Nothing Special   »   [go: up one dir, main page]

JP2008013404A - Ozone generator - Google Patents

Ozone generator Download PDF

Info

Publication number
JP2008013404A
JP2008013404A JP2006186486A JP2006186486A JP2008013404A JP 2008013404 A JP2008013404 A JP 2008013404A JP 2006186486 A JP2006186486 A JP 2006186486A JP 2006186486 A JP2006186486 A JP 2006186486A JP 2008013404 A JP2008013404 A JP 2008013404A
Authority
JP
Japan
Prior art keywords
spacer
ground electrode
electrode
discharge gap
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006186486A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kukihara
弘行 荊原
Hajime Nakatani
元 中谷
Tokumitsu Ezaki
徳光 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006186486A priority Critical patent/JP2008013404A/en
Publication of JP2008013404A publication Critical patent/JP2008013404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone generator which is stable and can easily form a uniform discharge gap by using a specific spacer. <P>SOLUTION: The spacer 81 is formed from an elastic belt-like material 81a having a length shorter than the inner peripheral length of an earth electrode 2 in the longitudinal direction and a radius larger than the inside diameter of the earth electrode 2 in a state that the elastic belt-like material 81a is not compressed. A plurality of plate spring pairs 81b formed on both sides of the elastic belt-like material 81a in the width direction and having a projecting part 81c are provided in the longitudinal direction of the elastic belt-like material 81a. The height of the projecting part of the plate spring pair 81b is made larger than the discharge gap length in a state that the plate spring pair 81b is not compressed. The spacer 81 formed from the elastic belt-like material 81a having the plurality of the plate spring pairs 81b is compressed in the inside diameter direction of the earth electrode 2 to be held by the earth electrode 2 and the discharge gap is kept by compressing the height of the projecting part of the plate spring pair 81b by the earth electrode 2 and a high voltage electrode 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、水処理設備等に利用されるオゾン化ガスを工業的に生成するオゾン発生装置に関するものである。   The present invention relates to an ozone generator that industrially generates ozonized gas used in water treatment facilities and the like.

オゾン化ガスは、脱臭、殺菌作用があり、水処理設備等に使用されている。オゾンを工業的に生成する方法としては、酸素または酸素を含む原料ガスを微小空間に流通させ、電界を加えて無声放電を発生させることによりオゾン化ガスを生成する方法が一般的である。   Ozonized gas has a deodorizing and sterilizing action and is used in water treatment facilities and the like. As a method for industrially generating ozone, a general method is to generate ozonized gas by causing oxygen or a raw material gas containing oxygen to flow through a minute space and applying an electric field to generate silent discharge.

図10は一般的なオゾン発生装置を示す断面図である。図において、1は高圧電極で、ガラスなどの誘電体(絶縁材)からなる円筒管11の内表面に導電層である給電膜12が密着して設けられて構成されている。2はステンレスなどの金属管などからなる接地電極である。高圧電源3は高圧ヒューズ31を介して高圧電極1の給電膜12に接続されている。高圧電極1と接地電極2は同軸状に設置され、両電極の間の隙間が放電間隙4となっている。この放電間隙4を均一に構成するために両電極1、2間にはスペーサ8が配設されている。放電間隙4の温度が上昇するとオゾン発生効率が低下するため、接地電極2は冷却水7により水冷されている。   FIG. 10 is a cross-sectional view showing a general ozone generator. In the figure, reference numeral 1 denotes a high-voltage electrode, which is configured such that a power supply film 12 as a conductive layer is provided in close contact with the inner surface of a cylindrical tube 11 made of a dielectric material (insulating material) such as glass. Reference numeral 2 denotes a ground electrode made of a metal tube such as stainless steel. The high voltage power source 3 is connected to the power supply film 12 of the high voltage electrode 1 through a high voltage fuse 31. The high-voltage electrode 1 and the ground electrode 2 are installed coaxially, and a gap between the two electrodes is a discharge gap 4. In order to form the discharge gap 4 uniformly, a spacer 8 is disposed between the electrodes 1 and 2. When the temperature of the discharge gap 4 rises, the ozone generation efficiency decreases, so the ground electrode 2 is water-cooled with the cooling water 7.

このような構成において、酸素を含む原料ガスをガス入口5から放電間隙4に流通させ、高圧電極1に交流高電圧を印加すると、放電間隙4に無声放電が発生し、オゾン化ガスが生成され、ガス出口6からオゾン化ガスが出力される。誘電円筒管11が破壊すると高圧電極1と接地電極2の間で過度の電流が集中的に流れる事故が発生するため、高圧ヒューズ31を挿入して、事故を未然に防ぐ構造が取られている。   In such a configuration, when a source gas containing oxygen is circulated from the gas inlet 5 to the discharge gap 4 and an AC high voltage is applied to the high-voltage electrode 1, a silent discharge occurs in the discharge gap 4 and ozonized gas is generated. The ozonized gas is output from the gas outlet 6. If the dielectric cylindrical tube 11 is broken, an accident in which excessive current flows intensively between the high-voltage electrode 1 and the ground electrode 2 occurs. Therefore, a structure is adopted in which the high-voltage fuse 31 is inserted to prevent the accident. .

図11は従来のオゾン発生装置に用いるスペーサの高圧電極への取付け例を示す斜視図である。図12は図11のスペーサ部分の断面図である。スペーサ8は帯状のステンレス材料に複数個の突起部8aを設け、両端に締付用孔8bと、折返し部8cを設けている。誘電円筒管11の外周にスペーサ8を巻きつけ、一端の締付用穴8bに他端の折返し部8cを通して折り曲げる。この際にスペーサ8を引っ張ってから折返して固定すると、誘電円筒管11の表面にスペーサ8が固定される。スペーサの突起部8aの高さは、図12に示すようにほぼ放電間隙4のギャップ長(間隙長)に等しい高さに設定されている。従来のオゾン発生装置用スペーサは、例えば、特許文献1に開示されている。   FIG. 11 is a perspective view showing an example of attaching a spacer used in a conventional ozone generator to a high voltage electrode. 12 is a cross-sectional view of the spacer portion of FIG. The spacer 8 is provided with a plurality of protrusions 8a made of a strip-shaped stainless material, and is provided with fastening holes 8b and folded portions 8c at both ends. The spacer 8 is wound around the outer periphery of the dielectric cylindrical tube 11, and is bent through the folded portion 8c at the other end into the fastening hole 8b at one end. At this time, if the spacer 8 is pulled and then fixed, the spacer 8 is fixed to the surface of the dielectric cylindrical tube 11. The height of the protrusion 8a of the spacer is set to a height substantially equal to the gap length (gap length) of the discharge gap 4 as shown in FIG. A conventional spacer for an ozone generator is disclosed in Patent Document 1, for example.

特開2001−26404号公報JP 2001-26404 A

以上のような従来のスペーサ8の構成は、スペーサ突起部8aが存在するため、高圧電極1にスペーサ8を取付けてから接地電極2の中に挿入する際に、突起部8aが接地電極2に当り、摩擦が強く挿入作業が行い難いという問題点があった。また挿入の際に突起部8aにかかる力が誘電円筒管11にもかかり、誘電円筒管11が破損するという問題点もあった。オゾン発生装置は、オゾン濃度を高くして、しかもオゾン発生効率を上げるためには放電間隙4のギャップを短くする必要があるが、特にギャップ長を0.6mm以下に短くしようとすると作業が非常に困難になり、ガラスが破損しやすいという問題点があった。   The configuration of the conventional spacer 8 as described above includes the spacer protrusion 8a. Therefore, when the spacer 8 is attached to the high-voltage electrode 1 and then inserted into the ground electrode 2, the protrusion 8a becomes the ground electrode 2. There was a problem that the friction was strong and the insertion operation was difficult. In addition, the force applied to the protrusion 8a during insertion is also applied to the dielectric cylindrical tube 11, and the dielectric cylindrical tube 11 is damaged. The ozone generator needs to shorten the gap of the discharge gap 4 in order to increase the ozone concentration and increase the ozone generation efficiency. However, the operation is particularly difficult if the gap length is shortened to 0.6 mm or less. However, there is a problem that the glass is easily broken.

この発明は、上記のような問題点を解消するためになされたものであり、特有なスペーサを用いることにより、安定性があり、均一な放電間隙が形成し易いオゾン発生装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides an ozone generator that is stable and can easily form a uniform discharge gap by using a special spacer. Objective.

この発明に係わるオゾン発生装置は、金属管で形成された接地電極と、円筒状の絶縁材の内面に導電層を形成した高圧電極を備え、前記接地電極と前記高圧電極との間で、前記電極の長手方向に複数個のスペーサを介在させて放電間隙を形成するオゾン発生装置において、前記スペーサは、その長手方向の長さが前記接地電極の内周長よりも短く、弾性帯状材が圧縮されない状態で前記接地電極の内径よりも大きな半径を持たせた弾性帯状材で形成し、この弾性帯状材の幅方向の両側に形成した凸部を有する板バネ対を、前記弾性帯状材の長手方向に複数個設け、前記板バネ対の凸部高さは前記板バネ対が圧縮されない状態で前記放電間隙長より大きくし、複数個の板バネ対を有する前記弾性帯状材で構成した前記スペーサを前記接地電極の内径方向に圧縮して前記接地電極に保持させ、前記板バネ対の凸部高さを前記接地電極と前記高圧電極とで圧縮して前記放電間隙を維持するようにしたものである。   The ozone generator according to the present invention includes a ground electrode formed of a metal tube, and a high-voltage electrode having a conductive layer formed on the inner surface of a cylindrical insulating material, and between the ground electrode and the high-voltage electrode, In an ozone generator in which a discharge gap is formed by interposing a plurality of spacers in the longitudinal direction of the electrode, the spacer has a length in the longitudinal direction shorter than the inner peripheral length of the ground electrode, and the elastic band material is compressed. A pair of leaf springs having convex portions formed on both sides in the width direction of the elastic band member is formed of an elastic band member having a radius larger than the inner diameter of the ground electrode in a state where the elastic band member is not formed. A plurality of the plate spring pairs are provided in the direction, and the height of the convex portion of the pair of leaf springs is larger than the discharge gap length in a state where the pair of leaf springs is not compressed, and the spacer is composed of the elastic band-like material having a plurality of leaf spring pairs. The ground electrode And radially compressed and held in the ground electrode, in which a convex height of the plate spring pair is compressed between the high voltage electrode and the ground electrode so as to maintain the discharge gap.

この発明のオゾン発生装置によれば、スペーサは、接地電極の内周長よりも短く、弾性帯状材が圧縮されない状態で接地電極の内径よりも大きな半径を持たせた弾性帯状材で構成し、この弾性帯状材の幅方向の両側に形成した凸部を有する板バネ対を、前記弾性帯状材の長手方向に複数個設け、板バネ対の凸部高さは板バネ対が圧縮されない状態で放電間隙長より大きくし、複数個の板バネ対を有する弾性帯状材で形成した前記スペーサを接地電極の内径方向に圧縮して接地電極に保持させ、板バネ対の凸部高さを接地電極と高圧電極とで圧縮して放電間隙を維持するようにしたので、複数個の板バネ対を有する弾性帯状材で形成した前記スペーサを用いることにより、スペーサの弾性帯状材は傾き難く、安定しており、均一な放電間隙が形成し易い。   According to the ozone generator of the present invention, the spacer is made of an elastic band-like material having a radius shorter than the inner circumferential length of the ground electrode and having a larger radius than the inner diameter of the ground electrode in a state where the elastic band-like material is not compressed, A plurality of leaf spring pairs having protrusions formed on both sides in the width direction of the elastic band member are provided in the longitudinal direction of the elastic band member, and the height of the protrusions of the leaf spring pair is such that the leaf spring pair is not compressed. The spacer formed of an elastic band-shaped material having a plurality of leaf spring pairs that is larger than the discharge gap length is compressed in the inner diameter direction of the ground electrode and held on the ground electrode, and the height of the convex portion of the leaf spring pair is set to the ground electrode. And the high voltage electrode to maintain the discharge gap. By using the spacer formed of an elastic band material having a plurality of leaf spring pairs, the elastic band material of the spacer is difficult to tilt and is stable. Uniform discharge gap Easy to.

実施の形態1.
図1はこの発明の実施の形態1であるオゾン発生装置を示す断面図である。図2は実施の形態1のスペーサを示す展開図である。図3は図2のA−A線断面図である。図4は実施の形態1における加工後のスペーサを示す側面図である。なお、各図で同一符号は同一又は相当部分を示し、その説明を援用する。スペーサ81は長さLの帯状材81aと、帯状材81aの幅方向の両側に帯状材81aと一体に形成された複数個の板バネ対81bから形成されている。スペーサの材質は、弾性を有するステンレス材料で、この実施の形態ではSUS304を用いている。
Embodiment 1 FIG.
1 is a sectional view showing an ozone generator according to Embodiment 1 of the present invention. FIG. 2 is a development view showing the spacer according to the first embodiment. 3 is a cross-sectional view taken along line AA in FIG. FIG. 4 is a side view showing the spacer after processing in the first embodiment. In addition, the same code | symbol shows the same or an equivalent part in each figure, and uses the description. The spacer 81 is formed of a strip-shaped member 81a having a length L and a plurality of leaf spring pairs 81b integrally formed with the strip-shaped member 81a on both sides in the width direction of the strip-shaped member 81a. The material of the spacer is a stainless steel material having elasticity, and SUS304 is used in this embodiment.

帯状材81aの長さ(長手方向の長さ)Lは、金属管で形成された接地電極2の断面の内周長よりも短くしている。この実施の形態では、接地電極の内周半径=10mmの電極を用いたので、内周長=62.8mm、帯状材81aの長さは60mmとした。板バネ対81bは図3に示すように両側の板バネにそれぞれ凸部81cを形成し、両側の板バネは帯状材81aの長手方向軸に対して対称に形成されている。凸部81cの高い位置は、図2の稜線81dに示すように、帯状材81aの長手方向に並行に形成されている。これらの凸部81cが接地電極2又は円筒状高圧電極1の中心部に向き合うように(換言すれば、スペーサ81を接地電極2に保持した状態で、凸部81cの稜線81dが、接地電極2の内周の接線方向になるように、)、弾性帯状材81aに図4のように曲率を持った加工を施す。加工後の曲率半径Rは、弾性帯状材81aの開放状態(圧縮されない状態)で接地電極2の内周の半径よりも大きくする。   The length (length in the longitudinal direction) L of the strip-shaped material 81a is shorter than the inner peripheral length of the cross section of the ground electrode 2 formed of a metal tube. In this embodiment, since the electrode having the inner peripheral radius of the ground electrode = 10 mm was used, the inner peripheral length = 62.8 mm, and the length of the strip-shaped member 81a was set to 60 mm. As shown in FIG. 3, the pair of leaf springs 81b has convex portions 81c formed on the leaf springs on both sides, and the leaf springs on both sides are formed symmetrically with respect to the longitudinal axis of the strip 81a. The high position of the convex part 81c is formed in parallel with the longitudinal direction of the strip | belt-shaped material 81a, as shown to the ridgeline 81d of FIG. These ridges 81c face the center of the ground electrode 2 or the cylindrical high-voltage electrode 1 (in other words, with the spacer 81 held by the ground electrode 2, the ridgeline 81d of the ridge 81c is connected to the ground electrode 2). 4), the elastic band member 81a is processed to have a curvature as shown in FIG. The radius of curvature R after processing is larger than the radius of the inner periphery of the ground electrode 2 in the open state (not compressed) of the elastic band member 81a.

帯状材81aに形成される板バネ対81bは、帯状材81aの長手方向に等間隔に配置されている。しかし、高圧電極1の重量の影響を少なくして、放電間隙をより均一にするために、板バネ対81bの配置間隔を高圧電極1の下方で上方と比較してより狭くしてもよい。   The leaf spring pairs 81b formed on the belt-like material 81a are arranged at equal intervals in the longitudinal direction of the belt-like material 81a. However, in order to reduce the influence of the weight of the high-voltage electrode 1 and make the discharge gap more uniform, the interval between the leaf spring pairs 81b may be narrower below the high-voltage electrode 1 than at the upper side.

図5は、スペーサを接地電極の内周面に予め配置し、高圧電極を挿入するときの説明図である。図4に示すように、開放状態即ち圧縮されない状態での弾性帯状材81aの曲率(半径)Rが接地電極2内周の曲率(半径)よりも大きいので、帯状材81aを丸めるように圧縮してスペーサ81を接地電極2の内周面に複数個設置する。バネが拡がろうとする力でスペーサ81が接地電極2の内周面に張り付き、固定される。必要に応じて、スペーサ81を接地電極2の内表面に接着又は溶接して固定を確実にしてもよい。また、放電間隙長(ギャップ長)dよりもスペーサ81の板バネ対81bの凸部81cの高さhの方が大きくなっている。   FIG. 5 is an explanatory view when the spacer is previously arranged on the inner peripheral surface of the ground electrode and the high voltage electrode is inserted. As shown in FIG. 4, since the curvature (radius) R of the elastic strip 81a in the open state, ie, not compressed, is larger than the curvature (radius) of the inner periphery of the ground electrode 2, the strip 81a is compressed so as to be rounded. A plurality of spacers 81 are installed on the inner peripheral surface of the ground electrode 2. The spacer 81 sticks to the inner peripheral surface of the ground electrode 2 and is fixed by the force of the spring to spread. If necessary, the spacer 81 may be adhered or welded to the inner surface of the ground electrode 2 to ensure fixation. Further, the height h of the convex portion 81c of the leaf spring pair 81b of the spacer 81 is larger than the discharge gap length (gap length) d.

図6は接地電極に高圧電極を挿入した後の説明図である。高圧電極1の円筒管11は接地電極2内を図5の矢印の方向に挿入される。このとき、高圧電極1の円筒管11がスペーサ81を乗り越えその設置位置を通過し易いように、円筒管11の挿入方向の先端部11aは丸みを付けて形成されている。円筒管11がスペーサ81の設置位置を通過した後は、図6に示すように、スペーサ81の凸部81cの高さが放電ギャップ長dと等しくなる。スペーサ81の板バネ対81bの凸部81cが押しつぶされることにより高圧電極1と接地電極2との放電ギャップを均一に保つ作用をしている。   FIG. 6 is an explanatory view after the high voltage electrode is inserted into the ground electrode. The cylindrical tube 11 of the high voltage electrode 1 is inserted into the ground electrode 2 in the direction of the arrow in FIG. At this time, the distal end portion 11a in the insertion direction of the cylindrical tube 11 is rounded so that the cylindrical tube 11 of the high-voltage electrode 1 can easily get over the spacer 81 and pass through the installation position. After the cylindrical tube 11 passes the installation position of the spacer 81, the height of the convex portion 81c of the spacer 81 becomes equal to the discharge gap length d as shown in FIG. The protrusion 81c of the leaf spring pair 81b of the spacer 81 is crushed, thereby maintaining a uniform discharge gap between the high-voltage electrode 1 and the ground electrode 2.

スペーサ81の板バネ対81bは弾性を有しており、高圧電極1の円筒管11を接地電極2内に挿入し比較的にスムーズにスペーサ81を乗り越え組立てできる。スペーサ81の板バネは、帯状材81aの両側に形成して板バネ対81bとなっているため、高圧電極1の円筒管11を接地電極2内に挿入し組立てた状態において、スペーサ81は円筒管11の挿入方向の前後において傾くことがなく、安定しており、均一な放電間隙が形成し易い。そのため、均一な狭い間隙の放電間隙が形成し易く、オゾン発生効率が高いオゾン発生装置を供給できる。放電間隙が短くなっても高圧電極を破損することが少なく、高圧電極の取付け・交換作業も比較的簡単に行えるので、高性能・高濃度オゾン発生装置を提供できる。高圧電極が破損し難いため寿命が長く、また組立作業時間が短いので安価な装置を供給できる。   The leaf spring pair 81b of the spacer 81 has elasticity, and the cylindrical tube 11 of the high-voltage electrode 1 can be inserted into the ground electrode 2 and can be assembled over the spacer 81 relatively smoothly. Since the leaf springs of the spacer 81 are formed on both sides of the belt-like material 81a to form a leaf spring pair 81b, the spacer 81 is a cylinder in a state where the cylindrical tube 11 of the high-voltage electrode 1 is inserted into the ground electrode 2 and assembled. The tube 11 does not tilt before and after the insertion direction, is stable, and a uniform discharge gap is easily formed. Therefore, it is easy to form a discharge gap having a uniform narrow gap, and an ozone generator having high ozone generation efficiency can be supplied. Even if the discharge gap is shortened, the high-voltage electrode is less likely to be damaged, and the high-voltage electrode can be attached and replaced relatively easily, so that a high-performance, high-concentration ozone generator can be provided. Since the high-voltage electrode is difficult to break, the lifetime is long, and the assembly time is short, so an inexpensive device can be supplied.

実施の形態2.
スペーサ81の板の厚みは、実施の形態2では0.1mmである。この厚みが分厚すぎるとガスの流れが妨げられ、またバネ力が強くなり過ぎて高圧電極1を入れる時に力がかかり過ぎ、誘電円筒管11が割れたりする。また、スペーサの板の厚みが薄くなりすぎるとバネ力が弱くなり、ギャップ長を均一に保持できなくなる。長さ1500mm、厚み1.5mm、外径20mmのほう珪酸ガラス管を用いて試験した結果を次に示す。
Embodiment 2. FIG.
The thickness of the spacer 81 plate is 0.1 mm in the second embodiment. If this thickness is too thick, the flow of gas is hindered, and the spring force becomes too strong, too much force is applied when the high voltage electrode 1 is inserted, and the dielectric cylindrical tube 11 is cracked. Further, if the spacer plate is too thin, the spring force becomes weak and the gap length cannot be kept uniform. The results of testing using a borosilicate glass tube having a length of 1500 mm, a thickness of 1.5 mm, and an outer diameter of 20 mm are shown below.

図7は組立時のガラス管破損率[%]を縦軸に、t/d(スペーサの板の厚みt、ギャップ長d)を横軸にギャップ長dをパラメータとして示す特性図である。放電ギャップ長:d=0.6mm、0.4mm、0.3mmについて、スペーサの板の厚みtを変化させて試験を行った。t/d>0.5では破損率が急増し(10%以上)、作業効率が著しく悪化する。従って、スペーサの板の厚みtはギャップ長の0.5倍以下であることが望ましい。このように、スペーサ81の厚みが放電ギャップ長の0.5倍以下としたので、組立時のガラス管破損率を抑え、作業時間を短くできるので安価な装置を供給できる。   FIG. 7 is a characteristic diagram showing the glass tube breakage rate [%] during assembly on the vertical axis, t / d (spacer plate thickness t, gap length d) on the horizontal axis, and gap length d as a parameter. For the discharge gap length: d = 0.6 mm, 0.4 mm, and 0.3 mm, the test was performed by changing the thickness t of the spacer plate. When t / d> 0.5, the breakage rate increases rapidly (10% or more), and the working efficiency is remarkably deteriorated. Accordingly, the thickness t of the spacer plate is preferably 0.5 times or less of the gap length. Thus, since the thickness of the spacer 81 is 0.5 times or less of the discharge gap length, the glass tube breakage rate at the time of assembly can be suppressed and the working time can be shortened, so that an inexpensive apparatus can be supplied.

実施の形態3.
実施の形態3では、放電ギャップ長:d=0.4mmに対し、スペーサの板バネ対の凸部81cの圧縮されない状態の高さ:h=1.3mmとした。スペーサは接地電極2の内表面の所定位置に予め設置され、その後ガラス管(誘電円筒管11)を挿入するが、hがdより高くなり過ぎると、ガラス管を挿入する際にスペーサが所定の位置からずれてしまうという不具合が発生する。図8はガラス管挿入時にスペーサ81が移動する確率[%]を縦軸に、h/dを横軸に、dをパラメータとして示す特性図である。放電ギャップ長:d=0.6mm、0.4mm、0.3mmについて、スペーサの凸部の高さhを変化させて試験を行った。但し、t/d=0.25にて試験を行った。
Embodiment 3 FIG.
In Embodiment 3, with respect to the discharge gap length: d = 0.4 mm, the height of the convex portion 81c of the pair of leaf springs of the spacer that is not compressed is set to h = 1.3 mm. The spacer is set in advance at a predetermined position on the inner surface of the ground electrode 2, and then a glass tube (dielectric cylindrical tube 11) is inserted. If h is too higher than d, the spacer is fixed when the glass tube is inserted. There arises a problem that it is displaced from the position. FIG. 8 is a characteristic diagram showing the probability [%] of the movement of the spacer 81 when the glass tube is inserted on the vertical axis, h / d on the horizontal axis, and d as a parameter. The discharge gap length: d = 0.6 mm, 0.4 mm, and 0.3 mm were tested by changing the height h of the convex portion of the spacer. However, the test was conducted at t / d = 0.25.

この結果より、h/d>4ではスペーサ81が移動する割合が数%以上となり、何回も組立作業を繰り返す必要があるため、作業時間が非常に長くなる。従って、スペーサの凸部81cの圧縮されない状態の高さhはギャップ長の4倍以下であることが望ましい。h/dを小さくし過ぎるとバネの力が弱くなるので、放電ギャップ長を均一に保つ力が弱くなり、オゾン発生効率が低下する。実施の形態3の条件(t/d=0.25、d=0.6mm、0.4mm、0.3mm)で、オゾン発生効率を縦軸に、h/dを横軸に取り示した特性図が図9である。オゾン発生効率はh/d=4の時の値を100%とした。この結果よりh/d<1.5ではオゾン発生効率が急激に90%以下に低下する。従って、スペーサの凸部81cの圧縮されない状態での高さhはギャップ長dの1.5倍以上であることが望ましい。   From this result, when h / d> 4, the moving rate of the spacer 81 is several percent or more, and it is necessary to repeat the assembling work many times, so that the working time becomes very long. Therefore, it is desirable that the height h of the spacer convex portion 81c in an uncompressed state is not more than four times the gap length. If h / d is too small, the force of the spring becomes weak, so the force for keeping the discharge gap length uniform becomes weak and the ozone generation efficiency decreases. Under the conditions of Embodiment 3 (t / d = 0.25, d = 0.6 mm, 0.4 mm, 0.3 mm), the ozone generation efficiency is plotted on the vertical axis and h / d is plotted on the horizontal axis. The figure is FIG. The ozone generation efficiency was 100% when h / d = 4. From this result, when h / d <1.5, the ozone generation efficiency is rapidly reduced to 90% or less. Therefore, it is desirable that the height h of the spacer convex portion 81c in an uncompressed state is 1.5 times or more the gap length d.

このように、スペーサの板バネ対の凸部の圧縮されない状態での高さが放電間隙長の1.5〜4.0倍であると、組立作業効率が良く安価な装置を供給できると共に、放電ギャップ長が均一に保たれるためオゾン発生効率を高くできる。   Thus, when the height of the convex portion of the pair of leaf springs of the spacer in the uncompressed state is 1.5 to 4.0 times the discharge gap length, it is possible to supply an inexpensive apparatus with high assembly work efficiency, Since the discharge gap length is kept uniform, the ozone generation efficiency can be increased.

実施の形態4.
実施の形態4では、スペーサ81の板バネの先端は、即ち、板バネの帯状材81aの幅方向の先端は、図2に示すように丸みを帯びるように円弧に加工されている。これは角があると接地電極2の中にスペーサ81をセットする時にバネが倒れやすくなり、作業時間がかかるためである。このように、スペーサの幅方向の板バネ対の各先端が丸み加工(R加工)されていると、高圧電極の組立時間が短く安価な装置を供給できる。
Embodiment 4 FIG.
In the fourth embodiment, the tip of the leaf spring of the spacer 81, that is, the tip of the leaf spring strip 81a in the width direction is processed into an arc so as to be rounded as shown in FIG. This is because if there is a corner, the spring is likely to fall when the spacer 81 is set in the ground electrode 2, and it takes time to work. As described above, when each tip of the pair of leaf springs in the width direction of the spacer is rounded (R-processed), it is possible to supply an inexpensive apparatus with a short assembly time of the high-voltage electrode.

実施の形態5.
実施の形態5では、図5に示すように高圧電極1の誘電円筒管11の挿入端側が丸みを帯びた形状としている。これは高圧電極1がスペーサ81の設置位置を通過する時、板バネをスムーズに圧縮し易くして組立て時間を短くするためである。図5ではきれいな円加工としているが、板バネと接触する部分のみ曲面を持たせた加工としても同様の効果を奏する。
Embodiment 5. FIG.
In the fifth embodiment, as shown in FIG. 5, the insertion end side of the dielectric cylindrical tube 11 of the high-voltage electrode 1 is rounded. This is because when the high-voltage electrode 1 passes the installation position of the spacer 81, the leaf spring is easily compressed and the assembly time is shortened. In FIG. 5, clean circular processing is used, but the same effect can be achieved by processing the curved surface only at the portion that contacts the leaf spring.

実施の形態6.
スペーサを接地電極2の内面に複数個固定した後、高圧電極1を接地電極2の中に挿入して組立てている。従来例のようにスペーサ8を高圧電極1に巻きつける必要がなく、ガラス管を破損することも無く、作業時間が短い利点がある。
Embodiment 6 FIG.
After fixing a plurality of spacers on the inner surface of the ground electrode 2, the high voltage electrode 1 is inserted into the ground electrode 2 and assembled. There is no need to wind the spacer 8 around the high-voltage electrode 1 as in the conventional example, the glass tube is not damaged, and there is an advantage that the working time is short.

この発明の実施の形態1であるオゾン発生装置を示す断面図である。It is sectional drawing which shows the ozone generator which is Embodiment 1 of this invention. 実施の形態1のスペーサを示す展開図である。FIG. 3 is a development view illustrating the spacer according to the first embodiment. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 実施の形態1における加工後のスペーサを示す側面図である。FIG. 5 is a side view showing a spacer after processing in the first embodiment. スペーサを接地電極の内周面に予め配置し、高圧電極を挿入するときの説明図である。It is explanatory drawing when a spacer is previously arrange | positioned on the internal peripheral surface of a ground electrode, and a high voltage electrode is inserted. 接地電極に高圧電極を挿入した後の説明図である。It is explanatory drawing after inserting a high voltage electrode in a ground electrode. 組立時のガラス管破損率[%]を縦軸に、t/dを横軸にギャップ長dをパラメータとして示す特性図である。FIG. 5 is a characteristic diagram showing the glass tube breakage rate [%] during assembly on the vertical axis, t / d on the horizontal axis, and the gap length d as a parameter. ガラス管挿入時にスペーサが移動する確率[%]を縦軸に、h/dを横軸に、dをパラメータとして示す特性図である。FIG. 5 is a characteristic diagram showing the probability [%] of movement of the spacer when the glass tube is inserted on the vertical axis, h / d on the horizontal axis, and d as a parameter. オゾン発生効率を縦軸に、h/dを横軸に取り示しす特性図である。FIG. 5 is a characteristic diagram illustrating ozone generation efficiency on the vertical axis and h / d on the horizontal axis. 一般的なオゾン発生装置を示す断面図である。It is sectional drawing which shows a general ozone generator. 従来のオゾン発生装置に用いるスペーサの高圧電極への取付け例を示す斜視図である。It is a perspective view which shows the example of attachment to the high voltage | pressure electrode of the spacer used for the conventional ozone generator. 図11のスペーサ部分の断面図である。It is sectional drawing of the spacer part of FIG.

符号の説明Explanation of symbols

1 高圧電極 2 接地電極
3 高圧電極 4 放電間隙
5 ガス入口 6 ガス出口
7 冷却水 8 スペーサ
11 円筒管 11a 先端部
12 給電膜 31 高圧ヒューズ
81 スペーサ 81a 帯状材
81b 板バネ対 81c 凸部
81d 稜線
DESCRIPTION OF SYMBOLS 1 High voltage electrode 2 Ground electrode 3 High voltage electrode 4 Discharge gap 5 Gas inlet 6 Gas outlet 7 Cooling water 8 Spacer 11 Cylindrical tube 11a Tip part 12 Feeding film 31 High voltage fuse 81 Spacer 81a Strip material 81b Leaf spring pair 81c Convex part 81d Ridge line

Claims (5)

金属管で形成された接地電極と、円筒状の絶縁材の内面に導電層を形成した高圧電極を備え、前記接地電極と前記高圧電極との間で、前記電極の長手方向に複数個のスペーサを介在させて放電間隙を形成するオゾン発生装置において、
前記スペーサは、その長手方向の長さが前記接地電極の内周長よりも短く、弾性帯状材が圧縮されない状態で前記接地電極の内径よりも大きな半径を持たせた弾性帯状材で形成し、この弾性帯状材の幅方向の両側に形成した凸部を有する板バネ対を、前記弾性帯状材の長手方向に複数個設け、前記板バネ対の凸部高さは前記板バネ対が圧縮されない状態で前記放電間隙長より大きくし、
複数個の板バネ対を有する前記弾性帯状材で構成した前記スペーサを前記接地電極の内径方向に圧縮して前記接地電極に保持させ、前記板バネ対の凸部高さを前記接地電極と前記高圧電極とで圧縮して前記放電間隙を維持するようにしたことを特徴とするオゾン発生装置。
A ground electrode formed of a metal tube and a high voltage electrode having a conductive layer formed on the inner surface of a cylindrical insulating material, and a plurality of spacers in the longitudinal direction of the electrode between the ground electrode and the high voltage electrode In an ozone generator that forms a discharge gap by interposing
The spacer is formed of an elastic band material whose length in the longitudinal direction is shorter than the inner circumferential length of the ground electrode and has a radius larger than the inner diameter of the ground electrode in a state where the elastic band material is not compressed, A plurality of leaf spring pairs having protrusions formed on both sides in the width direction of the elastic band member are provided in the longitudinal direction of the elastic band member, and the height of the protrusions of the leaf spring pair is not compressed. Larger than the discharge gap length in the state,
The spacer composed of the elastic strip material having a plurality of leaf spring pairs is compressed in the inner diameter direction of the ground electrode and held by the ground electrode, and the height of the convex portion of the leaf spring pair is set to the ground electrode and the ground electrode. An ozone generator characterized in that the discharge gap is maintained by compression with a high voltage electrode.
前記接地電極と前記高圧電極とで前記板バネ対の凸部高さを圧縮して前記放電空間を維持し、前記板バネ対の凸部が前記電極の中心部に向き合うようにした請求項1記載のオゾン発生装置。   The height of the convex portion of the leaf spring pair is compressed by the ground electrode and the high voltage electrode to maintain the discharge space, and the convex portion of the leaf spring pair faces the center portion of the electrode. The ozone generator as described. 前記スペーサの厚みが前記放電間隙長の0.5倍以下であることを特徴とする請求項1又は請求項2記載のオゾン発生装置。   The ozone generator according to claim 1 or 2, wherein a thickness of the spacer is 0.5 times or less of the discharge gap length. 前記スペーサの板バネ対における凸部の圧縮されない状態での高さが前記放電間隙長の1.5〜4.0倍であることを特徴とする請求項1〜請求項3のいずれか1項に記載のオゾン発生装置。   4. The height of the convex portion of the pair of leaf springs of the spacer in an uncompressed state is 1.5 to 4.0 times the discharge gap length. 5. The ozone generator described in 1. 前記スペーサの幅方向の板バネ対の各先端が丸み加工されていることを特徴とする請求項1〜請求項4のいずれか1項に記載のオゾン発生装置。   5. The ozone generator according to claim 1, wherein each tip of the pair of leaf springs in the width direction of the spacer is rounded.
JP2006186486A 2006-07-06 2006-07-06 Ozone generator Pending JP2008013404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186486A JP2008013404A (en) 2006-07-06 2006-07-06 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186486A JP2008013404A (en) 2006-07-06 2006-07-06 Ozone generator

Publications (1)

Publication Number Publication Date
JP2008013404A true JP2008013404A (en) 2008-01-24

Family

ID=39070800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186486A Pending JP2008013404A (en) 2006-07-06 2006-07-06 Ozone generator

Country Status (1)

Country Link
JP (1) JP2008013404A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196823A (en) * 2008-02-19 2009-09-03 Metawater Co Ltd Ozonizer and its assembling method
JP2010143794A (en) * 2008-12-19 2010-07-01 Metawater Co Ltd Ozonizer
JP2012041267A (en) * 2011-10-14 2012-03-01 Mitsubishi Electric Corp Ozone generating apparatus
CN102530879A (en) * 2010-12-21 2012-07-04 株式会社东芝 Ozone generating apparatus
JPWO2013160986A1 (en) * 2012-04-23 2015-12-21 三菱電機株式会社 Ozone generator
JP2016009741A (en) * 2014-06-24 2016-01-18 田淵電機株式会社 heat sink
EP3401274A4 (en) * 2016-01-05 2018-12-26 Mitsubishi Electric Corporation Ozone generator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196823A (en) * 2008-02-19 2009-09-03 Metawater Co Ltd Ozonizer and its assembling method
JP2010143794A (en) * 2008-12-19 2010-07-01 Metawater Co Ltd Ozonizer
CN102530879A (en) * 2010-12-21 2012-07-04 株式会社东芝 Ozone generating apparatus
US8663569B2 (en) 2010-12-21 2014-03-04 Kabushiki Kaisha Toshiba Ozone generating apparatus
JP2012041267A (en) * 2011-10-14 2012-03-01 Mitsubishi Electric Corp Ozone generating apparatus
JPWO2013160986A1 (en) * 2012-04-23 2015-12-21 三菱電機株式会社 Ozone generator
US9238213B2 (en) 2012-04-23 2016-01-19 Mitsubishi Electric Corporation Ozone generator
JP2016009741A (en) * 2014-06-24 2016-01-18 田淵電機株式会社 heat sink
EP3401274A4 (en) * 2016-01-05 2018-12-26 Mitsubishi Electric Corporation Ozone generator

Similar Documents

Publication Publication Date Title
JP2008013404A (en) Ozone generator
WO2011002006A1 (en) Ion-generating device and ion-generating element
JP5872117B1 (en) Ozone generator
JPWO2006129693A1 (en) Gas excitation device having suspended electrode and gas excitation method
KR101476644B1 (en) Underwater plasma generation apparatus
US10490983B2 (en) Corona discharge cells
KR102399306B1 (en) Discharge tube and method for manufacturing the same
JP4046224B2 (en) Electrode for gas excitation
KR101236202B1 (en) Underwater plasma generation apparatus
JP5185592B2 (en) Ozone generator
JP2005032700A (en) Gas excitation device with plate-shaped electrode, and gas excitation method
JPH10182109A (en) Ozone generator
JP2013184874A (en) Ozone generating apparatus
CN112509907A (en) Dielectric barrier glow discharge ion source structure
JP2008080294A (en) Discharge reactor
JP4342991B2 (en) Ozone generator
JP2005001991A (en) Ozonizer
JP2005255429A (en) Ozone generating tube, and ozone generating apparatus equipped with the same
JP4138684B2 (en) Ozone generation method and ozone generator
KR20150022316A (en) Ozone apparatus improved electrical connection method
JP2004181381A (en) Discharge electrode of electrostatic precipitator
RU2316468C2 (en) Ozonizer
JP5905084B2 (en) Ozone generator
JP2007330897A (en) Method for manufacturing internal electrode of discharge reactor
JP2004167315A (en) Gas exciting apparatus and gas exciting method