間層膜とレジスト下層膜の両方に反射防止効果を付与させることによって高い反射防止効果を得ることができる。
3層プロセスにおいて珪素含有レジスト中間層膜に反射防止膜としての機能を持たせることができれば、レジスト下層膜に反射防止膜としての最高の効果は特に必要がない。
3層プロセスの場合のレジスト下層膜としては、反射防止膜としての効果よりも基板加工における高いエッチング耐性が要求される。
そのために、エッチング耐性が高く、芳香族基を多く含有するノボラック樹脂が3層プロセス用レジスト下層膜として用いられて来た。
ここで、図3にレジスト中間層膜のk値を変化させたときの基板反射率を示す。
レジスト中間層膜のk値として0.2以下の低い値と、適切な膜厚設定によって、1%以下の十分な反射防止効果を得ることができる。
通常反射防止膜として、膜厚100nm以下で反射を1%以下に抑えるためにはk値が0.2以上であることが必要であるが(図2参照)、レジスト下層膜である程度の反射を抑えることができる3層構造のレジスト中間層膜としては0.2より低い値のk値が最適値となる。
次に、レジスト下層膜のk値が0.2の場合と0.6の場合の、レジスト中間層膜とレジスト下層膜の膜厚を変化させたときの反射率変化を図4と5に示す。
図4のk値が0.2のレジスト下層膜は、2層プロセスに最適化されたレジスト下層膜を想定しており、図5のk値が0.6のレジスト下層膜は、波長193nmにおけるノボラックやポリヒドロキシスチレンのk値に近い値である。
レジスト下層膜の膜厚は基板のトポグラフィーによって変動するが、レジスト中間層膜の膜厚はほとんど変動せず、設定した膜厚で塗布できると考えられる。
ここで、レジスト下層膜のk値が高い方(0.6の場合)が、より薄膜で反射を1%以下に抑えることができる。
レジスト下層膜のk値が0.2の場合、膜厚250nmでは反射を1%にするためにレジスト中間層膜の膜厚を厚くしなければならない。
レジスト中間層膜の膜厚を上げると、レジスト中間層膜を加工するときのドライエッチング時に最上層のレジストに対する負荷が大きく、好ましいことではない。
近年微細化が急激に進行し、45nmLSの寸法においてはパターン倒れの観点から、レジストの膜厚が100nmを下回るようになってきた。3層プロセスにおいても100nm以下のレジストパターンを珪素含有レジスト中間層膜に転写することが困難になってきており、珪素含有レジスト中間層膜の薄膜化が進行している。図4、5ではレジスト下層膜のk値に依らず珪素含有レジスト中間層膜にk値が0.1程度の吸収があれば、例えば珪素含有レジスト中間層膜の膜厚が50nmであれば1%以下の反射率を達成できることが示されているが、珪素含有レジスト中間層膜のエッチング加工精度向上の観点から膜厚が50nm以下で使いたいという要求がある。珪素含有レジスト中間層膜の膜厚が50nm以下では、珪素含有レジスト中間層膜の反射防止効果は半減してくるので、バイレイヤーレジスト用レジスト下層膜の時と同様のn値、k値が必要になってくる。
このような背景の下、短波長の露光において、最適なn値、k値を有し、かつ基板エッチング条件でのエッチング耐性にも優れ、珪素含有2層レジストプロセス、あるいは珪素含有中間層膜による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望な材料の開発が待たれていた。
特開平6−118651号公報 特開平10−324748号公報 特開平11−302382号公報 特開2002−55456号公報 特開平9−110938号公報 特開2002−14474号公報 特開2001−40293号公報 特開2002−214777号公報 米国特許第6506497号明細書 米国特許第6420088号明細書 SPIE vol.1925(1993)p377 SPIE vol.3333(1998)p62 J.Photopolymer Sci. and Technol.Vol.9 No.3(1996)p435−446 SPIE vol.4345(2001)p50 J.Vac.Sci.Technol.,16(6),Nov./Dec.1979
本発明はこのような問題点に鑑みてなされたもので、短波長の露光において、最適なn値、k値を有し、かつ基板エッチング条件でのエッチング耐性にも優れ、例えば、珪素含有2層レジストプロセス、あるいは珪素含有中間層膜による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望なレジスト下層膜材料を提供することを目的とする。
本発明は、上記課題を解決するためになされたもので、リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、下記一般式(1)で示される繰り返し単位を有することを特徴とするレジスト下層膜材料を提供する(請求項1)。
Figure 2008310229
(上記一般式(1)中、Rは水素原子又はグリシジル基、酸不安定基である。mは1〜4の正数である。a及びbは、0<a<1、0<b<1の範囲である。)
このように一般式(1)で示される繰り返し単位を有するレジスト下層膜材料は、短波長の露光において、最適なn値、k値を有し、かつ基板エッチング条件でのエッチング耐性にも優れ、例えば、珪素含有2層レジストプロセス、あるいは珪素含有中間層膜による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望である。
また、前記レジスト下層膜材料が、更に有機溶剤、酸発生剤、架橋剤のうちいずれか1つ以上のものを含有するものであるのが好ましい(請求項2)。
このように、上記本発明のレジスト下層膜材料が、さらに有機溶剤、酸発生剤、架橋剤のうちいずれか1つ以上を含有することで、基板等への塗布性を向上させたり、基板等への塗布後のベーク等により、レジスト下層膜内での架橋反応を促進させたりすることができる。従って、このような材料から形成されたレジスト下層膜は、膜厚均一性が良く、レジスト上層膜あるいはレジスト中間層膜とのインターミキシングの恐れが少なく、レジスト上層膜等への低分子成分の拡散が少ないものとなる。
また、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に前記本発明のレジスト下層膜材料を用いてレジスト下層膜を形成し、該レジスト下層膜の上にフォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜を形成し、2層レジスト膜とし、前記レジスト上層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト下層膜をエッチングし、さらに、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法を提供する(請求項3)。
前述のように、本発明のレジスト下層膜材料から形成した下層膜は、短波長の露光において、最適なn値、k値を有し、かつ基板エッチング条件でのエッチング耐性にも優れる。このため、本発明のレジスト下層膜材料を用いることで、基板に高精度のパターンを形成することができる。
この場合、前記レジスト上層膜材料が、珪素原子含有ポリマーを含み、前記レジスト上層膜をマスクにして行うレジスト下層膜のエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うのが好ましい(請求項4)。
本発明のレジスト下層膜材料から形成した下層膜は、レジスト上層膜として、ベース樹脂に珪素原子を含有したものを用い、前記レジスト上層膜をマスクにした下層膜のエッチングを、酸素ガス又は水素ガスを主体とするドライエッチングで行い、レジスト上層膜のレジストパターンをレジスト下層膜に転写するのに適したものとなっている。このため、本発明のレジスト下層膜材料を用いることで、基板により高精度のパターンを形成することができる。
また、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に前記本発明のレジスト下層膜材料を用いてレジスト下層膜を形成し、該レジスト下層膜の上に珪素原子を含有するレジスト中間層膜材料を用いてレジスト中間層膜を形成し、該レジスト中間層膜の上にフォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜を形成し、3層レジスト膜とし、前記レジスト上層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト中間層膜をエッチングし、少なくともパターンが形成されたレジスト中間層膜をマスクにしてレジスト下層膜をエッチングし、さらに、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法を提供する(請求項5)。
このように、本発明のレジスト下層膜材料を用いて形成したレジスト下層膜は、短波長の露光において、最適なn値、k値を有し、必要により反射防止効果のあるレジスト中間層膜と併せることで優れた反射防止効果をもたらす。しかも、基板エッチング時のエッチング耐性に優れる。したがって、これを、3層レジストプロセスのレジスト下層膜として用いれば、さらに高精度で基板にパターンを形成することができる。
この場合、前記レジスト上層膜材料が、珪素原子含有ポリマーを含まず、前記レジスト中間層膜をマスクにして行うレジスト下層膜のエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うのが好ましい(請求項6)。
レジスト上層膜に珪素原子含有ポリマーを含まないものは、珪素原子含有ポリマーを含むものと比較して、解像性に優れるという利点がある。したがって、レジスト中間層膜に転写されるパターン、さらには、該レジスト中間層膜をマスクにして酸素ガス又は水素ガスを主体とするドライエッチングにより下層膜に転写されるパターンも高精度とできる。従って、このようにパターンが転写されたレジスト下層膜をマスクにして基板をエッチングし、基板にパターンを形成すれば、より高精度のパターンを形成することができる。
以上説明したように、本発明のレジスト下層膜材料は、短波長の露光において、最適なn値、k値を有し、かつエッチング耐性にも優れ、例えば、珪素含有2層レジストプロセス、あるいは珪素含有中間層膜による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望である。
以下、本発明について、さらに詳しく説明する。
本発明者らは、短波長の露光において、最適なn値、k値を有し、かつ基板エッチング条件でのエッチング耐性にも優れ、例えば、珪素含有2層レジストプロセス、あるいは珪素含有中間層膜による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望なレジスト下層膜材料を開発すべく鋭意検討を重ねた。
その結果、本発明者らは、ヒドロキシ基が置換又は非置換のヒドロキシインデンとノルトリシクレンの繰り返し単位を有するレジスト下層膜材料が、最適なn値、k値を有し、かつ基板エッチング条件でのエッチング耐性にも優れ、例えば、珪素含有2層レジストプロセス、あるいは珪素含有中間層膜による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望であることを見出し、本発明を完成した。
すなわち、本発明のレジスト下層膜材料は、リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、下記一般式(1)で示される繰り返し単位を有することを特徴とするものである。
Figure 2008310229
(上記一般式(1)中、Rは水素原子又はグリシジル基、酸不安定基である。mは1〜4の整数である。a及びbは、0<a<1、0<b<1の範囲である。)
このように一般式(1)で示される繰り返し単位を有するレジスト下層膜材料は、例えば波長193nmといった短波長の露光において、最適なn値、k値を有し、かつ基板エッチング条件でのエッチング耐性にも優れ、例えば、珪素含有2層レジストプロセス、あるいは珪素含有中間層膜による3層レジストプロセスといった多層レジストプロセス用レジスト下層膜として有望である。
そして、例えば、即ちポリヒドロキシスチレン、クレゾールノボラック、ナフトールノボラックなどよりも透明性が高いものとすることができる。また、波長193nmといった短波長での露光において膜厚200nm以上とした時にも優れた反射防止効果を示す。
ここで、基板エッチング後の下層膜パターンの“うねり“が指摘されている。フルオロカーボン系のガスによる基板エッチング中に、下層膜の水素原子がフッ素原子で置換される現象が示されている(Proc.of Symp.Dry.Process, (2005) p11)。下層膜表面がテフロン(登録商標)化されることによって下層膜の体積増加により膨潤したり、ガラス転移点が低下することによって、より微細なパターンのよれが生じるものと考えられる。
一方、フッ素ガスで現像後のレジスト表面をフッ素化し、レジストパターンの熱軟化点を下げて熱フローによってホールのサイズをシュリンクさせる技術が提案されている(SPIE vol.5753(2005)p195)。これによると、フッ素化の速度はクレゾールノボラックが最も早く、次いでポリヒドロキシスチレン、最も遅いのがポリメチルメタクリレートとなっている。フッ素による求電子反応は、脂環族基よりも芳香族基の方が早いことは一般的によく知られており、芳香族基の割合が最も高いクレゾールノボラックが最もフッ素化されやすいと考えられる。
ビシクロ[2.2.1]ヘプタ−2,5−ジエンであるノルボルナジエンはラジカル重合あるいはカチオン重合が可能で、メタセシス重合によるノルボルネン類を重合したポリノルボルネンや、ROMP(開環メタセシス重合)で問題であった脱金属触媒プロセスの必要がない。ノルボルナジエンを重合したノルトリシクレンは、炭素数7個の内、3級炭素が6個もある。ノルボルネンは炭素数7個の内の3級炭素数が4個である。1級、2級炭素よりも3級炭素の方が置換される水素原子が少ない分だけフッ素化されにくいために、エッチング中の水素原子のフッ素置換割合が少なくなることが予想され、エッチング後のパターンのうねりが少なくなることが期待される。
このような背景の下、ヒドロキシスチレンとノルボルナジエンとの共重合体を用いたレジスト下層膜が提案されている(特開2004−205658号公報)。
しかし、このレジスト下層膜のヒドロキシスチレンの水酸基は、架橋密度を向上させるメリットを有するが、同時にエッチング耐性を低下させるという問題がある。これに対して、本発明では、ヒドロキシスチレンよりもエッチング耐性が高いヒドロキシインデンを共重合することによってエッチング耐性を更に強固なものにしている。ヒドロキシインデンは置換基(ヒドロキシ基、又はヒドロキシ基の水素原子がグリシジル基や酸不安定基で置換されていてもよい)を有することにより、エッチング耐性の向上に対し優れた効果を発揮する。置換基を有さない場合は、エッチング耐性が劣る。
また、一般式(1)中の繰り返し単位aは、例えば、下記一般式(2)で示されるヒドロキシインデン類amから得ることができ、一方、繰り返し単位bは下記ノルボルナジエンbmから得ることができる。
Figure 2008310229
(上記一般式(2)中、Rは水素原子又はグリシジル基、アセチル基、酸不安定基、炭素数1〜10の直鎖状、分岐状、環状のアルキル基である。mは1〜4の正数である。)
繰り返し単位a、bを得るためのモノマーとしてヒドロキシ基をアセチル基やピバロイル基で置換しておいて、重合後アルカリ加水分解で脱保護しヒドロキシ基にしても良く、ヒドロキシ基をグリシジル基や酸不安定基で置換しても良い。グリシジル基の置換によって架橋効率を向上することが出来、酸不安定基の置換によって溶媒溶解性を向上させることが出来る。酸不安定基は酸と熱による架橋時に脱保護することによってヒドロキシ基となり、ヒドロキシ基が架橋点となる。
一般式(1)中、Rで示される酸不安定基は、種々選定されるが、同一でも異なっていてもよく、ヒドロキシル基の水素原子、すなわち、一般式(1)中のRが、特に下記式(A−1)、(A−2)で示される基、下記式(A−3)で示される炭素数4〜40の3級アルキル基、炭素数4〜20のオキソアルキル基、トリメチルシリル基等で置換されている構造のものが挙げられる。
Figure 2008310229
上記式(A−1)において、R30は炭素数4〜20、好ましくは4〜15の3級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記式(A−3)で示される基を示し、3級アルキル基として具体的には、tert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、1−エチルシクロペンチル基、1−ブチルシクロペンチル基、1−エチルシクロヘキシル基、1−ブチルシクロヘキシル基、1−エチル−2−シクロペンテニル基、1−エチル−2−シクロヘキセニル基、2−メチル−2−アダマンチル基等が挙げられ、トリアルキルシリル基として具体的には、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が挙げられ、オキソアルキル基として具体的には、3−オキソシクロヘキシル基、4−メチル−2−オキソオキサン−4−イル基、5−メチル−2−オキソオキソラン−5−イル基等が挙げられる。a1は0〜6の整数である。
上記式(A−2)において、R31、R32は水素原子又は炭素数1〜18、好ましくは1〜10の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基、n−オクチル基等を例示できる。R33は炭素数1〜18、好ましくは1〜10の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示し、直鎖状、分岐状もしくは環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されたものを挙げることができ、具体的には下記の置換アルキル基等が例示できる。
Figure 2008310229
31とR32、R31とR33、R32とR33とは結合してこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR31、R32、R33はそれぞれ炭素数1〜18、好ましくは1〜10の直鎖状又は分岐状のアルキレン基を示し、好ましくは環の炭素数は3〜10、特に4〜10である。
上記式(A−1)の酸不安定基としては、具体的にはtert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1,1−ジエチルプロピルオキシカルボニル基、1,1−ジエチルプロピルオキシカルボニルメチル基、1−エチルシクロペンチルオキシカルボニル基、1−エチルシクロペンチルオキシカルボニルメチル基、1−エチル−2−シクロペンテニルオキシカルボニル基、1−エチル−2−シクロペンテニルオキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等が例示できる。
更に、下記式(A−1)−1〜(A−1)−10で示される置換基を挙げることもできる。
Figure 2008310229
ここで、R37は互いに同一又は異種の炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基、R38は水素原子、又は炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基である。また、R39は互いに同一又は異種の炭素数2〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基である。a1は0〜6の整数である。
上記式(A−2)で示される酸不安定基のうち、直鎖状又は分岐状のものとしては、下記式(A−2)−1〜(A−2)−17で示されるものを例示することができる。
Figure 2008310229
上記式(A−2)で示される酸不安定基のうち、環状のものとしては、テトラヒドロフラン−2−イル基、2−メチルテトラヒドロフラン−2−イル基、テトラヒドロピラン−2−イル基、2−メチルテトラヒドロピラン−2−イル基等あるいは下記式(A−2)−18〜(A−2)−35が挙げられる。
Figure 2008310229
また、下記式(A−2a)あるいは(A−2b)で表される酸不安定基によってベース樹脂が分子間あるいは分子内架橋されていてもよい。
Figure 2008310229
式中、R40、R41は水素原子又は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。又は、R40とR41は結合してこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR40、R41は炭素数1〜8の直鎖状又は分岐状のアルキレン基を示す。R42は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基、b1、d1は0又は1〜10、好ましくは0又は1〜5の整数、c1は1〜7の整数である。Aは、(c1+1)価の炭素数1〜50の脂肪族もしくは脂環式飽和炭化水素基、芳香族炭化水素基又はヘテロ環基を示し、これらの基はヘテロ原子を介在してもよく、又はその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、カルボニル基又はフッ素原子によって置換されていてもよい。Bは−CO−O−、−NHCO−O−又は−NHCONH−を示す。
この場合、好ましくは、Aは2〜4価の炭素数1〜20の直鎖状、分岐状又は環状のアルキレン基、アルキルトリイル基、アルキルテトライル基、炭素数6〜30のアリーレン基であり、これらの基はヘテロ原子を介在していてもよく、またその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、アシル基又はハロゲン原子によって置換されていてもよい。また、c1は好ましくは1〜3の整数である。
上記式(A−2a)、(A−2b)で示される架橋型アセタール基は、具体的には下記式(A−2)−37〜(A−2)−44のものが挙げられる。
Figure 2008310229
次に、上記式(A−3)においてR34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基等の1価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の環を形成してもよい。
上記式(A−3)に示される3級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、2−(2−メチル)アダマンチル基、2−(2−エチル)アダマンチル基、tert−アミル基等を挙げることができる。
また、3級アルキル基としては、下記に示す式(A−3)−1〜(A−3)−18を具体的に挙げることもできる。
Figure 2008310229
上記式(A−3)−1〜(A−3)−18中、R43は同一又は異種の炭素数1〜8の直鎖状、分岐状又は環状のアルキル基、又は炭素数6〜20のフェニル基等のアリール基を示す。R44、R46は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。R45は炭素数6〜20のフェニル基等のアリール基を示す。
更に、下記式(A−3)−19、(A−3)−20に示すように、2価以上のアルキレン基、アリーレン基であるR47を含んで、ポリマーの分子内あるいは分子間が架橋されていてもよい。
Figure 2008310229
上記式(A−3)−19、(A−3)−20中、R43は前述と同様、R47は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキレン基、又はフェニレン基等のアリーレン基を示し、酸素原子や硫黄原子、窒素原子などのヘテロ原子を含んでいてもよい。e1は1〜3の整数である。
上記式(A−1)、(A−2)、(A−3)中のR30、R33、R36は、フェニル基、p−メチルフェニル基、p−エチルフェニル基、p−メトキシフェニル基等のアルコキシ置換フェニル基等の非置換又は置換アリール基、ベンジル基、フェネチル基等のアラルキル基等や、これらの基に酸素原子を有する、あるいは炭素原子に結合する水素原子が水酸基に置換されたり、2個の水素原子が酸素原子で置換されてカルボニル基を形成する下記式で示されるようなアルキル基、あるいはオキソアルキル基を挙げることができる。
Figure 2008310229
また、本発明のレジスト下層膜材料においては、一般式(1)で示される置換又は非置換のヒドロキシインデンとノルボルナジエン類との共重合体ベースとするが、さらに、(メタ)アクリレート類、ビニルエーテル類、無水マレイン酸、無水イタコン酸、マレイミド類、ビニルピロリドン、ビニルエーテル類、ジビニルエーテル類、ジ(メタ)アクリレート類、ジビニルベンゼン類、インデン類、アセナフチレン類、スチレン類、ビニルナフタレン類、ビニルカルバゾール、ビニルアントラセン類、ノルボルネン類、トリシクロデセン類、テトラシクロドデセン類などの他のオレフィン化合物と共重合させたものを用いることもできる。
ここで、a、bは前記の通りであるが、より好ましくは、0.05≦a≦0.9、0.1≦b≦0.95、更に好ましくは0.1≦a≦0.8、0.2≦b≦0.9である。
また、繰り返し単位a、bを除く他のオレフィン化合物由来の繰り返し単位を、「c」とした時、0≦c≦0.8であるのが好ましく、0≦c≦0.7であるのが更に好ましい。
そして、a+b+c=1であることが好ましいが、a+b+c=1とは、繰り返し単位a、b、cを含む高分子化合物(共重合体)において、繰り返し単位a、b、cの合計量が全繰り返し単位の合計量に対して100モル%であることを示す。
これら本発明のレジスト下層膜材料に含まれる共重合体を合成するには、1つの方法としては、置換又は非置換のヒドロキシインデンとノルボルナジエン類と、繰り返し単位cを得るための一種類以上のオレフィンモノマーを有機溶剤中、ラジカル開始剤あるいはカチオン重合開始剤を加え加熱重合を行う。ヒドロキシ基を含むモノマーのヒドロキシ基をアセチル基で置換させておき、得られた高分子化合物を、有機溶剤中アルカリ加水分解を行い、アセチル基を脱保護することもできる。重合時に使用する有機溶剤としては、トルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。ラジカル重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50〜80℃に加熱して重合できる。カチオン重合開始剤としては、硫酸、燐酸、塩酸、硝酸、次亜塩素酸、トリクロロ酢酸、トリフルオロ酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、トシル酸などの酸、BF3、AlCl3、TiCl4、SnCl4などのフリーデルクラフツ触媒のほか、I2、(C653CClのようにカチオンを生成しやすい物質が使用される。
反応時間としては2〜100時間、好ましくは5〜20時間である。アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。
本発明に係る共重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算質量平均分子量は、1,500〜200,000の範囲が好ましく、より好ましくは2,000〜100,000の範囲である。分子量分布は特に制限がなく、分画によって低分子体及び高分子体を除去し、分散度を小さくすることも可能であり、分子量、分散度が異なる2つ以上の一般式(1)の重合体の混合、あるいは組成比の異なる2種以上の一般式(1)の重合体を混合してもかまわない。
本発明のレジスト下層膜材料に含まれる共重合体、特には一般式(1)で示される繰り返し単位を有する共重合体の波長193nmにおける透明性を更に向上させるために、水素添加を行うことができる。好ましい水素添加の割合は、芳香族基の80モル%以下、より好ましくは60モル%以下である。
本発明のレジスト下層膜材料用のベース樹脂は、置換又は非置換のヒドロキシ基を有するインデンによる繰り返し単位aと、ノルボルナジエンによる繰り返し単位bを有する重合体を含むことを特徴とするが、反射防止膜材料として挙げられている従来のポリマーとブレンドすることもできる。
ヒドロキシインデンとノルトリシクレン共重合体のガラス転移点は150℃以上であり、このもの単独ではビアホールなどの深いホールの埋め込み特性が劣る場合がある。ホールにボイドを発生させずに埋め込むためには、ガラス転移点の低いポリマーを用い、架橋温度よりも低い温度で熱フローさせながらホールの底にまで樹脂を埋め込む手法がとられる(例えば、特開2000−294504号公報参照)。ガラス転移点の低いポリマー、特にガラス転移点が180℃以下、とりわけ100〜170℃のポリマー、例えばアクリル誘導体、ビニルアルコール、ビニルエーテル類、アリルエーテル類、スチレン誘導体、アリルベンゼン誘導体、エチレン、プロピレン、ブタジエンなどのオレフィン類から選ばれる1種あるいは2種以上の共重合ポリマー、メタセシス開環重合などによるポリマー、ノボラックレジン、ジシクロペンタジエンレジン、フェノール類の低核体、カリックスアレーン類、フラーレン類とブレンドすることによってガラス転移点を低下させ、ビアホールの埋め込み特性を向上させることができる。
また、以下のように、本発明のレジスト下層膜材料が、更に有機溶剤、酸発生剤、架橋剤のうちいずれか1つ以上のものを含有するものであるのが好ましい。
レジスト下層膜に要求される性能の一つとして、レジスト上層膜とのインターミキシングがないこと、レジスト上層膜ヘの低分子成分の拡散がないことが挙げられる(例えば、「Proc. SPIE vol.2195、p225−229(1994)」参照)。これらを防止するために、一般的にレジスト下層膜をスピンコート法などで基板に形成後、ベークで熱架橋するという方法がとられている。そのため、レジスト下層膜材料の成分として架橋剤を添加する方法、ポリマーに架橋性の置換基を導入する方法がある。ポリマーに架橋性の置換基を導入する方法としては、例えば、一般式(1)記載のヒドロキシインデンのヒドロキシ基をグリシジルエーテル化する方法が挙げられる。
本発明で使用可能な架橋剤の具体例を列挙すると、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物又はウレア化合物、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物等を挙げることができる。これらは添加剤として用いてもよいが、ポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いることができる。
前記架橋剤の具体例のうち、更にエポキシ化合物を例示すると、トリス(2,3−エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが例示される。メラミン化合物を具体的に例示すると、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1〜6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1〜6個がアシロキシメチル化した化合物又はその混合物が挙げられる。グアナミン化合物としては、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がアシロキシメチル化した化合物又はその混合物が挙げられる。グリコールウリル化合物としては、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1〜4個がメトキシメチル化した化合物、又はその混合物、テトラメチロールグリコールウリルのメチロール基の1〜4個がアシロキシメチル化した化合物又はその混合物が挙げられる。ウレア化合物としてはテトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
イソシアネート化合物としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられ、アジド化合物としては、1,1’−ビフェニル−4,4’−ビスアジド、4,4’−メチリデンビスアジド、4,4’−オキシビスアジドが挙げられる。
アルケニルエーテル基を含む化合物としては、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
本発明のレジスト下層膜材料に含まれる重合体、すなわち、一般式(1)で示される繰り返し単位を有する重合体の架橋効率を上げるために、ヒドロキシ基を含む化合物の添加が有効である。特に分子内に2個以上のヒドロキシ基を含む化合物が好ましい。ヒドロキシ基を含む化合物としては、例えば、ナフトールノボラック、m−及びp−クレゾールノボラック、ナフトール−ジシクロペンタジエンノボラック、m−及びp−クレゾール−ジシクロペンタジエンノボラック、4,8−ビス(ヒドロキシメチル)トリシクロ[5.2.1.02,6]−デカン、ペンタエリトリトール、1,2,6−ヘキサントリオール、4,4’,4’’−メチリデントリスシクロヘキサノール、4,4’−[1−[4−[1−(4−ヒドロキシシクロヘキシル)−1−メチルエチル]フェニル]エチリデン]ビスシクロヘキサノール、[1,1’−ビシクロヘキシル]−4,4’−ジオール、メチレンビスシクロヘキサノール、デカヒドロナフタレン−2,6−ジオール、[1,1’−ビシクロヘキシル]−3,3’,4,4’−テトラヒドロキシなどのアルコール基含有化合物、ビスフェノール、メチレンビスフェノール、2,2’−メチレンビス[4−メチルフェノール]、4,4’−メチリデン−ビス[2,6−ジメチルフェノール]、4,4’−(1−メチル−エチリデン)ビス[2−メチルフェノール]、4,4’−シクロヘキシリデンビスフェノール、4,4’−(1,3−ジメチルブチリデン)ビスフェノール、4,4’−(1−メチルエチリデン)ビス[2,6−ジメチルフェノール]、4,4’−オキシビスフェノール、4,4’−メチレンビスフェノール、ビス(4−ヒドロキシフェニル)メタノン、4,4’−メチレンビス[2−メチルフェノール]、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスフェノール、4,4’−(1,2−エタンジイル)ビスフェノール、4,4’−(ジエチルシリレン)ビスフェノール、4,4’−[2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン]ビスフェノール、4,4’,4’’−メチリデントリスフェノール、4,4’−[1−(4−ヒドロキシフェニル)−1−メチルエチル]フェニル]エチリデン]ビスフェノール、2,6−ビス[(2−ヒドロキシ−5−メチルフェニル)メチル]−4−メチルフェノール、4,4’,4’’−エチリジントリス[2−メチルフェノール]、4,4’,4’’−エチリジントリスフェノール、4,6−ビス[(4−ヒドロキシフェニル)メチル]1,3−ベンゼンジオール、4,4’−[(3,4−ジヒドロキシフェニル)メチレン]ビス[2−メチルフェノール]、4,4’,4’’,4’’’−(1,2−エタンジイリデン)テトラキスフェノール、2,2’−メチレンビス[6−[(2−ヒドロキシ−5−メチルフェニル)メチル]−4−メチルフェノール]、4,4’,4’’,4’’’−(1,4−フェニレンジメチリジン)テトラキスフェノール、2,4,6−トリス(4−ヒドロキシフェニルメチル)1,3−ベンゼンジオール、2,4’,4’’−メチリデントリスフェノール、4,4’,4’’’−(3−メチル−1−プロパニル−3−イリデン)トリスフェノール、2,6−ビス[(4−ヒドロキシ−3−フロロフェニル)メチル]−4−フルオロフェノール、2,6−ビス[4−ヒドロキシ−3−フルオロフェニル]メチル]−4−フルオロフェノール、3,6−ビス[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]1,2−ベンゼンジオール、4,6−ビス[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]1,3−ベンゼンジオール、p−メチルカリックス[4]アレン、2,2’−メチレンビス[6−[(2,5/3,6−ジメチル−4/2−ヒドロキシフェニル)メチル]−4−メチルフェノール、2,2’−メチレンビス[6−[(3,5−ジメチル−4−ヒドロキシフェニル)メチル]−4−メチルフェノール、4,4’,4’’,4’’’−テトラキス[(1−メチルエチリデン)ビス(1,4−シクロヘキシリデン)]フェノール、6,6’−メチレンビス[4−(4−ヒドロキシフェニルメチル)−1,2,3−ベンゼントリオール、3,3’,5,5’−テトラキス[(5−メチル−2−ヒドロキシフェニル)メチル]−[(1,1’−ビフェニル)−4,4’−ジオール]などのフェノール低核体が挙げられる。
本発明のレジスト下層膜材料における架橋剤の配合量は、ベースポリマー(全樹脂分)100部(質量部、以下同じ)に対して5〜50部が好ましく、特に10〜40部が好ましい。5部以上であればレジスト膜とミキシングを起こす可能性が低くなり、50部以下であれば反射防止効果が低下したり、架橋後の膜にひび割れが入る恐れが少ない。
本発明のレジスト下層膜材料においては、熱などによる架橋反応を更に促進させるための酸発生剤を添加することができる。酸発生剤は熱分解によって酸を発生するものや、光照射によって酸を発生するものがあるが、いずれのものも添加することができる。
本発明のレジスト下層膜材料で使用される酸発生剤としては、
i.下記一般式(P1a−1)、(P1a−2)、(P1a−3)又は(P1b)のオニウム塩、
ii.下記一般式(P2)のジアゾメタン誘導体、
iii.下記一般式(P3)のグリオキシム誘導体、
iv.下記一般式(P4)のビススルホン誘導体、
v.下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
vi.β−ケトスルホン酸誘導体、
vii.ジスルホン誘導体、
viii.ニトロベンジルスルホネート誘導体、
ix.スルホン酸エステル誘導体、
等が挙げられる。
Figure 2008310229
(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、R101a、R101b、R101cに水素原子を加えて示される。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基、又は図中の窒素原子を環の中に有する複素芳香族環を示す。)
上記R101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。オキソアルケニル基としては、2−オキソ−4−シクロヘキセニル基、2−オキソ−4−プロペニル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチドなどのメチド酸、更には下記一般式K−1に示されるα,γ位がフルオロ置換されたスルホネート、K−2に示されるα位がフルオロ置換されたスルホネートが挙げられる。
Figure 2008310229
一般式(K−1)中、R102は水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基、アシル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基、アリーロキシ基である。一般式(K−2)中、R103は水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基である。
また、R101d、R101e、R101f、R101gが式中の窒素原子を環の中に有する複素芳香族環は、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
(P1a−1)と(P1a−2)は光酸発生剤、熱酸発生剤の両方の効果があるが、(P1a−3)は熱酸発生剤として作用する。
Figure 2008310229
(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103aは炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
上記R102a、R102bのアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103aのアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bの2−オキソアルキル基としては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)、(P1a−2)及び(P1a−3)で説明したものと同様のものを挙げることができる。
Figure 2008310229
(式中、R105、R106は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。
Figure 2008310229
(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状又は分岐状のアルキレン基を示す。R105は(P2)式のものと同様である。)
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure 2008310229
(式中、R101a、R101bは前記と同様である。)
Figure 2008310229
(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
酸発生剤は、具体的には、オニウム塩としては、例えばトリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸トリエチルアンモニウム、ノナフルオロブタンスルホン酸ピリジニウム、カンファースルホン酸トリエチルアンモニウム、カンファースルホン酸ピリジニウム、ノナフルオロブタンスルホン酸テトラn−ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p−トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート、トリエチルアンモニウムノナフレート、トリブチルアンモニウムノナフレート、テトラエチルアンモニウムノナフレート、テトラブチルアンモニウムノナフレート、トリエチルアンモニウムビス(トリフルオロメチルスルホニル)イミド、トリエチルアンモニウムトリス(パーフルオロエチルスルホニル)メチド等のオニウム塩を挙げることができる。
ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体を挙げることができる。
グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体を挙げることができる。
ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体を挙げることができる。
β−ケトスルホン誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体を挙げることができる。
ジスルホン誘導体としては、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体を挙げることができる。
ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。
スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。
N−ヒドロキシイミド化合物のスルホン酸エステル誘導体としては、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が挙げられる。
特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。
酸発生剤の添加量は、ベースポリマー100部に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部以上であれば、十分な酸発生量が得られ、架橋反応が不十分になる恐れが少なく、50部以下であれば、上層レジスト膜へ酸が移動することによるミキシング現象が起こる恐れが少ない。
更に、本発明のレジスト下層膜材料には、保存安定性を向上させるための塩基性化合物を配合することができる。
塩基性化合物は、保存中等に酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。
芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。
アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。
イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
塩基性化合物の配合量は全ベースポリマー100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部以上であれば配合効果が十分に得られ、2部以下であれば熱で発生した酸を全てトラップして架橋しなくなる恐れが減る。
本発明のレジスト下層膜材料において使用可能な有機溶剤としては、前記のベースポリマー、酸発生剤、架橋剤、その他添加剤等が溶解するものであれば特に制限はない。その具体例を列挙すると、シクロヘキサノン、メチル−2−アミルケトン等のケトン類;3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類;プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル,プロピオン酸tert−ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類が挙げられ、これらの1種又は2種以上を混合使用できるが、これらに限定されるものではない。本発明のレジスト下層膜材料においては、これら有機溶剤の中でもジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート及びこれらの混合溶剤が好ましく使用される。
有機溶剤の配合量は、全ベースポリマー100部に対して200〜10,000部が好ましく、特に300〜5,000部とすることが好ましい。
また、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に前記本発明のレジスト下層膜材料を用いてレジスト下層膜を形成し、該レジスト下層膜の上にフォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜を形成し、2層レジスト膜とし、前記レジスト上層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト下層膜をエッチングし、さらに、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法を提供する。
この場合、前記レジスト上層膜材料が、珪素原子含有ポリマーを含み、前記レジスト上層膜をマスクにして行うレジスト下層膜のエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うことが好ましい。
さらに、本発明は、リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に前記本発明のレジスト下層膜材料を用いてレジスト下層膜を形成し、該レジスト下層膜の上に珪素原子を含有するレジスト中間層膜材料を用いてレジスト中間層膜を形成し、該レジスト中間層膜の上にフォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜を形成し、3層レジスト膜とし、前記レジスト上層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト中間層膜をエッチングし、少なくともパターンが形成されたレジスト中間層膜をマスクにしてレジスト下層膜をエッチングし、さらに、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法を提供する。
この場合、前記レジスト上層膜材料が、珪素原子含有ポリマーを含まず、前記レジスト中間層膜をマスクにして行うレジスト下層膜のエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うことが好ましい。
以下、図6,7を参照して、これらの本発明のパターン形成方法について説明する。図6は2層レジスト加工プロセス、図7は3層レジスト加工プロセスの説明図である。
パターン形成に用いる被加工基板11は、図6,7に示したように、被加工層11aとベース層11bとで構成されてもよい。基板11のベース層11bとしては、特に限定されるものではなく、Si、アモルファスシリコン(α−Si)、p−Si、SiO2、SiN、SiON、W、TiN、Al等で、被加工層11aと異なる材質のものが用いられてもよい。被加工層11aとしては、Si、SiO2、SiON、SiN、p−Si、α−Si、W、W−Si、Al、Cu、Al−Si等及び種々の低誘電膜及びエッチングストッパー膜が用いられ、通常50〜10,000nm、特に100〜5,000nm厚さに形成し得る。
先ず、図6の2層レジスト加工プロセスについて説明する。
図6(A)に示すように、基板11上に前記本発明のレジスト下層膜材料を用いてレジスト下層膜12を形成し、該レジスト下層膜12の上にフォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜13を形成し、2層レジスト膜とする。
レジスト下層膜12は、通常のフォトレジスト膜の形成法と同様にスピンコート法などで基板11上に形成することが可能である。スピンコート法などでレジスト下層膜12を形成した後、有機溶剤を蒸発させ、レジスト上層膜13とのミキシング防止のため、架橋反応を促進させるためにベークをすることが望ましい。ベーク温度は80〜500℃の範囲内で、10〜300秒の範囲内が好ましく用いられる。なお、このレジスト下層膜12の厚さは適宜選定されるが、100〜20,000nm、特に150〜15,000nmとすることが好ましい。
また、このレジスト上層膜13を形成するためのフォトレジスト組成物としては公知のものを使用することができる。酸素ガスエッチング耐性等の点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、更に有機溶剤、酸発生剤、必要により塩基性化合物等を含むポジ型等のフォトレジスト組成物が使用されることが好ましい。なお、珪素原子含有ポリマーとしては、この種のレジスト組成物に用いられる公知のポリマーを使用することができる。
なお、レジスト上層膜13の厚さは特に制限されないが、30〜500nm、特に50〜400nmが好ましい。
上記フォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜13を形成する場合、前記レジスト下層膜12を形成する場合と同様に、スピンコート法などが好ましく用いられる。レジスト上層膜13をスピンコート法などで形成後、プリベークを行うが、80〜180℃で、10〜300秒の範囲で行うのが好ましい。
その後、常法に従い、レジスト上層膜のパターン回路領域を露光した後(図6(B)参照)、ポストエクスポジュアーベーク(PEB)、現像を行い、レジストパターンを得る(図6(C)参照)。なお、図6(B)において、13’は露光部分である。
現像は、アルカリ水溶液を用いたパドル法、ディップ法などが用いられ、特にはテトラメチルアンモニウムヒドロキシドの2.38質量%水溶液を用いたパドル法が好ましく用いられ、室温で10秒〜300秒の範囲で行われ、その後純水でリンスし、スピンドライあるいは窒素ブロー等によって乾燥される。
次に、図6(D)に示すように、レジストパターンが形成されたレジスト上層膜13をマスクにして酸素ガス又は水素ガスを主体とするエッチングガスを用いたドライエッチングなどで、レジスト下層膜12のエッチングを行う。
このエッチングは常法によって行うことができる。酸素ガスを主体とするドライエッチングの場合、酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2ガスを加えることも可能である。特に後者のガスはパターン側壁のアンダーカット防止のための側壁保護のために用いられる。
次に、図6(E)に示すように、少なくともパターンが形成されたレジスト下層膜12をマスクにして基板11をエッチングして基板11にパターンを形成する。
この基板11のエッチングも、常法によって行うことができ、例えば基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、ポリシリコン(p−Si)やAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行う。本発明のレジスト下層膜は、これら基板エッチング時のエッチング耐性に優れる特徴がある。この時、レジスト上層膜は必要に応じ、除去した後に基板のエッチングをしてもよいし、レジスト上層膜をそのまま残して基板のエッチングを行うこともできる。
次に、図7の3層レジスト加工プロセスについて説明する。
図7(A)に示すように、基板11上に本発明のレジスト下層膜材料を用いてレジスト下層膜12を形成し、該レジスト下層膜12の上に珪素原子を含有するレジスト中間層膜材料を用いてレジスト中間層膜14を形成し、該レジスト中間層膜14の上にフォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜13を形成し、3層レジスト膜とする。
このように、3層レジスト加工プロセスの場合は、レジスト下層膜12とレジスト上層膜13との間に珪素原子を含有するレジスト中間層膜14を介在させる。この場合、レジスト中間層膜14を形成する材料としては、ポリシルセスキオキサンをベースとするシリコーンポリマーあるいはテトラオルソシリケートガラス(TEOS)のような材料が挙げられる。そして、これらの材料のスピンコートによって作製される膜や、CVDで作製されるSiO2、SiN、SiON膜を用いることができる。
このレジスト中間層膜14の厚さとしては、10〜1,000nmが好ましい。
また、フォトレジスト組成物のレジスト上層膜材料が、珪素原子含有ポリマーを含まないことが好ましい。レジスト上層膜に珪素原子含有ポリマーを含まないものは、珪素原子を含有するポリマーを含むものと比較して、解像性に優れるという利点がある。
なお、その他の構成は、図6の2層レジスト加工プロセスの場合と同様である。
その後、図6の2層レジスト加工プロセスの場合と同様に、常法に従い、レジスト上層膜のパターン回路領域を露光した後(図7(B)参照)、ポストエクスポジュアーベーク(PEB)、現像を行い、レジストパターンを得る(図7(C)参照)。なお、図7(B)において、13’は露光部分である。
次に、図7(D)に示すように、レジストパターンが形成されたレジスト上層膜13をマスクにして、フロン系ガスを主体とするエッチングガスを用いたドライエッチングなどで、レジスト中間層膜14をエッチングする。
このエッチングは常法によって行うことができる。フロン系ガスを主体とするドライエッチングの場合、CF4、CHF3、C26、C38、C410などを一般的に用いることができる。
このように、レジスト中間層膜14をエッチングした後、図7(E)に示すように、少なくともパターンが形成されたレジスト中間層膜14をマスクにして、O2(酸素ガス)又はH2(水素ガス)を主体とするエッチングガスを用いたドライエッチングなどで、レジスト下層膜12のエッチングを行う。この場合、O2、H2ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2ガスを加えることも可能である。特に後者のガスはパターン側壁のアンダーカット防止のための側壁保護のために用いられる。
次に、図7(F)に示すように、少なくともパターンが形成されたレジスト下層膜12をマスクにして基板11をエッチングして基板11にパターンを形成する。
基板11のエッチングも、常法によって行うことができ、図6の2層レジスト加工プロセスの場合と同様に、例えば基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、ポリシリコン(p−Si)やAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行う。本発明のレジスト下層膜は、これら基板のエッチング時のエッチング耐性に優れる特徴がある。この時、レジスト中間層膜等は必要に応じ、除去した後に基板のエッチングをしてもよいし、レジスト中間層膜等をそのまま残して基板のエッチングを行うこともできる。
以下、実施例、比較例等を示して本発明をさらに具体的に説明するが、本発明はこれらの記載によって限定されるものではない。
[合成例1]
1Lのフラスコに4−アセトキシインデン28.4g、2,5−ノルボルナジエン73.6g、溶媒として1,2−ジクロロエタンを80g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素1g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体を得た。
得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシインデン:2,5−ノルボルナジエン=0.2:0.8
質量平均分子量(Mw)=6500
分子量分布(Mw/Mn)=1.61
この重合体をポリマー1とする。
Figure 2008310229
[合成例2]
1Lのフラスコに4−ヒドロキシインデン26.4g、テトラシクロドデセン48g、2,5−ノルボルナジエン46g、溶媒として1,2−ジクロロエタンを80g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素1g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシインデン:テトラシクロドデセン:2,5−ノルボルナジエン=0.2:0.3:0.5
質量平均分子量(Mw)=6300
分子量分布(Mw/Mn)=1.55
この重合体をポリマー2とする。
Figure 2008310229
[合成例3]
1Lのフラスコに4−アセトキシインデン28.4g、2,5−ノルボルナジエン64.4g、アセナフチレン15.2g、溶媒として1,2−ジクロロエタンを80g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素1g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体を得た。
得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシインデン:2,5−ノルボルナジエン:アセナフチレン=0.2:0.7:0.1
質量平均分子量(Mw)=4800
分子量分布(Mw/Mn)=1.55
この重合体をポリマー3とする。
Figure 2008310229
[合成例4]
1Lのフラスコに上記合成例1で得られたポリマー1(4−ヒドロキシインデン−ノルボルナジエン樹脂)125g、エピクロルヒドリン300gを入れ溶解させ、80℃に加熱し、撹拌しながら20%水酸化ナトリウム220gを3時間かけて滴下し、1時間の熟成撹拌の後、下層の食塩水を分離、未反応のエピクトルヒドリンを150℃加熱で蒸留除去した後MIBK(メチルイソブチルケトン)を300g加えて溶解させた後、水洗分離を3回繰り返して下層の水層を除去、乾燥濾過、150℃加熱によりMIBKを脱溶媒し、白色個体を得た。
得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−グリシジルエーテルインデン:4−ヒドロキシインデン:2,5−ノルボルナジエン=0.16:0.04:0.8
質量平均分子量(Mw)=6600
分子量分布(Mw/Mn)=1.61
この重合体をポリマー4とする。
Figure 2008310229
[合成例5]
1Lのフラスコに上記合成例1で得られたポリマー1(4−ヒドロキシインデン−ノルボルナジエン樹脂)125gをテトラヒドロフラン500mlに溶解させ、触媒量のメタンスルホン酸を添加した後、20℃で撹拌しながらエチルビニルエーテル20gを添加した。1時間反応させた後に、濃アンモニア水により中和し、水5Lに中和反応液を滴下したところ、白色固体が得られた。これを濾過後、アセトン500mlに溶解させ、水10Lに滴下し、濾過後、真空乾燥し、白色個体を得た。
得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−エトキシエトキシインデン:4−ヒドロキシインデン:2,5−ノルボルナジエン=0.14:0.06:0.8
質量平均分子量(Mw)=6700
分子量分布(Mw/Mn)=1.61
この重合体をポリマー5とする。
Figure 2008310229
[比較合成例1]
500mLのフラスコに4−ヒドロキシスチレンを40g、2−メタクリル酸−1−アダマンタンを160g、溶媒としてトルエンを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを4.1g加え、80℃まで昇温後、24時間反応させた。この反応溶液を1/2まで濃縮し、メタノール300mL、水50mLの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体188gを得た。
得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:2−メタクリル酸−1−アダマンタン=0.32:0.68
質量平均分子量(Mw)=10,900
分子量分布(Mw/Mn)=1.77
この重合体を比較ポリマー1とする。
Figure 2008310229
[比較合成例2]
1Lのフラスコに4−アセトキシスチレン32.4g、2,5−ノルボルナジエン73.6g、溶媒として1,2−ジクロロエタンを80g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素1g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。 このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、アセチル基の脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体を得た。
得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
4−ヒドロキシスチレン:2,5−ノルボルナジエン=0.2:0.8
質量平均分子量(Mw)=15000
分子量分布(Mw/Mn)=1.89
この重合体を比較ポリマー2とする。
Figure 2008310229
(実施例、比較例)
[レジスト下層膜材料の調製]
上記ポリマー1〜5で示される重合体(樹脂)、上記比較ポリマー1、2で示される重合体(樹脂)、下記ブレンドオリゴマー1、下記ブレンドフェノール低核体1〜3、下記AG1、2、3で示される酸発生剤、下記CR1,2で示される架橋剤を、FC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表1に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによってレジスト下層膜材料(実施例1〜13、比較例1、2)をそれぞれ調製した。
表1中の各組成は次の通りである。
ポリマー1〜5:上記合成例1〜5で得たポリマー
比較ポリマー1、2:比較合成例1、2で得たポリマー
ブレンドオリゴマー1(下記構造式参照)
Figure 2008310229
ブレンドフェノール低核体1〜3(下記構造式参照)
Figure 2008310229
酸発生剤:AG1,2,3(下記構造式参照)
Figure 2008310229
架橋剤:CR1,2(下記構造式参照)
Figure 2008310229
有機溶剤:CyH(シクロヘキサノン)
PGMEA(プロピレングリコール−1−モノメチルエーテル−2−アセテート)
上記で調製したレジスト下層膜材料(実施例1〜5、実施例7〜13、比較例1、2)の溶液をシリコン基板上に塗布して、200℃で60秒間ベークしてそれぞれ膜厚500nmのレジスト下層膜を形成した。実施例6では、溶液をシリコン基板上に塗布して、300℃で60秒間ベークして膜厚500nmのレジスト下層膜を形成した。
レジスト下層膜の形成後、J.A.ウーラム社の入射角度可変の分光エリプソメーター(VASE)で波長193nmにおける屈折率(n,k)を求め、その結果を表1に示した。
Figure 2008310229
表1に示されるように、実施例1〜13では、レジスト下層膜の屈折率のn値が1.53〜1.65、k値が0.21〜0.35の範囲であり、特に200nm以上の膜厚で十分な反射防止効果を発揮できるだけの最適な屈折率(n)と消光係数(k)を有することがわかる。
[レジスト下層膜のエッチング耐性検査]
次いで、レジスト下層膜のドライエッチング耐性のテストを行った。まず、前記屈折率測定に用いたものと同じレジスト下層膜(実施例1〜13、比較例1、2)を形成し、これらの下層膜のCF4/CHF3系ガスでのエッチング試験として下記(1)の条件で試験した。この場合、東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後の下層膜及びレジストの膜厚差を測定した。結果を表2に示す。
(1)CF4/CHF3系ガスでのエッチング試験
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギヤップ 9mm
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
Figure 2008310229
表2に示すように、本発明のレジスト下層膜のCF4/CHF3系ガスエッチングの速度は、比較例1よりもエッチング速度が大幅に遅く、比較例2よりもエッチング速度が遅い。すなわち、本発明のレジスト下層膜は、基板エッチング条件でのエッチング耐性に優れていることがわかる。
[レジスト上層膜材料の調製]
ArF単層レジストポリマー1、PAG1、アミンをFC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表3に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって「ArF用SLレジスト」(レジスト上層膜材料)を調製した。
表3中の各組成は次の通りである。
ArF単層レジストポリマー1(下記構造式参照)
Figure 2008310229
酸発生剤:PAG1(下記構造式参照)
Figure 2008310229
塩基性化合物:アミン(下記構造式参照)
Figure 2008310229
溶媒:PGMEA(プロピレングリコール−1−モノメチルエーテル−2−アセテート)
Figure 2008310229
[レジスト中間層膜材料の調製]
ArF珪素含有中間層膜ポリマー1、AG1をFC−430(住友スリーエム社製)0.1質量%を含む有機溶剤中に表4に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって「ArF用珪素含有中間層膜材料SOG」(レジスト中間層膜材料)を調製した。
表4中の各組成は次の通りである。
ArF珪素含有中間層膜ポリマー1(下記構造式参照)
Figure 2008310229
酸発生剤:AG1(前記構造式参照)
溶媒:PGMEA
Figure 2008310229
[パターン形状の観察]
前記調整したレジスト下層膜材料(実施例1〜13、比較例1、2)の溶液を、膜厚300nmのSiO2基板上に塗布して、200℃で60秒間ベークして膜厚300nmのレジスト下層膜を形成した。
その上に、前記調整したレジスト中間層膜材料(Ar用珪素含有中間層膜材料SOG)を塗布して200℃で60秒間ベークして膜厚90nmのレジスト中間層膜を形成した。その上に、前記調整したレジスト上層膜材料(ArF用SLレジスト)の溶液を塗布し、110℃で60秒間ベークして膜厚160nmのレジスト上層膜を形成した。
このようにして、3層レジスト膜とした。
次いで、レジスト上層膜のパターン回路領域をArF露光装置((株)ニコン製;S307E、NA0.85、σ0.93、2/3輪体照明、Crマスク)で露光し、110℃で60秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像し、ポジ型のパターンを得た。得られたパターンの80nmラインアンドスペースのパターン形状を観察した。結果を表5に示す。
次に、上記ArF露光と現像後にて得られたレジストパターンをレジスト中間層膜(SOG膜)に下記条件で転写した。エッチング条件(2)は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギヤップ 9mm
CHF3ガス流量 20ml/min
CF4ガス流量 60ml/min
Arガス流量 200ml/min
時間 30sec
次に、レジスト中間層膜(SOG膜)に転写されたパターンを、下記酸素ガスを主体とするエッチングでレジスト下層膜に転写した。エッチング条件(3)は下記に示す通りである。
チャンバー圧力 450mTorr(60Pa)
RFパワー 600W
2ガス流量 60sccm
2ガス流量 10sccm
ギヤップ 9mm
時間 20sec
最後に前記(1)に示すエッチング条件でレジスト下層膜パターンをマスクにしてSiO2基板を加工した。
各パターン断面を(株)日立製作所製電子顕微鏡(S−4700)にて観察し、形状を比較し、表5にまとめた。
Figure 2008310229
表5に示すように、実施例1〜13では、現像後のレジスト形状、酸素エッチング後、基板下層エッチング後の下層膜の形状も良好であることが認められた。すなわち、本発明のレジスト下層膜材料を用いることで、基板に極めて高精度のパターンを形成することができることがわかる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
2層プロセスにおけるレジスト下層膜の屈折率k値が0.3固定で、n値を1.0〜2.0の範囲で変化させたときのレジスト下層膜の膜厚と基板反射率の関係を示すグラフである。 2層プロセスにおけるレジスト下層膜の屈折率n値が1.5固定で、k値を0〜0.8の範囲で変化させたときのレジスト下層膜の膜厚と基板反射率の関係を示すグラフである。 3層プロセスにおけるレジスト下層膜の屈折率n値が1.5、k値が0.6、膜厚500nm固定で、レジスト中間層膜のn値が1.5、k値を0〜0.4、膜厚を0〜400nmの範囲で変化させたときの基板反射率の関係を示すグラフである。 3層プロセスにおけるレジスト下層膜の屈折率n値が1.5、k値が0.2、レジスト中間層膜のn値が1.5、k値を0.1固定でレジスト下層膜とレジスト中間層膜の膜厚を変化させたときの基板反射率の関係を示すグラフである。 3層プロセスにおけるレジスト下層膜の屈折率n値が1.5、k値が0.6、レジスト中間層膜のn値が1.5、k値を0.1固定でレジスト下層膜とレジスト中間層膜の膜厚を変化させたときの基板反射率の関係を示すグラフである。 2層レジスト加工プロセスの一例の説明図である。 3層レジスト加工プロセスの一例の説明図である。
符号の説明
11…基板、 11a…被加工層、 11b…ベース層、 12…レジスト下層膜、
13…レジスト上層膜、 13’…露光部分、 14…レジスト中間層膜。

Claims (6)

  1. リソグラフィーで用いられる多層レジスト膜のレジスト下層膜材料であって、少なくとも、下記一般式(1)で示される繰り返し単位を有することを特徴とするレジスト下層膜材料。
    Figure 2008310229
    (上記一般式(1)中、Rは水素原子又はグリシジル基、酸不安定基である。mは1〜4の正数である。a及びbは、0<a<1、0<b<1の範囲である。)
  2. 前記レジスト下層膜材料が、更に有機溶剤、酸発生剤、架橋剤のうちいずれか1つ以上のものを含有するものであることを特徴とする請求項1に記載のレジスト下層膜材料。
  3. リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に請求項1又は請求項2に記載のレジスト下層膜材料を用いてレジスト下層膜を形成し、該レジスト下層膜の上にフォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜を形成し、2層レジスト膜とし、前記レジスト上層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト下層膜をエッチングし、さらに、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法。
  4. 前記レジスト上層膜材料が、珪素原子含有ポリマーを含み、前記レジスト上層膜をマスクにして行うレジスト下層膜のエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うことを特徴とする請求項3に記載のパターン形成方法。
  5. リソグラフィーにより基板にパターンを形成する方法であって、少なくとも、基板上に請求項1又は請求項2に記載のレジスト下層膜材料を用いてレジスト下層膜を形成し、該レジスト下層膜の上に珪素原子を含有するレジスト中間層膜材料を用いてレジスト中間層膜を形成し、該レジスト中間層膜の上にフォトレジスト組成物のレジスト上層膜材料を用いてレジスト上層膜を形成し、3層レジスト膜とし、前記レジスト上層膜のパターン回路領域を露光した後、現像液で現像してレジスト上層膜にレジストパターンを形成し、該パターンが形成されたレジスト上層膜をマスクにしてレジスト中間層膜をエッチングし、少なくともパターンが形成されたレジスト中間層膜をマスクにしてレジスト下層膜をエッチングし、さらに、少なくともパターンが形成されたレジスト下層膜をマスクにして基板をエッチングして基板にパターンを形成することを特徴とするパターン形成方法。
  6. 前記レジスト上層膜材料が、珪素原子含有ポリマーを含まず、前記レジスト中間層膜をマスクにして行うレジスト下層膜のエッチングを、酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うことを特徴とする請求項5に記載のパターン形成方法。
JP2007159992A 2007-06-18 2007-06-18 レジスト下層膜材料およびこれを用いたパターン形成方法 Active JP4745298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159992A JP4745298B2 (ja) 2007-06-18 2007-06-18 レジスト下層膜材料およびこれを用いたパターン形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159992A JP4745298B2 (ja) 2007-06-18 2007-06-18 レジスト下層膜材料およびこれを用いたパターン形成方法

Publications (2)

Publication Number Publication Date
JP2008310229A true JP2008310229A (ja) 2008-12-25
JP4745298B2 JP4745298B2 (ja) 2011-08-10

Family

ID=40237853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159992A Active JP4745298B2 (ja) 2007-06-18 2007-06-18 レジスト下層膜材料およびこれを用いたパターン形成方法

Country Status (1)

Country Link
JP (1) JP4745298B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092691A (ja) * 2007-10-03 2009-04-30 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
JP2010237491A (ja) * 2009-03-31 2010-10-21 Nissan Chem Ind Ltd レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
US8715916B2 (en) 2009-09-29 2014-05-06 Jsr Corporation Pattern forming method and resist underlayer film-forming composition
WO2024071323A1 (ja) * 2022-09-30 2024-04-04 富士フイルム株式会社 組成物、光学異方性層、積層体、光学異方性層の製造方法、液晶化合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021904A (ja) * 2001-07-05 2003-01-24 Shin Etsu Chem Co Ltd レジスト材料及びパターン形成方法
JP2004205658A (ja) * 2002-12-24 2004-07-22 Shin Etsu Chem Co Ltd パターン形成方法及び下層膜形成材料
JP2006053543A (ja) * 2004-07-15 2006-02-23 Shin Etsu Chem Co Ltd フォトレジスト下層膜形成材料及びパターン形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021904A (ja) * 2001-07-05 2003-01-24 Shin Etsu Chem Co Ltd レジスト材料及びパターン形成方法
JP2004205658A (ja) * 2002-12-24 2004-07-22 Shin Etsu Chem Co Ltd パターン形成方法及び下層膜形成材料
JP2006053543A (ja) * 2004-07-15 2006-02-23 Shin Etsu Chem Co Ltd フォトレジスト下層膜形成材料及びパターン形成方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092691A (ja) * 2007-10-03 2009-04-30 Shin Etsu Chem Co Ltd レジスト下層膜材料およびこれを用いたパターン形成方法
JP2010237491A (ja) * 2009-03-31 2010-10-21 Nissan Chem Ind Ltd レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
US8715916B2 (en) 2009-09-29 2014-05-06 Jsr Corporation Pattern forming method and resist underlayer film-forming composition
JP5609882B2 (ja) * 2009-09-29 2014-10-22 Jsr株式会社 パターン形成方法及びレジスト下層膜形成用組成物
US9090119B2 (en) 2009-09-29 2015-07-28 Jsr Corporation Pattern forming method
WO2024071323A1 (ja) * 2022-09-30 2024-04-04 富士フイルム株式会社 組成物、光学異方性層、積層体、光学異方性層の製造方法、液晶化合物

Also Published As

Publication number Publication date
JP4745298B2 (ja) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4823959B2 (ja) レジスト下層膜材料及びパターン形成方法
JP4666166B2 (ja) レジスト下層膜材料及びパターン形成方法
JP4573050B2 (ja) レジスト下層膜形成材料及びパターン形成方法
JP4809378B2 (ja) レジスト下層膜材料およびこれを用いたパターン形成方法
JP4993139B2 (ja) 反射防止膜形成材料、反射防止膜及びこれを用いたパターン形成方法
KR101162802B1 (ko) 레지스트 하층막 재료 및 패턴 형성 방법
JP4388429B2 (ja) レジスト下層膜材料ならびにパターン形成方法
JP5741518B2 (ja) レジスト下層膜材料及びパターン形成方法
JP5177418B2 (ja) 反射防止膜形成材料、反射防止膜及びこれを用いたパターン形成方法
JP5415982B2 (ja) レジスト下層膜材料、パターン形成方法
US7416833B2 (en) Photoresist undercoat-forming material and patterning process
JP4013057B2 (ja) パターン形成方法及び下層膜形成材料
JP4482763B2 (ja) フォトレジスト下層膜形成材料及びパターン形成方法
JP4809376B2 (ja) 反射防止膜材料およびこれを用いたパターン形成方法
JP4826805B2 (ja) フォトレジスト下層膜材料、フォトレジスト下層膜基板及びパターン形成方法
JP4847426B2 (ja) レジスト下層膜材料およびこれを用いたパターン形成方法
JP2004271838A (ja) レジスト下層膜材料ならびにパターン形成方法
JP5579553B2 (ja) レジスト下層膜材料、レジスト下層膜形成方法、パターン形成方法
JP4220361B2 (ja) フォトレジスト下層膜形成材料およびパターン形成方法
JP4745298B2 (ja) レジスト下層膜材料およびこれを用いたパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150