Nothing Special   »   [go: up one dir, main page]

JP2008078186A - Method of growing crystal of nitride compound semiconductor - Google Patents

Method of growing crystal of nitride compound semiconductor Download PDF

Info

Publication number
JP2008078186A
JP2008078186A JP2006252578A JP2006252578A JP2008078186A JP 2008078186 A JP2008078186 A JP 2008078186A JP 2006252578 A JP2006252578 A JP 2006252578A JP 2006252578 A JP2006252578 A JP 2006252578A JP 2008078186 A JP2008078186 A JP 2008078186A
Authority
JP
Japan
Prior art keywords
compound semiconductor
nitride
film
crystal growth
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006252578A
Other languages
Japanese (ja)
Inventor
Ko Kurihara
香 栗原
Hideyoshi Horie
秀善 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006252578A priority Critical patent/JP2008078186A/en
Publication of JP2008078186A publication Critical patent/JP2008078186A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of growing a crystal of a nitride compound semiconductor wherein the crystal of a p-type nitride compound semiconductor can be made low in resistance as a bulk, and which is in a low level of a defect and high in quality. <P>SOLUTION: Gas containing ammonia and an organic nitrogen compound as a nitrogen material gas is supplied to epitaxially grow a nitride compound semiconductor film. In the film formation process for a single film of the nitride compound semiconductor, the mole flow rate of ammonia and the organic nitrogen compound in the nitrogen material gas is controlled to change a supply mole ratio (R=x/(x+y)) of the organic nitrogen compound (x moles) and ammonia (y moles). Film formation is mainly carried out in an area with a small mole ratio, while hydrogen that enters the film desorbs by outward diffusion in an area with a large mole ratio. A film formation step and an annealing step during film formation are repeated a plurality of times. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は窒化物系化合物半導体の結晶成長方法に関し、より詳細には、窒素をV族元素として含むIII−V族化合物半導体薄膜結晶のエピタキシャル成長技術に関する。   The present invention relates to a crystal growth method for a nitride compound semiconductor, and more particularly to an epitaxial growth technique for a III-V compound semiconductor thin film crystal containing nitrogen as a V group element.

青色発光素子と蛍光体との組み合わせにより白色光源とすることができ、このような白色光源は、液晶ディスプレイなどのバックライト、発光ダイオード(LED)イルミネーション、自動車用照明、あるいは蛍光灯に替わる一般照明などとしての応用が盛んに研究されてきており、その一部は既に実用化されている。現在では、このような青色発光素子は主として、有機金属気相成長法(MOCVD法)や分子線エピタキシー法(MBE法)などの手法により窒化ガリウム系半導体結晶の薄膜を成長させることにより作製される。   A white light source can be formed by a combination of a blue light emitting element and a phosphor. Such a white light source can be a backlight such as a liquid crystal display, a light emitting diode (LED) illumination, an automobile illumination, or a general illumination replacing a fluorescent lamp. Applications such as these have been actively studied, and some of them have already been put into practical use. At present, such blue light emitting devices are mainly produced by growing a thin film of a gallium nitride based semiconductor crystal by a technique such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). .

図1は、MOCVD法で窒化ガリウム系半導体薄膜を積層成長させて青色LEDを作製する一般的な結晶成長プロセス例を説明するための図である。この図に示した例では基板としてサファイアが用いられており、先ず、サファイア基板101を結晶成長用の反応炉内のサセプタに載置して炉内に水素ガスを供給し、1000℃程度もしくはそれ以上の温度(この図では1060℃)で所定の時間保持して基板表面を清浄化(サーマルクリーニング)する(図1(A))。   FIG. 1 is a diagram for explaining an example of a general crystal growth process for manufacturing a blue LED by stacking and growing a gallium nitride based semiconductor thin film by MOCVD. In the example shown in this figure, sapphire is used as a substrate. First, the sapphire substrate 101 is placed on a susceptor in a reaction furnace for crystal growth, and hydrogen gas is supplied into the furnace to about 1000 ° C. or higher. The substrate surface is kept at the above temperature (1060 ° C. in this figure) for a predetermined time to clean the substrate surface (thermal cleaning) (FIG. 1A).

この処理の後、基板温度を550℃程度の比較的低温の領域まで一旦下げ、基板温度を充分に安定させた状態で炉内に結晶成長用のガスを供給させていわゆる低温バッファ層102を形成する。ここで用いられる結晶成長用ガスは、例えば、ガリウム供給源であるトリメチルガリウム(TMG)と窒素供給源であるアンモニア(NH3)であり、これらの原料ガスが水素ガスをキャリヤガスとして供給され、GaNのバッファ層102が得られる(図1(B))。 After this treatment, the substrate temperature is temporarily lowered to a relatively low temperature region of about 550 ° C., and a crystal growth gas is supplied into the furnace while the substrate temperature is sufficiently stabilized to form a so-called low temperature buffer layer 102. To do. The crystal growth gas used here is, for example, trimethylgallium (TMG) which is a gallium supply source and ammonia (NH 3 ) which is a nitrogen supply source, and these source gases are supplied using hydrogen gas as a carrier gas, A GaN buffer layer 102 is obtained (FIG. 1B).

このバッファ層102の形成後、基板温度を再び1000℃程度の高温領域まで上げ、基板温度が充分に安定した後に、トリメチルガリウム(TMG)とアンモニア(NH3)を水素ガスをキャリヤガスとして供給してi型GaN層103を成膜する。そして、上記供給ガス中にGaN結晶中でn型ドーパントとなるSiの供給源であるモノシランガス(SiH4)を所定の流量だけ混入させて結晶成長を継続させて、上記i型GaN層103の上にn型GaN層104を成膜する(図1(C))。 After the formation of the buffer layer 102, the substrate temperature is raised again to a high temperature region of about 1000 ° C., and after the substrate temperature is sufficiently stabilized, trimethylgallium (TMG) and ammonia (NH 3 ) are supplied using hydrogen gas as a carrier gas. An i-type GaN layer 103 is formed. Then, monosilane gas (SiH 4 ), which is a supply source of Si serving as an n-type dopant in the GaN crystal, is mixed into the supply gas at a predetermined flow rate to continue crystal growth, and the top of the i-type GaN layer 103 is Then, an n-type GaN layer 104 is formed (FIG. 1C).

次に、基板温度を中間領域(この図では750℃)まで下げて基板温度が充分に安定した後に、この成長温度でInGaNの量子井戸層とGaNの障壁層を交互に複数層積層させたInGaN/GaN多重量子井戸発光層105を形成する(図1(D))。ここで、GaNの障壁層の成長はトリメチルガリウム(TMG)とアンモニア(NH3)を水素をキャリヤガスとして供給することで行われ、InGaNの量子井戸層の成長は上記ガスにさらに所定流量のトリメチルインジウム(TMI)を混入させて実行される。 Next, after the substrate temperature is sufficiently stabilized by lowering the substrate temperature to the intermediate region (750 ° C. in this figure), InGaN is formed by alternately laminating a plurality of InGaN quantum well layers and GaN barrier layers at this growth temperature. / GaN multiple quantum well light emitting layer 105 is formed (FIG. 1D). Here, the growth of the GaN barrier layer is performed by supplying trimethylgallium (TMG) and ammonia (NH 3 ) as hydrogen as a carrier gas, and the growth of the InGaN quantum well layer is further performed by adding trimethylgallium with a predetermined flow rate to the gas. This is performed by mixing indium (TMI).

続いて、基板温度を1000℃付近の高温領域まで再度上げ、水素をキャリヤガスとして、トリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、アンモニア(NH3)、およびp型ドーパントとなるMgの供給源であるシクロペンタジエニルマグネシウム(Cp2Mg)を供給してMgドープのp型AlGaN層106を形成し(図1(E))、さらに、上記供給ガスのうちのトリメチルアルミニウム(TMA)の供給を断ってMgドープのp型GaN層107を形成する(図1(F))。なお、p型ドーパントはMgに変えてZnやBeとする場合もある。 Subsequently, the substrate temperature is raised again to a high temperature region around 1000 ° C., and trimethylaluminum (TMA), trimethylgallium (TMG), ammonia (NH 3 ), and a supply source of Mg serving as a p-type dopant using hydrogen as a carrier gas. supply cyclopentadienyl magnesium is (Cp 2 Mg) by supplying to form a p-type AlGaN layer 106 of Mg-doped (FIG. 1 (E)), further, trimethylaluminum of the feed gas (TMA) Then, the Mg-doped p-type GaN layer 107 is formed (FIG. 1F). The p-type dopant may be Zn or Be instead of Mg.

ところで、p型窒化物系化合物半導体結晶中のアクセプタ(上述例ではMg)に水素が結合すると、アクセプタが電気的に不活性化されることが知られている。このため、p型の窒化物系化合物半導体結晶を、水素を含む雰囲気で結晶成長させたり、水素ガス中あるいは水素を生成するガス中で熱処理したような場合には、そのp型窒化物系化合物半導体結晶は高抵抗化してしまう。このため、結晶成長に水素ガスを使用するMOCVD等の成膜方法では、低抵抗のp型窒化物系化合物半導体結晶をas−grown(熱処理等の特別な成膜後処理を行わない)の状態で得ることは容易ではない。   By the way, it is known that when hydrogen is bonded to an acceptor (Mg in the above example) in the p-type nitride compound semiconductor crystal, the acceptor is electrically inactivated. Therefore, when a p-type nitride compound semiconductor crystal is grown in an atmosphere containing hydrogen, or is heat-treated in a hydrogen gas or a gas that generates hydrogen, the p-type nitride compound compound is used. The semiconductor crystal has a high resistance. For this reason, in a film formation method such as MOCVD using hydrogen gas for crystal growth, a low-resistance p-type nitride compound semiconductor crystal is in an as-grown state (no special post-film treatment such as heat treatment is performed). It is not easy to get in.

そこで、低抵抗のp型窒化物系化合物半導体結晶を得る方法が種々検討されてきており、高抵抗化した窒化物系化合物半導体結晶に対して成膜後に特別な処理を施すことでアクセプタを電気的に活性化する方法(第1の方法)と、結晶成長プロセスの工夫によってas−grown状態のp型窒化物系化合物半導体結晶の低抵抗化を図る方法(第2の方法)、素子構造(積層構造)を工夫してp型キャリヤ(ホール)の濃度と移動度の双方を高めて抵抗値を下げる方法(第3の方法)の3つに大別することができる。   Therefore, various methods for obtaining a low-resistance p-type nitride compound semiconductor crystal have been studied, and the acceptor can be electrically connected by applying a special treatment to the high-resistance nitride compound semiconductor crystal after film formation. Activation method (first method), a method for reducing the resistance of an as-grown p-type nitride compound semiconductor crystal by devising a crystal growth process (second method), an element structure ( The method can be roughly divided into three methods (third method) in which both the concentration and mobility of p-type carriers (holes) are improved by devising the laminated structure and the resistance value is lowered.

具体的には、第1の方法として、Mgなどの不純物をドープした窒化ガリウム系化合物半導体結晶に加速電圧3〜30kV程度の電子線照射処理を施して添加したアクセプタを電気的に活性化する方法(特許文献1)や、窒化ガリウム系化合物半導体の分解圧以上に加圧した窒素などの不活性ガス雰囲気中で400℃以上の温度でアニーリングを行う方法(特許文献2)等が知られている。   Specifically, as a first method, a method of electrically activating an acceptor added by applying an electron beam irradiation treatment at an acceleration voltage of about 3 to 30 kV to a gallium nitride compound semiconductor crystal doped with impurities such as Mg (Patent Document 1), a method of performing annealing at a temperature of 400 ° C. or higher in an inert gas atmosphere such as nitrogen pressurized above the decomposition pressure of a gallium nitride compound semiconductor (Patent Document 2), and the like are known. .

また、第2の方法としては、有機金属化学気相成長法によりp型窒化物系化合物半導体を成長させる際に窒素放出過程において水素を放出しない窒素原料ガス(すなわち、NH3ではなく有機窒素原料ガス)を用いる方法(特許文献3)や、結晶温度700度以上で成長したp型窒化ガリウムにおいては主として成長終了後の冷却時に水素によるアクセプタのパッシベーションが生じる点に着目して、結晶成長後にNH3ガスの供給を停止して、水素を含まない不活性ガス雰囲気中で結晶の冷却を行う方法(特許文献4)等が知られている。 Further, as a second method, a nitrogen source gas that does not release hydrogen in a nitrogen releasing process when growing a p-type nitride compound semiconductor by metal organic chemical vapor deposition (that is, an organic nitrogen source instead of NH 3 ) (Patent Document 3) using a gas), and in p-type gallium nitride grown at a crystal temperature of 700 ° C. or more, focusing on the fact that acceptor passivation by hydrogen occurs at the time of cooling after completion of growth, NH is formed after crystal growth. A method is known in which the supply of gas is stopped and the crystal is cooled in an inert gas atmosphere containing no hydrogen (Patent Document 4).

さらに、第3の方法としては、互いに組成の異なる第1と第2の窒化物系化合物半導体層を交互に積層させたInGaN/GaN超格子構造により不純物濃度が高い一方の窒化物系化合物半導体層においてキャリアを多く発生させるとともに不純物濃度が低い他方の窒化物系化合物半導体層における移動度を相対的に高くする方法(特許文献5)や、InAlGaN系の超格子構造によりドナー性の結晶欠陥によるアクセプタの補償を低減させる方法(特許文献6)等が知られている。   Further, as a third method, one nitride compound semiconductor layer having a high impurity concentration by an InGaN / GaN superlattice structure in which first and second nitride compound semiconductor layers having different compositions are alternately stacked. In the other nitride-based compound semiconductor layer that generates a large amount of carriers and has a low impurity concentration (Patent Document 5), or an acceptor due to donor-induced crystal defects due to an InAlGaN-based superlattice structure There is known a method for reducing the compensation (Patent Document 6) and the like.

これらの方法のうち、第1の方法の電子線照射処理では、低抵抗化するのは電子線照射面である試料表面近傍に限られ、p型窒化ガリウム系化合物半導体結晶のバルク全体を低抵抗化させることはできない。また、試料面全体に一度の処理で電子線照射することが困難であるために、一般的には試料面上で電子線照射スポットを掃引させる手法が採られることから、アクセプタの活性化レベルの面内均一性やプロセスの高速性(スループットの向上)という観点からは問題がある。   Among these methods, in the electron beam irradiation treatment of the first method, the resistance is reduced only in the vicinity of the sample surface which is the electron beam irradiation surface, and the entire bulk of the p-type gallium nitride compound semiconductor crystal is reduced in resistance. It can not be made. In addition, since it is difficult to irradiate the entire sample surface with an electron beam in a single process, generally, a method of sweeping an electron beam irradiation spot on the sample surface is adopted, so that the activation level of the acceptor There are problems in terms of in-plane uniformity and high-speed process (improvement of throughput).

また、第1の方法の不活性ガス中のアニーリングの手法は、窒化ガリウム系化合物半導体結晶の分解圧を考慮した高圧条件下でアニーリングを実行しても、試料表面近傍からの窒素脱離は完全に抑えることはできず、窒素脱離に起因する欠陥を生じさせてしまう。この欠陥は窒化ガリウム系化合物半導体結晶中ではn型キャリヤとして機能するため、表面近傍のp型キャリヤ濃度が実質的に低下してしまう結果となる。そして、この現象により、窒化ガリウム系化合物半導体結晶表面の充分な低抵抗化が図られないことに加え、当該表面に形成される電極との接触抵抗が増大してしまい素子全体が高抵抗化してしまうという問題があった。   In addition, the first method of annealing in an inert gas is that nitrogen desorption from the vicinity of the surface of the sample is complete even when annealing is performed under high pressure conditions that take into account the decomposition pressure of the gallium nitride compound semiconductor crystal. It cannot be suppressed to a low level, and a defect due to nitrogen desorption occurs. This defect functions as an n-type carrier in the gallium nitride compound semiconductor crystal, resulting in a substantial decrease in the p-type carrier concentration in the vicinity of the surface. As a result, the resistance of the gallium nitride compound semiconductor crystal surface cannot be sufficiently lowered due to this phenomenon, and the contact resistance with the electrode formed on the surface increases, so that the entire device becomes highly resistive. There was a problem that.

第2の方法の有機窒素原料ガスを用いる方法では、結晶中への水素の取り込みは抑制されるものの、原料ガス自体が含有する炭素の混入が生じ易く、NH3ガスを用いた場合に比較して結晶中の炭素濃度が高くなってしまう。また、有機窒素原料ではNH3で見られる還元作用がないため、酸素濃度も増加する。これらの、窒化ガリウム系化合物半導体結晶中に取り込まれた炭素や酸素はn型キャリヤとして機能するため、所望のp型キャリヤ濃度が得られないという問題がある。 In the method using the organic nitrogen source gas of the second method, although the incorporation of hydrogen into the crystal is suppressed, carbon contained in the source gas itself is likely to be mixed, and compared with the case where NH 3 gas is used. As a result, the carbon concentration in the crystal becomes high. Further, since the organic nitrogen raw material does not have the reducing action seen with NH 3 , the oxygen concentration also increases. Since carbon and oxygen incorporated into these gallium nitride compound semiconductor crystals function as n-type carriers, there is a problem that a desired p-type carrier concentration cannot be obtained.

また、第2の方法のp型の結晶を成長させた後にNH3のガス供給を停止する方法では、結晶成長後における水素混入の防止や表面近傍領域の水素濃度低減化には効果があるものの、既に結晶中に取り込まれた水素はそのままバルク中に留まるために、p型窒化ガリウム系化合物半導体結晶の充分な低抵抗化を図ることはできない。 Further, the method of stopping the gas supply of NH 3 after growing the p-type crystal of the second method is effective in preventing hydrogen mixing after crystal growth and reducing the hydrogen concentration in the vicinity of the surface. Since the hydrogen already taken into the crystal remains in the bulk as it is, the resistance of the p-type gallium nitride compound semiconductor crystal cannot be sufficiently lowered.

超格子構造を利用して低抵抗化を図る第3の方法では、積層膜の組成が変わるとそのバンドギャップや屈折率も変化してしまうため、デバイス設計の自由度が大きく限定されてしまうという問題がある。特に、InGaNを用いる場合には、そのバンドギャップエネルギがGaNに比べて低くなるため、これを発光デバイスに適用するとの光吸収ロスが大きくなってしまう。また、InAlGaN系超格子構造は4元系結晶薄膜を積層させた構造であるために、各層を成長させる際の組成を正確に制御することは容易ではない。   In the third method for reducing the resistance using the superlattice structure, the band gap and the refractive index also change when the composition of the laminated film changes, so that the degree of freedom in device design is greatly limited. There's a problem. In particular, when InGaN is used, its band gap energy is lower than that of GaN, so that the light absorption loss when this is applied to a light emitting device increases. In addition, since the InAlGaN-based superlattice structure is a structure in which quaternary crystal thin films are stacked, it is not easy to accurately control the composition when each layer is grown.

さらに、超格子構造の形成に際しては、各層毎に適切な成長条件(成長温度、キャリヤガス、成長圧力など)を設定する必要があることから、超格子構造が薄膜の積層を短周期で繰り返す構造のものである場合には、結晶成長プロセスが複雑化し、結果的に高品質で高キャリヤ濃度のp型層を得ることが困難となる。
特開平3−218625号公報 特開平5−183189号公報 特開平10−4211号公報 特開平9−199758号公報 特開平11−340509号公報 特開2002−319743号公報 Applied Physics Letters ,May 13, 2002 , Volume 80, Issue 19, pp. 3554-3556.
Furthermore, when forming a superlattice structure, it is necessary to set appropriate growth conditions (growth temperature, carrier gas, growth pressure, etc.) for each layer, so the superlattice structure repeats thin film stacking in a short cycle. In this case, the crystal growth process becomes complicated, and as a result, it becomes difficult to obtain a p-type layer with high quality and high carrier concentration.
JP-A-3-218625 JP-A-5-183189 Japanese Patent Laid-Open No. 10-4211 JP-A-9-199758 JP 11-340509 A JP 2002-319743 A Applied Physics Letters, May 13, 2002, Volume 80, Issue 19, pp. 3554-3556.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、バンドギャップなどの諸物性を変化させることなくバルク全体にわたってp型窒化物系化合物半導体結晶の低抵抗化が可能で、しかも欠陥レベルの低い、高品質の窒化物系化合物半導体の結晶成長方法を提供することにある。   The present invention has been made in view of such problems, and its object is to reduce the resistance of p-type nitride compound semiconductor crystals throughout the bulk without changing various physical properties such as band gaps. An object of the present invention is to provide a high-quality nitride compound semiconductor crystal growth method that is possible and has a low defect level.

本発明はこのような課題を解決するために、請求項1に記載の発明は、基板上に少なくとも1層の窒化物系化合物半導体膜を気相成長させる窒化物系化合物半導体の結晶成長方法であって、前記窒化物系化合物半導体の何れかの膜を気相成長させる際に、有機窒素化合物(xモル)とアンモニア(NH3)(yモル)とを含有する窒素原料ガスを供給し、該窒素原料ガス中の有機窒素化合物(xモル)の供給モル比(R=x/(x+y))を変化させる成膜プロセスを備えていることを特徴とする。 In order to solve such problems, the present invention provides a crystal growth method for a nitride compound semiconductor in which at least one nitride compound semiconductor film is vapor-phase grown on a substrate. And supplying a nitrogen source gas containing an organic nitrogen compound (x mol) and ammonia (NH 3 ) (y mol) when vapor-phase-growing any of the nitride compound semiconductor films, The film forming process is characterized in that the supply molar ratio (R = x / (x + y)) of the organic nitrogen compound (x mol) in the nitrogen source gas is changed.

請求項2に記載の発明は、請求項1に記載の窒化物系化合物半導体の結晶成長方法において、前記供給モル比(R)を1秒以上120秒以下の周期Tで周期的に変化させることを特徴とする。   According to a second aspect of the present invention, in the crystal growth method for a nitride-based compound semiconductor according to the first aspect, the supply molar ratio (R) is periodically changed at a period T of 1 second to 120 seconds. It is characterized by.

請求項3に記載の発明は、請求項1又は2に記載の窒化物系化合物半導体の結晶成長方法において、前記供給モル比(R)を少なくとも2つの水準(R1、R2:R1<R2)に設定することを特徴とする。   According to a third aspect of the present invention, in the crystal growth method for a nitride-based compound semiconductor according to the first or second aspect, the supply molar ratio (R) is set to at least two levels (R1, R2: R1 <R2). It is characterized by setting.

請求項4に記載の発明は、請求項1乃至3の何れか1項に記載の窒化物系化合物半導体の結晶成長方法において、前記2つの水準(R1およびR2)での窒素原料ガスの供給時間をそれぞれT1およびT2(T=T1+T2)としたときに、T2≧0.5×T1に設定することを特徴とする。   According to a fourth aspect of the present invention, in the nitride compound semiconductor crystal growth method according to any one of the first to third aspects, the supply time of the nitrogen source gas at the two levels (R1 and R2) When T1 and T2 (T = T1 + T2), respectively, T2 ≧ 0.5 × T1 is set.

請求項5に記載の発明は、請求項3又は4に記載の窒化物系化合物半導体の結晶成長方法において、前記2つの水準(R1、R2)はそれぞれ、0≦R1≦0.6、および、0.4≦R2≦1.0であることを特徴とする。   According to a fifth aspect of the present invention, in the crystal growth method for a nitride-based compound semiconductor according to the third or fourth aspect, the two levels (R1, R2) are 0 ≦ R1 ≦ 0.6, and 0.4 ≦ R2 ≦ 1.0.

請求項6に記載の発明は、請求項1乃至5の何れか1項に記載の窒化物系化合物半導体の結晶成長方法において、前記成膜プロセスにおけるIII族元素の原料ガスの供給量を、前記供給モル比(R)の変化に同期させて変動させることを特徴とする。   The invention according to claim 6 is the method for growing a nitride compound semiconductor crystal according to any one of claims 1 to 5, wherein the supply amount of the source gas of the group III element in the film forming process is It is characterized in that it is varied in synchronization with the change in the supply molar ratio (R).

請求項7に記載の発明は、請求項1乃至6の何れか1項に記載の窒化物系化合物半導体の結晶成長方法において、前記窒素原料ガス中の有機窒素化合物が最小の供給モル比(R=Rmin)で供給されるときだけIII族元素の原料ガスを供給することを特徴とする。   The invention according to claim 7 is the nitride compound semiconductor crystal growth method according to any one of claims 1 to 6, wherein the organic nitrogen compound in the nitrogen source gas has a minimum supply molar ratio (R = Rmin), the group III element source gas is supplied only when it is supplied.

請求項8に記載の発明は、請求項1乃至7の何れか1項に記載の窒化物系化合物半導体の結晶成長方法において、前記成膜プロセスにおけるアクセプタドーパントの原料ガスの供給量を、前記供給モル比(R)の変化に同期させて変動させることを特徴とする。   The invention according to claim 8 is the nitride compound semiconductor crystal growth method according to any one of claims 1 to 7, wherein the supply amount of the acceptor dopant source gas in the film forming process is the supply amount. Fluctuating in synchronization with the change in the molar ratio (R).

請求項9に記載の発明は、請求項1乃至8の何れか1項に記載の窒化物系化合物半導体の結晶成長方法において、前記窒素原料ガス中の有機窒素化合物が最小の供給モル比(R=Rmin)で供給されるときだけアクセプタドーパントの原料ガスを供給することを特徴とする。   A ninth aspect of the present invention is the nitride compound semiconductor crystal growth method according to any one of the first to eighth aspects, wherein the organic nitrogen compound in the nitrogen source gas has a minimum supply molar ratio (R = Rmin), the acceptor dopant source gas is supplied only when it is supplied.

請求項10に記載の発明は、請求項1乃至9の何れか1項に記載の窒化物系化合物半導体の結晶成長方法において、前記有機窒素化合物がヒドラジン系化合物であることを特徴とする。   A tenth aspect of the present invention is the crystal growth method for a nitride compound semiconductor according to any one of the first to ninth aspects, wherein the organic nitrogen compound is a hydrazine compound.

請求項11に記載の発明は、請求項10に記載の窒化物系化合物半導体の結晶成長方法において、前記ヒドラジン系化合物が1.1−ジメチルヒドラジン若しくはターシャリーブチルヒドラジンであることを特徴とする。   The invention according to claim 11 is the crystal growth method of a nitride compound semiconductor according to claim 10, wherein the hydrazine compound is 1.1-dimethylhydrazine or tertiary butylhydrazine.

請求項12に記載の発明は、請求項1乃至11の何れか1項に記載の窒化物系化合物半導体の結晶成長方法において、前記窒化物系化合物半導体膜が、GaN、AlN、InN、BNまたはこれらの混晶であることを特徴とする。   The invention according to claim 12 is the nitride compound semiconductor crystal growth method according to any one of claims 1 to 11, wherein the nitride compound semiconductor film is GaN, AlN, InN, BN, or These are mixed crystals.

請求項13に記載の発明は、請求項1乃至12の何れか1項に記載の方法により気相成長された窒化物系化合物半導体膜であって、該膜中の酸素濃度[O]、炭素濃度[C]、および、水素濃度[H]がそれぞれ、[O]≦1×1017cm-3、[C]≦1×1017cm-3、および、[H]≦5×1018cm-3であることを特徴とする。 A thirteenth aspect of the present invention is a nitride-based compound semiconductor film grown by the method according to any one of the first to twelfth aspects, the oxygen concentration [O] in the film, carbon Concentration [C] and hydrogen concentration [H] are [O] ≦ 1 × 10 17 cm −3 , [C] ≦ 1 × 10 17 cm −3 , and [H] ≦ 5 × 10 18 cm, respectively. -3 .

本発明によれば、窒素原料ガス中のアンモニアと有機窒素化合物のモル比を単一の窒化物系化合物半導体膜の成長中に変化させ、有機窒素化合物のモル比が低い領域の成膜により膜中の水素濃度を低く制御しつつ、アンモニアガスのもつ還元性やエッチング性を膜中の炭素および酸素不純物の濃度低減に利用することで、水素、炭素および酸素の何れの濃度をも低減させることとしたので、バンドギャップなどの諸物性を変化させることなくバルク全体にわたってp型窒化物系化合物半導体結晶の低抵抗化が可能で、しかも欠陥レベルの低い、高品質の窒化物系化合物半導体の結晶成長方法が提供される。   According to the present invention, the molar ratio between ammonia and the organic nitrogen compound in the nitrogen source gas is changed during the growth of a single nitride-based compound semiconductor film, and the film is formed by deposition in a region where the molar ratio of the organic nitrogen compound is low. The concentration of hydrogen, carbon, and oxygen can be reduced by using the reducing and etching properties of ammonia gas to reduce the concentration of carbon and oxygen impurities in the film while controlling the hydrogen concentration in the film. Therefore, it is possible to reduce the resistance of the p-type nitride compound semiconductor crystal over the entire bulk without changing various physical properties such as the band gap, and the crystal of high quality nitride compound semiconductor having a low defect level. A growth method is provided.

そして、本発明により、窒化物系化合物半導体膜中への水素、酸素、および、炭素の混入が抑制され、酸素濃度[O]を1×1017cm-3以下、炭素濃度[C]を1×1017cm-3以下、そして、水素濃度[H]を5×1018cm-3以下とすることが可能となる。 According to the present invention, mixing of hydrogen, oxygen, and carbon into the nitride-based compound semiconductor film is suppressed, the oxygen concentration [O] is 1 × 10 17 cm −3 or less, and the carbon concentration [C] is 1 × 10 17 cm −3 or less, and the hydrogen concentration [H] can be set to 5 × 10 18 cm −3 or less.

以下に、図面を参照して本発明を実施するための形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

先ず、図2を参照して、窒化物系化合物半導体を気相成長させる際に、窒素原料ガスから膜中に取り込まれる水素および炭素の、原料ガス混合比依存性について、本発明者らが検討した結果について説明する。この図は、気相法による結晶成長において、窒素の原料ガスとしてアンモニア(NH3)と有機窒素化合物であるジメチルヒドラジン(DMHy)の混合ガスを用い、窒素をキャリアガスとして、p型の窒化ガリウム(p−GaN)を成膜した直後の膜中の水素濃度(左縦軸)および炭素濃度(右縦軸)を、窒素原料ガス中のジメチルヒドラジンの供給モル比を横軸としてプロットしたものである。 First, referring to FIG. 2, the present inventors examined the dependency of hydrogen and carbon taken into a film from a nitrogen source gas on the source gas mixture ratio when vapor-phase-growing a nitride compound semiconductor. The results will be described. This figure shows a p-type gallium nitride using a mixed gas of ammonia (NH 3 ) and dimethylhydrazine (DMHy), which is an organic nitrogen compound, as a nitrogen source gas and nitrogen as a carrier gas in crystal growth by a vapor phase method. The hydrogen concentration (left ordinate) and carbon concentration (right ordinate) in the film immediately after forming (p-GaN) are plotted with the supply molar ratio of dimethylhydrazine in the nitrogen source gas as the horizontal axis. is there.

なお、この図では、ジメチルヒドラジンのモル比をx、アンモニアのモル比をyとすると、横軸の値がx/(x+y)で与えられるように図示されているから、ジメチルヒドラジンのモル比がゼロのときに横軸値が0、アンモニアのモル比がゼロのときに横軸値が1、となる。   In this figure, when the molar ratio of dimethylhydrazine is x and the molar ratio of ammonia is y, the horizontal axis is given as x / (x + y), so the molar ratio of dimethylhydrazine is The horizontal axis value is 0 when zero, and the horizontal axis value is 1 when the molar ratio of ammonia is zero.

この図に示されているように、ジメチルヒドラジンのモル比が低い領域(領域A)では膜中の水素濃度は高いものの炭素濃度は低くなる。これとは逆に、ジメチルヒドラジンのモル比が高い領域(領域B)では膜中の炭素濃度は高いものの水素濃度は低くなる。しかし、窒素原料ガス中のジメチルヒドラジンのモル比をどのように設定しても、水素と炭素の膜中濃度を同時に充分に低減させることはできないことがわかる。   As shown in this figure, in the region where the molar ratio of dimethylhydrazine is low (region A), the hydrogen concentration in the film is high, but the carbon concentration is low. On the contrary, in the region where the molar ratio of dimethylhydrazine is high (region B), the carbon concentration in the film is high, but the hydrogen concentration is low. However, it can be seen that no matter how the molar ratio of dimethylhydrazine in the nitrogen source gas is set, the concentration of hydrogen and carbon in the film cannot be sufficiently reduced simultaneously.

本発明者らは、このような検討結果に基づいて、窒素原料ガス中のジメチルヒドラジンのような有機窒素化合物とアンモニアとのモル比を単一の窒化物系化合物半導体膜の成膜プロセス中に変化させ、膜中への炭素濃度の取り込みが少ない環境下(有機窒素化合物のモル比が低い領域)での成膜工程と、これに続く膜中への水素濃度の取り込みが少ない環境下(有機窒素化合物のモル比が高い領域)での成膜中アニール工程とを単一膜の成膜プロセスに設けることとすれば、得られる窒化物系化合物半導体膜中の炭素濃度と水素濃度の何れをも低減させることが可能であるとの知見を得て本発明を成すに至ったのである。   Based on such examination results, the present inventors set the molar ratio of the organic nitrogen compound such as dimethylhydrazine and ammonia in the nitrogen source gas to the single nitride compound semiconductor film formation process. Film formation process in an environment where the carbon concentration in the film is low (region where the molar ratio of the organic nitrogen compound is low), and the subsequent environment where the hydrogen concentration is low in the film (organic) If the annealing process during film formation in a region where the molar ratio of the nitrogen compound is high) is provided in the film formation process of a single film, either the carbon concentration or the hydrogen concentration in the obtained nitride-based compound semiconductor film is determined. As a result, the inventors have obtained the knowledge that it can be reduced, and have come to achieve the present invention.

本発明者らの検討によれば、窒化物系化合物半導体結晶中でp型キャリヤの不活性化の原因となる水素および炭素のうち、水素は主としてアンモニアから供給され、炭素は主として有機窒素原料から供給されてしまう。また、還元性ガスであるアンモニアの供給量が不十分であったり供給されないような場合には、成膜環境中の残留不純物であり且つその膜中への取り込まれ方が炭素と類似する酸素の膜中への取り込量も増大し、この酸素もp型キャリヤの不活性化の原因となる。   According to the study by the present inventors, among the hydrogen and carbon that cause inactivation of the p-type carrier in the nitride-based compound semiconductor crystal, hydrogen is mainly supplied from ammonia, and carbon is mainly from organic nitrogen raw material. Will be supplied. Further, when the supply amount of ammonia, which is a reducing gas, is insufficient or is not supplied, oxygen that is a residual impurity in the film formation environment and is taken into the film is similar to carbon. The amount of incorporation into the film also increases, and this oxygen also causes inactivation of the p-type carrier.

そこで、本発明者らは、窒素原料ガス中のアンモニアと有機窒素化合物のモル比を単一の窒化物系化合物半導体膜の成長中に変化させ、有機窒素化合物のモル比が低い領域の成膜により膜中の水素濃度を低く制御しつつ、アンモニアガスのもつ還元性やエッチング性を膜中の炭素および酸素不純物の濃度低減に利用することで、水素、炭素および酸素の何れの濃度をも低減させることとしたのである。   Therefore, the present inventors changed the molar ratio of ammonia and organic nitrogen compound in the nitrogen source gas during the growth of a single nitride compound semiconductor film, and formed a film in a region where the molar ratio of organic nitrogen compound is low. By using the reducing and etching properties of ammonia gas to reduce the concentration of carbon and oxygen impurities in the film, the concentration of hydrogen, carbon and oxygen can be reduced while controlling the hydrogen concentration in the film to a low level. It was decided to let them.

具体的に説明すると、窒素原料ガス中の有機窒素化合物のモル比が低い(アンモニアのモル比が高い)条件下で窒化物系化合物半導体を成膜すると、当該成膜領域は水素不純物濃度は高いものの低炭素・低酸素濃度の高品質な結晶となる。この成膜工程に続いて、窒素原料ガス中の有機窒素化合物のモル比が高い(アンモニアのモル比が低い)条件下で成膜中アニールを実行すると、このアニール中に膜中に取り込まれた水素が外方拡散して表面から脱離されて膜中の水素濃度が低下する。なお、この成膜中アニールの窒化物系化合物半導体膜表面近傍の雰囲気中には有機窒素化合物から乖離した窒素が充分に供給されるため、当該アニール中に表面から窒素が脱離することに起因する結晶劣化は抑制される。   More specifically, when a nitride-based compound semiconductor is formed under a condition where the molar ratio of the organic nitrogen compound in the nitrogen source gas is low (the molar ratio of ammonia is high), the hydrogen impurity concentration is high in the film-forming region. High quality crystals with low carbon and low oxygen concentration. Subsequent to this film formation step, when annealing during film formation was performed under a condition where the molar ratio of the organic nitrogen compound in the nitrogen source gas was high (the molar ratio of ammonia was low), it was taken into the film during this annealing. Hydrogen diffuses outward and is desorbed from the surface, and the hydrogen concentration in the film decreases. In addition, since the nitrogen dissociated from the organic nitrogen compound is sufficiently supplied to the atmosphere in the vicinity of the nitride-based compound semiconductor film surface during annealing during the film formation, nitrogen is desorbed from the surface during the annealing. Crystal degradation that occurs is suppressed.

このような成膜中アニールで用いるキャリアガスは、水素ガスよりも窒素ガスを用いることが望ましい。水素ガスを用いた場合は、成膜中アニール、すなわち水素脱離の効果が減少してしまうだけではなく、エッチング効果もあるため、結晶表面にダメージを与えてしまう。一方、III族原料を供給して結晶成長を行っているタイミングでは、水素キャリアガス、或いは水素と窒素の混合ガスを用いることも可能である。しかし、結晶成長中に何度もキャリアガスを切り替えることとすると、成膜プロセス時間が長くなるだけではなく、圧力変動なども引き起こし易い。そこで、キャリアガスについては、Mgドープ層の成膜中は窒素ガスを用いることが望ましい。   As the carrier gas used in such annealing during film formation, it is desirable to use nitrogen gas rather than hydrogen gas. When hydrogen gas is used, not only the effect of annealing during film formation, that is, the effect of hydrogen desorption, but also the etching effect is caused, which damages the crystal surface. On the other hand, it is possible to use a hydrogen carrier gas or a mixed gas of hydrogen and nitrogen at the timing when the group III raw material is supplied and crystal growth is performed. However, if the carrier gas is switched many times during crystal growth, not only the film formation process time is lengthened but also pressure fluctuations are likely to occur. Therefore, as the carrier gas, it is desirable to use nitrogen gas during the formation of the Mg doped layer.

なお、上述の「成膜中アニール」の工程中に顕著な結晶成長が生じると当該成膜領域には不純物としての炭素および酸素が取り込まれる結果となる。このため、成膜中アニール中にはV族元素の原料供給を完全に停止するか、あるいはアニール時間の調整やV族元素の原料供給量を制御して結晶成長を抑制することが好ましい。つまり、この工程を完全に結晶成長が生じない条件で行う必要は必ずしもないが、当該工程中水素の脱離が生じるものであるため、これを便宜上、「成膜中アニール」とよぶ。このような成膜中アニール時には、水素脱離だけではなく、エピ成長表面平坦化の効果や窒素空孔欠陥の解消効果なども生じ、エピタキシャル成長膜が混晶である場合には局所歪の安定化などの効果も生じる。これらの効果について以下説明する。   Note that if significant crystal growth occurs during the above-described “annealing during film formation” step, carbon and oxygen as impurities are taken into the film formation region. Therefore, it is preferable to completely stop the group V element source supply during annealing during film formation, or to suppress crystal growth by adjusting the annealing time or controlling the amount of group V element source supply. That is, it is not always necessary to perform this step under conditions that do not cause crystal growth completely, but since hydrogen is desorbed during the step, this is referred to as “annealing during film formation” for convenience. During annealing during film formation, not only hydrogen desorption, but also the effect of planarizing the epitaxial growth surface and the effect of eliminating nitrogen vacancies are generated. When the epitaxial growth film is a mixed crystal, local strain is stabilized. Such effects also occur. These effects will be described below.

エピ成長表面の平坦化を目的として成長中断することは、III−V族化合物半導体の結晶成長において一般的に行われている方法であるが、III−V族化合物が窒素化合物である場合には、アンモニアのエッチング効果のために、アンモニア雰囲気中で結晶成長を中断しても表面平坦化は期待できない。しかし、結晶成長雰囲気が有機窒素原料雰囲気であれば、雰囲気ガスによるエッチングは生じることがないために、成長中断により表面平坦化を図ることが可能である。   Discontinuing the growth for the purpose of planarizing the epitaxial growth surface is a method commonly used in crystal growth of a III-V compound semiconductor, but when the III-V compound is a nitrogen compound, Because of the etching effect of ammonia, surface flattening cannot be expected even if crystal growth is interrupted in an ammonia atmosphere. However, if the crystal growth atmosphere is an organic nitrogen raw material atmosphere, etching by the atmospheric gas does not occur, so that the surface can be flattened by interrupting the growth.

また、窒素原料がアンモニアのみである場合には、V族とIII族の原料供給比(V/III)の実効値を高めることが困難であることから、結晶成長中に窒素空孔欠陥がしばしば形成される。しかし、V族原料として有機窒素原料を用い、かつ、III族原料の供給を停止するか、あるいは低成長速度とすることにより、膜中の窒素空孔欠陥を低減させることが可能である。なお、III族原料の供給を停止することは、原料供給比(V/IIIの値)を無限大とすることに相当する。   In addition, when the nitrogen source is only ammonia, it is difficult to increase the effective value of the group V and group III source supply ratio (V / III). It is formed. However, it is possible to reduce nitrogen vacancy defects in the film by using an organic nitrogen raw material as the group V raw material and stopping the supply of the group III raw material or by reducing the growth rate. Note that stopping the supply of the group III raw material corresponds to setting the raw material supply ratio (value of V / III) to infinity.

さらに、局所歪の安定化に関しては、インジウムを含む混晶の場合、膜中でのインジウムの局所的な偏析が発光のメカニズムと大きく関係していることが知られており、この偏析の程度には成長中の温度状態が効いていると考えられている。有機窒素原料を供給しながら成長中断を行った場合には、アンモニア供給がある場合に生じるエッチング効果などが生じ難いため、適切な偏析の条件が得られる可能性がある。なお、これらの効果は、アニールを成膜後に行うよりも成膜中に実行することで、より顕著なものとなる。   Furthermore, regarding the stabilization of local strain, in the case of mixed crystals containing indium, it is known that the local segregation of indium in the film is largely related to the mechanism of light emission. It is thought that the temperature state during growth is effective. When the growth is interrupted while supplying the organic nitrogen raw material, an etching effect or the like that occurs when ammonia is supplied is unlikely to occur, so that appropriate segregation conditions may be obtained. Note that these effects become more prominent when the annealing is performed during the film formation rather than after the film formation.

上述の方法は、窒化物系化合物半導体膜表面近傍からの水素の外方拡散を利用しているため、成膜工程と成膜中アニール工程をそれぞれ1回だけ実行したのでは所望の厚みの窒化物系化合物半導体膜を得ることができない場合が生じる。その場合には、窒化物系化合物半導体膜が所望の厚みとなるまで、上記の成膜工程と成膜中アニール工程を複数回繰り返す。   Since the above-described method uses out-diffusion of hydrogen from the vicinity of the surface of the nitride-based compound semiconductor film, nitriding with a desired thickness is performed if the film forming step and the annealing step during film forming are performed only once. In some cases, a physical compound semiconductor film cannot be obtained. In that case, the above film forming process and the annealing process during film forming are repeated a plurality of times until the nitride-based compound semiconductor film has a desired thickness.

図3は、本発明の窒化物系化合物半導体の結晶成長方法における窒素原料ガスの供給シーケンスを概念的に説明するための図で、この図には、単一の窒化物系化合物半導体の膜を成長させる際の窒素原料ガスの供給シーケンスが例示されている。窒化物系化合物半導体の膜は、サファイヤ、GaN、SiC、LiNbO3、LiGaO3、AlN、ScAlMO4、ZnOなどの基板上に、VPE法、MOVPE法、MOCVD法、CBE(Chemical Beam Epitaxy)法、などの気相成長法によりエピタキシャル成長され、窒素原料ガスとしてアンモニア(NH3)と1.1−ジメチルヒドラジンなどの有機窒素化合物とを含有するガスが供給される。 FIG. 3 is a diagram for conceptually explaining the supply sequence of the nitrogen source gas in the nitride-based compound semiconductor crystal growth method of the present invention. In this figure, a single nitride-based compound semiconductor film is shown. The supply sequence of the nitrogen source gas at the time of growing is illustrated. A nitride compound semiconductor film is formed on a substrate such as sapphire, GaN, SiC, LiNbO 3 , LiGaO 3 , AlN, ScAlMO 4 , ZnO, etc., using a VPE method, a MOVPE method, an MOCVD method, a CBE (Chemical Beam Epitaxy) method, A gas containing ammonia (NH 3 ) and an organic nitrogen compound such as 1.1-dimethylhydrazine is supplied as a nitrogen source gas.

本発明においては、単一の窒化物系化合物半導体膜の成長プロセス中に、窒素原料ガス中のアンモニアと有機窒素化合物のモル流量を制御して(図3(A)参照)、有機窒素化合物(xモル)とアンモニア(yモル)の供給モル比(R=x/(x+y))を変化させる(図3(B)参照)。なお、ここでは、供給モル比(R)を少なくとも2つの水準(R1、R2:R1<R2)に設定した例を示してある。図3(B)中に示したように、有機窒素化合物の窒素原料中の供給モル比が小さい領域(R1)が上述の成膜工程にあたり、供給モル比が大きい領域(R2)は上述の成膜中アニール工程にあたる。   In the present invention, during the growth process of a single nitride compound semiconductor film, the molar flow rate of ammonia and the organic nitrogen compound in the nitrogen source gas is controlled (see FIG. 3A), and the organic nitrogen compound ( x mol) and ammonia (y mol) supply molar ratio (R = x / (x + y)) is changed (see FIG. 3B). In this example, the supply molar ratio (R) is set to at least two levels (R1, R2: R1 <R2). As shown in FIG. 3B, the region (R1) in which the supply molar ratio of the organic nitrogen compound in the nitrogen raw material is small corresponds to the above-described film forming step, and the region (R2) in which the supply molar ratio is large is the above-described component. It corresponds to the in-film annealing process.

上述したように、成膜工程と成膜中アニール工程をそれぞれ1回だけ実行したのでは所望の厚みの窒化物系化合物半導体膜を得ることができない場合には、窒化物系化合物半導体膜が所望の厚みとなるまで、上記の成膜工程と成膜中アニール工程を複数回繰り返す。   As described above, if the nitride-based compound semiconductor film having a desired thickness cannot be obtained by performing the film-forming process and the annealing process during film-forming only once, the nitride-based compound semiconductor film is desired. The film formation process and the annealing process during the film formation are repeated a plurality of times until the thickness is reached.

この繰り返しの周期がどの範囲で適当かということについては、表層からどの程度の深さまでの水素を脱離させることができるかにより決定され成膜温度にも依存するが、成長速度が1μm/時間の標準的な成膜速度で且つ表面から約30nmの深さまでの水素脱離効果が期待できる場合、最大120秒程度の周期Tで繰り返すことが好ましい。   The appropriate range of this repetition cycle is determined by how much hydrogen can be desorbed from the surface layer and depends on the film formation temperature, but the growth rate is 1 μm / hour. When the hydrogen desorption effect can be expected at a standard film formation rate of up to about 30 nm from the surface, it is preferable to repeat at a period T of about 120 seconds at the maximum.

なお、繰り返し周期の最短時間は反応炉のバルブの駆動時間やシーケンスプログラム等により制約されるが、過度のバルブの開閉は反応ガスの炉内での乱流を引き起こすおそれがあるため、少なくとも1秒以上とすることが望ましい。つまり、1回の成膜工程(プロセス時間T1)と1回の成膜中アニール工程(プロセス時間T2)の和で与えられる窒素原料ガスの供給モル比の変化の周期T(=T1+T2)は、1秒以上120秒以下と設定することが望ましい。また、成膜中アニール工程で充分に水素を脱離させるべく、1回の成膜中アニール工程(プロセス時間T2)はT2≧0.5×T1を満足するように設定されることが好ましく、例えば、T2>T1となるように設定される。   The shortest repetition period is limited by the driving time of the reaction furnace valve, the sequence program, etc., but excessive opening and closing of the valve may cause turbulent flow of the reaction gas in the furnace. It is desirable to set it above. That is, the period T (= T1 + T2) of change in the supply molar ratio of the nitrogen source gas given by the sum of one film formation step (process time T1) and one film formation annealing step (process time T2) is: It is desirable to set 1 second or more and 120 seconds or less. Further, in order to sufficiently desorb hydrogen in the annealing process during film formation, it is preferable that one annealing process during film formation (process time T2) is set so as to satisfy T2 ≧ 0.5 × T1. For example, it is set so that T2> T1.

なお、図3(A)には有機窒素化合物のモル流量を一定にしてアンモニアのモル流量のみを変動させた例が図示されているが、アンモニアと有機窒素化合物の何れのモル流量も変動させるようにしてもよい。また、成膜中アニール工程中に供給する窒素原料ガス中のアンモニアのモル流量をゼロとしたり(図3(C)参照)、成膜工程中に供給する窒素原料ガス中の有機窒素化合物のモル流量をゼロとするなどの流量調整も可能である。しかし、ガスのモル流量切り替え時に窒素原料の欠乏が生じることを回避するためには、上記タイミング(T1、T2)の少なくとも一方において、アンモニアと有機窒素化合物の両方を混合させた窒素原料ガスを供給するようにすることが好ましい。   FIG. 3A shows an example in which only the molar flow rate of ammonia is varied while keeping the molar flow rate of the organic nitrogen compound constant, but the molar flow rates of both ammonia and the organic nitrogen compound are varied. It may be. Further, the molar flow rate of ammonia in the nitrogen source gas supplied during the annealing process during film formation is set to zero (see FIG. 3C), or the mole of organic nitrogen compound in the nitrogen source gas supplied during the film forming process. It is possible to adjust the flow rate to zero. However, in order to avoid the deficiency of the nitrogen raw material when the gas molar flow rate is switched, the nitrogen raw material gas in which both ammonia and the organic nitrogen compound are mixed is supplied at least one of the timings (T1, T2). It is preferable to do so.

さらに、成膜工程と成膜中アニール工程の切替(窒素原料ガスの供給シーケンス)はステップ状である必要は必ずしもない。例えば図3(D)に図示したように、供給モル比がR1からR2へと連続的に変わるように制御することも可能である   Furthermore, switching between the film forming process and the annealing process during film forming (the supply sequence of the nitrogen source gas) does not necessarily have to be stepped. For example, as shown in FIG. 3D, the supply molar ratio can be controlled so as to continuously change from R1 to R2.

結晶成長は主として上述の成膜工程中に進行することとなるが、このときの有機窒素の供給モル比の下限(図3におけるR1)の値は0%(有機窒素化合物のモル流量ゼロ)であってもよく、上限値は有機窒素化合物から発生した炭素の膜中への取り込み回避の観点から決定される。例えば、アンモニアから発生した水素が例えばジメチルヒドラジンのメチル基と結合して安定なメタンとなるような混合比(3:2)であり、具体的には、概ね0.6である。より炭素濃度を低減させる目的では、その半減に相当する0.3以下とすることがさらに望ましい。   Crystal growth mainly proceeds during the above-described film forming process, but the lower limit of the supply molar ratio of organic nitrogen (R1 in FIG. 3) at this time is 0% (molar flow rate of organic nitrogen compound is zero). The upper limit may be determined from the viewpoint of avoiding incorporation of carbon generated from the organic nitrogen compound into the film. For example, the mixing ratio (3: 2) is such that hydrogen generated from ammonia is combined with, for example, the methyl group of dimethylhydrazine to form stable methane, and specifically about 0.6. For the purpose of further reducing the carbon concentration, it is more desirable to set it to 0.3 or less, which corresponds to half of that.

成膜中アニール工程(R=R2)は膜中に混入した水素を外方拡散により脱離させることを主目的とする工程であるため、アンモニアのモル流量をゼロ(図3におけるR2=1.0)とすることが望ましい。しかし、アンモニアはもともと有機窒素化合物に対して分解効率が小さいため、有機窒素化合物の供給モル比が少なくとも0.4程度あれば、アンモニアからの雰囲気中への水素の供給が膜の水素脱離を阻害することはない。より水素濃度を低減させるためには、アンモニアのモル比を半減させる供給モル比R、すなわち0.7以上であれば、より望ましい。   The annealing step during film formation (R = R2) is a process whose main purpose is to desorb hydrogen mixed in the film by outward diffusion, so that the molar flow rate of ammonia is zero (R2 = 1. 0) is desirable. However, since ammonia has a lower decomposition efficiency than organic nitrogen compounds, if the supply molar ratio of organic nitrogen compounds is at least about 0.4, the supply of hydrogen from ammonia into the atmosphere will cause hydrogen desorption of the membrane. There is no inhibition. In order to further reduce the hydrogen concentration, a supply molar ratio R that reduces the molar ratio of ammonia by half, that is, 0.7 or more is more desirable.

つまり、供給モル比(R)を例えば2つの水準(R1、R2:R1<R2)に設定する場合には、成膜工程での有機窒素原料の供給モル比(R1)を0≦R1≦0.6の範囲に設定し、成膜中アニール工程での有機窒素原料の供給モル比(R2)を0.4≦R2≦1.0の範囲に設定することが好ましい。   That is, when the supply molar ratio (R) is set to, for example, two levels (R1, R2: R1 <R2), the supply molar ratio (R1) of the organic nitrogen raw material in the film forming process is set to 0 ≦ R1 ≦ 0. .6, and the supply molar ratio (R2) of the organic nitrogen raw material in the annealing step during film formation is preferably set in the range of 0.4 ≦ R2 ≦ 1.0.

主として成膜工程において結晶成長を進行させる一方、この結晶成長中に取り込まれた水素を脱離させることを主目的として成膜中アニール工程が設けられるから、本発明における成膜プロセスにおいては、ガリウムやインジウムなどのIII族元素の原料供給を、上述の供給モル比(R)の変化に同期させて変動させることとなる。例えば、有機窒素原料ガスが最小の供給モル比Rmin(図3の例ではR1)で供給されるときだけIII族元素の原料ガスを供給するようにする。なお、炉内でのガスフローに与える影響を抑えるために窒素原料ガスの流量調整を最小限に留めたい場合には、膜表面からの窒素脱離が生じない条件下で有機窒素化合物のモル流量を一定にしておき、アンモニアのモル流量をIII族元素の原料ガスの供給と連動させることが望ましい。   While the crystal growth proceeds mainly in the film formation step, an annealing step during film formation is provided mainly for the purpose of desorbing the hydrogen taken in during the crystal growth. The raw material supply of group III elements such as aluminum and indium is changed in synchronization with the change in the supply molar ratio (R) described above. For example, the group III element source gas is supplied only when the organic nitrogen source gas is supplied at the minimum supply molar ratio Rmin (R1 in the example of FIG. 3). If you want to minimize the flow adjustment of the nitrogen source gas in order to suppress the influence on the gas flow in the furnace, the molar flow rate of the organic nitrogen compound under the condition that nitrogen desorption from the film surface does not occur. It is desirable that the molar flow rate of ammonia be linked with the supply of the group III element source gas.

また、p型の窒化物系化合物半導体を成膜する場合には、アクセプタドーパントの原料ガスの供給はIII族元素の原料供給に同期させることになるから、アクセプタドーパントの原料ガスの供給もまた、上述の供給モル比Rmin(R)の変化に同期させて変動させることとなる。例えば、有機窒素原料ガスが最小の供給モル比(図3の例ではR1)で供給されるときだけアクセプタドーパントの原料ガスを供給するようにする。   In addition, when a p-type nitride compound semiconductor is formed, the supply of the acceptor dopant source gas is synchronized with the supply of the group III element source gas. It is varied in synchronization with the change in the supply molar ratio Rmin (R) described above. For example, the acceptor dopant source gas is supplied only when the organic nitrogen source gas is supplied at the minimum supply molar ratio (R1 in the example of FIG. 3).

本発明において用いる有機窒素化合物としては、ヒドラジン系の化合物ほかにもアミン系化合物などもある。しかし、アミン系化合物は中間反応を生じ易く、この中間反応体が結晶成長に悪影響を及ぼすためにキャリヤ濃度の高い(低抵抗の)良質のp型窒化物系化合物半導体膜を得ることが困難である。1.1−ジメチルヒドラジンやターシャリーブチルヒドラジンはこのような難点がなく、しかも、分解温度や取り扱い上の安全性の観点からも問題がなく、有機窒素化合物として望ましい。   Examples of the organic nitrogen compound used in the present invention include hydrazine compounds and amine compounds. However, amine compounds are prone to intermediate reactions, and this intermediate reactant has an adverse effect on crystal growth, making it difficult to obtain a good p-type nitride compound semiconductor film having a high carrier concentration (low resistance). is there. 1.1-Dimethylhydrazine and tertiary butylhydrazine do not have such difficulties, and are not problematic from the viewpoint of decomposition temperature and handling safety, and are desirable as organic nitrogen compounds.

このような本発明の成膜プロセスによれば、窒化物系化合物半導体膜中への水素、酸素、および、炭素の混入が抑制され、酸素濃度[O]を1×1017cm-3以下、炭素濃度[C]を1×1017cm-3以下、そして、水素濃度[H]を5×1018cm-3以下とすることが可能である。さらに、成膜しようとしている膜の種類(AlGaN、GaNなど)やその膜厚に応じて成膜条件(R1,R2,T1,およびT2)を適切に設定することにより、酸素濃度[O]が6×1016cm-3以下、炭素濃度[C]を6×1016cm-3以下、そして、水素濃度[H]を1×1018cm-3以下と、さらに低減することが可能である。 According to such a film formation process of the present invention, mixing of hydrogen, oxygen, and carbon into the nitride-based compound semiconductor film is suppressed, and the oxygen concentration [O] is 1 × 10 17 cm −3 or less, The carbon concentration [C] can be 1 × 10 17 cm −3 or less, and the hydrogen concentration [H] can be 5 × 10 18 cm −3 or less. Further, by appropriately setting the film formation conditions (R1, R2, T1, and T2) according to the type of film to be formed (AlGaN, GaN, etc.) and the film thickness, the oxygen concentration [O] is It can be further reduced to 6 × 10 16 cm −3 or less, the carbon concentration [C] to 6 × 10 16 cm −3 or less, and the hydrogen concentration [H] to 1 × 10 18 cm −3 or less. .

また、膜中への水素混入が抑制されることにより、p型結晶においては成膜後のアクセプタ活性化処理(電子線照射やアニールなど)が不要となり生産性が向上する。これに加え、従来の手法である成膜後アニールでは、結晶表面の窒素欠乏状態が生じ易く、これにより誘起される接触抵抗の増大が問題となっていたが、本発明の成膜プロセスによればかかる問題が回避され、デバイスの素子抵抗を低く抑えることができる。   In addition, by suppressing the incorporation of hydrogen into the film, acceptor activation processing (such as electron beam irradiation and annealing) after the film formation is unnecessary in the p-type crystal, and productivity is improved. In addition to this, the post-deposition annealing, which is a conventional technique, easily causes a nitrogen deficient state on the crystal surface, and the increase in contact resistance induced thereby is a problem. This problem can be avoided and the device resistance of the device can be kept low.

本発明の成膜プロセスで得られたp型GaN膜を反応炉中で冷却して取り出した後に、as−grown状態でホール測定してキャリヤ濃度を測定すると、従来法で成膜した後に不活性ガス中でアニールを施したp型GaN膜以上のキャリヤ濃度(1×1018cm-3)が得られた。また、接触抵抗についても、非特許文献1に記載されているデータに照らすと、0.1Ωcm2程度乃至5×10-4Ωcm2程度の値が得られることとなり、従来の膜に比較して大幅な接触抵抗の低減化が可能となる。 After the p-type GaN film obtained by the film formation process of the present invention is cooled and taken out in a reaction furnace, the hole concentration is measured in the as-grown state, and the carrier concentration is measured. A carrier concentration (1 × 10 18 cm −3 ) higher than that of the p-type GaN film annealed in the gas was obtained. In addition, the contact resistance, in light of the data described in Non-Patent Document 1, will be 0.1? Cm 2 approximately to 5 × 10 -4 Ωcm 2 about values are obtained, as compared with the conventional film The contact resistance can be greatly reduced.

以下に、実施例により本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

図4は、MOCVD法で窒化ガリウム系半導体薄膜を積層成長させる本実施例の結晶成長プロセスを説明するための図で、本実施例は、単層のp型GaN膜を成膜させた例である。基板としてC面を主面(成長面)としたサファイヤ基板11を反応炉内のサセプタ上に設置し、水素ガスを流しながら1.3kPaまで減圧し、基板表面温度が1060℃となるまでヒータで加熱する(図4(A))。   FIG. 4 is a diagram for explaining the crystal growth process of this embodiment in which a gallium nitride based semiconductor thin film is grown by MOCVD, and this embodiment is an example in which a single p-type GaN film is formed. is there. A sapphire substrate 11 with the C-plane as the main surface (growth surface) was placed on the susceptor in the reactor, and the pressure was reduced to 1.3 kPa while flowing hydrogen gas, and a heater was used until the substrate surface temperature reached 1060 ° C. Heat (FIG. 4 (A)).

サファイア基板11を1060℃で5分間保持した後、550℃まで降温しつつ、反応炉内圧力を0.13Mpaまで加圧する。そして、基板温度550℃において、水素をキャリヤガスとして、アンモニア(NH3)ガスを20リットル/分、トリメチルガリウム(TMG)ガスを100μモル/分の流量で2分間供給し、微結晶からなる窒化ガリウム(GaN)の低温バッファ層12を形成する(図4(B))。   After holding the sapphire substrate 11 at 1060 ° C. for 5 minutes, the pressure in the reactor is increased to 0.13 MPa while the temperature is lowered to 550 ° C. Then, at a substrate temperature of 550 ° C., hydrogen is used as a carrier gas, ammonia (NH 3) gas is supplied at a rate of 20 liters / minute, and trimethylgallium (TMG) gas is supplied at a flow rate of 100 μmol / minute for 2 minutes. A low-temperature buffer layer 12 of (GaN) is formed (FIG. 4B).

その後、TMGの供給を停止し、NH3ガスと水素ガスのみを反応炉に供給した状態で基板温度が1020℃になるまで加熱し、基板温度1020℃の状態でTMGを300μモル/分で1時間供給した状態で1時間維持し、高温バッファ層13を形成する(図4(C))。なお、この成膜条件で得られる高温バッファ層13の厚みは約3μmである。そして、この高温バッファ層13上にp型のGaN膜14を形成する(図4(D)〜(G))。 Thereafter, the supply of TMG is stopped, and heating is performed until only the NH 3 gas and the hydrogen gas are supplied to the reaction furnace until the substrate temperature reaches 1020 ° C., and at a substrate temperature of 1020 ° C., TMG is added at 300 μmol / min. The high temperature buffer layer 13 is formed by maintaining the supplied state for 1 hour (FIG. 4C). Note that the thickness of the high-temperature buffer layer 13 obtained under these film formation conditions is about 3 μm. Then, a p-type GaN film 14 is formed on the high-temperature buffer layer 13 (FIGS. 4D to 4G).

次に、キャリアガスを水素から窒素に切り替え、Mgドープ層の成長を開始する。図5は、図4(D)〜(G)のp型GaN膜14の成膜プロセスにおけるガス供給のシーケンスを説明するための図である。先ず、NH3ガスの供給を停止し、有機窒素原料である1.1−ジメチルヒドラジン(DMHy)を気化させて500sccmの流量で30秒間炉内に流してDMHy供給の安定化を図る(図4(D))。なお、この時点ではGa原料の供給は行わないため、GaN膜は成長しない。 Next, the carrier gas is switched from hydrogen to nitrogen, and growth of the Mg doped layer is started. FIG. 5 is a diagram for explaining a gas supply sequence in the film formation process of the p-type GaN film 14 of FIGS. First, the supply of NH 3 gas is stopped, 1.1-dimethylhydrazine (DMHy), which is an organic nitrogen raw material, is vaporized and flowed in the furnace at a flow rate of 500 sccm for 30 seconds to stabilize the DMHy supply (FIG. 4). (D)). At this time, the Ga material is not supplied, so the GaN film does not grow.

DMHy供給の安定化に続いて、Ga原料であるTMGを100μモル/分、p型ドーパントの原料であるシクロペンタジエニルマグネシウム(Cp2Mg)を1.5μモル/分、そして、窒素原料であるNH3ガスを20リットル/分供給し、p型GaN14の成膜を行う。なお、DMHy(500sccm)の流量は一定に維持されているため、このDMHyも窒素源となる。また、図4中の(D)、(E)を繰り返すことになるが、これを1回行う工程をここでは「1サイクル」と呼ぶ。 Following stabilization of the DMHy supply, 100 μmol / min of TMG as a Ga source, 1.5 μmol / min of cyclopentadienylmagnesium (Cp 2 Mg) as a p-type dopant source, and a nitrogen source A certain NH 3 gas is supplied at a rate of 20 liters / minute to form a p-type GaN film 14. Since the flow rate of DMHy (500 sccm) is kept constant, this DMHy is also a nitrogen source. Further, (D) and (E) in FIG. 4 are repeated, and the process of performing this once is referred to as “one cycle” here.

図5に図示しているように、1サイクル中の成膜にかかる工程時間は15秒とされ、これにより薄膜のp型GaN膜14が得られる(図4(E))。   As shown in FIG. 5, the process time required for film formation in one cycle is 15 seconds, whereby a thin p-type GaN film 14 is obtained (FIG. 4E).

この成膜工程の後に、膜の表面から水素を脱離させる目的で、成膜中アニール工程を設ける。具体的には、TMG、Cp2Mg、および、NH3ガスの供給を停止し、窒素ガスをキャリアとするDMHy(500sccm)のみを45秒間供給する(図4(F))。 After this film formation step, an annealing step during film formation is provided for the purpose of desorbing hydrogen from the surface of the film. Specifically, the supply of TMG, Cp 2 Mg, and NH 3 gas is stopped, and only DMHy (500 sccm) using nitrogen gas as a carrier is supplied for 45 seconds (FIG. 4F).

そして、この15秒間の成膜工程と45秒間の成膜中アニール工程を繰り返すことで、p型GaN膜14を所望の厚みとする(図4(G))。なお、本実施例の場合、繰り返し回数は60回(合計60分間)であり、最終的に得られたp型GaN膜14の厚みは0.5μmである。   Then, the p-type GaN film 14 is made to have a desired thickness by repeating the film formation process for 15 seconds and the annealing process during film formation for 45 seconds (FIG. 4G). In this example, the number of repetitions is 60 (total 60 minutes), and the finally obtained p-type GaN film 14 has a thickness of 0.5 μm.

図6は、MOCVD法でGaN系多重量子井戸構造を有するLED用基板を作製する本実施例の結晶成長プロセスを説明するための図で、先ず、基板としてC面を主面(成長面)としたサファイヤ基板11を反応炉内のサセプタ上に設置し、水素ガスを流しながら1.3kPaまで減圧し、基板表面温度が1060℃となるまでヒータで加熱する(図6(A))。   FIG. 6 is a diagram for explaining the crystal growth process of this example for producing an LED substrate having a GaN-based multiple quantum well structure by the MOCVD method. First, the C plane is used as the main surface (growth surface) as the substrate. The sapphire substrate 11 is placed on a susceptor in the reaction furnace, depressurized to 1.3 kPa while flowing hydrogen gas, and heated with a heater until the substrate surface temperature reaches 1060 ° C. (FIG. 6A).

サファイア基板11を1060℃で5分間保持した後、550℃まで降温しつつ、反応炉内圧力を0.13Mpaまで加圧する。そして、基板温度550℃において、水素をキャリヤガスとして、アンモニア(NH3)ガスを20リットル/分、トリメチルガリウム(TMG)ガスを100μモル/分の流量で2分間供給し、微結晶からなる窒化ガリウム(GaN)の低温バッファ層12を形成する(図6(B))。 After holding the sapphire substrate 11 at 1060 ° C. for 5 minutes, the pressure in the reactor is increased to 0.13 MPa while the temperature is lowered to 550 ° C. Then, at a substrate temperature of 550 ° C., hydrogen is used as a carrier gas, ammonia (NH 3 ) gas is supplied at a rate of 20 liters / minute, and trimethylgallium (TMG) gas is supplied at a flow rate of 100 μmol / minute for 2 minutes. A low-temperature buffer layer 12 of gallium (GaN) is formed (FIG. 6B).

その後、TMGの供給を停止し、NH3ガスと水素ガスのみを反応炉に供給した状態で基板温度が1020℃になるまで加熱し、基板温度1020℃の状態で水素をキャリアガスとしてTMGを300μモル/分で1時間供給し、高温バッファ層13を形成する(図6(C))。なお、この成膜条件で得られる高温バッファ層13の厚みは約3μmである。 Thereafter, the supply of TMG is stopped, and the substrate temperature is heated to 1020 ° C. while only NH 3 gas and hydrogen gas are supplied to the reaction furnace. At a substrate temperature of 1020 ° C., TMG is 300 μm using hydrogen as a carrier gas. Supply is performed at 1 mol / min for 1 hour to form the high-temperature buffer layer 13 (FIG. 6C). Note that the thickness of the high-temperature buffer layer 13 obtained under these film formation conditions is about 3 μm.

次に、TMGとNH3およびn型ドーパントであるシリコン(Si)の原料であるモノシランガス(SiH4)を供給し、厚み3μmのn型GaN層15を形成する(図6(D))。 Next, monosilane gas (SiH 4 ), which is a raw material of TMG, NH 3, and silicon (Si) as an n-type dopant, is supplied to form an n-type GaN layer 15 having a thickness of 3 μm (FIG. 6D).

続いて、基板温度を750℃まで下げ、キャリアガスを水素から窒素に切り替え、n型GaN層15の上にInGaN/GaNの多重量子井戸発光層16を形成する。具体的には、窒素をキャリアガスとして、トリメチルインジウム(TMI)とTMGおよびNH3を供給してInGaN量子井戸層16aを形成し(図6(E))、TMGとNH3を供給してGaN障壁層16bを形成し(図6(F))、これらInGaN量子井戸層16aとGaN障壁層16bを交互に成膜させて多重に積層させ、InGaN/GaNの多重量子井戸発光層16が得られる(図6(G))。 Subsequently, the substrate temperature is lowered to 750 ° C., the carrier gas is switched from hydrogen to nitrogen, and the InGaN / GaN multiple quantum well light emitting layer 16 is formed on the n-type GaN layer 15. Specifically, trimethylindium (TMI), TMG, and NH 3 are supplied using nitrogen as a carrier gas to form an InGaN quantum well layer 16a (FIG. 6E), and TMG and NH 3 are supplied to form GaN. A barrier layer 16b is formed (FIG. 6F), and these InGaN quantum well layers 16a and GaN barrier layers 16b are alternately formed and stacked in multiple layers to obtain an InGaN / GaN multiple quantum well light-emitting layer 16. (FIG. 6G).

これに続いて再び基板温度が1020℃になるまで加熱し、NH3の供給を停止する一方、窒素をキャリアガスとして、DMHyを気化させて500sccmの流量でガス供給する。この状態で30秒間安定させた後、DMHy(500sccm)の供給を継続したまま、p型AlGaN層17を成膜する(図6(H))。具体的には、15秒間の成膜工程と45秒間の成膜中アニール工程を5回繰り返して、75nmの厚みのp型AlGaN層17を得る。なお、成膜工程で供給するガスは、供給量が一定のDMHy(500sccm)に加えて、窒素をキャリアガスとしたトリメチルアルミニウム(TMA:50μモル/分)、TMG(100μモル/分)、Cp2Mg(1.5μモル/分)、及び、NH3(10リットル/分)であり、成膜中アニール工程ではDMHy(500sccm)以外の原料ガス供給を停止する。 Subsequently, the substrate is heated again until the substrate temperature reaches 1020 ° C., and the supply of NH 3 is stopped, while DMHy is vaporized using nitrogen as a carrier gas and supplied at a flow rate of 500 sccm. After stabilizing in this state for 30 seconds, the p-type AlGaN layer 17 is formed while the supply of DMHy (500 sccm) is continued (FIG. 6 (H)). Specifically, the film-forming process for 15 seconds and the annealing process during film-forming for 45 seconds are repeated five times to obtain the p-type AlGaN layer 17 having a thickness of 75 nm. Note that the gas supplied in the film forming step is trimethylaluminum (TMA: 50 μmol / min), TMG (100 μmol / min), Cp using nitrogen as a carrier gas in addition to a constant supply amount of DMHy (500 sccm). 2 Mg (1.5 μmol / min) and NH 3 (10 liter / min). In the annealing process during film formation, the supply of source gases other than DMHy (500 sccm) is stopped.

このp型AlGaN層17の上に、p型GaN層18を成膜する(図6(I))。具体的には、15秒間の成膜工程と45秒間の成膜中アニール工程を15サイクル繰り返して、0.15μmの厚みのp型GaN層18を得る。なお、成膜工程で供給するガスは、供給量が一定のDMHy(500sccm)に加えて、窒素をキャリアガスとしたTMG(100μモル/分)、Cp2Mg(1.5μモル/分)、及び、NH3(20リットル/分)であり、成膜中アニール工程ではDMHy(500sccm)以外の原料ガス供給を停止する。 A p-type GaN layer 18 is formed on the p-type AlGaN layer 17 (FIG. 6I). Specifically, a 15-second deposition step and a 45-second annealing step during deposition are repeated 15 cycles to obtain a p-type GaN layer 18 having a thickness of 0.15 μm. In addition to the DMHy (500 sccm) with a constant supply amount, TMG (100 μmol / min), Cp 2 Mg (1.5 μmol / min), Cp 2 Mg (nitrogen as a carrier gas), NH 3 (20 liters / min), and supply of source gases other than DMHy (500 sccm) is stopped in the annealing step during film formation.

以上、実施例により本発明の窒化物系化合物半導体の結晶成長方法について説明したが、上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではない。実施例ではp型層をGaNとされているものを、AlNやInNあるいはBNとしたり、これらの混晶とすることもできる。また、成長温度や各原料の供給量あるいは各層の膜厚などは目的に応じて変更可能である。これらの実施例を種々変形することは本発明の範囲内にあり、更に本発明の範囲内において他の様々な実施例が可能であることは上記記載から自明である。   As mentioned above, although the example demonstrated the crystal growth method of the nitride type compound semiconductor of this invention, the said Example is only an example for implementing this invention, and this invention is not limited to these. In the embodiment, the p-type layer made of GaN may be AlN, InN, BN, or a mixed crystal thereof. Further, the growth temperature, the supply amount of each raw material or the film thickness of each layer can be changed according to the purpose. It is apparent from the above description that various modifications of these embodiments are within the scope of the present invention, and that various other embodiments are possible within the scope of the present invention.

本発明により、バンドギャップなどの諸物性を変化させることなくバルク全体にわたってp型窒化物系化合物半導体結晶の低抵抗化が可能で、しかも欠陥レベルの低い、高品質の窒化物系化合物半導体の結晶成長方法が提供される。   The present invention makes it possible to reduce the resistance of p-type nitride-based compound semiconductor crystals over the entire bulk without changing various physical properties such as band gaps, and to provide high-quality nitride-based compound semiconductor crystals with a low defect level. A growth method is provided.

MOCVD法で窒化ガリウム系半導体薄膜を積層成長させて青色LEDを作製する一般的な結晶成長プロセスを説明するための図である。It is a figure for demonstrating the general crystal growth process which produces a blue LED by carrying out lamination | stacking growth of the gallium nitride type semiconductor thin film by MOCVD method. 気相法で結晶成長させたGaN膜中の水素濃度および炭素濃度を窒素原料ガス中のジメチルヒドラジンの供給モル比を横軸としてプロットした図である。It is the figure which plotted hydrogen concentration and carbon concentration in the GaN film crystal-grown by the vapor phase method, with the supply molar ratio of dimethylhydrazine in the nitrogen source gas as the horizontal axis. 本発明の窒化物系化合物半導体の結晶成長方法における窒素原料ガスの供給シーケンスを概念的に説明するための図である。It is a figure for demonstrating notionally the supply sequence of the nitrogen source gas in the crystal growth method of the nitride type compound semiconductor of this invention. MOCVD法で窒化ガリウム系半導体薄膜を積層成長させる実施例1の結晶成長プロセスを説明するための図である。It is a figure for demonstrating the crystal growth process of Example 1 which carries out lamination | stacking growth of the gallium nitride semiconductor thin film by MOCVD method. p型GaN膜の成膜プロセスにおけるガス供給のシーケンスを説明するための図である。It is a figure for demonstrating the sequence of the gas supply in the film-forming process of a p-type GaN film | membrane. MOCVD法でGaN系多重量子井戸構造を有するLED用基板を作製する実施例2の結晶成長プロセスを説明するための図である。It is a figure for demonstrating the crystal growth process of Example 2 which produces the board | substrate for LED which has a GaN-type multiple quantum well structure by MOCVD method.

符号の説明Explanation of symbols

11 サファイヤ基板
12 低温バッファ層
13 高温バッファ層
14 p型GaN膜
15 n型GaN層
16 InGaN/GaN多重量子井戸発光層
16a InGaN量子井戸層
16b GaN障壁層
17 p型AlGaN層
18 p型GaN層
DESCRIPTION OF SYMBOLS 11 Sapphire substrate 12 Low temperature buffer layer 13 High temperature buffer layer 14 p-type GaN film 15 n-type GaN layer 16 InGaN / GaN multiple quantum well light emitting layer 16a InGaN quantum well layer 16b GaN barrier layer 17 p-type AlGaN layer 18 p-type GaN layer

Claims (13)

基板上に少なくとも1層の窒化物系化合物半導体膜を気相成長させる窒化物系化合物半導体の結晶成長方法であって、
前記窒化物系化合物半導体の何れかの膜を気相成長させる際に、有機窒素化合物(xモル)とアンモニア(NH3)(yモル)とを含有する窒素原料ガスを供給し、該窒素原料ガス中の有機窒素化合物(xモル)の供給モル比(R=x/(x+y))を変化させる成膜プロセスを備えていることを特徴とする窒化物系化合物半導体の結晶成長方法。
A nitride-based compound semiconductor crystal growth method comprising vapor-phase-growing at least one nitride-based compound semiconductor film on a substrate,
When vapor-phase-growing any of the nitride-based compound semiconductor films, a nitrogen source gas containing an organic nitrogen compound (x mol) and ammonia (NH 3 ) (y mol) is supplied, and the nitrogen source A crystal growth method for a nitride-based compound semiconductor, comprising a film forming process for changing a supply molar ratio (R = x / (x + y)) of an organic nitrogen compound (x mol) in a gas.
前記供給モル比(R)を1秒以上120秒以下の周期Tで周期的に変化させることを特徴とする請求項1に記載の窒化物系化合物半導体の結晶成長方法。 2. The crystal growth method for a nitride-based compound semiconductor according to claim 1, wherein the supply molar ratio (R) is periodically changed with a period T of 1 second or more and 120 seconds or less. 前記供給モル比(R)を少なくとも2つの水準(R1、R2:R1<R2)に設定することを特徴とする請求項1又は2に記載の窒化物系化合物半導体の結晶成長方法。 The crystal growth method for a nitride-based compound semiconductor according to claim 1 or 2, wherein the supply molar ratio (R) is set to at least two levels (R1, R2: R1 <R2). 前記2つの水準(R1およびR2)での窒素原料ガスの供給時間をそれぞれT1およびT2(T=T1+T2)としたときに、T2≧0.5×T1に設定することを特徴とする請求項1乃至3の何れか1項に記載の窒化物系化合物半導体の結晶成長方法。 2. T2 ≧ 0.5 × T1 is set when T1 and T2 (T = T1 + T2) are set as the supply times of the nitrogen source gas at the two levels (R1 and R2), respectively. 4. The method for growing a nitride compound semiconductor crystal according to any one of items 1 to 3. 前記2つの水準(R1、R2)はそれぞれ、0≦R1≦0.6、および、0.4≦R2≦1.0であることを特徴とする請求項3又は4に記載の窒化物系化合物半導体の結晶成長方法。 5. The nitride compound according to claim 3, wherein the two levels (R 1, R 2) are 0 ≦ R 1 ≦ 0.6 and 0.4 ≦ R 2 ≦ 1.0, respectively. Semiconductor crystal growth method. 前記成膜プロセスにおけるIII族元素の原料ガスの供給量を、前記供給モル比(R)の変化に同期させて変動させることを特徴とする請求項1乃至5の何れか1項に記載の窒化物系化合物半導体の結晶成長方法。 6. The nitriding according to claim 1, wherein a supply amount of a group III element source gas in the film forming process is varied in synchronization with a change in the supply molar ratio (R). Crystal growth method for physical compound semiconductor. 前記窒素原料ガス中の有機窒素化合物が最小の供給モル比(R=Rmin)で供給されるときだけIII族元素の原料ガスを供給することを特徴とする請求項1乃至6の何れか1項に記載の窒化物系化合物半導体の結晶成長方法。 The group III element source gas is supplied only when the organic nitrogen compound in the nitrogen source gas is supplied at a minimum supply molar ratio (R = Rmin). A method for crystal growth of a nitride-based compound semiconductor as described in 1. 前記成膜プロセスにおけるアクセプタドーパントの原料ガスの供給量を、前記供給モル比(R)の変化に同期させて変動させることを特徴とする請求項1乃至7の何れか1項に記載の窒化物系化合物半導体の結晶成長方法。 The nitride according to any one of claims 1 to 7, wherein a supply amount of an acceptor dopant source gas in the film forming process is varied in synchronization with a change in the supply molar ratio (R). Crystal growth method for a compound semiconductor. 前記窒素原料ガス中の有機窒素化合物が最小の供給モル比(R=Rmin)で供給されるときだけアクセプタドーパントの原料ガスを供給することを特徴とする請求項1乃至8の何れか1項に記載の窒化物系化合物半導体の結晶成長方法。 9. The acceptor dopant source gas is supplied only when the organic nitrogen compound in the nitrogen source gas is supplied at a minimum supply molar ratio (R = Rmin). The crystal growth method of the nitride compound semiconductor as described. 前記有機窒素化合物がヒドラジン系化合物であることを特徴とする請求項1乃至9の何れか1項に記載の窒化物系化合物半導体の結晶成長方法。 The method for growing a crystal of a nitride compound semiconductor according to any one of claims 1 to 9, wherein the organic nitrogen compound is a hydrazine compound. 前記ヒドラジン系化合物が1.1−ジメチルヒドラジン若しくはターシャリーブチルヒドラジンであることを特徴とする請求項10に記載の窒化物系化合物半導体の結晶成長方法。 The crystal growth method for a nitride-based compound semiconductor according to claim 10, wherein the hydrazine-based compound is 1.1-dimethylhydrazine or tertiary butylhydrazine. 前記窒化物系化合物半導体膜が、GaN、AlN、InN、BNまたはこれらの混晶であることを特徴とする請求項1乃至11の何れか1項に記載の窒化物系化合物半導体の結晶成長方法。 12. The crystal growth method for a nitride compound semiconductor according to claim 1, wherein the nitride compound semiconductor film is GaN, AlN, InN, BN, or a mixed crystal thereof. . 請求項1乃至12の何れか1項に記載の方法により気相成長された窒化物系化合物半導体膜であって、該膜中の酸素濃度[O]、炭素濃度[C]、および、水素濃度[H]がそれぞれ、[O]≦1×1017cm-3、[C]≦1×1017cm-3、および、[H]≦5×1018cm-3であることを特徴とする窒化物系化合物半導体結晶。 A nitride-based compound semiconductor film grown by the method according to claim 1, wherein the oxygen concentration [O], the carbon concentration [C], and the hydrogen concentration in the film [H] is [O] ≦ 1 × 10 17 cm −3 , [C] ≦ 1 × 10 17 cm −3 , and [H] ≦ 5 × 10 18 cm −3 , respectively. Nitride compound semiconductor crystal.
JP2006252578A 2006-09-19 2006-09-19 Method of growing crystal of nitride compound semiconductor Pending JP2008078186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252578A JP2008078186A (en) 2006-09-19 2006-09-19 Method of growing crystal of nitride compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252578A JP2008078186A (en) 2006-09-19 2006-09-19 Method of growing crystal of nitride compound semiconductor

Publications (1)

Publication Number Publication Date
JP2008078186A true JP2008078186A (en) 2008-04-03

Family

ID=39349988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252578A Pending JP2008078186A (en) 2006-09-19 2006-09-19 Method of growing crystal of nitride compound semiconductor

Country Status (1)

Country Link
JP (1) JP2008078186A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076935A (en) * 2008-12-10 2009-04-09 Mitsubishi Electric Corp Method of manufacturing nitride semiconductor laminating structure
JP2010103471A (en) * 2008-09-24 2010-05-06 Mitsubishi Electric Corp Method for manufacturing nitride semiconductor device
US7763486B2 (en) 2007-07-02 2010-07-27 Mitsubishi Electric Corporation Method for manufacturing nitride semiconductor stacked structure and semiconductor light-emitting device
WO2010098163A1 (en) * 2009-02-24 2010-09-02 住友電気工業株式会社 Light emitting element producing method and light emitting element
JP2010212651A (en) * 2009-09-08 2010-09-24 Sumitomo Electric Ind Ltd Group-iii nitride semiconductor element, epitaxial substrate, and method of manufacturing group-iii nitride semiconductor element
US7923742B2 (en) 2008-03-18 2011-04-12 Mitsubishi Electric Corporation Method for production of a nitride semiconductor laminated structure and an optical semiconductor device
WO2011071191A1 (en) * 2009-12-10 2011-06-16 Dowaエレクトロニクス株式会社 P-type algan layer, method for producing same and group iii nitride semiconductor light-emitting element
WO2011108738A1 (en) * 2010-03-01 2011-09-09 Dowaエレクトロニクス株式会社 Semiconductor element and method for producing the same
WO2016021490A1 (en) * 2014-08-08 2016-02-11 ウシオ電機株式会社 Nitride semiconductor light emitting element
JP2016149458A (en) * 2015-02-12 2016-08-18 ウシオ電機株式会社 Semiconductor light-emitting element
JP2017168644A (en) * 2016-03-16 2017-09-21 大陽日酸株式会社 Manufacturing method of semiconductor device and substrate processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199758A (en) * 1996-01-19 1997-07-31 Nec Corp Vapor growth method of low-resistance p-type gallium nitride-based compound semiconductor
JP2003178987A (en) * 2001-12-13 2003-06-27 Hitachi Cable Ltd Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device
JP2004087565A (en) * 2002-08-23 2004-03-18 Sony Corp Method for manufacturing gallium nitride-based semiconductor light emitting device
JP2007189028A (en) * 2006-01-12 2007-07-26 Hitachi Cable Ltd Manufacturing method of both p-type gallium nitride semiconductor and algainn light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199758A (en) * 1996-01-19 1997-07-31 Nec Corp Vapor growth method of low-resistance p-type gallium nitride-based compound semiconductor
JP2003178987A (en) * 2001-12-13 2003-06-27 Hitachi Cable Ltd Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device
JP2004087565A (en) * 2002-08-23 2004-03-18 Sony Corp Method for manufacturing gallium nitride-based semiconductor light emitting device
JP2007189028A (en) * 2006-01-12 2007-07-26 Hitachi Cable Ltd Manufacturing method of both p-type gallium nitride semiconductor and algainn light emitting device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763486B2 (en) 2007-07-02 2010-07-27 Mitsubishi Electric Corporation Method for manufacturing nitride semiconductor stacked structure and semiconductor light-emitting device
US7923742B2 (en) 2008-03-18 2011-04-12 Mitsubishi Electric Corporation Method for production of a nitride semiconductor laminated structure and an optical semiconductor device
JP2010103471A (en) * 2008-09-24 2010-05-06 Mitsubishi Electric Corp Method for manufacturing nitride semiconductor device
JP2009076935A (en) * 2008-12-10 2009-04-09 Mitsubishi Electric Corp Method of manufacturing nitride semiconductor laminating structure
EP2403023A1 (en) * 2009-02-24 2012-01-04 Sumitomo Electric Industries, Ltd. Light emitting element producing method and light emitting element
EP2403023A4 (en) * 2009-02-24 2013-11-27 Sumitomo Electric Industries Light emitting element producing method and light emitting element
JP2010199236A (en) * 2009-02-24 2010-09-09 Sumitomo Electric Ind Ltd Light emitting element producing method and light emitting element
WO2010098163A1 (en) * 2009-02-24 2010-09-02 住友電気工業株式会社 Light emitting element producing method and light emitting element
JP2010212651A (en) * 2009-09-08 2010-09-24 Sumitomo Electric Ind Ltd Group-iii nitride semiconductor element, epitaxial substrate, and method of manufacturing group-iii nitride semiconductor element
WO2011071191A1 (en) * 2009-12-10 2011-06-16 Dowaエレクトロニクス株式会社 P-type algan layer, method for producing same and group iii nitride semiconductor light-emitting element
JP2011142317A (en) * 2009-12-10 2011-07-21 Dowa Electronics Materials Co Ltd METHOD FOR PRODUCING P-TYPE AlGaN LAYER, AND GROUP III NITRIDE SEMICONDUCTOR LIGHT-EMITTING ELEMENT
KR101454980B1 (en) * 2009-12-10 2014-10-27 도와 일렉트로닉스 가부시키가이샤 P-type algan layerm, method for producing same and group ⅲ nitride semiconductor light-emitting element
US8765222B2 (en) 2009-12-10 2014-07-01 Dowa Electronics Materials Co., Ltd. Method of manufacturing a p-AlGaN layer
WO2011108738A1 (en) * 2010-03-01 2011-09-09 Dowaエレクトロニクス株式会社 Semiconductor element and method for producing the same
CN102918663A (en) * 2010-03-01 2013-02-06 同和电子科技有限公司 Semiconductor device and method of producing the same
US8735938B2 (en) 2010-03-01 2014-05-27 Dowa Electronics Materials Co., Ltd. Semiconductor device and method of producing the same
JP2011249843A (en) * 2010-03-01 2011-12-08 Dowa Electronics Materials Co Ltd Semiconductor device and method of manufacturing the same
JP2011205082A (en) * 2010-03-01 2011-10-13 Dowa Electronics Materials Co Ltd Semiconductor element, and method for manufacturing the same
TWI513044B (en) * 2010-03-01 2015-12-11 同和電子科技股份有限公司 Semiconductor element and manufacturing method thereof
WO2016021490A1 (en) * 2014-08-08 2016-02-11 ウシオ電機株式会社 Nitride semiconductor light emitting element
JP2016039325A (en) * 2014-08-08 2016-03-22 ウシオ電機株式会社 Nitride semiconductor light emitting element
TWI615996B (en) * 2014-08-08 2018-02-21 Ushio Electric Inc Nitride semiconductor light-emitting element
JP2016149458A (en) * 2015-02-12 2016-08-18 ウシオ電機株式会社 Semiconductor light-emitting element
JP2017168644A (en) * 2016-03-16 2017-09-21 大陽日酸株式会社 Manufacturing method of semiconductor device and substrate processing method

Similar Documents

Publication Publication Date Title
JP2008078186A (en) Method of growing crystal of nitride compound semiconductor
JP3976294B2 (en) Method for manufacturing nitride-based compound semiconductor light-emitting device
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
US20020155712A1 (en) Method of fabricating group-III nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
EP2214197B1 (en) Method of Fabricating Nitride-Based Semiconductor Optical Device
JP2011238971A (en) Method of manufacturing nitride semiconductor light-emitting element
JP3656606B2 (en) Method for producing group III nitride semiconductor crystal
JP2010258096A (en) Nitride semiconductor light emitting device
US20100006874A1 (en) Process for production of gallium nitride-based compound semiconductor light emitting device
JP2009238772A (en) Epitaxial substrate, and manufacturing method of epitaxial substrate
WO2010098163A1 (en) Light emitting element producing method and light emitting element
JP2008028121A (en) Manufacturing method of semiconductor luminescence element
GB2529594A (en) Active region including nanodots (referred to also as &#34;quantum dots&#34;) in matrix crystal grown on SI substrate and constituted of zincblende
KR101125408B1 (en) Compound semiconductor and method for producing same
JP2012204540A (en) Semiconductor device and method of manufacturing the same
JP5334501B2 (en) Nitride semiconductor device
JP4653768B2 (en) Nitride-based compound semiconductor device and manufacturing method thereof
TW201543548A (en) Semiconductor substrate, method of manufacturing semiconductor substrate, and semiconductor device
JP2005268647A (en) Method for manufacturing compound semiconductor and method for manufacturing semiconductor device
JPH1168252A (en) Semiconductor light-emitting element
JP4284944B2 (en) Method for manufacturing gallium nitride based semiconductor laser device
JP4222287B2 (en) Group III nitride semiconductor crystal manufacturing method
JP2005129923A (en) Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
JP3288300B2 (en) Semiconductor manufacturing method
JP2005210091A (en) Group iii nitride semiconductor element and light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018