JP2008093717A - Forming method - Google Patents
Forming method Download PDFInfo
- Publication number
- JP2008093717A JP2008093717A JP2006279818A JP2006279818A JP2008093717A JP 2008093717 A JP2008093717 A JP 2008093717A JP 2006279818 A JP2006279818 A JP 2006279818A JP 2006279818 A JP2006279818 A JP 2006279818A JP 2008093717 A JP2008093717 A JP 2008093717A
- Authority
- JP
- Japan
- Prior art keywords
- superplastic
- forming
- deformability
- thickness
- incremental
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000002184 metal Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 22
- 239000000956 alloy Substances 0.000 claims description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 32
- 238000000465 moulding Methods 0.000 claims description 31
- 238000005482 strain hardening Methods 0.000 claims description 27
- 238000005097 cold rolling Methods 0.000 abstract 1
- 238000005530 etching Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 6
- 238000000071 blow moulding Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
本発明は超塑性金属成形品の成形方法に関する。特に、成形品の厚さが、例えば特定箇所のみ厚かったり、或いは全般的に均一な厚さであったりする等の如く、成形品の厚さを所望の厚さに規定する為に用いられる成形方法に関する。成形品としては、例えば航空機・自動車などの輸送機器のボディ、建材、橋梁などの構造体、その他にもパイプ等の各種のものが挙げられる。 The present invention relates to a method for forming a superplastic metal molded product. In particular, the molding used to regulate the thickness of the molded product to a desired thickness, for example, the thickness of the molded product is thick only at a specific location, or is generally uniform. Regarding the method. Examples of the molded product include bodies of transportation equipment such as airplanes and automobiles, structures such as building materials and bridges, and various types of pipes and the like.
超塑性材料が知られている。すなわち、多結晶金属材料の結晶粒が約10μm以下で、高温変形中に結晶粒成長を阻止する為に2相組織か微細分散粒子が存在すると、適当な高温で一定の歪速度の下で数百%以上に飴の如くに伸びる現象が見出され、このような超塑性変形を起こす超塑性合金(JIS H7007参照)が注目を浴びている。そして、超塑性合金を大別すると、微細結晶粒超塑性合金と変態超塑性合金とに分類できる。結晶粒を微細化することによって生じるものを微細結晶粒超塑性合金と呼び、金属特有の変態点付近に温度サイクルを与えることで生じるものを変態超塑性合金と呼んでいる。尚、変態とは、温度の上昇あるいは下降に伴い、結晶構造、即ち、原子の並び方が変わり、性質の違った状態になる現象のことである。そして、結晶粒を微細化するには、固液共存領域で行う方法と、固相領域、即ち、固体の状態で行う方法とが知られている。 Superplastic materials are known. That is, if the polycrystalline metal material has a crystal grain of about 10 μm or less and has a two-phase structure or finely dispersed particles to prevent crystal grain growth during high-temperature deformation, it is A phenomenon of stretching like a wrinkle has been found in over 100%, and superplastic alloys (see JIS H7007) that cause such superplastic deformation are attracting attention. And superplastic alloys can be roughly classified into fine grain superplastic alloys and transformation superplastic alloys. What is generated by refining crystal grains is called a fine grain superplastic alloy, and what is generated by applying a temperature cycle near the transformation point peculiar to a metal is called a transformation superplastic alloy. The transformation is a phenomenon in which the crystal structure, that is, the arrangement of atoms changes as the temperature rises or falls, resulting in different properties. And in order to refine | miniaturize a crystal grain, the method performed in a solid-liquid coexistence area | region and the method performed in a solid phase area | region, ie, a solid state, are known.
さて、上記のような超塑性を示す合金としては、例えばAl−78%Zn,Al−33%Cu,Al−6%Cu−0.4%Zr(SUPURAL),Al−Zn−Mg−Cu合金(7475,7075),Al−4.5%Mg−0.7%Mn−0.15%Cr(5083)等のAl−Zn系合金、Al−Cu系合金、Al−Mg系合金、Al−Zn−Mg系合金、Al−Zn−Mg−Cu系合金、Al−Li系合金、Al−Si系合金、Al−Mg−Si系合金と言ったAl系合金などが知られている。その他にも、T系合金やNi系合金なども知られている。 As an alloy exhibiting superplasticity as described above, for example, Al-78% Zn, Al-33% Cu, Al-6% Cu-0.4% Zr (SUPURAL), Al-Zn-Mg-Cu alloy. (7475, 7075), Al-Zn alloys such as Al-4.5% Mg-0.7% Mn-0.15% Cr (5083), Al-Cu alloys, Al-Mg alloys, Al- Known are Al alloys such as Zn-Mg alloys, Al-Zn-Mg-Cu alloys, Al-Li alloys, Al-Si alloys, and Al-Mg-Si alloys. In addition, T-based alloys and Ni-based alloys are also known.
尚、超塑性変形を起こす超塑性材料は、一般的には、上記の如きの金属材料であるが、最近では、金属系に限られず、難加工性材料であるセラミックスや金属間化合物、その他にも複合材料にあっても超塑性変形を起こすことが知られている。 The superplastic material that causes superplastic deformation is generally a metal material as described above, but recently, it is not limited to a metal system, but is difficult to process materials such as ceramics, intermetallic compounds, and others. Is also known to cause superplastic deformation even in composite materials.
これらの超塑性合金は数百%以上に飴の如くに伸びる現象が得られることから、複雑な成形体やそれによる構造体が提案・実用化されている。そして、超塑性成形の特徴は高温で成形することから、低応力で変形が可能であり、一般的には、ガスブロー成形により成形される。すなわち、加熱した超塑性合金板に空気、窒素ガス或いはAr等の不活性ガスを加えて静水圧を負荷し、超塑性合金板を雌型あるいは雄型に押し付けることによって、成形が行われる。この為、金型は雌型または雄型のみで良い場合が多く、又、金型の材質にも一般の冷間プレスの如くの高強度超硬材質の必要が無く、金型費が安価(例えば、1/2程度で済む。)であることが大きな特徴の一つとなっている。従って、このような特徴は、比較的製品数が少ない少量品種で、かつ、金型費が嵩む大型成形品の成形などに適用される場合に効果が大きい。特に、航空・宇宙部門の成形品には好適である。
さて、上記の如く、超塑性成形には、数々のメリットが有る。 As described above, superplastic forming has a number of advantages.
しかしながら、下記のような問題点が未解決のまま残されている。 However, the following problems remain unsolved.
例えば、所定の箇所のみ厚さを厚くしたい(逆に、所定の箇所のみ厚さを薄くしたい)場合には、超塑性成形のみでは対応できない。従って、このような場合には、超塑性合金板を部分的にエッチングし、このエッチングによって板厚が場所によって異なるように設定し、この後で超塑性成形を行うことが提案(引用文献3)されている。 For example, when it is desired to increase the thickness only at a predetermined location (conversely, when it is desired to reduce the thickness only at a predetermined location), it cannot be handled only by superplastic forming. Therefore, in such a case, it is proposed to partially etch the superplastic alloy plate, set the plate thickness to be different depending on the location by this etching, and then perform superplastic forming (Cited document 3). Has been.
しかしながら、超塑性成形前に、予め、エッチング技術によって板厚を規制する技術は、実施が厄介である。例えば、エッチング液の選択、管理、エッチングの実施、エッチング液の廃液処理と言った如く、非常に大変である。特に、エッチング自体が非常に煩瑣である。更には、エッチングを行う作業工程と成形を行う作業工程とが余りにも懸け離れており、両者の連携がスムーズになされず、作業効率が悪い。例えば、同一建屋内でエッチング作業及び超塑性成形作業を行い難い。 However, it is difficult to implement the technique of regulating the plate thickness by an etching technique in advance before superplastic forming. For example, the selection and management of the etching solution, the execution of the etching, and the waste solution treatment of the etching solution are very difficult. In particular, the etching itself is very troublesome. Furthermore, the work process for etching and the work process for forming are too far apart from each other, and the cooperation between the two is not smooth, and the work efficiency is poor. For example, it is difficult to perform etching work and superplastic forming work in the same building.
従って、本発明が解決しようとする第1の課題は、超塑性成形品の厚さを簡単に制御できる技術を提供することである。 Therefore, the first problem to be solved by the present invention is to provide a technique capable of easily controlling the thickness of a superplastic molded product.
本発明が解決しようとする第2の課題は、板厚が所望のものに規定された超塑性成形品を簡単に提供できる技術を提供することである。 The second problem to be solved by the present invention is to provide a technique that can easily provide a superplastic molded product having a desired plate thickness.
前記の課題を解決する為の検討を鋭意推し進めて行く中に、本発明者は、一枚の超塑性合金板において、超塑性変形し得る部分と超塑性変形しない(超塑性変形能が喪失)部分とが存在するようにしておけば良いであろうと考えるに至った。そして、超塑性合金板に対して何らの処理をも加えてなければ、当該部分(領域)は超塑性変形し得る部分であるのに対して、冷間加工などによって加工歪(塑性変形)を与えると、当該部分(領域)は、超塑性成形時における超塑性成形温度で再結晶が生じ、結晶粒の粗大化が起こり、超塑性成形時に超塑性変形能が喪失していることに気付いた。しかも、超塑性変形の前に冷間加工を行うことは、エッチング等を行う場合に比べて遥かに簡単に実施でき、特に、冷間加工も超塑性加工も同系統の加工であることから両者の連携性が高く、超塑性成形の前に行う予備成形として冷間加工は適したものであり、更にはある程度の予備成形にもなることから、超塑性成形にも好都合であることが判って来た。 While eagerly pursuing the study for solving the above-mentioned problems, the present inventor, in one superplastic alloy plate, does not superplastically deform with a portion that can be superplastically deformed (superplastic deformability is lost). I came to think that it would be good if there was a part. If no treatment is applied to the superplastic alloy plate, the portion (region) is a portion that can be superplastically deformed, whereas a working strain (plastic deformation) is caused by cold working or the like. When given, I noticed that the part (region) was recrystallized at the superplastic forming temperature during superplastic forming, the crystal grains became coarse, and the superplastic deformability was lost during superplastic forming. . Moreover, cold working before superplastic deformation can be performed much more easily than when etching is performed, and in particular, both cold working and superplastic working are of the same type. It has been found that cold working is suitable as a preforming performed before superplastic forming, and that it is also suitable for superplastic forming because it can also be preformed to some extent. I came.
このような知見に基づいて本発明がなされたものである。 The present invention has been made based on such findings.
すなわち、前記第1及び第2の課題は、
超塑性金属からなる材を所定形状の成形品に成形する成形方法であって、
前記超塑性金属からなる材の一部分の領域に対して加工歪を与えることによって前記領域における超塑性変形能を喪失させる超塑性変形能喪失工程と、
前記超塑性変形能喪失工程の後、前記超塑性金属からなる材に対して超塑性成形を施す超塑性成形工程
とを具備することを特徴とする成形方法によって解決される。
That is, the first and second problems are as follows:
A molding method for molding a material made of a superplastic metal into a molded product having a predetermined shape,
A superplastic deformability loss step of losing the superplastic deformability in the region by giving a working strain to a region of a part of the material made of the superplastic metal;
This is solved by a molding method comprising a superplastic forming step of performing superplastic forming on the material made of the superplastic metal after the superplastic deformability loss step.
特に、超塑性金属からなる材を、所望の厚さで、かつ、所定形状の成形品に成形する成形方法であって、
前記超塑性金属からなる材の一部分の領域に対して加工歪を与えることによって前記領域における超塑性変形能を喪失させる超塑性変形能喪失工程と、
前記超塑性変形能喪失工程の後、前記超塑性金属からなる材に対して超塑性成形を施す超塑性成形工程
とを具備することを特徴とする成形方法によって解決される。
In particular, a molding method for molding a material made of a superplastic metal into a molded product with a desired thickness and a predetermined shape,
A superplastic deformability loss step of losing the superplastic deformability in the region by giving a working strain to a region of a part of the material made of the superplastic metal;
This is solved by a molding method comprising a superplastic forming step of performing superplastic forming on the material made of the superplastic metal after the superplastic deformability loss step.
更には、上記の成形方法であって、
超塑性変形能喪失工程が冷間加工によるものであることを特徴とする成形方法によって解決される。中でも、超塑性変形能喪失工程がインクリメンタルフォーミングによるものであることを特徴とする成形方法によって解決される。
Furthermore, in the above molding method,
This is solved by a forming method characterized in that the superplastic deformability loss process is performed by cold working. Above all, it is solved by a molding method characterized in that the superplastic deformability loss process is based on incremental forming.
本発明においては、超塑性金属は、特に、超塑性Al系合金である。そして、超塑性金属板は、例えば二枚の超塑性金属板が溶接などによって接合されたものでは無く、一枚の超塑性金属板は全ての領域において超塑性変形能を有するものである。すなわち、インクリメンタルフォーミング等の冷間加工(予備成形)を施すことによって、当該部分(領域)が、始めて、超塑性変形能を喪失する超塑性金属板である。 In the present invention, the superplastic metal is in particular a superplastic Al-based alloy. The superplastic metal plate is not, for example, two superplastic metal plates joined by welding or the like, and one superplastic metal plate has superplastic deformability in all regions. That is, by performing cold working (preliminary forming) such as incremental forming, the portion (region) is a superplastic metal plate that first loses superplastic deformability.
本発明によれば、超塑性Al系合金板を超塑性成形(変形)するに先立って、インクリメンタルフォーミング等の冷間加工(予備成形)を施しているので、該予備成形の該当箇所は超塑性成形しても殆ど超塑性変形しない。従って、予備成形した箇所(冷間加工領域:超塑性変形しない箇所)は、超塑性成形後においても厚さが薄くならず、超塑性変形した箇所(非冷間加工領域)に比べて厚さが厚い。すなわち、板厚が過度に薄くなることを防ぎたい(板厚を調整したい)場合には、当該箇所を、超塑性成形に先立って、インクリメンタルフォーミング等の冷間加工(予備成形)を施しておけば、狙い通りの厚さの成形品が簡単に得られる。しかも、予備成形はインクリメンタルフォーミング等の冷間加工に過ぎないから、実施が非常に簡単である。 According to the present invention, prior to superplastic forming (deformation) of a superplastic Al-based alloy plate, cold forming (preliminary forming) such as incremental forming is performed. Almost no superplastic deformation even when molded. Therefore, the pre-formed part (cold working region: the part not superplastically deformed) does not become thin even after superplastic forming, and is thicker than the superplastically deformed part (non-cold working region). Is thick. In other words, when it is desired to prevent the plate thickness from becoming excessively thin (to adjust the plate thickness), the part should be subjected to cold forming (preliminary forming) such as incremental forming prior to superplastic forming. In this way, a molded product with the desired thickness can be easily obtained. Moreover, since the preforming is only cold working such as incremental forming, it is very easy to implement.
さて、板材からプレス製造される製品は、一般的には、その専用金型を作製し、プレス加工によって製造される。しかしながら、近年は、多品種少量生産化が進み、求められる製品もオーダーメイド化する傾向が有る。従って、それに合わせて専用金型を作り変えていたのでは、コストが掛かり過ぎ、効率も悪い。このような観点から、近年、インクリメンタルフォーミング(逐次張出し成形法)が提案されている。このインクリメンタルフォーミング(逐次張出し成形法)は、工具を板に押し付け、局所的に塑性変形させながら、目的の形状に成形する方法である。従って、インクリメンタルフォーミングには金型が不要である。 Now, a product manufactured by pressing from a plate material is generally manufactured by producing a dedicated die and pressing it. However, in recent years, there has been a tendency to produce a variety of products in small quantities, and the required products tend to be made to order. Therefore, if a dedicated mold is remade in accordance with that, it is too costly and the efficiency is poor. From such a viewpoint, incremental forming (sequential stretch forming method) has been proposed in recent years. This incremental forming (sequential stretch forming method) is a method of forming a desired shape while pressing a tool against a plate and locally plastically deforming it. Therefore, a mold is not necessary for incremental forming.
そして、超塑性成形(変形)するに先立つ予備成形として、インクリメンタルフォーミングの技術を採用した場合、インクリメンタルフォーミングでは、超塑性成形時の素板支持部(シール面)を平面(平坦面)のまま維持できる。すなわち、超塑性成形(ブロー成形)に際して、前記平面(平坦面)をシール面(気密面)として用いることが出来、超塑性成形が容易になる。しかも、インクリメンタルフォーミングは、定量的な加工度の正確な調整が容易であり、超塑性成形に先立つ予備成形として好都合である。すなわち、インクリメンタルフォーミングでは、その歪量(冷間加工量)を成形面の角度として定量的に捉えることが出来、超塑性変形能を喪失させる為の加工度の設定が容易になる。更には、インクリメンタルフォーミングによって多少の立体成形がなされているから、その後の超塑性成形による変形度合いを少なくすることが出来(例えば、厚さが異なる平板に対して超塑性成形のみで立体成形を行う場合に比べたならば、超塑性成形時における変形度は少なくて済み)、それだけキャビティが出来難く、機械的強度の低下も少ないと考えられる。かつ、インクリメンタルフォーミングの為の専用型が不要であるから、コスト面でも有利である。 If incremental forming technology is used as a pre-molding prior to superplastic forming (deformation), the base plate support (seal surface) during superplastic forming remains flat (flat) in incremental forming. it can. That is, in superplastic molding (blow molding), the flat surface (flat surface) can be used as a seal surface (airtight surface), and superplastic molding is facilitated. In addition, the incremental forming is easy to accurately adjust the quantitative processing degree, and is advantageous as a preforming prior to superplastic forming. That is, in incremental forming, the amount of distortion (cold working amount) can be quantitatively grasped as the angle of the molding surface, and the degree of working for losing superplastic deformability becomes easy. Furthermore, since some three-dimensional molding is performed by incremental forming, the degree of deformation by subsequent superplastic molding can be reduced (for example, three-dimensional molding is performed only by superplastic molding on flat plates having different thicknesses. Compared to the case, the degree of deformation at the time of superplastic forming may be small), so that it is difficult to form a cavity and the decrease in mechanical strength is considered to be small. In addition, since a dedicated mold for incremental forming is not required, it is advantageous in terms of cost.
ところで、インクリメンタルフォーミング等の冷間加工技術も、超塑性成形技術も、それのみの技術は、既に、知られていることである。 By the way, cold working techniques such as incremental forming and superplastic forming techniques are already known.
しかしながら、超塑性成形に先立って、インクリメンタルフォーミング等の冷間加工を施しておけば、成形品の板厚の制御が可能になると言う技術思想は知られておらず、かつ、想いも出来ないことであった。しかも、超塑性成形の後にインクリメンタルフォーミング等の冷間加工を施しても、本発明が奏するような特長は得られない。すなわち、成形品の板厚制御の為に、インクリメンタルフォーミング等の冷間加工を施し、その後で超塑性成形すると言う本願発明は、新規で、かつ、進歩性を有する発明であると確信している。 However, the technical idea that the thickness of the molded product can be controlled if cold working such as incremental forming is performed prior to superplastic forming is not known and unthinkable. Met. In addition, even if cold working such as incremental forming is performed after superplastic forming, the characteristics as achieved by the present invention cannot be obtained. In other words, the invention of the present application that performs cold forming such as incremental forming and then superplastic forming to control the thickness of the molded product is convinced that it is a novel and inventive invention. .
又、インクリメンタルフォーミングのみでは、例えば垂直壁が形成できない。すなわち、傾斜状態のものしか成形できない。しかしながら、インクリメンタルフォーミング等の冷間加工を施した後で超塑性成形を行えば、垂直壁の成形も可能であり、造形の自由度が高い。 Further, for example, a vertical wall cannot be formed only by incremental forming. That is, only an inclined state can be formed. However, if superplastic forming is performed after performing cold working such as incremental forming, vertical walls can be formed, and the degree of freedom of modeling is high.
又、インクリメンタルフォーミングのみでは、スプリングバックが発生し、成形品の成形精度が劣る恐れも有る。しかしながら、インクリメンタルフォーミングの後で超塑性成形を行えば、スプリングバックの発生を抑制でき、成形品が高精度で得られる。 In addition, only incremental forming may cause springback, which may deteriorate the molding accuracy of the molded product. However, if superplastic forming is performed after incremental forming, the occurrence of springback can be suppressed, and a molded product can be obtained with high accuracy.
上記においては、超塑性成形後において、予備成形(冷間加工:インクリメンタルフォーミング)した箇所が厚さは厚く、予備成形(冷間加工:インクリメンタルフォーミング)しない箇所が厚さは薄いものとなる場合を説明した。 In the above case, after superplastic forming, the portion where the preforming (cold processing: incremental forming) is thick is thick, and the portion where the pre-forming (cold processing: incremental forming) is not performed is thin. explained.
しかしながら、超塑性成形の前段階において、冷間加工した箇所(冷間加工箇所)の板厚と冷間加工しない箇所(非冷間加工箇所)の板厚とを比べると、冷間加工した分だけ、(冷間加工箇所の板厚)<(非冷間加工箇所の板厚)であることは当然である。従って、超塑性成形における伸びの具合を考慮すれば、超塑性成形後において、(非冷間加工箇所の板厚)≒(冷間加工箇所の板厚)であるように制御することも可能である。すなわち、超塑性成形の前段階における板厚が薄い冷間加工箇所の領域を大きく取り、非冷間加工箇所(超塑性変形可能箇所)の領域を小さくしておけば、超塑性成形後における板厚がほぼ同程度になるようにすることも出来る。つまり、超塑性成形に際して、どこもが均一に超塑性変形するのでは無く、雄型または雌型に接触し始めた箇所では超塑性変形し難い。従って、このような場合には、超塑性成形品に厚さのバラツキが起きてしまう。そこで、このような現象が予想される場合には、予め場所を決めてインクリメンタルフォーミング等の冷間加工を施し、その後で超塑性成形すれば、超塑性成形のみでは均一厚の成形品が得られないような場合でも、全ての領域で厚さが同じ超塑性成形品を得ることも出来る。そして、このようにした場合、超塑性変形の領域が少ないから、即ち、超塑性変形させなければならない割合が低いことから、超塑性成形に伴うキャビティの発生も少なくなり、機械的強度の低下が防止できるようになる。 However, in the previous stage of superplastic forming, comparing the thickness of the cold-worked part (cold-worked part) with the thickness of the non-cold-worked part (non-cold-worked part), It is only natural that (thickness of cold-worked portion) <(thickness of non-cold-worked portion). Therefore, if the degree of elongation in superplastic forming is taken into account, it is also possible to control after superplastic forming so that (thickness of non-cold working location) ≒ (thickness of cold working location). is there. In other words, if the area of the cold-worked portion where the plate thickness is thin in the previous stage of superplastic forming is taken large and the region of the non-cold-worked portion (place where superplastic deformation is possible) is made small, the plate after superplastic forming The thickness can be made approximately the same. That is, in superplastic forming, not everyone uniformly superplastically deforms, but it is difficult to superplastically deform at a point where it begins to contact the male or female mold. Therefore, in such a case, thickness variation occurs in the superplastic molded product. Therefore, when such a phenomenon is expected, if a place is determined in advance and cold forming such as incremental forming is performed, and then superplastic forming is performed, a molded product having a uniform thickness can be obtained only by superplastic forming. Even in such a case, it is possible to obtain a superplastic molded product having the same thickness in all regions. In such a case, since the area of superplastic deformation is small, that is, the ratio of superplastic deformation is low, the generation of cavities associated with superplastic forming is reduced, and the mechanical strength is reduced. Can be prevented.
本発明の方法は、超塑性金属からなる材(特に、超塑性Al系合金板)を所定形状の成形品に成形する成形方法である。中でも、超塑性金属からなる材(特に、超塑性Al系合金板)を、所望の厚さで、かつ、所定形状の成形品に成形する成形方法である。そして、前記超塑性金属からなる材の一部分の領域に対して加工歪を与えることによって前記領域における超塑性変形能を喪失させる超塑性変形能喪失工程を有する。更に、前記超塑性変形能喪失工程の後、前記超塑性金属からなる材に対して超塑性温度下で超塑性成形を施す超塑性成形工程を有する。超塑性変形能喪失工程は、特に、冷間加工、中でもインクリメンタルフォーミングによる。例えば、伸び率が4〜25%(中でも、4%以上で15%以下。)の室温(0〜40℃)での冷間加工による。 The method of the present invention is a forming method for forming a material made of a superplastic metal (particularly, a superplastic Al-based alloy plate) into a molded product having a predetermined shape. Among them, a molding method for molding a material made of a superplastic metal (particularly, a superplastic Al-based alloy plate) into a molded product having a desired thickness and a predetermined shape. And it has the superplastic deformability loss process of losing the superplastic deformability in the said area | region by giving a working strain with respect to the partial area | region of the material which consists of the said superplastic metal. Furthermore, after the superplastic deformability loss step, there is a superplastic forming step in which superplastic forming is performed at a superplastic temperature on the material made of the superplastic metal. The process of losing the superplastic deformability is in particular by cold working, especially by incremental forming. For example, by cold working at room temperature (0 to 40 ° C.) with an elongation of 4 to 25% (in particular, 4% or more and 15% or less).
以下、更に詳しく説明する。 This will be described in more detail below.
図1(a),(b),(c),(d)は、超塑性Al系合金材として5083合金を用いた本発明になる成形方法の第1実施形態を示す説明図である。尚、図1(a)は予備成形(インクリメンタルフォーミング:冷間加工)体を超塑性成形型上に配設した段階での断面図、図1(b)は超塑性成形後の断面図、図1(c)は超塑性成形後に不要部をトリムした段階での断面図、図1(d)は超塑性成形体の斜視図である。 FIGS. 1A, 1B, 1C and 1D are explanatory views showing a first embodiment of a forming method according to the present invention using 5083 alloy as a superplastic Al-based alloy material. 1A is a cross-sectional view at a stage where a preformed (incremental forming: cold work) body is disposed on a superplastic mold, and FIG. 1B is a cross-sectional view after superplastic forming. 1 (c) is a cross-sectional view at a stage where unnecessary portions are trimmed after superplastic forming, and FIG. 1 (d) is a perspective view of the superplastic formed body.
先ず、溶接などによって二枚の板が接合されたと言ったものでは無い所定大きさの一枚の超塑性Al系合金の平板1に対してインクリメンタルフォーミング(冷間加工(20℃での伸び率が4%の冷間加工):予備成形)を施し、図1(a)に示される如くの予備成形体2を得る。
First, incremental forming (cold working (elongation rate at 20 ° C.) is not applied to a single superplastic Al-based alloy flat plate 1 of a predetermined size, which is not said that two plates are joined by welding or the like. 4% cold working): preforming) is performed to obtain a preformed
この図1(a)中、インクリメンタルフォーミングを受けた箇所(インクリメンタルフォーミング部:冷間加工部)1aは傾斜面となっており、予備成形を受けた分だけ、当該箇所1aの部分の板厚はインクリメンタルフォーミングを受けていない箇所(非インクリメンタルフォーミング部:非冷間加工部)1bの部分の板厚よりも薄くなっている。すなわち、図1(a)を参照すると、インクリメンタルフォーミング部1aの部分の板厚が非インクリメンタルフォーミング部1bの部分の板厚よりも薄いことが了解される。そして、インクリメンタルフォーミング部1aは、厭くまでも、傾斜面にしかならない。尚、インクリメンタルフォーミングについては従来からも良く知られているので、その他の詳細は省略される。
In FIG. 1 (a), the part subjected to incremental forming (incremental forming part: cold-worked part) 1a has an inclined surface, and the thickness of the
そして、所定形状の予備成形体2を超塑性成形型3に配設し、再結晶温度以上の温度(超塑性温度)下でガスブロー成形による超塑性成形を行う。尚、超塑性成形については従来からも良く知られているので、詳細は省略される。
Then, the preformed
そうすると、インクリメンタルフォーミングに続く超塑性成形によって、図1(b)に示される如くの成形品4が得られる。尚、インクリメンタルフォーミング部1aは、超塑性変形能が喪失していることから、超塑性成形によっても超塑性変形をせず、その板厚が殆ど変わらない。これに対して、非インクリメンタルフォーミング部1bの部分は、超塑性変形能が喪失しておらず、超塑性成形によって超塑性変形を受け、その伸びが著しいことから、厚さが一段と薄くなっている。
Then, a molded product 4 as shown in FIG. 1B is obtained by superplastic molding following incremental forming. In addition, since the incremental forming
従って、上記説明から判る通り、成形品4は、場所によって、板厚が制御されていることが判る。これに対して、インクリメンタルフォーミングを実施せずに平板1に超塑性成形を実施すると、図1(b)に示される如きの板厚が厚い部分は得られない。すなわち、目的とする個所の板厚を特定のものに規制できないのである。 Therefore, as can be seen from the above description, the thickness of the molded product 4 is controlled depending on the location. On the other hand, when superplastic forming is performed on the flat plate 1 without performing the incremental forming, a thick plate portion as shown in FIG. 1B cannot be obtained. In other words, the plate thickness at the target location cannot be restricted to a specific one.
図2(a),(b),(c),(d)は、超塑性Al系合金材として5083合金を用いた本発明になる成形方法の第2実施形態を示す説明図である。尚、図2(a)は予備成形(インクリメンタルフォーミング:冷間加工)体を超塑性成形型上に配設した段階での断面図、図2(b)は超塑性成形後の断面図、図2(c)は超塑性成形後に不要部をトリムした段階での断面図、図2(d)は超塑性成形体の斜視図である。 FIGS. 2A, 2B, 2C and 2D are explanatory views showing a second embodiment of the forming method according to the present invention using 5083 alloy as a superplastic Al-based alloy material. 2A is a cross-sectional view at a stage where a preformed (incremental forming: cold work) body is disposed on the superplastic forming die, and FIG. 2B is a cross-sectional view after superplastic forming. 2 (c) is a sectional view at a stage where unnecessary portions are trimmed after superplastic forming, and FIG. 2 (d) is a perspective view of the superplastic formed body.
先ず、溶接などによって二枚の板が接合されたと言ったものでは無い所定大きさの一枚の超塑性Al系合金の平板5に対してインクリメンタルフォーミング(冷間加工(20℃での伸び率が4.5%の冷間加工):予備成形)を施し、予備成形体6を得る。
First, incremental forming (cold working (elongation rate at 20 ° C.) is not applied to a single superplastic Al-based alloy
尚、図2(a)からも判る通り、本実施形態にあっては、インクリメンタルフォーミングを受けた箇所(インクリメンタルフォーミング部:冷間加工部)5aは傾斜面となっており、予備成形を受けた分だけ、当該箇所5aの部分の板厚はインクリメンタルフォーミングを受けていない箇所(非インクリメンタルフォーミング部:非冷間加工部)5bの部分の板厚よりも薄くなっている。
As can be seen from FIG. 2 (a), in this embodiment, the
次に、所定形状の予備成形体5を超塑性成形型に配設し、ガスブロー成形による超塑性成形を行う。
Next, the
そうすると、インクリメンタルフォーミングに続く超塑性成形によって、図2(b)に示される如くの成形品7が得られる。尚、本実施形態における成形品7は、図2(b)からも判る通り、インクリメンタルフォーミング部5aにおける板厚と非インクリメンタルフォーミング部5bにおける板厚とが殆ど同じ厚さであるようになっている。そして、このような場合にあっても、目的とする個所の板厚は特定のものに制御できていると言うことである。すなわち、厚さを異ならしめる場合のみでは無く、厚さを均一にする場合にも本発明が応用できるのである。
Then, a molded
尚、上記実施形態では5083合金を用いた場合で述べたが、他にも7475合金などを用いた場合においても同様な工程を経ることによって、同様な成形品が得られた。 In the above embodiment, the case where the 5083 alloy is used has been described. However, in the case where the 7475 alloy or the like is used, a similar molded product is obtained through the same process.
1,5 超塑性Al系合金平板
1a,5a インクリメンタルフォーミング部(冷間加工部)
1b,5b 非インクリメンタルフォーミング部(非冷間加工部)
2,6 予備成形体
3a,3b 超塑性成形型
4,7 超塑性成形品
特許出願人 日本飛行機株式会社
代 理 人 宇 高 克 己
1,5 Superplastic Al alloy
1b, 5b Non-incremental forming part (non-cold working part)
2,6 Preliminary molded body 3a,
Patent applicant Japan Airplane Co., Ltd.
Representative Katsumi Udaka
Claims (5)
前記超塑性金属からなる材の一部分の領域に対して加工歪を与えることによって前記領域における超塑性変形能を喪失させる超塑性変形能喪失工程と、
前記超塑性変形能喪失工程の後、前記超塑性金属からなる材に対して超塑性成形を施す超塑性成形工程
とを具備することを特徴とする成形方法。 A molding method for molding a material made of a superplastic metal into a molded product having a predetermined shape,
A superplastic deformability loss step of losing the superplastic deformability in the region by giving a working strain to a region of a part of the material made of the superplastic metal;
And a superplastic forming step of performing superplastic forming on the material made of the superplastic metal after the superplastic deformability loss step.
The forming method according to claim 1, wherein the superplastic metal is a superplastic Al-based alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006279818A JP5030084B2 (en) | 2006-10-13 | 2006-10-13 | Molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006279818A JP5030084B2 (en) | 2006-10-13 | 2006-10-13 | Molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008093717A true JP2008093717A (en) | 2008-04-24 |
JP5030084B2 JP5030084B2 (en) | 2012-09-19 |
Family
ID=39377117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006279818A Active JP5030084B2 (en) | 2006-10-13 | 2006-10-13 | Molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5030084B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07305131A (en) * | 1994-05-11 | 1995-11-21 | Honda Motor Co Ltd | Aluminum alloy sheet for super plastic forming capable of cold preforming and its production |
JP2004291067A (en) * | 2003-03-28 | 2004-10-21 | Hitachi Ltd | Method and apparatus for incremental forming |
-
2006
- 2006-10-13 JP JP2006279818A patent/JP5030084B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07305131A (en) * | 1994-05-11 | 1995-11-21 | Honda Motor Co Ltd | Aluminum alloy sheet for super plastic forming capable of cold preforming and its production |
JP2004291067A (en) * | 2003-03-28 | 2004-10-21 | Hitachi Ltd | Method and apparatus for incremental forming |
Also Published As
Publication number | Publication date |
---|---|
JP5030084B2 (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2918722B2 (en) | Manufacturing method of hollow metal products | |
Sebastian et al. | Properties and processing of magnesium wrought products for automotive applications | |
US20090008428A1 (en) | Method of manufacturing an article by superplastic forming and diffusion welding | |
Barnes | Industrial applications of superplastic forming: trends and prospects | |
EP1415735B1 (en) | Method of forming a sheet metal article by superplastic or quick plastic forming | |
JP5039720B2 (en) | Work forming method and forming system | |
JP4776866B2 (en) | Method for forming structure made of aluminum alloy | |
JP2001162330A (en) | Manufacturing method of metal sheet member having large area | |
CN111330986A (en) | Efficient integrated processing method for preparing high-strength high-toughness magnesium alloy sheet with controllable double-peak structure | |
EP3406750B1 (en) | Single-piece extended laminar flow inlet lipskin | |
JP5030084B2 (en) | Molding method | |
CN108136470A (en) | High-speed blow molding process | |
JPH08117904A (en) | Manufacture of high pressure gas container | |
Giuliano | Gas blow forming multiphase process using a non-superplastic material | |
RU99113931A (en) | METHOD FOR PRODUCING MULTILAYER CELLULAR STRUCTURE | |
US20050139297A1 (en) | Magnesium alloy and method of manufacturing a seat frame for an automobile using the same | |
JP4009129B2 (en) | Hydroform processing method | |
Takara et al. | New forming process of three-dimensionally shaped magnesium parts utilizing high-strain-rate superplasticity | |
JPH01289531A (en) | Superplastic forging method | |
Fereshteh-Saniee et al. | Influence of combined severe plastic deformation and sheet extrusion process on the superplastic formability of AA 5083 aluminum alloy assessed by free bulge test | |
JP5429513B2 (en) | Molding method | |
JP2804438B2 (en) | Forming method of aluminum-based metal plate | |
JP4133465B2 (en) | Hydroform processing method | |
JPH02165837A (en) | Superplastic forging method | |
JP2003088922A (en) | Method for plastic working of metallic material by temperature inclination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120620 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5030084 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |