Nothing Special   »   [go: up one dir, main page]

JP2008065005A - Electrostatic charge image development toner, and method for producing toner - Google Patents

Electrostatic charge image development toner, and method for producing toner Download PDF

Info

Publication number
JP2008065005A
JP2008065005A JP2006242222A JP2006242222A JP2008065005A JP 2008065005 A JP2008065005 A JP 2008065005A JP 2006242222 A JP2006242222 A JP 2006242222A JP 2006242222 A JP2006242222 A JP 2006242222A JP 2008065005 A JP2008065005 A JP 2008065005A
Authority
JP
Japan
Prior art keywords
toner
particles
droplets
resin
composition liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006242222A
Other languages
Japanese (ja)
Inventor
Hisashi Nakajima
久志 中島
Tsutomu Sugimoto
強 杉本
Shinji Otani
伸二 大谷
Hiroshi Yamada
博 山田
Fumihiro Sasaki
文浩 佐々木
Yasuo Asahina
安雄 朝比奈
Masaru Mochizuki
賢 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006242222A priority Critical patent/JP2008065005A/en
Publication of JP2008065005A publication Critical patent/JP2008065005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide toner particles having low temperature fixability and hot-offset resistance, and also having the uniform dispersibility of particle sizes. <P>SOLUTION: In the method for producing toner where a toner composition liquid obtained by dissolving and/or dispersing a toner composition at least comprising a resin, a coloring agent and one or more kinds of inorganic particulates into a solvent is ejected from through holes, and is converted into droplets, so as to produce toner particles, the toner composition liquid is fed to a storage part, and, while exciting the toner composition liquid by a vibration means at least in contact with the storage part via the storage part, the toner composition liquid is ejected from a plurality of the through holes provided at the storage part into a granulation space, the toner composition liquid is passed through a columnar state into a constricted state, so as to be converted into droplets, and the droplets are changed into solid particles in the granulation space, so as to produce the toner. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子写真、静電記録、静電印刷等に於ける静電荷像を現像する為の現像剤に使用されるトナー及びトナーの製造方法に関する。   The present invention relates to a toner used for a developer for developing an electrostatic image in electrophotography, electrostatic recording, electrostatic printing, and the like, and a method for producing the toner.

電子写真、静電記録、静電印刷等に於いて使用される現像剤は、その現像工程において、例えば、静電荷像が形成されている静電潜像担持体等の像担持体に一旦付着され、次に転写工程において静電潜像担持体から転写紙等の転写媒体に転写された後、定着工程において紙面に定着される。その際、潜像保持面上に形成される静電荷像を現像する為の現像剤として、キャリアとトナーから成る二成分系現像剤及び、キャリアを必要としない一成分系現像剤(磁性トナー、非磁性トナー)が知られている。   Developers used in electrophotography, electrostatic recording, electrostatic printing, and the like are temporarily attached to an image carrier such as an electrostatic latent image carrier on which an electrostatic charge image is formed in the development process. Then, after being transferred from the electrostatic latent image carrier to a transfer medium such as transfer paper in the transfer step, it is fixed on the paper surface in the fixing step. At that time, as a developer for developing the electrostatic image formed on the latent image holding surface, a two-component developer composed of a carrier and a toner, and a one-component developer that does not require a carrier (magnetic toner, Non-magnetic toners are known.

トナーには省エネルギーのための低温定着化が望まれており、特にフルカラー用の機器では、高光沢および混色性が必要なことから、トナーが低溶融粘度であることが必要であるため、シャープメルト性のあるポリエステル樹脂を用いることが多い。しかしこのようなトナーではホットオフセットが生じやすいため、従来より熱ロールにシリコーンオイルなどを塗布することが行なわれている。しかし、この方式はオイルタンク、オイル塗布装置が必要であり装置が複雑、大型となる。上記問題点により、近年では定着ローラーにオイル塗布機構を設けない場合においても、低温定着性、耐ホットオフセット性を両立させることが課題である。その解決策として、ポリエステル樹脂の分子量を低分子量成分と、高分子量成分の分布を持たせ、低分子量成分により低温定着性を、高分子量成分により耐オフセット性を持たせることで、オイル塗布機構をもたない場合においても良好な定着特性が得られる。   Toners are required to have low-temperature fixing for energy saving. Especially in full-color equipment, high gloss and color mixing are required, so the toner needs to have a low melt viscosity. Often used is a polyester resin. However, since such a toner tends to cause hot offset, conventionally, silicone oil or the like is applied to a heat roll. However, this method requires an oil tank and an oil application device, which is complicated and large. Due to the above-mentioned problems, it is a problem to achieve both low-temperature fixability and hot offset resistance even in recent years even when an oil application mechanism is not provided in the fixing roller. As a solution, the molecular weight of the polyester resin has a distribution of a low molecular weight component and a high molecular weight component, the low molecular weight component provides low-temperature fixability, and the high molecular weight component provides offset resistance, thereby improving the oil coating mechanism. Good fixing characteristics can be obtained even when there is no ink.

また、最近では、懸濁重合法、乳化重合凝集法によるトナー製造法、いわゆる重合型トナーが検討されている。この他にも、ポリマー溶解懸濁法と呼ばれる体積収縮を伴う工法も検討されている(特許文献1参照)。この方法はトナー材料を低沸点有機溶媒などの揮発性溶剤に分散、溶解させ、これを分散剤の存在する水系媒体中で乳化、液滴化した後に揮発性溶剤を除去するものである。この方法は懸濁重合法、乳化重合凝集法と異なり、用いることのできる樹脂に汎用性があるため、低温定着化による省エネルギーに有利なポリエステル樹脂を用いることができる点で優れている。
しかしながら、上記の重合型トナーにおいては、水系媒体中で分散剤を使用することを前提としているために、トナーの帯電特性を損なう分散剤がトナー表面に残存して環境安定性が損なわれるなどの不具合が発生したり、これを除去するために非常に大量の洗浄水を必要とすることが知られており、必ずしも製法として満足のいくものではない。
Recently, a toner production method using a suspension polymerization method or an emulsion polymerization aggregation method, so-called polymerization type toner, has been studied. In addition to this, a method called volumetric shrinkage called a polymer dissolution suspension method has been studied (see Patent Document 1). In this method, a toner material is dispersed and dissolved in a volatile solvent such as a low-boiling organic solvent, and this is emulsified and formed into droplets in an aqueous medium containing a dispersant, and then the volatile solvent is removed. Unlike the suspension polymerization method and the emulsion polymerization aggregation method, this method is excellent in that a resin that can be used is versatile, and that a polyester resin that is advantageous for energy saving due to low-temperature fixing can be used.
However, since the above-described polymerization type toner is premised on the use of a dispersant in an aqueous medium, a dispersant that impairs the charging characteristics of the toner remains on the toner surface and the environmental stability is impaired. It is known that a defect occurs or a very large amount of washing water is required to remove this, and it is not always satisfactory as a manufacturing method.

一方、トナー母体粒子内部に、少なくとも一種以上の無機微粒子を含有してなる電子写真用トナーが開示されており、トナー粒子に内添された無機微粒子が、粒子内部に均一に存在している。このように無機微粒子が粒子内部に存在することで、帯電特性を安定化させることができ、また外添剤の埋没を防ぐことができるため流動性を向上させることができ、耐オフセット性も向上させることが出来ることが知られている(特許文献2参照)。   On the other hand, an electrophotographic toner comprising at least one or more inorganic fine particles inside the toner base particles is disclosed, and the inorganic fine particles added internally to the toner particles are uniformly present inside the particles. In this way, the presence of inorganic fine particles inside the particles can stabilize the charging characteristics and prevent the external additive from being buried, thereby improving the fluidity and improving the offset resistance. It is known that it can be made (refer patent document 2).

これに代わるトナーの製造方法として、圧電パルスを利用して微小液滴を形成し、さらにこれを乾燥固化してトナー化する工法が提案されている(特許文献3参照)。更に、ノズル内の熱膨張を利用し、やはり微小液滴を形成し、さらにこれを乾燥固化してトナー化する工法が提案されている(特許文献4参照)。更には、音響レンズを利用し、同様の処理をする方法が提案されている(特許文献5参照)。しかしながら、これらの方法では、一つのノズルから単位時間あたりに吐出できる液滴数が少なく、生産性が悪いという問題があると同時に、液滴同士の合一による粒度分布の広がりが避けられず、単一分散性という点においても満足のいくものではなかった。   As an alternative toner manufacturing method, a method has been proposed in which fine droplets are formed using a piezoelectric pulse and then dried and solidified to form a toner (see Patent Document 3). Further, a method has been proposed in which thermal droplets in the nozzle are used to form fine droplets, which are then dried and solidified to form a toner (see Patent Document 4). Furthermore, a method for performing the same processing using an acoustic lens has been proposed (see Patent Document 5). However, in these methods, the number of droplets that can be ejected from one nozzle per unit time is small, and there is a problem that productivity is low, and at the same time, the spread of particle size distribution due to coalescence of droplets is unavoidable, Also in terms of monodispersity, it was not satisfactory.

熱硬化性樹脂やUV硬化樹脂を含有させたトナー原料を分散質として、分散媒中に微分散した分散液を、ノズルから液滴として間欠的に吐出した後、液滴を凝集させ、熱硬化樹脂もしくはUV硬化樹脂を硬化させて粒子形成の安定化を図る方法又は液滴を固体粒子化する方法も提案されている(特許文献6〜10)。しかしながら、これらの方法も特許文献1〜4と同様に、生産性が低く、単一分散性の点でも不十分であった。また、粒子形成後に樹脂を硬化しているが、上述したような定着特性に関する課題を解決するものではなかった。
上述の特許文献6〜10記載の造粒方法の場合、流体に直接加振部が触れることを特徴としているが、この様な構成の場合、細孔と振動部の数が一致する場合はシャープな粒径分布を達成できるが、多数の細孔と1つの加振部の場合、細孔の位置と加振部の位置関係によるその距離に応じて、細孔から吐出する液滴の大きさが変化するので、トナー粒子が異なる複数のオリフィス間で異なった粒径を生産してしまうことが判明した。
Using a toner material containing a thermosetting resin or UV curable resin as a dispersoid, a dispersion finely dispersed in a dispersion medium is intermittently ejected as droplets from a nozzle, and then the droplets are aggregated and thermally cured. A method of stabilizing the particle formation by curing a resin or a UV curable resin or a method of solidifying droplets has also been proposed (Patent Documents 6 to 10). However, these methods also have low productivity and are insufficient in terms of monodispersibility as in Patent Documents 1 to 4. Moreover, although resin is hardened after particle | grain formation, the subject regarding the fixing characteristic as mentioned above was not solved.
In the case of the granulation method described in Patent Documents 6 to 10 described above, the vibration part is in direct contact with the fluid, but in such a configuration, when the number of pores and vibration parts match, it is sharp. In the case of a large number of pores and one excitation part, the size of the liquid droplets ejected from the pores depends on the distance between the positions of the pores and the excitation part. It has been found that the toner particles produce different particle sizes between multiple orifices with different toner particles.

また、先に述べた通り、耐オフセット性を持たせるために分子量の高い樹脂成分をトナー組成液中に含ませた際には、トナー組成液の粘度が上昇し、上記液滴を形成するのが困難になる場合があり、噴射部の目詰まりが生じやすくなるという問題がある。特に、耐オフセット性を持たせるには高分子量の樹脂成分に架橋構造を持たせることで、ゴム弾性を増すことが有利ではあるが、架橋構造を高分子量成分が架橋構造を持つような場合、トナー組成液の粘性の上昇は顕著であり、また有機溶剤に対する溶解性も低下するため目詰まりが生じやすくなる傾向がある。組成液の粘性を下げるために組成液中の固形分比を低下させる手段もあるが、その際には生産性の悪化、液滴同士の合一が生じやすいという問題がある。更に、トナー組成液が無機微粒子を含有する場合には、粒度分布がシャープにならないことに加えてノズルに無機微粒子が詰まりやすいという問題がある。   In addition, as described above, when a resin component having a high molecular weight is included in the toner composition liquid in order to provide offset resistance, the viscosity of the toner composition liquid increases and the droplets are formed. May become difficult and clogging of the injection part is likely to occur. In particular, in order to give offset resistance, it is advantageous to increase rubber elasticity by giving a high molecular weight resin component a cross-linked structure, but when the high molecular weight component has a cross-linked structure, The increase in the viscosity of the toner composition liquid is significant, and the solubility in organic solvents also decreases, so that clogging tends to occur easily. In order to reduce the viscosity of the composition liquid, there is a means for lowering the solid content ratio in the composition liquid. However, in this case, there is a problem that productivity is deteriorated and droplets are easily coalesced. Further, when the toner composition liquid contains inorganic fine particles, there is a problem that the particle size distribution is not sharp and the nozzles are easily clogged with inorganic fine particles.

特開平7−152202号公報JP-A-7-152202 国際公開第2004/086149号公報International Publication No. 2004/086149 特開2003−262976号公報JP 2003-262976 A 特開2003−280236号公報JP 2003-280236 A 特開2003−262977号公報Japanese Patent Laid-Open No. 2003-262977 特開2006−28432号公報JP 2006-28432 A 特開2006−28433号公報JP 2006-28433 A 特開2006−075708号公報JP 2006-0775708 A 特開2006−077252号公報JP 2006-075252 A 特開2006−167593号公報JP 2006-167593 A

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、トナーを効率よく生産することができ、定着熱ローラーにオイル塗布機構を設けない場合においても優れた低温定着性、耐ホットオフセット性を持ち、かつ粒度の単一分散性を有した粒子であることにより、流動性や帯電特性といったトナーに求められる多くの特性値において、これまでの製造方法にみられた粒子による変動の幅が全くないか、非常に少ない、電子写真、静電記録、静電印刷等に於ける静電荷像を現像する為の現像剤に使用されるトナーの製造方法を提供することを目的とする。   This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can produce toner efficiently, has excellent low-temperature fixability and hot offset resistance even when no oil application mechanism is provided on the fixing heat roller, and has a single particle dispersibility. Due to the possessed particles, in many characteristic values required for toners such as fluidity and charging characteristics, there is no or very little fluctuation range due to particles seen in the conventional production methods, electrophotography, It is an object of the present invention to provide a method for producing a toner used as a developer for developing an electrostatic charge image in electrostatic recording, electrostatic printing or the like.

本発明者らは、少なくとも樹脂と着色剤を含有するトナー組成物を含むトナー組成液を貯留部へ供給し、貯留部の一部に接する振動手段により、前記貯留部を介して前記トナー組成液を励振しながら、貯留部に設けた複数の貫通孔より前記トナー組成液を造粒空間に放出し、前記トナー組成液を柱状から括れ状態を経て液滴化し、該液滴を造粒空間において固体粒子に変化させることによって単一分散性に優れるトナーを製造することができることを見出した。この方法は、一つの振動手段により、該貫通孔を有する貯留部全体を励振させることにより、貯留部に設けられた貫通孔より放出される原料流体に一括して同等に振動を加えて圧力粗密波を発生することが可能であるため、1振動手段によって100以上の液滴形成現象を同時に発生させることが可能となり、これによって、貫通孔部の閉塞や生産性、安定性といった、従来における諸問題を解決でき、粒子特にはトナーを効率よく生産することができ、更にこれまでにない粒度の単一分散性を有した粒子であることにより、流動性や帯電特性といったトナーに求められる多くの特性値において、これまでの製造方法にみられた粒子による変動の幅が全くないか、非常に少ない、電子写真、静電記録、静電印刷等に於ける静電荷像を現像するための現像剤に使用されるトナーの製造方法として有用である。そして、この製造方法を用いることにより、トナー組成液が無機微粒子を含む場合でも、粒度分布がシャープでしかも貫通孔に無機微粒子が詰まることがないことを見出して本発明を完成した。
前記課題を解決するための手段としては、以下の通りである。
The present inventors supply a toner composition liquid containing a toner composition containing at least a resin and a colorant to a storage part, and the toner composition liquid is passed through the storage part by vibration means that contacts a part of the storage part. The toner composition liquid is discharged into a granulation space from a plurality of through-holes provided in the reservoir, and the toner composition liquid is converted into droplets from a columnar shape through a constricted state. It has been found that a toner having excellent monodispersibility can be produced by changing to solid particles. In this method, the entire storage part having the through hole is excited by a single vibration means, so that the raw material fluid discharged from the through hole provided in the storage part is equally vibrated and pressure-concentrated. Since it is possible to generate waves, it is possible to simultaneously generate 100 or more droplet formation phenomena by one vibration means, and this makes it possible to prevent various problems such as blockage of the through-hole portion, productivity, and stability. The problem can be solved, particles, particularly toners can be produced efficiently, and the particles having a monodispersibility with an unprecedented particle size are required for toners such as fluidity and charging characteristics. Develops electrostatic charge images in electrophotography, electrostatic recording, electrostatic printing, etc., which have no or very little variation in the characteristic values due to particles seen in conventional manufacturing methods. It is useful as a method for producing a toner to be used in order for the developer. By using this production method, the present invention has been completed by finding that even when the toner composition liquid contains inorganic fine particles, the particle size distribution is sharp and the through-holes are not clogged with inorganic fine particles.
Means for solving the problems are as follows.

[1] 少なくとも樹脂と着色剤と1種類以上の無機微粒子とを含有するトナー組成物を溶媒に溶解及び/又は分散させたトナー組成液を、貫通孔より放出し液滴化してトナー粒子を製造するトナー製造方法において、前記トナー組成液を貯留部へ供給し、少なくとも貯留部の一部に接する振動手段により、前記貯留部を介して前記トナー組成液を励振しながら、貯留部に設けた複数の貫通孔より前記トナー組成液を造粒空間に放出し、前記トナー組成液を柱状から括れ状態を経て液滴化し、該液滴を造粒空間において固体粒子に変化させることによりトナーを製造することを特徴とするトナーの製造方法。
[2] 蛍光X線分析法によって求められる無機微粒子の全量が、トナー組成物に対して0.1〜50wt%であることを特徴とする[1]に記載のトナーの製造方法。
[3] 前記無機微粒子は、オルガノゾル体を用いて製造されたものであることを特徴とする[1]又は[2]に記載のトナーの製造方法。
[4] 前記液滴から溶媒を脱溶剤することによって固体粒子化することを特徴とする[1]〜[3]に記載のトナーの製造方法。
[5] 前記溶媒が有機溶剤であることを特徴とする[4]に記載のトナーの製造方法。
[6] 前記トナー組成液の固形分比が5〜20重量%であることを特徴とする[1]〜[5]に記載のトナーの製造方法。
[7] 前記貫通孔は、前記振動手段1つ当たりに複数個存在することを特徴とする[1]〜[6]に記載のトナーの製造方法。
[8] 前記貫通孔の開口径が1〜40μmであることを特徴とする[1]〜[7]に記載のトナー製造方法。
[9] 貫通孔から放出される液滴に、誘導荷電により、正電荷又は負電荷を与える[1]〜[8]に記載のトナー製造方法。
[10] 液滴吐出方向と同方向に乾燥気体を流すことにより気流を発生させ、該気流により、液滴を溶媒除去設備内で搬送させると共に、該搬送中に前記液滴中の溶媒を除去させることにより、トナー粒子を形成する[1]〜[9に記載のトナー製造方法。
[11] 乾燥気体が、空気及び窒素ガスのいずれかである[10]に記載のトナー製造方法。
[12] 乾燥気体の温度が、40〜200℃である[11]、[12]に記載のトナー製造方法。
[13] [1]〜[12]に記載のトナーの製造方法によって製造されたことを特徴とする静電荷像現像用トナー。
[14] 粒度分布(体積平均粒径/個数平均粒径)が、1.00〜1.05の範囲にあることを特徴とする[13]に記載の静電荷像現像用トナー。
[15] 体積平均粒径が1〜20μmであることを特徴とする[13]、[14]記載の静電荷像現像用トナー。
[1] A toner composition solution in which a toner composition containing at least a resin, a colorant, and one or more kinds of inorganic fine particles is dissolved and / or dispersed in a solvent is discharged from a through-hole to form droplets to produce toner particles. In the toner manufacturing method, the toner composition liquid is supplied to the storage unit, and a plurality of units provided in the storage unit are excited while the toner composition liquid is excited through the storage unit by vibration means that contacts at least a part of the storage unit. The toner composition liquid is discharged into the granulation space from the through-holes, and the toner composition liquid is changed from a columnar shape to a droplet through a constricted state, and the droplet is changed into solid particles in the granulation space to produce a toner. And a method for producing the toner.
[2] The method for producing a toner according to [1], wherein the total amount of inorganic fine particles determined by X-ray fluorescence analysis is 0.1 to 50 wt% with respect to the toner composition.
[3] The method for producing a toner according to [1] or [2], wherein the inorganic fine particles are produced using an organosol body.
[4] The method for producing a toner according to [1] to [3], wherein the solvent is removed from the droplets to form solid particles.
[5] The method for producing a toner according to [4], wherein the solvent is an organic solvent.
[6] The method for producing a toner according to [1] to [5], wherein a solid content ratio of the toner composition liquid is 5 to 20% by weight.
[7] The toner manufacturing method according to [1] to [6], wherein a plurality of the through holes are present for each of the vibration means.
[8] The toner manufacturing method as described in [1] to [7], wherein an opening diameter of the through hole is 1 to 40 μm.
[9] The toner production method according to [1] to [8], wherein the liquid droplets discharged from the through holes are given a positive charge or a negative charge by induction charge.
[10] An air stream is generated by flowing a dry gas in the same direction as the droplet discharge direction, and the air stream causes the droplets to be transported in a solvent removal facility, and the solvent in the droplets is removed during the transport. The toner production method according to any one of [1] to [9], wherein the toner particles are formed.
[11] The toner production method according to [10], wherein the dry gas is either air or nitrogen gas.
[12] The toner production method according to [11], [12], wherein the temperature of the dry gas is 40 to 200 ° C.
[13] An electrostatic charge image developing toner produced by the toner production method according to any one of [1] to [12].
[14] The electrostatic image developing toner according to [13], wherein the particle size distribution (volume average particle size / number average particle size) is in the range of 1.00 to 1.05.
[15] The toner for developing an electrostatic charge image according to [13], [14], wherein the volume average particle diameter is 1 to 20 μm.

本発明によると、従来における諸問題を解決でき、トナーを効率よく生産することができ、優れた低温定着性、耐オフセット性を持ち、更にこれまでにない粒度の単一分散性を有した粒子であることにより、流動性や帯電特性といったトナーに求められる多くの特性値において、これまでの製造方法にみられた粒子による変動の幅が全くないか、非常に少ない、電子写真、静電記録、静電印刷等に於ける静電荷像を現像するための現像剤に使用されるトナーを提供することができる。   According to the present invention, the conventional problems can be solved, the toner can be efficiently produced, the particles have excellent low-temperature fixability and offset resistance, and have a monodispersibility with an unprecedented particle size. Therefore, in many characteristic values required for toner such as fluidity and charging characteristics, there is no or very little variation due to particles as seen in conventional manufacturing methods. Electrophotography, electrostatic recording Further, it is possible to provide a toner used as a developer for developing an electrostatic charge image in electrostatic printing or the like.

[トナー製造方法]
本発明のトナー製造方法は、少なくとも樹脂と着色剤と1種類以上の無機微粒子とを含有するトナー組成物を溶媒に溶解及び/又は分散させたトナー組成液を、貫通孔より放出し液滴化してトナー粒子を製造するトナー製造方法において、前記トナー組成液を貯留部へ供給し、少なくとも貯留部の一部に接する振動手段により、前記貯留部を介して前記トナー組成液を励振しながら、貯留部に設けた複数の貫通孔より前記トナー組成液を造粒空間に放出し、前記トナー組成液を柱状から括れ状態を経て液滴化し、該液滴を造粒空間において固体粒子に変化させてトナーを得ることを特徴とする。
[Toner production method]
In the toner production method of the present invention, a toner composition liquid in which a toner composition containing at least a resin, a colorant, and one or more kinds of inorganic fine particles is dissolved and / or dispersed in a solvent is discharged from a through hole to form droplets. In the toner manufacturing method for manufacturing toner particles, the toner composition liquid is supplied to the storage part, and the toner composition liquid is stored while being excited through the storage part by vibration means that contacts at least a part of the storage part. The toner composition liquid is discharged into a granulation space through a plurality of through holes provided in the section, and the toner composition liquid is formed into droplets from a columnar shape through a constricted state, and the droplets are changed into solid particles in the granulation space. A toner is obtained.

[トナー製造装置]
本発明のトナー製造方法に使用される装置(以下、「トナー製造装置」ともいう。)としては、本製造方法により、トナーを製造可能な装置であれば、特に制限はなく、適宜選択して使用することができるが、少なくとも樹脂、着色剤及び1種類以上の無機微粒子含有するトナー組成物を溶媒に溶解及び又は分散させてなるトナー組成液を貯留する貯留部と、少なくとも貯留部の一部に接し、貯留部を介して前記トナー組成液を励振しながら、貯留部に設けた複数の貫通孔より前記トナー組成液を造粒空間に放出し、前記トナー組成液を柱状から括れ状態を経て液滴化する振動手段と、造粒空間に放出された液滴中に含まれる溶媒を除去することにより前記液滴を乾燥させてトナー粒子を形成するトナー粒子形成手段とを有するトナー製造装置であることが好ましい。
前記好ましいトナー製造装置としては、例えば、図1に示すように、少なくとも、前記液滴形成手段としての、少なくとも前記トナー組成液を貯留する貯留部1と、振動手段2と、前記振動手段を保持する支持手段3前記複数の貫通孔4を有し、前記貫通孔より放出される前記トナー組成液を貯留部へ供給して前記貫通孔より放出するための液供給手段5と、前記トナー粒子形成手段としての、溶媒除去設備6と、トナー捕集部7とを有する装置が好適に挙げられる。
[Toner production equipment]
An apparatus used in the toner manufacturing method of the present invention (hereinafter also referred to as “toner manufacturing apparatus”) is not particularly limited as long as it is an apparatus capable of manufacturing toner by the manufacturing method, and is appropriately selected. A storage unit that stores a toner composition solution in which a toner composition containing at least a resin, a colorant, and one or more kinds of inorganic fine particles is dissolved and / or dispersed in a solvent; and at least a part of the storage unit The toner composition liquid is discharged into the granulation space through a plurality of through holes provided in the storage portion while exciting the toner composition liquid through the storage portion, and the toner composition liquid is constricted from the columnar shape. A toner manufacturing apparatus comprising: vibration means for forming droplets; and toner particle forming means for drying the droplets to form toner particles by removing the solvent contained in the droplets discharged into the granulation space. It is preferable that.
As the preferred toner manufacturing apparatus, for example, as shown in FIG. 1, at least a storage unit 1 that stores at least the toner composition liquid as the droplet forming unit, a vibrating unit 2, and the vibrating unit are held. A supporting means 3 having a plurality of through holes 4, a liquid supply means 5 for supplying the toner composition liquid discharged from the through holes to the reservoir and releasing it from the through holes, and the toner particle formation A device having a solvent removal facility 6 and a toner collecting unit 7 as means is preferably mentioned.

以下、前記トナー製造装置について、各部材毎にさらに詳述する。
(貯留部)
貯留部は、少なくとも、前記トナー組成物原料流体を加圧された状態において保持される必要があるため、SUS、アルミなどの金属等の部材からなり、10MPa程度の耐圧性があることが望ましいが、これに限るものではない。また、例えば、図2に示すように、貯留部へ液を供給する配管8で接続され、貫通孔を有する板を保持する機構9を設けた構造が望ましい。また、貯留部全体を振動する振動手段2が、前記貯留部には接している。振動手段には振動発生装置10と導電線11によって接続されており、制御される形態が望ましい。貯留部内の圧力調整を行ったり、内部の気泡を除去するための開放弁12を設けたりすることが、液柱の安定形成を行う上で好ましい。
Hereinafter, the toner manufacturing apparatus will be described in detail for each member.
(Reservoir)
Since the storage part needs to be held at least in a state where the toner composition raw material fluid is pressurized, it is made of a member such as a metal such as SUS or aluminum and preferably has a pressure resistance of about 10 MPa. However, it is not limited to this. In addition, for example, as shown in FIG. 2, a structure provided with a mechanism 9 that holds a plate having a through-hole connected by a pipe 8 that supplies a liquid to the reservoir is desirable. Moreover, the vibration means 2 which vibrates the whole storage part is in contact with the said storage part. The vibration means is connected to the vibration generator 10 and the conductive wire 11 and is preferably controlled. In order to stably form the liquid column, it is preferable to adjust the pressure in the reservoir or to provide the release valve 12 for removing the bubbles inside.

(振動手段)
前記振動手段2は、一つの振動手段により、該貫通孔を有する貯留部全体を励振させるのが好ましい。
振動手段が前記貯留部を構成する一部に接し、前記貯留部を介して原料流体に振動を与えることで、1貯留部に設けられた貫通孔より放出される原料流体に一括して同等に振動を加えて圧力粗密波を発生することが可能であるため、1振動手段によって100以上の液滴形成現象を同時に発生させることが可能となる。
前記貯留部1に振動を与える振動手段2としては、確実な振動を一定の周波数で与えることができるものであれば特に制限はなく、適宜選択して使用することができるが、上述の観点から、例えば、前記貫通孔が、圧電体の伸縮により一定の周波数で振動されるのが好ましい。
前記圧電体は、電気的エネルギーを機械的エネルギーに変換する機能を有する。具体的には、電圧を印加することにより、伸縮し、この伸縮により、貫通孔を振動させることができる。
(Vibration means)
It is preferable that the vibration means 2 excites the whole storage part having the through hole by one vibration means.
The vibrating means is in contact with a part of the reservoir and applies vibrations to the raw material fluid via the reservoir, so that the raw material fluid discharged from the through hole provided in one reservoir is collectively equivalent. Since it is possible to generate a pressure density wave by applying vibration, it is possible to simultaneously generate 100 or more droplet forming phenomena by one vibration means.
The vibrating means 2 for applying vibration to the storage unit 1 is not particularly limited as long as it can provide reliable vibration at a constant frequency, and can be appropriately selected and used. For example, it is preferable that the through hole is vibrated at a constant frequency by expansion and contraction of the piezoelectric body.
The piezoelectric body has a function of converting electrical energy into mechanical energy. Specifically, it is expanded and contracted by applying a voltage, and the through hole can be vibrated by the expansion and contraction.

前記圧電体としては、例えば、チタン酸ジルコン酸鉛(PZT)等の圧電セラミックスが挙げられるが、一般に変位量が小さい為、積層して使用されることが多い。この他にも、ポリフッ化ビニリデン(PVDF)等の圧電高分子や、水晶、LiNbO、LiTaO、KNbO、等の単結晶、などが挙げられる。
前記一定の周波数としては、特に制限はなく、目的に応じて適宜選択することができるが、100kHz乃至10MHzが好ましく、極めて均一な粒子径を有する微小液滴を発生させる観点から、200kHz乃至2MHzがより好ましい。
前記振動手段2は、貯留部と接しており、貯留部は貫通孔を有する板が保持されており、前記振動手段と貫通孔を有する板は、貫通孔から発生する液柱に振動を均一に与える観点から、平行に配置されていることが最も好ましく、振動の過程における変形が起こっても、その関係は傾きが10°以内に保たれることが望ましい。
前記貫通孔3は、1個のみ設けても粒子生産は可能であるが、極めて均一な粒子径を有する微小液滴を効率よく発生させる観点から、複数個設け、各貫通孔から吐出される液滴を、一の溶媒除去設備、図示の例では、溶媒除去設備5で乾燥させるのが好ましい。
Examples of the piezoelectric body include piezoelectric ceramics such as lead zirconate titanate (PZT). Generally, since the amount of displacement is small, the piezoelectric body is often used by being laminated. In addition, piezoelectric polymers such as polyvinylidene fluoride (PVDF), single crystals such as quartz, LiNbO 3 , LiTaO 3 , KNbO 3 , and the like can be given.
The fixed frequency is not particularly limited and may be appropriately selected according to the purpose. However, 100 kHz to 10 MHz is preferable, and 200 kHz to 2 MHz is preferable from the viewpoint of generating micro droplets having a very uniform particle diameter. More preferred.
The vibration means 2 is in contact with the storage portion, and the storage portion holds a plate having a through hole, and the vibration means and the plate having the through hole uniformly vibrate the liquid column generated from the through hole. From the viewpoint of giving, it is most preferable that they are arranged in parallel, and even if deformation occurs in the vibration process, it is desirable that the relationship be maintained within an inclination of 10 °.
Even if only one through hole 3 is provided, particle production is possible. However, from the viewpoint of efficiently generating micro droplets having a very uniform particle diameter, a plurality of through holes 3 are provided and liquid discharged from each through hole is provided. The droplets are preferably dried with one solvent removal facility, in the example shown, the solvent removal facility 5.

更なる生産性の向上の観点から、前記振動手段を有する貯留部も複数設けることが、より好ましい。この際、トナー粒子の生産性は、単位時間あたりに発生する液滴の個数(周波数)と、振動手段の数と、1つの振動手段により作用する貫通孔の数の積で決定されるが、操作性の観点から、可能な限り1つの振動手段により作用する貫通孔の数、つまり1つの貯留部の有する貫通孔の数が多ければよいが、無制限に多いと、粒子径の均一性を保てない。従って、前記一個の振動手段により振動させる一個の貯留部に付随する貫通孔の個数としては、生産性と制御性の観点から、10乃至10,000であるのが好ましい。極めて均一な粒子径を有する微小液滴をより確実に発生させるために、より好ましくは、10乃至1,000であることが望ましい。   From the viewpoint of further improving productivity, it is more preferable to provide a plurality of reservoirs having the vibration means. At this time, the productivity of the toner particles is determined by the product of the number of droplets (frequency) generated per unit time, the number of vibration means, and the number of through-holes acting by one vibration means. From the viewpoint of operability, it is sufficient that the number of through-holes acted by one vibration means as much as possible, that is, the number of through-holes possessed by one reservoir is as large as possible. Not. Therefore, the number of through-holes associated with one reservoir that is vibrated by the one vibrating means is preferably 10 to 10,000 from the viewpoint of productivity and controllability. In order to more surely generate fine droplets having a very uniform particle size, it is more preferably 10 to 1,000.

(支持手段)
前記振動手段2の一部を、固定支持するための支持手段3は、装置に貯留部及び振動手段を固定するために設けられており、材質に限定は特に無いが、金属などの剛体であればよい。必要によっては余分な共振による貯留部の振動の乱れを発生させないために、振動緩和材としてのゴム材、樹脂材などが一部に設けられることもできる。
(Supporting means)
The support means 3 for fixing and supporting a part of the vibration means 2 is provided for fixing the storage section and the vibration means to the apparatus. The material is not particularly limited, but may be a rigid body such as metal. That's fine. If necessary, a rubber material, a resin material, or the like as a vibration reducing material may be provided in part so as not to disturb the vibration of the reservoir due to excessive resonance.

(貫通孔)
前記貫通孔4は、先にも述べたように、前記トナー組成物原料流体を、液柱として吐出させる部材である。前記貫通孔の材質及び形状としては、特に制限はなく、適宜選択した形状とすることができるが、例えば、吐出孔が、厚み5〜50μmの金属板で形成され、かつ、その開口径が1〜40μmであることが、前記トナー組成物原料流体中に含まれる1μm以下の微粒子分散物を閉塞させることなく、かつ100kHz以上の振動周波数で極めて均一な粒子径を有する微小液滴を発生させることを両立させる観点から好ましい。これは、前記液滴化現象により安定的に液滴を得ることが可能な周波数領域は、実質上貫通孔の直径が大きくなるにつれて減少するため、生産性を考慮して、100kHz以上の振動周波数を想定している。なお、前記開口径は、真円であれば直径を意味し、楕円であれば短径を意味する。
(Through hole)
As described above, the through hole 4 is a member that discharges the toner composition raw material fluid as a liquid column. There is no restriction | limiting in particular as a material and shape of the said through-hole, Although it can be set as the shape selected suitably, For example, a discharge hole is formed with a metal plate with a thickness of 5-50 micrometers, and the opening diameter is 1. The fine liquid droplets having an extremely uniform particle size can be generated at a vibration frequency of 100 kHz or more without clogging the fine particle dispersion of 1 μm or less contained in the toner composition raw material fluid. From the viewpoint of achieving both. This is because the frequency region in which droplets can be stably obtained by the droplet formation phenomenon decreases substantially as the diameter of the through-hole increases, so that the vibration frequency of 100 kHz or more is considered in consideration of productivity. Is assumed. The opening diameter means a diameter if it is a perfect circle, and a minor diameter if it is an ellipse.

(送液供給・加圧手段)
前記共通液室へ液を供給する手段5としては、チューブポンプ、ギアポンプ、ロータリーポンプ、シリンジポンプなどの定量ポンプであることが望ましい。また、圧縮空気などによって加圧し送液するタイプのポンプであってもよい。これら液供給手段で前記共通液室は前記トナー組成物原料流体で満たされ、更に液滴化可能な圧力まで昇圧することが可能である。液圧力はポンプ付属の圧力ゲージまたは専用の圧力センサにて測定が可能である。
(Liquid feeding / pressurizing means)
The means 5 for supplying the liquid to the common liquid chamber is preferably a metering pump such as a tube pump, a gear pump, a rotary pump, or a syringe pump. Moreover, the pump of the type pressurized and sent with compressed air etc. may be used. With these liquid supply means, the common liquid chamber is filled with the toner composition raw material fluid, and the pressure can be increased to a pressure at which droplets can be formed. The liquid pressure can be measured with a pressure gauge attached to the pump or a dedicated pressure sensor.

(電極)
貫通孔から吐出される液滴11を帯電させて単分散粒子とするための部材として電極を設けることができる。
前記電極は、貫通孔に対向して設置された一対の部材であり、その形状としては、特に制限はなく、適宜選択することができるが、例えば、リング状に形成するのが好ましい。
前記電極による帯電方法としては、特に制限はないが貫通孔から吐出される液滴13に、常に一定の帯電量を液滴13に与えることができることから、例えば、該液滴13に、誘導荷電により、正電荷又は負電荷を与えることが好ましい。より具体的には、該誘電荷電が、前記液滴を、直流電圧が印加された一対の電極間に通過させることにより行われるのが好ましい。気流中の液滴が高荷電状態となることは、エレクトロスプレー法や静電噴霧による微粒子製造などでもすでに実証されている。この場合、揮発成分の蒸発による液滴の表面積縮小作用から、固体への帯電よりも高い帯電量を維持させることが原理的には可能であり、さらに高荷電な固体粒子を得ることができる。
(electrode)
An electrode can be provided as a member for charging the droplets 11 discharged from the through holes to form monodisperse particles.
The electrodes are a pair of members disposed so as to face the through holes, and there is no particular limitation on the shape thereof, and can be selected as appropriate. For example, the electrodes are preferably formed in a ring shape.
The charging method using the electrode is not particularly limited, but a constant charge amount can always be given to the droplet 13 discharged from the through hole. It is preferable to give a positive charge or a negative charge. More specifically, it is preferable that the dielectric charging is performed by passing the droplet between a pair of electrodes to which a DC voltage is applied. It has already been proved that droplets in an air stream are in a highly charged state by electrospray method or fine particle production by electrostatic spraying. In this case, it is possible in principle to maintain a charge amount higher than the charge to the solid from the effect of reducing the surface area of the droplet by evaporation of the volatile component, and it is possible to obtain solid particles with higher charge.

(溶媒除去設備)
前記溶媒除去設備6としては、液滴13の溶媒を除去することができれば特に制限はないが、液滴11吐出方向と同方向に乾燥気体を流すことにより気流を発生させ、該気流により、液滴13を溶媒除去設備6内で搬送させると共に、該搬送中に前記液滴13中の溶媒を除去させることにより、トナー粒子6を形成するのが好ましい。なお、ここで、「乾燥気体」とは、大気圧下の露点温度が−10℃以下の状態の気体を意味する。前記乾燥気体としては、液滴13を乾燥可能な気体であれば特に制限はなく、例えば、空気、窒素ガス、などが好適に挙げられる。
また、前記溶媒除去設備6の内壁面には、液滴13が、前記溶媒除去(乾燥)設備6の壁面に付着することを防止する観点から、液滴の電荷とは逆極性に帯電された電界カーテンを設け、前記電界カーテンで周囲が覆われた搬送路を形成し、該搬送路内に液滴を通過させるのが好ましい。
(Solvent removal equipment)
The solvent removal equipment 6 is not particularly limited as long as the solvent of the droplets 13 can be removed, but an air flow is generated by flowing a dry gas in the same direction as the droplet 11 discharge direction. The toner particles 6 are preferably formed by transporting the droplets 13 in the solvent removal equipment 6 and removing the solvent in the droplets 13 during the transportation. Here, “dry gas” means a gas having a dew point temperature of −10 ° C. or lower under atmospheric pressure. The dry gas is not particularly limited as long as it is a gas that can dry the droplets 13, and examples thereof include air and nitrogen gas.
In addition, from the viewpoint of preventing the droplet 13 from adhering to the wall surface of the solvent removal (drying) facility 6, the solvent removal facility 6 was charged with a polarity opposite to the charge of the droplet. It is preferable that an electric field curtain is provided, a conveyance path whose periphery is covered with the electric field curtain is formed, and liquid droplets are allowed to pass through the conveyance path.

(除電器)
液滴13を、搬送路内に通過させることにより形成したトナー粒子15の電荷を、一時的に中和させた後、該トナー粒子15をトナー貯蔵容器に収容させるための部材として除電器を設けることができる。
前記除電器による除電の方法としては、特に制限はなく、通常知られている方法を適宜選択して使用することができるが、効率的に除電が可能であることから、例えば、軟X線照射、プラズマ照射、などにより行うのが好ましい。
(Staticizer)
After neutralizing the electric charge of the toner particles 15 formed by passing the droplets 13 through the conveyance path, a static eliminator is provided as a member for accommodating the toner particles 15 in the toner storage container. be able to.
There is no particular limitation on the method of static elimination by the static eliminator, and a conventionally known method can be appropriately selected and used. However, since neutralization can be efficiently performed, for example, soft X-ray irradiation , Plasma irradiation, etc. are preferable.

(トナー捕集部)
前記トナー捕集部7は、トナーを効率的に捕集し、搬送する観点から、トナー製造装置の底部に設けられた部材である。
前記トナー捕集部7の構造としては、トナーを捕集できれば特に制限はなく、適宜選択することができるが、上述の観点から、図示の例のように、開口径が漸次縮小するテーパー面を有してなり、該開口径が入口部より縮小した出口部から、トナー粒子15を、乾燥気体を用い、該乾燥気体の流れを形成し、該乾燥気体の流れにより、トナー粒子をトナー貯蔵容器に移送させるのが好ましい。
前記移送の方法としては、図示の例のように、乾燥気体により、トナー粒子15をトナー貯蔵容器に圧送してもよいし、トナー貯蔵容器側からトナー粒子15を吸い込んでもよい。
前記乾燥気体の流れとしては、特に制限はないが、遠心力を発生させて確実にトナー粒子15を移送できる観点から、渦流であることが好ましい。
さらに、該トナー粒子15の搬送をより効率的に行う観点から、トナー捕集部7、トナー捕集容器が、導電性の材料で形成され、かつ、これらがアースに接続されているのがより好ましい。また、前記トナー製造装置は、防曝仕様であることが好ましい。
(Toner collecting part)
The toner collecting unit 7 is a member provided at the bottom of the toner manufacturing apparatus from the viewpoint of efficiently collecting and transporting toner.
The structure of the toner collecting portion 7 is not particularly limited as long as the toner can be collected and can be appropriately selected. From the above viewpoint, a tapered surface whose opening diameter is gradually reduced is provided as in the illustrated example. The toner particles 15 are formed from the outlet portion whose opening diameter is smaller than that of the inlet portion, using the dry gas to form the flow of the dry gas, and the toner particles are transferred to the toner storage container by the flow of the dry gas. It is preferable to transport it.
As the transfer method, as in the illustrated example, the toner particles 15 may be pumped to the toner storage container by a dry gas, or the toner particles 15 may be sucked from the toner storage container side.
Although there is no restriction | limiting in particular as a flow of the said dry gas, From a viewpoint which can generate the centrifugal force and can convey the toner particle 15 reliably, it is preferable that it is a vortex | eddy_current.
Further, from the viewpoint of more efficiently transporting the toner particles 15, it is more preferable that the toner collecting portion 7 and the toner collecting container are formed of a conductive material and are connected to the ground. preferable. The toner manufacturing apparatus preferably has an exposure specification.

(液滴)
前記液滴13は、先に述べたように、特定の物質を含有するトナー組成液を、一定の周波数で振動させた貯留部1に設けた貫通孔4から吐出させることにより発生させる。なお、前記トナー用材料については、別途「トナー」の項を設けて、その中で述べる。
前記トナー組成液としては、トナー用材料を、溶解及び分散の少なくともいずれかを行ってさえいれば特に制限はなく、適宜選択して使用することができるが、高い帯電量を維持させる観点から、電解伝導率が1.0×10−7S/m以上であることが好ましい。
同様の観点から、前記溶解乃至分散液の、溶媒としての電解伝導率も、1.0×10−7S/m以上であるのが好ましい。 前記トナー用材料を、溶解乃至分散する方法としては、特に制限はなく、通常使用される方法を適宜選択することができる。具体的には、スチレンアクリル系樹脂、ポリエステル系樹脂、ポリオール系樹脂、エポキシ系樹脂等のトナーバインダーを、着色剤等と共に溶融混練し、微粉砕しても良いし、この製造途中で得られた混練物を、樹脂成分が可溶な有機溶媒に一度溶解させ、これを微小液滴として処理しても良い。
(Droplet)
As described above, the droplet 13 is generated by discharging a toner composition liquid containing a specific substance from the through-hole 4 provided in the storage unit 1 oscillated at a constant frequency. The toner material will be described in a separate “toner” section.
The toner composition liquid is not particularly limited as long as the toner material is at least one of dissolved and dispersed, and can be appropriately selected and used. From the viewpoint of maintaining a high charge amount, The electrolytic conductivity is preferably 1.0 × 10 −7 S / m or more.
From the same viewpoint, the electrolytic conductivity as a solvent of the dissolved or dispersed liquid is preferably 1.0 × 10 −7 S / m or more. The method for dissolving or dispersing the toner material is not particularly limited, and a commonly used method can be appropriately selected. Specifically, a toner binder such as a styrene acrylic resin, a polyester resin, a polyol resin, and an epoxy resin may be melt-kneaded with a colorant or the like and finely pulverized, or obtained during the production. The kneaded product may be once dissolved in an organic solvent in which the resin component is soluble and then processed as fine droplets.

(作用)
以上の詳細に説明した本発明のトナー製造方法によれば、貫通孔4から発生する液滴の粒子数は、1秒当たり数万乃至数百万個と、非常に多く、更に吐出孔を多くすることも容易である。また、非常に均一な液滴径が得られ、充分な生産性を有する観点からも、トナーを生産するのに最も好適な方法といえる。さらに、本製造方法では、最終的に得られるトナーの粒径を、下記計算式(1)により正確に決定することができ、使用する材料による粒径の変化が殆どない。
(Function)
According to the toner production method of the present invention described in detail above, the number of droplets generated from the through hole 4 is very large, tens of thousands to several million per second, and more discharge holes are provided. It is also easy to do. In addition, it can be said to be the most suitable method for producing toner from the viewpoint of obtaining a very uniform droplet diameter and sufficient productivity. Further, in this production method, the particle diameter of the toner finally obtained can be accurately determined by the following calculation formula (1), and there is almost no change in the particle diameter depending on the material used.

〔計算式〕
Dp=(6QC/πf)(1/3)・・・(1)
但し、Dp: 固体粒子径、Q:液流量(ポンプ流量と貫通孔径で決まる)、f:振動周波数、C:固形分の体積濃度である。
トナー粒子径は上記計算式(1)のみで正確に計算することが可能であるが、より簡単には下記計算式(2)で求められる。
〔計算式〕
固形分体積濃度(体積%)=(固体粒子径/液滴径)・・・(2)
〔a formula〕
Dp = (6QC / πf) (1/3) (1)
Where Dp: solid particle diameter, Q: liquid flow rate (determined by pump flow rate and through-hole diameter), f: vibration frequency, and C: volume concentration of solid content.
The toner particle diameter can be accurately calculated only by the above formula (1), but more simply can be obtained by the following formula (2).
〔a formula〕
Solid content volume concentration (volume%) = (solid particle diameter / droplet diameter) 3 (2)

すなわち、本発明により得られるトナー粒子の直径は、液滴を噴出する振動周波数に依らず貫通孔の開口径の2倍となる。そこで、上記計算式(2)の関係から、固形分の濃度を予め求め調整することにより、目的とする固体粒子径を得ることが可能である。例えば、貫通孔径が7.5μmの場合、液滴径は15μmとなる。そこで、固形分体積濃度を6.40体積%にすれば6.0μmの固体粒子が得られることになる。この場合、振動周波数は生産性の点からより高いほど望ましいが、ここで決定した振動周波数に併せて計算式(1)からQ(液流量)を決定することになる。
これまでの製造方法では、使用する材料によって粒度が大きく変化することが多いが、本製造方法では、吐出する際の液滴径と、固形分濃度とを管理することにより、設定した通りの粒径を有する粒子を連続して得ることが可能になる。
That is, the diameter of the toner particles obtained by the present invention is twice the opening diameter of the through hole regardless of the vibration frequency at which the droplet is ejected. Therefore, the target solid particle diameter can be obtained by obtaining and adjusting the solid content concentration in advance from the relationship of the above formula (2). For example, when the through-hole diameter is 7.5 μm, the droplet diameter is 15 μm. Therefore, if the solid content volume concentration is 6.40% by volume, 6.0 μm solid particles can be obtained. In this case, the vibration frequency is preferably higher from the viewpoint of productivity, but Q (liquid flow rate) is determined from the calculation formula (1) according to the vibration frequency determined here.
In the conventional manufacturing method, the particle size often varies greatly depending on the material used. In this manufacturing method, the particle size as set is controlled by managing the droplet diameter and solid content concentration at the time of discharge. It becomes possible to continuously obtain particles having a diameter.

また、本発明により得られたトナーは極めて均一な粒子径を有することから、トナー母体における流動性が非常に高い。そのため、製造装置等への付着力低下を目的として外添剤を加える場合においても、極めて少量でその効果を発揮することができる。ストレスによる外添剤の劣化や微粒子の人体への安全性を考えると、このような外添剤を極力使用しないことが好ましいので、これも本発明の利点といえる。またこれらの外添剤は定着時におけるトナー粒子間の接着力を低下させることがあり、低温定着性を阻害する場合がある。そのため、本発明のトナーは外添剤を少量、若しくは全く添加しないことにより、外添剤による低温定着性の阻害を受けることなく、良好な定着特性を得ることが出来る。   Further, since the toner obtained by the present invention has a very uniform particle size, the fluidity in the toner base is very high. Therefore, even when an external additive is added for the purpose of reducing the adhesive force to a manufacturing apparatus or the like, the effect can be exhibited in an extremely small amount. Considering the deterioration of external additives due to stress and the safety of fine particles to the human body, it is preferable not to use such external additives as much as possible, which is also an advantage of the present invention. In addition, these external additives may reduce the adhesion between toner particles during fixing, and may impair low-temperature fixability. Therefore, the toner of the present invention can obtain good fixing characteristics without being affected by the low temperature fixability by the external additive by adding a small amount or no external additive.

(トナー)
本発明のトナーは、先に述べた製造方法により製造されたトナーであり、粒度分布が単分散なものが得られる。
具体的には、前記トナーの粒度分布(体積平均粒径/個数平均粒径)としては、1.00〜1.05の範囲にあるのが好ましい。また、体積平均粒径としては、1〜20μmであるのが好ましい。
前記トナー製造方法により得たトナーは、静電反発効果により、容易に気流に再分散、すなわち浮遊させることができる。このため、従来の電子写真方式で利用されるような搬送手段を用いなくても、現像領域まで用意にトナーを搬送することができる。すなわち、微弱な気流でも充分な搬送性があり、簡単なエアーポンプでトナーを現像域まで搬送し、そのまま現像することができる。現像は、いわゆるパワークラウド現像となり、気流による像形成の乱れがないことから、極めて良好な静電潜像の現像が行える。また、本発明のトナーは、従来の現像方式であっても問題なく応用することができる。このとき、キャリアや現像スリーブ等の部材は、単にトナー搬送手段として使用することになり、従来、機能分担していた摩擦帯電機構を考慮する必要が全くない。したがって、材料の自由度が大きく増すことから、耐久性を大きく向上させたり、安価な材料を使用することもでき、コストの低減を図ることもできる。
(toner)
The toner of the present invention is a toner produced by the production method described above, and a toner having a monodispersed particle size distribution is obtained.
Specifically, the particle size distribution (volume average particle size / number average particle size) of the toner is preferably in the range of 1.00 to 1.05. Moreover, as a volume average particle diameter, it is preferable that it is 1-20 micrometers.
The toner obtained by the toner manufacturing method can be easily redispersed, that is, floated in an air current by electrostatic repulsion effect. For this reason, the toner can be prepared and transported to the development area without using the transport means used in the conventional electrophotographic system. That is, even a weak air current has sufficient transportability, and the toner can be transported to the development area with a simple air pump and developed as it is. Development is so-called power cloud development, and since there is no disturbance in image formation due to airflow, extremely good electrostatic latent image development can be performed. Further, the toner of the present invention can be applied without any problem even if it is a conventional development system. At this time, members such as a carrier and a developing sleeve are simply used as a toner conveying unit, and there is no need to consider a frictional charging mechanism that has been conventionally shared in function. Accordingly, since the degree of freedom of the material is greatly increased, the durability can be greatly improved, an inexpensive material can be used, and the cost can be reduced.

本発明で使用できるトナー材料は、少なくとも樹脂及び着色剤を含有し、さらに、少なくとも1種類以上の無機微粒子を含む限りは特に制限はなく、従来の電子写真用トナーと全く同じ物が使用できる。すなわち、ポリエステル系樹脂、スチレンアクリル系樹脂、ポリオール系樹脂、エポキシ系樹脂、等のトナーバインダーを各種有機溶媒に溶解し、着色剤を分散、かつ、離型剤を分散又は溶解し、これを前記トナー製造方法により微小液滴とし乾燥固化させることで、目的とするトナー粒子を作製することが可能である。
また、上記材料を熱溶融混練し得られた混練物を各種溶媒に一度溶解乃至分散した液を、前記トナー製造方法により微小液滴とし乾燥固化させることで、目的のトナーを得ることも可能である。
The toner material that can be used in the present invention is not particularly limited as long as it contains at least a resin and a colorant, and further contains at least one kind of inorganic fine particles. The same toner material as that of a conventional electrophotographic toner can be used. That is, a toner binder such as a polyester resin, a styrene acrylic resin, a polyol resin, and an epoxy resin is dissolved in various organic solvents, a colorant is dispersed, and a release agent is dispersed or dissolved. The target toner particles can be produced by drying and solidifying into fine droplets by the toner production method.
It is also possible to obtain a target toner by drying and solidifying a liquid obtained by dissolving or dispersing a kneaded material obtained by hot-melting and kneading the above materials in various solvents into fine droplets by the toner production method. is there.

[トナー組成液]
前記トナー組成液は、少なくとも樹脂及び着色剤を溶媒に溶解乃至分散させてなる。
前記トナー組成液は、前記トナー材料を前記有機溶剤に溶解乃至分散させて調製するのが好ましい。なお、前記有機溶剤は、前記粒子形成工程により除去される。
前記有機溶剤としては、前記トナー材料を溶解乃至分散可能な溶媒であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、等が挙げられるが、エステル系溶剤であるのが好ましく、酢酸エチルが特に好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記トナー組成液は固形分比が5〜20%であることが好ましい。固形分比が5%未満であると、生産性に劣り、また粒子同士の合着が生じやすいため粒径均一性が失われる場合がある。また20%以上である場合には、トナー組成液の粘度が高いため小粒径での噴射が困難になる場合がある。また、ノズルの目詰まりが生じやすくなる場合がある。
[Toner composition liquid]
The toner composition liquid is formed by dissolving or dispersing at least a resin and a colorant in a solvent.
The toner composition liquid is preferably prepared by dissolving or dispersing the toner material in the organic solvent. The organic solvent is removed by the particle forming step.
The organic solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing the toner material, and can be appropriately selected according to the purpose. For example, toluene, xylene, benzene, carbon tetrachloride, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, trichloroethylene, chloroform, monochlorobenzene, dichloroethylidene, methyl acetate, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and the like are preferable, and ester solvents are preferable. Ethyl acetate is particularly preferred. These may be used individually by 1 type and may use 2 or more types together.
The toner composition liquid preferably has a solid content ratio of 5 to 20%. If the solid content ratio is less than 5%, the productivity is inferior, and the particles are likely to coalesce, and the particle size uniformity may be lost. If it is 20% or more, since the viscosity of the toner composition liquid is high, ejection with a small particle size may be difficult. In addition, nozzle clogging may easily occur.

(樹脂)
前記樹脂としては、少なくとも結着樹脂が挙げられる。
前記結着樹脂としては、特に制限はなく、通常使用される樹脂を適宜選択して使用することができるが、例えば、ポリエステル系重合体、スチレン系単量体、アクリル系単量体、メタクリル系単量体等のビニル重合体、これらの単量体又は2種類以上からなる共重合体、ポリオール樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、テルペン樹脂、クマロンインデン樹脂、ポリカーボネート樹脂、石油系樹脂、などが挙げられる。
(resin)
Examples of the resin include at least a binder resin.
The binder resin is not particularly limited, and a commonly used resin can be appropriately selected and used. Examples thereof include a polyester polymer, a styrene monomer, an acrylic monomer, and a methacrylic resin. Vinyl polymers such as monomers, copolymers of these monomers or two or more types, polyol resins, phenol resins, silicone resins, polyurethane resins, polyamide resins, furan resins, epoxy resins, xylene resins, terpene resins , Coumarone indene resin, polycarbonate resin, petroleum resin, and the like.

ポリエステル系重合体を構成するモノマーとしては、以下のものが挙げられる。
2価のアルコール成分としては、例えば、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−へキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化ビスフェノールA、又は、ビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオール、などが挙げられる。 ポリエステル樹脂を架橋させるためには、3価以上のアルコールを併用することが好ましい。
前記3価以上の多価アルコールとしては、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、例えば、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタトリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシベンゼン、などが挙げられる。
The following are mentioned as a monomer which comprises a polyester-type polymer.
Examples of the divalent alcohol component include ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, triethylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, hydrogenated bisphenol A, or diol obtained by polymerizing cyclic ethers such as ethylene oxide and propylene oxide to bisphenol A, etc. Is mentioned. In order to crosslink the polyester resin, it is preferable to use a trivalent or higher alcohol together.
Examples of the trihydric or higher polyhydric alcohol include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, such as dipentaerythritol, tripentaerythritol, 1,2,4- Butanetriol, 1,2,5-pentatriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxybenzene , Etc.

ポリエステル系重合体を形成する酸成分としては、例えば、フタル酸、イソフタル酸、テレフタル酸等のべンゼンジカルボン酸類又はその無水物、コハク酸、アジピン酸、セバシン酸、アゼライン酸等のアルキルジカルボン酸類又はその無水物、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸、マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物、などがあげられる。また、3価以上の多価カルボン酸成分としては、トリメット酸、ピロメット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシ−2−メチル−2−メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8−オクタンテトラカルボン酸、エンポール三量体酸、又はこれらの無水物、部分低級アルキルエステル、などが挙げられる。   Examples of the acid component that forms the polyester polymer include benzene dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid or anhydrides thereof, alkyldicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid, or Unsaturated dibasic acids such as anhydride, maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid, maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succinic anhydride And unsaturated dibasic acid anhydrides. Examples of the trivalent or higher polyvalent carboxylic acid component include trimet acid, pyromet acid, 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxy-2-methyl-2-methylenecarboxypropane, tetra (methylene Carboxy) methane, 1,2,7,8-octanetetracarboxylic acid, empol trimer acid, or anhydrides thereof, partial lower alkyl esters, and the like.

結着樹脂がポリエステル系樹脂の場合は、樹脂成分のTHF可溶成分の分子量分布で、分子量3千〜5万の領域に少なくとも1つのピークが存在するのが、トナーの定着性、耐オフセット性の点で好ましく、また、THF可溶分としては、分子量10万以下の成分が60〜100%となるような結着樹脂も好ましく、分子量5千〜2万の領域に少なくとも1つのピークが存在する結着樹脂がより好ましい。
結着樹脂がポリエステル樹脂の場合、その酸価としては、0.1mgKOH/g〜100mgKOH/gであることが好ましく、0.1mgKOH/g〜70mgKOH/gであることがより好ましく、0.1mgKOH/g〜50mgKOH/gであることが最も好ましい。
本発明において、結着樹脂の分子量分布は、THFを溶媒としたゲルパーミエーションクロマトグラフィー(GPC)により測定される。
また、ポリエステル系重合体、ビニル重合体とその他の結着樹脂を併用する場合、全体の結着樹脂の酸価が0.1〜50mgKOH/gを有する樹脂を60質量%以上有するものが好ましい。
When the binder resin is a polyester resin, the toner has fixability and offset resistance because at least one peak exists in the molecular weight range of 3,000 to 50,000 in the molecular weight distribution of the THF soluble component of the resin component. In addition, as a THF soluble component, a binder resin in which a component having a molecular weight of 100,000 or less is 60 to 100% is preferable, and at least one peak exists in a region having a molecular weight of 5,000 to 20,000. More preferable is a binder resin.
When the binder resin is a polyester resin, the acid value is preferably 0.1 mgKOH / g to 100 mgKOH / g, more preferably 0.1 mgKOH / g to 70 mgKOH / g, and 0.1 mgKOH / g. Most preferably, it is g-50 mgKOH / g.
In the present invention, the molecular weight distribution of the binder resin is measured by gel permeation chromatography (GPC) using THF as a solvent.
Moreover, when using together a polyester polymer, a vinyl polymer, and another binder resin, what has 60 mass% or more of resin whose acid value of the whole binder resin has 0.1-50 mgKOH / g is preferable.

本発明において、トナー組成物の結着樹脂成分の酸価は、以下の方法により求め、基本操作はJIS K−0070に準ずる。
(1)試料は予め結着樹脂(重合体成分)以外の添加物を除去して使用するか、結着樹脂及び架橋された結着樹脂以外の成分の酸価及び含有量を予め求めておく。試料の粉砕品0.5〜2.0gを精秤し、重合体成分の重さをWgとする。例えば、トナーから結着樹脂の酸価を測定する場合は、着色剤又は磁性体等の酸価及び含有量を別途測定しておき、計算により結着樹脂の酸価を求める。
(2)300(ml)のビーカーに試料を入れ、トルエン/エタノール(体積比4/1)の混合液150(ml)を加え溶解する。
(3)0.1mol/lのKOHのエタノール溶液を用いて、電位差滴定装置を用いて滴定する。
(4)この時のKOH溶液の使用量をS(ml)とし、同時にブランクを測定し、この時のKOH溶液の使用量をB(ml)とし、以下の計算式(3)で算出する。ただしfはKOHのファクターである。
酸価(mgKOH/g)=[(S−B)×f×5.61]/W (3)
In the present invention, the acid value of the binder resin component of the toner composition is determined by the following method, and the basic operation conforms to JIS K-0070.
(1) The sample is used by removing additives other than the binder resin (polymer component) in advance, or the acid value and content of components other than the binder resin and the crosslinked binder resin are obtained in advance. . The sample pulverized product 0.5 to 2.0 g is precisely weighed, and the weight of the polymer component is defined as Wg. For example, when measuring the acid value of the binder resin from the toner, the acid value and content of the colorant or magnetic material are separately measured, and the acid value of the binder resin is obtained by calculation.
(2) A sample is put into a 300 (ml) beaker, and a mixed solution 150 (ml) of toluene / ethanol (volume ratio 4/1) is added and dissolved.
(3) Titrate with a potentiometric titrator using an ethanol solution of 0.1 mol / l KOH.
(4) The amount of KOH solution used at this time is S (ml), a blank is measured at the same time, and the amount of KOH solution used at this time is B (ml), which is calculated by the following formula (3). However, f is a factor of KOH.
Acid value (mgKOH / g) = [(SB) × f × 5.61] / W (3)

トナーの結着樹脂及び結着樹脂を含む組成物は、トナー保存性の観点から、ガラス転移温度(Tg)が35〜80℃であるのが好ましく、40〜75℃であるのがより好ましい。Tgが35℃より低いと高温雰囲気下でトナーが劣化しやすく、また定着時にオフセットが発生しやすくなることがある。また、Tgが80℃を超えると、定着性が低下することがある。   The toner binder resin and the composition containing the binder resin preferably have a glass transition temperature (Tg) of 35 to 80 ° C., more preferably 40 to 75 ° C., from the viewpoint of toner storage stability. If the Tg is lower than 35 ° C., the toner is likely to deteriorate in a high temperature atmosphere, and offset may easily occur during fixing. On the other hand, when Tg exceeds 80 ° C., fixability may be deteriorated.

本発明で使用できる磁性体としては、例えば、(1)マグネタイト、マグヘマイト、フェライトの如き磁性酸化鉄、及び他の金属酸化物を含む酸化鉄、(2)鉄、コバルト、ニッケル等の金属、又は、これらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、錫、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウム等の金属との合金。(3)及びこれらの混合物、などが用いられる。   Examples of the magnetic material that can be used in the present invention include (1) iron oxide containing magnetic iron oxide such as magnetite, maghemite, and ferrite, and other metal oxides, and (2) metals such as iron, cobalt, and nickel, or Alloys of these metals with metals such as aluminum, cobalt, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium. (3) and mixtures thereof are used.

磁性体として具体的に例示すると、Fe、γ−Fe、ZnFe、YFe12、CdFe、GdFe12、CuFe、PbFe12O、NiFe、NdFeO、BaFe1219、MgFe、MnFe、LaFeO、鉄粉、コバルト粉、ニッケル粉、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも特に、四三酸化鉄、γ−三二酸化鉄の微粉末が好適に挙げられる。 Specific examples of the magnetic material include Fe 3 O 4 , γ-Fe 2 O 3 , ZnFe 2 O 4 , Y 3 Fe 5 O 12 , CdFe 2 O 4 , Gd 3 Fe 5 O 12 , CuFe 2 O 4 , PbFe 12 O, NiFe 2 O 4 , NdFe 2 O, BaFe 12 O 19, MgFe 2 O 4, MnFe 2 O 4, LaFeO 3, iron powder, cobalt powder, nickel powder, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, fine powders of triiron tetroxide and γ-iron trioxide are particularly preferable.

また、異種元素を含有するマグネタイト、マグヘマイト、フェライト等の磁性酸化鉄、又はその混合物も使用できる。異種元素を例示すると、例えば、リチウム、ベリリウム、ホウ素、マグネシウム、アルミニウム、ケイ素、リン、ゲルマニウム、ジルコニウム、錫、イオウ、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、などが挙げられる。好ましい異種元素としては、マグネシウム、アルミニウム、ケイ素、リン、又はジルコニウムから選択される。異種元素は、酸化鉄結晶格子の中に取り込まれていてもよいし、酸化物として酸化鉄中に取り込まれていてもよいし、又は表面に酸化物あるいは水酸化物として存在していてもよいが、酸化物として含有されているのが好ましい。   Further, magnetic iron oxides such as magnetite, maghemite, and ferrite containing different elements, or a mixture thereof can be used. Examples of different elements include, for example, lithium, beryllium, boron, magnesium, aluminum, silicon, phosphorus, germanium, zirconium, tin, sulfur, calcium, scandium, titanium, vanadium, chromium, manganese, cobalt, nickel, copper, zinc, And gallium. Preferred heterogeneous elements are selected from magnesium, aluminum, silicon, phosphorus, or zirconium. The foreign element may be incorporated into the iron oxide crystal lattice, may be incorporated into the iron oxide as an oxide, or may be present on the surface as an oxide or hydroxide. Is preferably contained as an oxide.

前記異種元素は、磁性体生成時にそれぞれの異種元素の塩を混在させ、pH調整により、粒子中に取り込むことができる。また、磁性体粒子生成後にpH調整、あるいは各々の元素の塩を添加しpH調整することにより、粒子表面に析出することができる。 前記磁性体の使用量としては、結着樹脂100質量部に対して、磁性体10〜200質量部が好ましく、20〜150質量部がより好ましい。これらの磁性体の個数平均粒径としては、0.1〜2μmが好ましく、0.1〜0.5μmがより好ましい。前記個数平均粒径は、透過電子顕微鏡により拡大撮影した写真をデジタイザー等で測定することにより求めることができる。
また、磁性体の磁気特性としては、10Kエルステッド印加での磁気特性がそれぞれ、抗磁力20〜150エルステッド、飽和磁化50〜200emu/g、残留磁化2〜20emu/gのものが好ましい。
前記磁性体は、着色剤としても使用することができる。
The different elements can be incorporated into the particles by mixing the salts of the different elements at the time of producing the magnetic substance and adjusting the pH. Moreover, it can precipitate on the particle | grain surface by adjusting pH after magnetic body particle | grains production | generation, or adding salt of each element and adjusting pH. As the usage-amount of the said magnetic body, 10-200 mass parts of magnetic bodies are preferable with respect to 100 mass parts of binder resin, and 20-150 mass parts is more preferable. The number average particle diameter of these magnetic materials is preferably 0.1 to 2 μm, and more preferably 0.1 to 0.5 μm. The number average particle diameter can be obtained by measuring a photograph taken with a transmission electron microscope with a digitizer or the like.
Further, as the magnetic properties of the magnetic material, those having a coercive force of 20 to 150 oersted, a saturation magnetization of 50 to 200 emu / g, and a residual magnetization of 2 to 20 emu / g are preferable, respectively.
The magnetic material can also be used as a colorant.

(着色剤)
前記着色剤としては、特に制限はなく、通常使用される樹脂を適宜選択して使用することができるが、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミウムレッド、カドミウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ポグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びこれらの混合物、などが挙げられる。
前記着色剤の含有量としては、トナーに対して1〜15質量%が好ましく、3〜10質量%がより好ましい。
(Coloring agent)
The colorant is not particularly limited and may be appropriately selected from commonly used resins. For example, carbon black, nigrosine dye, iron black, naphthol yellow S, Hansa yellow (10G, 5G, G), cadmium yellow, yellow iron oxide, ocher, yellow lead, titanium yellow, polyazo yellow, oil yellow, Hansa yellow (GR, A, RN, R), pigment yellow L, benzidine yellow (G, GR), permanent Yellow (NCG), Vulcan Fast Yellow (5G, R), Tartrazine Lake, Quinoline Yellow Lake, Anthrazan Yellow BGL, Isoindolinone Yellow, Bengala, Red Dan, Lead Zhu, Cadmium Red, Cadmium Mercury Red, Antimon Zhu, Permanent Red 4R, Para Red, Fu Issey Red, Parachlor Ortho Nitroaniline Red, Resol Fast Scarlet G, Brilliant Fast Scarlet, Brilliant Carmin Min BS, Permanent Red (F2R, F4R, FRL, FRLL, F4RH), Fast Scarlet VD, Belkan Fast Rubin B, Brilliant Scarlet G, Risor Rubin GX, Permanent Red F5R, Brilliant Carmine 6B, Pigment Scarlet 3B, Bordeaux 5B, Toluidine Maroon, Permanent Bordeaux F2K, Helio Bordeaux BL, Bordeaux 10B, Bon Maroon Light, Bon Maroon Medium, Eosin Lake, Rhodamine Lake B, Rhodamine Lake Y, Alizarin Lake, Thioindigo Red B, Thioindigo Maroon, Oil Red, Nacridone Red, Pyrazolone Red, Polyazo Red, Chrome Vermilion, Benzidine Orange, Perinone Orange, Oil Orange, Cobalt Blue, Cerulean Blue, Alkaline Blue Lake, Peacock Blue Lake, Victoria Blue Lake, Metal Free Phthalocyanine Blue, Phthalocyanine Blue, Fast Sky Blue, Indanthrene Blue (RS, BC), Indigo, Ultramarine Blue, Bitumen, Anthraquinone Blue, Fast Violet B, Methyl Violet Lake, Cobalt Purple, Manganese Purple, Dioxane Violet, Anthraquinone Violet, Chrome Green, Zinc Green, Chrome Oxide , Pyridian, emerald green, pigment green B, naphthol green B, green gold, acid green , Malachite green lake, phthalocyanine green, anthraquinone green, titanium oxide, zinc white, litbon and mixtures thereof.
The content of the colorant is preferably 1 to 15% by mass and more preferably 3 to 10% by mass with respect to the toner.

本発明で用いる着色剤は、樹脂と複合化されたマスターバッチとして用いることもできる。マスターバッチの製造またはマスターバッチとともに混練されるバインダー樹脂としては、先にあげたポリエステル樹脂の他に、例えば、ポリスチレン、ポリp−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体;スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族叉は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックス、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を混合して使用してもよい。   The colorant used in the present invention can also be used as a master batch combined with a resin. As the binder resin to be kneaded together with the production of the master batch or the master batch, for example, styrene such as polystyrene, poly-p-chlorostyrene, polyvinyltoluene, and substituted polymers thereof, in addition to the above-described polyester resin; styrene -P-chlorostyrene copolymer, styrene-propylene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, Styrene-butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-butyl methacrylate copolymer, styrene-α-chloro Methyl methacrylate copolymer, Len-acrylonitrile copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile-indene copolymer, styrene-maleic acid copolymer, styrene-maleic acid Styrene copolymers such as acid ester copolymers; polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester, epoxy resin, epoxy polyol resin, polyurethane, polyamide, polyvinyl butyral, poly Examples thereof include acrylic resin, rosin, modified rosin, terpene resin, aliphatic or alicyclic hydrocarbon resin, aromatic petroleum resin, chlorinated paraffin, and paraffin wax. These may be used individually by 1 type, and 2 or more types may be mixed and used for them.

前記マスターバッチは、マスターバッチ用の樹脂と着色剤とを高せん断力をかけて混合、混練して得る事ができる。この際、着色剤と樹脂の相互作用を高めるために、有機溶剤を用いる事ができる。また、いわゆるフラッシング法と呼ばれる着色剤の、水を含んだ水性ペーストを、樹脂と有機溶剤とともに混合混練し、着色剤を樹脂側に移行させ、水分と有機溶剤成分を除去する方法も、着色剤のウエットケーキをそのまま用いる事ができるため、乾燥する必要がなく、好適に使用される。混合混練するには、3本ロールミル等の高せん断分散装置が好適に使用される。
前記マスターバッチの使用量としては、結着樹脂100量部に対して、0.1〜50質量部が好ましい。
The master batch can be obtained by mixing and kneading a resin for a master batch and a colorant under a high shear force. At this time, an organic solvent can be used to enhance the interaction between the colorant and the resin. Also, there is a method of removing the water and organic solvent components by mixing and kneading an aqueous paste containing water, which is a so-called flushing method, together with a resin and an organic solvent, and transferring the colorant to the resin side. Since the wet cake can be used as it is, it does not need to be dried and is preferably used. For mixing and kneading, a high shearing dispersion device such as a three-roll mill is preferably used.
As the usage-amount of the said masterbatch, 0.1-50 mass parts is preferable with respect to 100 mass parts of binder resin.

また、前記マスターバッチ用の樹脂は、酸価が30mgKOH/g以下、アミン価が1〜100で、着色剤を分散させて使用することが好ましく、酸価が20mgKOH/g以下、アミン価が10〜50で、着色剤を分散させて使用することがより好ましい。酸価が30mgKOH/gを超えると、高湿下での帯電性が低下し、顔料分散性も不十分となることがある。また、アミン価が1未満であるとき、及び、アミン価が100を超えるときにも、顔料分散性が不十分となることがある。なお、酸価はJIS K0070に記載の方法により測定することができ、アミン価はJIS K7237に記載の方法により測定することができる。
また、分散剤は、顔料分散性の点で、結着樹脂との相溶性が高いことが好ましく、具体的な市販品としては、「アジスパーPB821」、「アジスパーPB822」(味の素ファインテクノ社製)、「Disperbyk−2001」(ビックケミー社製)、「EFKA−4010」(EFKA社製)、などが挙げられる。
The resin for the masterbatch preferably has an acid value of 30 mgKOH / g or less, an amine value of 1 to 100, and a colorant dispersed therein. The acid value is 20 mgKOH / g or less and the amine value is 10 It is more preferable that the colorant is dispersed and used at ˜50. When the acid value exceeds 30 mgKOH / g, the chargeability under high humidity may be lowered, and the pigment dispersibility may be insufficient. Also, when the amine value is less than 1 and when the amine value exceeds 100, the pigment dispersibility may be insufficient. The acid value can be measured by the method described in JIS K0070, and the amine value can be measured by the method described in JIS K7237.
The dispersant is preferably highly compatible with the binder resin in terms of pigment dispersibility. Specific examples of commercially available products include “Ajisper PB821” and “Azisper PB822” (manufactured by Ajinomoto Fine Techno Co., Ltd.). , “Disperbyk-2001” (manufactured by Big Chemie), “EFKA-4010” (manufactured by EFKA), and the like.

前記分散剤の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにおけるスチレン換算重量での、メインピークの極大値の分子量で、500〜100000が好ましく、顔料分散性の観点から、3000〜100000がより好ましい。特に、5000〜50000が好ましく、5000〜30000が最も好ましい。分子量が500未満であると、極性が高くなり、着色剤の分散性が低下することがあり、分子量が100000を超えると、溶剤との親和性が高くなり、着色剤の分散性が低下することがある。
前記分散剤の添加量は、着色剤100質量部に対して1〜50質量部であることが好ましく、5〜30質量部であることがより好ましい。1質量部未満であると分散能が低くなることがあり、50質量部を超えると帯電性が低下することがある。
The weight average molecular weight of the dispersant is the maximum molecular weight of the main peak in terms of styrene conversion weight in gel permeation chromatography, preferably 500 to 100,000, and more preferably 3000 to 100,000 from the viewpoint of pigment dispersibility. In particular, 5000 to 50000 is preferable, and 5000 to 30000 is most preferable. When the molecular weight is less than 500, the polarity becomes high and the dispersibility of the colorant may be lowered. When the molecular weight exceeds 100,000, the affinity with the solvent is increased and the dispersibility of the colorant is lowered. There is.
The addition amount of the dispersant is preferably 1 to 50 parts by mass, and more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the colorant. If it is less than 1 part by mass, the dispersibility may be lowered, and if it exceeds 50 parts by mass, the chargeability may be lowered.

(離型剤)
また、本発明では、結着樹脂、着色剤とともに離型剤を含有させてなる。 本発明の離型剤としては、特に制限はなく、通常使用されるものを適宜選択して使用することができるが、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、サゾールワックス等の脂肪族炭化水素系ワックス、酸化ポリエチレンワックス等の脂肪族炭化水素系ワックスの酸化物又はそれらのブロック共重合体、キャンデリラワックス、カルナバワックス、木ろう、ホホバろう等の植物系ワックス、みつろう、ラノリン、鯨ろう等の動物系ワックス、オゾケライト、セレシン、ペテロラタム等の鉱物系ワックス、モンタン酸エステルワックス、カスターワックスの等の脂肪酸エステルを主成分とするワックス類。脱酸カルナバワックスの等の脂肪酸エステルを一部又は全部を脱酸化したもの、などが挙げられる。
(Release agent)
Moreover, in this invention, a mold release agent is contained with binder resin and a coloring agent. The mold release agent of the present invention is not particularly limited and can be appropriately selected from commonly used ones. For example, low molecular weight polyethylene, low molecular weight polypropylene, polyolefin wax, microcrystalline wax, paraffin wax , Aliphatic hydrocarbon waxes such as sazol wax, oxides of aliphatic hydrocarbon waxes such as polyethylene oxide wax or block copolymers thereof, candelilla wax, carnauba wax, wood wax, jojoba wax, etc. Waxes based on fatty acid esters such as animal waxes such as beeswax, beeswax, lanolin, spermaceti, mineral waxes such as ozokerite, ceresin and peteratum, montanate ester wax and castor wax. Deoxidized carnauba wax and other fatty acid esters that have been partially or wholly deoxidized are included.

前記離型剤の例としては、更に、パルミチン酸、ステアリン酸、モンタン酸、あるいは更に直鎖のアルキル基を有する直鎖アルキルカルボン酸類等の飽和直鎖脂肪酸、プランジン酸、エレオステアリン酸、バリナリン酸等の不飽和脂肪酸、ステアリルアルコール、エイコシルアルコール、ベヘニルアルコール、カルナウピルアルコール、セリルアルコール、メシリルアルコール、あるいは長鎖アルキルアルコール等の飽和アルコール、ソルビトール等の多価アルコール、リノール酸アミド、オレフィン酸アミド、ラウリン酸アミド等の脂肪酸アミド、メチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミド等の飽和脂肪酸ビスアミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N'−ジオレイルアジピン酸アミド、N,N'−ジオレイルセパシン酸アミド等の不飽和脂肪酸アミド類、m−キシレンビスステアリン酸アミド、N,N−ジステアリルイソフタル酸アミド等の芳香族系ビスアミド、ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の脂肪酸金属塩、脂肪族炭化水素系ワックスにスチレンやアクリル酸等のビニル系モノマーを用いてグラフト化させたワックス、ベヘニン酸モノグリセリド等の脂肪酸と多価アルコールの部分エステル化合物、植物性油脂を水素添加することによって得られるヒドロキシル基を有するメチルエステル化合物が挙げられる。   Examples of the mold release agent further include saturated linear fatty acids such as palmitic acid, stearic acid, montanic acid, or linear alkyl carboxylic acids having a linear alkyl group, prandic acid, eleostearic acid, Unsaturated fatty acids such as valinal acid, stearyl alcohol, eicosyl alcohol, behenyl alcohol, carnaupyl alcohol, seryl alcohol, mesyl alcohol, saturated alcohols such as long chain alkyl alcohol, polyhydric alcohols such as sorbitol, linoleic acid amide, Fatty acid amides such as olefinic acid amide and lauric acid amide, saturated fatty acid bisamides such as methylene biscapric acid amide, ethylene bislauric acid amide, hexamethylene bisstearic acid amide, ethylene bisoleic acid amide, hexamethylene bisio Unsaturated fatty acid amides such as inamide, N, N′-dioleyl adipate amide, N, N′-dioleyl sepasinamide, m-xylene bisstearic acid amide, N, N-distearyl isophthalic acid Grafted onto aromatic bisamides such as amides, fatty acid metal salts such as calcium stearate, calcium laurate, zinc stearate and magnesium stearate, and aliphatic hydrocarbon waxes using vinyl monomers such as styrene and acrylic acid. Examples thereof include waxes, partial ester compounds of polyhydric alcohols such as behenic acid monoglycerides, and methyl ester compounds having a hydroxyl group obtained by hydrogenating vegetable oils and fats.

より好適な例としては、オレフィンを高圧下でラジカル重合したポリオレフィン、高分子量ポリオレフィン重合時に得られる低分子量副生成物を精製したポリオレフィン、低圧下でチーグラー触媒、メタロセン触媒の如き触媒を用いて重合したポリオレフィン、放射線、電磁波又は光を利用して重合したポリオレフィン、高分子量ポリオレフィンを熱分解して得られる低分子量ポリオレフィン、パラフィンワックス、マイクロクリスタリンワックス、フィツシャートロプシュワックス、ジントール法、ヒドロコール法、アーゲ法等により合成される合成炭化水素ワックス、炭素数1個の化合物をモノマーとする合成ワックス、水酸基又はカルボキシル基の如き官能基を有する炭化水素系ワックス、炭化水素系ワックスと官能基を有する炭化水素系ワックスとの混合物、これらのワックスを母体としてスチレン、マレイン酸エステル、アクリレート、メタクリレート、無水マレイン酸の如きビニルモノマーでグラフト変性したワックスが挙げられる。   More preferable examples include polyolefins obtained by radical polymerization of olefins under high pressure, polyolefins obtained by purifying low molecular weight by-products obtained during polymerization of high molecular weight polyolefins, and polymerization using a catalyst such as a Ziegler catalyst or a metallocene catalyst under low pressure. Polyolefin, polyolefin polymerized using radiation, electromagnetic waves or light, low molecular weight polyolefin obtained by thermal decomposition of high molecular weight polyolefin, paraffin wax, microcrystalline wax, Fitzscher Tropsch wax, Jintole method, hydrocol method, age method Synthetic hydrocarbon waxes synthesized by the above, synthetic waxes having a compound having one carbon atom, hydrocarbon waxes having functional groups such as hydroxyl groups or carboxyl groups, hydrocarbon waxes and hydrocarbons having functional groups Mixture of system wax, styrene these waxes as a matrix, maleic acid ester, acrylate, methacrylate, graft-modified wax with such vinyl monomers of maleic acid.

また、これらの離型剤を、プレス発汗法、溶剤法、再結晶法、真空蒸留法、超臨界ガス抽出法又は溶液晶析法を用いて分子量分布をシャープにしたものや、低分子量固形脂肪酸、低分子量固形アルコール、低分子量固形化合物、その他の不純物を除去したものも好ましく用いられる。
前記離型剤の融点としては、定着性と耐オフセット性のバランスを取るために、50〜120℃であることがより好ましい。50℃未満では耐ブロッキング性が低下することがあり、120℃を超えると耐オフセット効果が発現しにくくなることがある。
In addition, these release agents may be obtained by using a press sweating method, a solvent method, a recrystallization method, a vacuum distillation method, a supercritical gas extraction method, or a liquid crystal deposition method, or a low molecular weight solid fatty acid. , Low molecular weight solid alcohol, low molecular weight solid compound, and other impurities are preferably used.
The melting point of the release agent is more preferably 50 to 120 ° C. in order to balance the fixability and the offset resistance. If it is less than 50 degreeC, blocking resistance may fall, and if it exceeds 120 degreeC, an offset-resistant effect may become difficult to express.

また、2種以上の異なる種類のワックスを併用することにより、ワックスの作用である可塑化作用と離型作用を同時に発現させることができる。
可塑化作用を有するワックスの種類としては、例えば、融点の低いワックス、分子の構造上に分岐のあるものや極性基を有する構造のもの、などが挙げられる。
離型作用を有するワックスとしては、融点の高いワックスが挙げられ、その分子の構造としては、直鎖構造のものや、官能基を有さない無極性のものが挙げられる。使用例としては、2種以上の異なるワックスの融点の差が10℃〜100℃のものの組み合わせや、ポリオレフィンとグラフト変性ポリオレフィンの組み合わせ、などが挙げられる。
Further, by using two or more different types of waxes in combination, the plasticizing action and the releasing action which are the actions of the wax can be expressed simultaneously.
Examples of the types of wax having a plasticizing action include waxes having a low melting point, those having a branch on the molecular structure, and those having a polar group.
Examples of the wax having a releasing action include a wax having a high melting point, and the molecular structure includes a linear structure and a non-polar one having no functional group. Examples of use include a combination of two or more different waxes having a melting point difference of 10 ° C. to 100 ° C., a combination of polyolefin and graft-modified polyolefin, and the like.

2種のワックスを選択する際には、同様構造のワックスの場合は、相対的に、融点の低いワックスが可塑化作用を発揮し、融点の高いワックスが離型作用を発揮する。この時、融点の差が10〜100℃の場合に、機能分離が効果的に発現する。10℃未満では機能分離効果が表れにくいことがあり、100℃を超える場合には相互作用による機能の強調が行われにくいことがある。このとき、機能分離効果を発揮しやすくなる傾向があることから、少なくとも一方のワックスの融点が50〜120℃であることが好ましく、50〜100℃であることがより好ましい。   When selecting two types of wax, in the case of a wax having the same structure, a wax having a relatively low melting point exhibits a plasticizing action, and a wax having a high melting point exhibits a releasing action. At this time, when the difference in melting point is 10 to 100 ° C., functional separation is effectively expressed. If it is less than 10 ° C., the function separation effect may be difficult to appear, and if it exceeds 100 ° C., the function may not be emphasized by interaction. At this time, since the function separation effect tends to be easily exhibited, the melting point of at least one wax is preferably 50 to 120 ° C, and more preferably 50 to 100 ° C.

前記ワックスは、相対的に、枝分かれ構造のものや官能基の如き極性基を有するものや主成分とは異なる成分で変性されたものが可塑作用を発揮し、より直鎖構造のものや官能基を有さない無極性のものや未変性のストレートなものが離型作用を発揮する。好ましい組み合わせとしては、エチレンを主成分とするポリエチレンホモポリマー又はコポリマーとエチレン以外のオレフィンを主成分とするポリオレフィンホモポリマー又はコポリマーの組み合わせ、ポリオレフィンとグラフト変成ポリオレフィンの組み合わせ、アルコールワックス、脂肪酸ワックス又はエステルワックスと炭化水素系ワックスの組み合わせ、フイシャートロプシュワックス又はポリオレフィンワックスとパラフィンワックス又はマイクロクリスタルワックスの組み合わせ、フィッシャートロプシュワックスとポルリオレフィンワックスの組み合わせ、パラフィンワックスとマイクロクリスタルワックスの組み合わせ、カルナバワックズ、キャンデリラワックス、ライスワックス又はモンタンワックスと炭化水素系ワックスの組み合わせが挙げられる。
いずれの場合においても、トナー保存性と定着性のバランスをとりやすくなることから、トナーのDSC測定において観測される吸熱ピークにおいて、50〜120℃の領域に最大ピークのピークトップ温度があることが好ましく、50〜120℃の領域に最大ピークを有しているのがより好ましい。
As for the wax, those having a branched structure, those having a polar group such as a functional group, and those modified with a component different from the main component exhibit a plastic action, and those having a more linear structure or functional group Nonpolar or non-denatured straight materials that do not have a mold exhibit a releasing action. Preferred combinations include polyethylene homopolymers or copolymers based on ethylene and polyolefin homopolymers or copolymers based on olefins other than ethylene, polyolefins and graft modified polyolefins, alcohol waxes, fatty acid waxes or ester waxes. And hydrocarbon wax combinations, Fischer-Tropsch wax or polyolefin wax and paraffin wax or microcrystal wax combination, Fischer-Tropsch wax and polyolefin wax combination, paraffin wax and microcrystal wax combination, Carnauba Wax, Can Delila wax, rice wax or montan wax and hydrocarbon-based wax Like a combination of.
In any case, since it becomes easy to balance the toner storage stability and the fixing property, the peak top temperature of the maximum peak may be in the region of 50 to 120 ° C. in the endothermic peak observed in the DSC measurement of the toner. Preferably, it has a maximum peak in the region of 50 to 120 ° C.

前記ワックスの総含有量としては、結着樹脂100質量部に対し、0.2〜20質量部が好ましく、0.5〜10質量部がより好ましい。
本発明では、DSCにおいて測定されるワックスの吸熱ピークの最大ピークのピークトップの温度をもってワックスの融点とする。
前記ワックス又はトナーのDSC測定機器としては、高精度の内熱式入力補償型の示差走査熱量計で測定することが好ましい。測定方法としては、ASTM D3418−82に準じて行う。本発明に用いられるDSC曲線は、1回昇温、降温させ前履歴を取った後、温度速度10℃/minで、昇温させた時に測定されるものを用いる。
The total content of the wax is preferably 0.2 to 20 parts by mass and more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder resin.
In the present invention, the peak top temperature of the endothermic peak of the wax measured by DSC is defined as the melting point of the wax.
The wax or toner DSC measuring device is preferably measured with a high-precision internal heat input compensation type differential scanning calorimeter. As a measuring method, it carries out according to ASTM D3418-82. The DSC curve used in the present invention is one that is measured when the temperature is raised at a temperature rate of 10 ° C./min after raising and lowering the temperature once and taking a previous history.

(無機微粒子)
本発明では、トナー組成液に少なくとも1種類の無機微粒子を含有させてなる。本発明に用いられる無機微粒子は、トナー内部に含有させることによって、トナー母体の帯電特性を安定化させ、現像機内における長期のトナー攪拌による帯電能力の低下を抑えることができる。
トナー母体表面に露出した無機微粒子は、外添剤の埋没を防ぐだけでなく潤滑剤としても機能し、優れた流動性を発揮する。
(Inorganic fine particles)
In the present invention, the toner composition liquid contains at least one kind of inorganic fine particles. By containing the inorganic fine particles used in the present invention inside the toner, the charging characteristics of the toner base can be stabilized, and a decrease in charging ability due to long-time toner stirring in the developing machine can be suppressed.
The inorganic fine particles exposed on the toner base surface not only prevent the external additive from being buried, but also function as a lubricant and exhibit excellent fluidity.

本発明における無機微粒子としては、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、チタニア、ジルコニア、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化銅、酸化スズ、酸化クロム、酸化アンチモン、酸化イットリウム、酸化セリウム、酸化サマリウム、酸化ランタン、酸化タンタル、酸化テルビウム、酸化ユーロピウム、酸化ネオジウム、フェライト類等の金属酸化物、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム等の金属水酸化物、重質炭酸カルシウム、軽質炭酸カルシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルイサイト等の金属炭酸塩、硫酸カルシウム、硫酸バリウム、石膏繊維等の金属硫酸塩、珪酸カルシウム(ウォラスナイト、ゾノトライト)、カオリン、クレー、タルク、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、ガラスフレーク等の金属珪酸塩、窒化アルミニウム、窒化ホウ素、窒化珪素等の金属窒化物、チタン酸カリウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸バリウム、チタン酸ジルコン酸鉛アルミニウムボレード等の金属チタン酸塩、ホウ酸亜鉛、ホウ酸アルミニウム等の金属ホウ酸塩、リン酸三カルシウム等の金属燐酸塩、硫化モリブデン等の金属硫化物、炭化珪素等の金属炭化物、カーボンブラック、グラファイト、炭素繊維等の炭素類、その他の無機微粒子が挙げられる。
この中でも金属酸化物が好ましく、シリカ、アルミナ、チタニアがさらに好ましい。
As the inorganic fine particles in the present invention, for example, silica, diatomaceous earth, alumina, zinc oxide, titania, zirconia, calcium oxide, magnesium oxide, iron oxide, copper oxide, tin oxide, chromium oxide, antimony oxide, yttrium oxide, cerium oxide, Metal oxides such as samarium oxide, lanthanum oxide, tantalum oxide, terbium oxide, europium oxide, neodymium oxide, ferrites, metal hydroxides such as calcium hydroxide, magnesium hydroxide, aluminum hydroxide, basic magnesium carbonate, heavy Calcium carbonate, light calcium carbonate, metal carbonate such as zinc carbonate, barium carbonate, dosonite, hydrotalcite, metal sulfate such as calcium sulfate, barium sulfate, gypsum fiber, calcium silicate (wollastonite, zonotlite), kaolin, Metal silicates such as leh, talc, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, glass flakes, metal nitrides such as aluminum nitride, boron nitride, silicon nitride, titanic acid Metal titanates such as potassium, calcium titanate, magnesium titanate, barium titanate, lead zirconate titanate aluminum borate, metal borates such as zinc borate and aluminum borate, metals such as tricalcium phosphate Examples thereof include metal sulfides such as phosphate and molybdenum sulfide, metal carbides such as silicon carbide, carbons such as carbon black, graphite, and carbon fiber, and other inorganic fine particles.
Of these, metal oxides are preferable, and silica, alumina, and titania are more preferable.

また、本発明における無機微粒子としては、少なくとも層状無機鉱物が有する層間のイオンの少なくとも一部を有機物イオンで変性した層状無機鉱物の微粒子を用いることができる。
層状無機鉱物は厚さ数nmの層が重ね合わさってできている無機鉱物のことを言い、変性するとはその層間に存在するイオンに有機物イオンを導入することを言う。具体的には、特表2006−500605号公報、特表2006−503313号公報、特開2003−202708号公報に述べられている。これを広義にはインターカレーションという。層状無機鉱物としては、スメクタイト族(モンモリロナイト、サポナイトなど)、カオリン族(カオリナイトなど)、マガディアイト、カネマイトが知られている。変性層状無機鉱物はその変性された層状構造により親水性が高い。その為、層状無機鉱物を変性すること無しに水系媒体中に分散して造粒するトナーに用いると、水系媒体中に層状無機鉱物が移行し、トナーを異形化することが出来ないが、変性することにより、親水性が高くなって,造粒時に容易に異形化し、分散して微細化し、電荷調整機能を十分に発揮する。かかる変性無機鉱物は、トナーの製造時に微細化すると共に異形化し、トナー粒子の表面部分に特に多く存在し、電荷調節機能を果たすと共に、低温定着にも貢献する。このとき、トナー材料中の変性層状無機鉱物の含有量は、0.05〜5重量%であることが好ましい。
Further, as the inorganic fine particles in the present invention, layered inorganic mineral fine particles obtained by modifying at least a part of ions between layers of the layered inorganic mineral with organic ions can be used.
A layered inorganic mineral refers to an inorganic mineral formed by superposing layers having a thickness of several nanometers, and modifying means introducing an organic ion into ions existing between the layers. Specifically, it is described in JP-T-2006-500605, JP-T-2006-503313, and JP-A-2003-202708. This is called intercalation in a broad sense. As the layered inorganic mineral, smectite group (montmorillonite, saponite, etc.), kaolin group (kaolinite, etc.), magadiite, and kanemite are known. The modified layered inorganic mineral is highly hydrophilic due to its modified layered structure. Therefore, when used in toners that are dispersed in an aqueous medium and granulated without modifying the layered inorganic mineral, the layered inorganic mineral migrates into the aqueous medium and the toner cannot be deformed. By doing so, the hydrophilicity becomes high, and it is easily deformed during granulation, dispersed and refined, and the charge adjusting function is sufficiently exhibited. Such a modified inorganic mineral is refined and deformed during the production of the toner, and is particularly present in the surface portion of the toner particles, so that it performs a charge control function and contributes to low-temperature fixing. At this time, the content of the modified layered inorganic mineral in the toner material is preferably 0.05 to 5% by weight.

本発明において用いる変性した層状無機鉱物は、スメクタイト系の基本結晶構造を持つものを有機カチオンで変性したものが望ましい。また、層状無機鉱物の2価金属の一部を3価の金属に置換することにより、金属アニオンを導入することが出来る。しかし、金属アニオンを導入すると親水性が高いため、金属アニオンの少なくとも一部を有機アニオンで変性した層状無機化合物が望ましい。
前記層状無機鉱物が有するイオンの少なくとも一部を有機物イオンで変性した層状無機鉱物の、有機物イオン変性剤としては第4級アルキルアンモニウム塩、フォスフォニウム塩やイミダゾリウム塩などが挙げられるが、第4級アルキルアンモニウム塩が望ましい。前記第4級アルキルアンモニウムとしては、トリメチルステアリルアンモニウム、ジメチルステアリルベンジルアンモニウム、ジメチルオクタデシルアンモニウム、オレイルビス(2−ヒドロキシエチル)メチルアンモニウムなどが挙げられる。
前記有機物イオン変性剤としては分岐、非分岐または環状アルキル(C1〜C44)、アルケニル(C1〜C22)、アルコキシ(C8〜C32)、ヒドロキシアルキル(C2〜C22)、エチレンオキサイド、プロピレンオキサイド等を有する硫酸塩、スルフォン酸塩、カルボン酸塩、またはリン酸塩が上げられる。エチレンオキサイド骨格を持ったカルボン酸が望ましい。
The modified layered inorganic mineral used in the present invention is desirably one having a smectite basic crystal structure modified with an organic cation. Moreover, a metal anion can be introduce | transduced by substituting a part of bivalent metal of a layered inorganic mineral for a trivalent metal. However, since a hydrophilic property is high when a metal anion is introduced, a layered inorganic compound in which at least a part of the metal anion is modified with an organic anion is desirable.
Examples of the organic ion modifier of the layered inorganic mineral obtained by modifying at least part of the ions of the layered inorganic mineral with organic ions include quaternary alkyl ammonium salts, phosphonium salts and imidazolium salts. A quaternary alkyl ammonium salt is desirable. Examples of the quaternary alkylammonium include trimethylstearylammonium, dimethylstearylbenzylammonium, dimethyloctadecylammonium, oleylbis (2-hydroxyethyl) methylammonium and the like.
Examples of the organic ion modifier include branched, unbranched or cyclic alkyl (C1-C44), alkenyl (C1-C22), alkoxy (C8-C32), hydroxyalkyl (C2-C22), ethylene oxide, propylene oxide, and the like. Sulfates, sulfonates, carboxylates or phosphates are raised. A carboxylic acid having an ethylene oxide skeleton is desirable.

層状無機鉱物を少なくとも一部を有機物イオンで変性することにより、適度な疎水性を持ち、トナー組成物及び/又はトナー組成物前駆体を含む油相が非ニュ−トニアン粘性を持ち、トナーを異形化することが出来る。このとき、トナー材料中の一部を有機物イオンで変性した層状無機鉱物の含有量は、0.05〜5重量%であることが好ましい。
一部を有機物イオンで変性した層状無機鉱物は、適宜選択することができるが、モンモリロナイト、ベントナイト、ヘクトライト、アタパルジャイト、セピオライト及びこれらの混合物等が挙げられる。中でも、トナー特性に影響を与えず、容易に粘度調整ができ、添加量を少量とすることができることから有機変性モンモリロナイト又はベントナイトが好ましい。
By modifying at least part of the layered inorganic mineral with organic ions, it has moderate hydrophobicity, the oil phase containing the toner composition and / or toner composition precursor has non-Nutnian viscosity, and the toner is deformed Can be At this time, the content of the layered inorganic mineral obtained by modifying a part of the toner material with organic ions is preferably 0.05 to 5% by weight.
The layered inorganic mineral partially modified with organic ions can be appropriately selected, and examples thereof include montmorillonite, bentonite, hectorite, attapulgite, sepiolite, and mixtures thereof. Among these, organically modified montmorillonite or bentonite is preferable because the viscosity can be easily adjusted without affecting the toner characteristics and the addition amount can be reduced.

一部を有機カチオンで変性した層状無機鉱物の市販品としては、Bentone 3、Bentone 38、Bentone 38V(以上、レオックス社製)、チクソゲルVP(United catalyst社製)、クレイトン34、クレイトン40、クレイトンXL(以上、サザンクレイ社製)等のクオタニウム18ベントナイト;Bentone 27(レオックス社製)、チクソゲルLG(United catalyst社製)、クレイトンAF、クレイトンAPA(以上、サザンクレイ社製)等のステアラルコニウムベントナイト;クレイトンHT、クレイトンPS(以上、サザンクレイ社製)等のクオタニウム18/ベンザルコニウムベントナイトが挙げられる。特に好ましいのはクレイトンAF、クレイトンAPAがあげられる。また一部を有機アニオンで変性した層状無機鉱物としてはDHT−4A(協和化学工業社製)に下記一般式(1)で表される有機アニオンで変性させたものが特に好ましい。下記一般式(1)は例えばハイテノール330T(第一工業製薬社製)が上げられる。
一般式(1) R(OROSO
[式中、Rは炭素数13を有するアルキル基、Rは炭素数2から6を有するアルキレン基を表す。nは2から10の整数を表し、Mは1価の金属元素を表す]
変性層状無機鉱物を用いることにより、適度な疎水性を持ち、これを有するトナーの製造過程においてトナー組成物及び/又はトナー組成物前駆体を含む油相が非ニュートニアン粘性を持ち、トナーを異形化することが出来る。
Commercially available layered inorganic minerals partially modified with organic cations include Bentone 3, Bentone 38, Bentone 38V (above, manufactured by Leox), Thixogel VP (manufactured by United catalyst), Kraton 34, Kraton 40, Kraton XL Quartium 18 bentonite such as (made by Southern Clay), and stearalkonium bentonite such as Bentone 27 (made by Leox), Thixogel LG (made by United catalyst), Clayton AF, Clayton APA (made by Southern Clay) Quaternium 18 / benzalkonium bentonite such as Clayton HT and Clayton PS (manufactured by Southern Clay). Particularly preferred are Clayton AF and Clayton APA. Moreover, as a layered inorganic mineral partially modified with an organic anion, a material obtained by modifying DHT-4A (manufactured by Kyowa Chemical Industry Co., Ltd.) with an organic anion represented by the following general formula (1) is particularly preferable. The following general formula (1) is, for example, Hytenol 330T (Daiichi Kogyo Seiyaku Co., Ltd.).
Formula (1) R 1 (OR 2 ) n OSO 3 M
[Wherein, R 1 represents an alkyl group having 13 carbon atoms, and R 2 represents an alkylene group having 2 to 6 carbon atoms. n represents an integer of 2 to 10, and M represents a monovalent metal element]
By using a modified layered inorganic mineral, the toner phase and / or the oil phase containing the toner composition precursor has a non-Newtonian viscosity in the production process of the toner having moderate hydrophobicity, and the toner is deformed. Can be

また、本発明において用いる無機微粒子は特開2005−49858号公報に記載の無機微粒子と樹脂とからなる樹脂粒子であってもよい。
この樹脂粒子は、3〜10μmの体積平均粒径および110〜300の形状係数(SF−2)を有し、樹脂(a)と無機微粒子(b)からなり、(b)の少なくとも一部からなる外殻層(S)を有している。ここで、(b)を含有するとは、樹脂粒子(A)の表面より内部に(b)が存在する状態である。(b)が樹脂粒子(A)外部に露出、あるいは(A)の表面に吸着されていると、(A)の表面及びバルク特性としては、(b)の特性が支配的となり、樹脂(a)の特性が発現されにくくなる。逆に、(b)が粒子中に含有されていると、(a)の特性が発現されやすくなる。すなわち(A)の表面に(a)が存在しており、更に外殻層(S)の内部にも(a)で占められる部分を有するため、低温定着性が良好になる。また(A)中にワックスを含有する場合、熱定着の際、上述の(a)で占められる部分よりワックスが(A)表面に染み出るため、耐ホットオフセット性が良好になる。
(A)中の(b)の含量は0.01〜50%が好ましく、更に好ましくは0.05〜45%、特に好ましくは0.1〜40%である。
(b)のうち外殻層(S)を形成するものを(b*)と表記すると、(A)中の(b*)の含量は0.01〜20%が好ましく、更に好ましくは0.05〜18%、特に好ましくは0.1〜15%である。
また、(b)中の(b*)の割合は、好ましくは10%以上、更に好ましくは20%以上である。
The inorganic fine particles used in the present invention may be resin particles composed of inorganic fine particles and a resin described in JP-A-2005-49858.
The resin particles have a volume average particle diameter of 3 to 10 μm and a shape factor (SF-2) of 110 to 300, and are composed of a resin (a) and inorganic fine particles (b), and from at least a part of (b) The outer shell layer (S). Here, containing (b) is a state in which (b) exists in the interior from the surface of the resin particles (A). When (b) is exposed to the outside of the resin particles (A) or adsorbed to the surface of (A), the surface and bulk properties of (A) are predominantly the properties of (b), and the resin (a ) Is less likely to be exhibited. On the contrary, when (b) is contained in the particles, the characteristics of (a) are easily developed. That is, (a) is present on the surface of (A), and the outer shell layer (S) also has a portion occupied by (a), so that the low-temperature fixability is improved. When (A) contains a wax, the wax oozes out from the portion occupied by (a) described above at the time of thermal fixing, so that the hot offset resistance is improved.
The content of (b) in (A) is preferably 0.01 to 50%, more preferably 0.05 to 45%, and particularly preferably 0.1 to 40%.
In (b), the one forming the outer shell layer (S) is expressed as (b *), and the content of (b *) in (A) is preferably 0.01 to 20%, more preferably 0.8. 05 to 18%, particularly preferably 0.1 to 15%.
Further, the ratio of (b *) in (b) is preferably 10% or more, more preferably 20% or more.

また、本発明のトナーに使用する無機微粒子は、疎水化処理剤により表面処理されたものを使用する。疎水化処理剤としては、例えば、シランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤等が好ましい表面処理剤として挙げられる。また、シリコーンオイルを疎水化処理剤として使用し、表面処理を施したものでも十分な効果が得られる。
本発明のトナーに使用する無機微粒子は、上記のように疎水化処理を施し、メタノール滴定法による疎水化度が15〜55%とすることが好ましい。
疎水化度は、以下の方法により測定した。はじめに、イオン交換水50ml、試料0.2gをビーカーに入れ、攪拌しながらメタノールを滴下する。つぎに、ビーカー内のメタノール濃度が増加するにつれ外添剤は徐々に沈降させ、その全量が沈んだ終点におけるメタノールと水との混合溶液中のメタノールの質量分率を疎水化度(%)とした。
The inorganic fine particles used in the toner of the present invention are those that have been surface treated with a hydrophobizing agent. As the hydrophobic treatment agent, for example, a silane coupling agent, a silylating agent, a silane coupling agent having a fluorinated alkyl group, an organic titanate coupling agent, an aluminum coupling agent and the like are preferable surface treatment agents. It is done. A sufficient effect can be obtained even when a silicone oil is used as a hydrophobizing agent and subjected to a surface treatment.
The inorganic fine particles used in the toner of the present invention are preferably hydrophobized as described above, and the degree of hydrophobicity by methanol titration is preferably 15 to 55%.
The degree of hydrophobicity was measured by the following method. First, 50 ml of ion-exchanged water and 0.2 g of a sample are placed in a beaker, and methanol is added dropwise while stirring. Next, as the methanol concentration in the beaker increases, the external additive gradually settles, and the mass fraction of methanol in the mixed solution of methanol and water at the end point when the total amount of the additive has settled is expressed as the degree of hydrophobicity (%). did.

さらに本発明において用いられるシリカは、オルガノゾルの形態で使用するのが好ましい。シリカのオルガノゾルを得るには、例えば、湿式法(水熱合成法、ゾル−ゲル法等)により合成されたシリカのハイドロゲルの分散液を、表面処理剤により疎水化処理し、水をメチルエチルケトン、酢酸エチル等の有機溶媒に置換する方法が挙げられる。
なお、オルガノゾルの具体的な製造方法は、例えば特開平11−43319号公報
に記載の方法を好適に使用することができる。
上記のようにして得られたオルガノシリカゾルを、トナー油相中に混合させることで、分散安定性の高い状態で、シリカをトナー油層中に分散させることができる。
Further, the silica used in the present invention is preferably used in the form of an organosol. In order to obtain an organosol of silica, for example, a silica hydrogel dispersion synthesized by a wet method (hydrothermal synthesis method, sol-gel method, etc.) is hydrophobized with a surface treatment agent, and water is treated with methyl ethyl ketone, The method of substituting with organic solvents, such as ethyl acetate, is mentioned.
As a specific method for producing the organosol, for example, the method described in JP-A-11-43319 can be preferably used.
By mixing the organosilica sol obtained as described above in the toner oil phase, silica can be dispersed in the toner oil layer in a state of high dispersion stability.

なお、上述のシリカを含む、トナー中に内添する無機微粒子の分散方法は特に限定されず、公知の方法が適用でき、例えば以下のような分散方法を用いることができる。
(1)結着樹脂、無機微粒子を、必要に応じ溶剤及び/又は分散剤の存在下で混練機により溶融混練し、結着樹脂中に無機微粒子が分散したマスターバッチを得る方法。
(2)無機微粒子を、必要に応じ結着樹脂と共に溶剤中に溶解あるいは懸濁した後、分散機により機械的に湿式粉砕、あるいは解砕させる方法。
(3)溶剤中で合成した無機微粒子を添加・混合する方法。
(4)水中に分散している無機微粒子を、処理剤を添加して湿式処理を行なった後、溶剤置換したオルガノゾルを添加・混合する方法。
これらの中では分散安定性の観点から、水中に分散している無機微粒子を、処理剤を添加して湿式処理を行なった後、溶剤置換したオルガノゾルを添加・混合する方法が好ましい。
In addition, the dispersion method of the inorganic fine particles containing silica described above and internally added in the toner is not particularly limited, and a known method can be applied. For example, the following dispersion method can be used.
(1) A method in which a binder resin and inorganic fine particles are melt-kneaded with a kneader in the presence of a solvent and / or a dispersing agent as required to obtain a master batch in which the inorganic fine particles are dispersed in the binder resin.
(2) A method in which inorganic fine particles are dissolved or suspended in a solvent together with a binder resin as necessary, and then mechanically wet pulverized or crushed by a disperser.
(3) A method of adding and mixing inorganic fine particles synthesized in a solvent.
(4) A method in which inorganic fine particles dispersed in water are subjected to a wet treatment by adding a treating agent, and then an organosol substituted with a solvent is added and mixed.
Among these, from the viewpoint of dispersion stability, a method in which inorganic fine particles dispersed in water are wet-treated by adding a treating agent, and then a solvent-substituted organosol is added and mixed is preferable.

トナー母体粒子における無機微粒子の含有量は、トナーに対し0.1〜50wt%、好ましくは0.5〜10wt%とすることで、本発明の効果をより発揮することができる。この範囲内の添加量とすると、トナー母体に良好な帯電特性を持たすことができ、トナー強撹拌劣化時の外添剤の埋没や遊離による帯電能力の低下を防ぐ効果がある。さらに、トナー表面に露出した無機微粒子が潤滑剤としての効果を充分に発揮され、優れた流動性を持たせることができる。
この範囲より小さいと、充分な帯電能力と流動性を発揮しにくくなり、また、この範囲より大きいと、トナー表面に露出する無機微粒子量が多くなり、トナー粒子の円形度を悪化させるだけでなく、無機微粒子が定着阻害因子として作用し、定着下限温度が上昇し、低温定着性が損なわれるので好ましくない。
By making the content of the inorganic fine particles in the toner base particles 0.1 to 50 wt%, preferably 0.5 to 10 wt% with respect to the toner, the effects of the present invention can be further exhibited. When the addition amount is within this range, the toner base can have good charging characteristics, and there is an effect of preventing the charging ability from being lowered due to burying or liberation of the external additive at the time of toner strong stirring deterioration. Further, the inorganic fine particles exposed on the toner surface can sufficiently exhibit the effect as a lubricant and can have excellent fluidity.
If it is smaller than this range, it will be difficult to exhibit sufficient charging ability and fluidity, and if it is larger than this range, the amount of inorganic fine particles exposed on the toner surface will increase, not only deteriorating the circularity of the toner particles. Inorganic fine particles act as a fixing inhibitor, and the minimum fixing temperature is increased, so that the low-temperature fixing property is impaired.

トナー母体粒子における無機微粒子の含有量は、蛍光X線分析法で求める。あらかじめ無機微粒子の含有量が明らかなトナー母体粒子を用いて、蛍光X線分析で検量線を作成し、この検量線を使ってトナー母体粒子中の無機微粒子含有量を蛍光X線分析法で求める。蛍光X線装置には、例えば(株)RIGAKU社製のZSX−100Eを用いて測定可能である。また、用いる無機微粒子が2種類以上の場合は、それぞれ無機微粒子含有量の分析値の総和を、トナー母体粒子中の無機微粒子含有量とした。   The content of inorganic fine particles in the toner base particles is determined by fluorescent X-ray analysis. A calibration curve is prepared by fluorescent X-ray analysis using toner base particles in which the content of inorganic fine particles is clear in advance, and the content of inorganic fine particles in the toner base particles is obtained by fluorescent X-ray analysis using the calibration curve. . For example, ZSX-100E manufactured by Rigaku Corporation can be used as the fluorescent X-ray apparatus. Further, when two or more kinds of inorganic fine particles were used, the total of the analysis values of the inorganic fine particle content was used as the inorganic fine particle content in the toner base particles.

(その他の成分)
<キャリア>
本発明のトナーは、キャリアと混合して2成分現像剤として使用してもよい。前記キャリアとしては、通常のフェライト、マグネタイト等のキャリアも樹脂コートキャリアも使用することができる。
前記樹脂コートキャリアは、キャリアコア粒子とキャリアコア粒子表面を被覆(コート)する樹脂である被覆材からなる。
該被覆材に使用する樹脂としては、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体等のスチレン−アクリル系樹脂、アクリル酸エステル共重合体、メタクリル酸エステル共重合体等のアクリル系樹脂、ポリテトラフルオロエチレン、モノクロロトリフルオロエチレン重合体、ポリフッ化ビニリデン等のフッ素含有樹脂、シリコーン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルブチラール、アミノアクリレート樹脂が好適に挙げられる。この他にも、アイオモノマー樹脂、ポリフェニレンサルファイド樹脂等のキャリアの被覆(コート)材として使用できる樹脂が挙げられる。
これらの樹脂は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
(Other ingredients)
<Career>
The toner of the present invention may be mixed with a carrier and used as a two-component developer. As the carrier, ordinary carriers such as ferrite and magnetite and resin-coated carriers can be used.
The resin-coated carrier comprises a carrier core particle and a coating material that is a resin that coats (coats) the surface of the carrier core particle.
Examples of the resin used in the coating material include styrene-acrylic ester copolymers, styrene-acrylic resins such as styrene-methacrylic ester copolymers, acrylic ester copolymers, methacrylic ester copolymers, and the like. Preferable examples include fluorine-containing resins such as acrylic resins, polytetrafluoroethylene, monochlorotrifluoroethylene polymer, and polyvinylidene fluoride, silicone resins, polyester resins, polyamide resins, polyvinyl butyral, and aminoacrylate resins. In addition to these, resins that can be used as a coating (coating) material for carriers such as an ionomer resin and a polyphenylene sulfide resin can be used.
These resins may be used alone or in combination of two or more.

また、樹脂中に磁性粉が分散されたバインダー型のキャリアコアも用いることができる。
樹脂コートキャリアにおいて、キャリアコアの表面を少なくとも樹脂被覆剤で被覆する方法としては、樹脂を溶剤中に溶解若しくは懸濁せしめて塗布したキャリアコアに付着せしめる方法、あるいは単に粉体状態で混合する方法が適用できる。
前記樹脂コートキャリアに対する樹脂被覆材の割合としては、適宜決定すればよいが、樹脂コートキャリアに対し0.01〜5質量%が好ましく、0.1〜1質量%がより好ましい。
A binder type carrier core in which magnetic powder is dispersed in a resin can also be used.
In the resin-coated carrier, as a method of coating the surface of the carrier core with at least a resin coating agent, a method in which the resin is dissolved or suspended in a solvent and attached to the applied carrier core, or a method in which the resin is simply mixed in a powder state Is applicable.
The ratio of the resin coating material to the resin-coated carrier may be appropriately determined, but is preferably 0.01 to 5% by mass and more preferably 0.1 to 1% by mass with respect to the resin-coated carrier.

2種以上の混合物の被覆(コート)剤で磁性体を被覆する使用例としては、(1)酸化チタン微粉体100質量部に対してジメチルジクロロシランとジメチルシリコンオイル(質量比1:5)の混合物12質量部で処理したもの、(2)シリカ微粉体100質量部に対してジメチルジクロロシランとジメチルシリコンオイル(質量比1:5)の混合物20質量部で処理したものが挙げられる。   Examples of use in which a magnetic material is coated with a coating agent of two or more kinds of mixtures include (1) dimethyldichlorosilane and dimethyl silicon oil (mass ratio 1: 5) with respect to 100 parts by mass of fine titanium oxide powder. Those treated with 12 parts by mass of the mixture, and (2) those treated with 20 parts by mass of a mixture of dimethyldichlorosilane and dimethylsilicone oil (mass ratio 1: 5) with respect to 100 parts by mass of the silica fine powder.

前記樹脂中、スチレン−メタクリル酸メチル共重合体、含フッ素樹脂とスチレン系共重合体との混合物、シリコーン樹脂が好適に使用され、特にシリコーン樹脂が好ましい。
含フッ素樹脂とスチレン系共重合体との混合物としては、例えば、ポリフッ化ビニリデンとスチレン−メタクリ酸メチル共重合体との混合物、ポリテトラフルオロエチレンとスチレン−メタクリル酸メチル共重合体との混合物、フッ化ビニリデン−テトラフルオロエチレン共重合(共重合体質量比10:90〜90:10)とスチレン−アクリル酸2−エチルヘキシル共重合体(共重合質量比10:90〜90:10)とスチレン−アクリル酸2−エチルヘキシル−メタクリル酸メチル共重合体(共重合体質量比20〜60:5〜30:10:50)との混合物が挙げられる。
シリコーン樹脂としては、含窒素シリコーン樹脂及び含窒素シランカップリング剤と、シリコーン樹脂とが反応することにより生成された、変性シリコーン樹脂が挙げられる。
Among the resins, a styrene-methyl methacrylate copolymer, a mixture of a fluorine-containing resin and a styrene copolymer, and a silicone resin are preferably used, and a silicone resin is particularly preferable.
Examples of the mixture of the fluorine-containing resin and the styrene copolymer include, for example, a mixture of polyvinylidene fluoride and a styrene-methyl methacrylate copolymer, a mixture of polytetrafluoroethylene and a styrene-methyl methacrylate copolymer, Vinylidene fluoride-tetrafluoroethylene copolymer (copolymer mass ratio 10:90 to 90:10), styrene-2-ethylhexyl acrylate copolymer (copolymer mass ratio 10:90 to 90:10) and styrene A mixture with 2-ethylhexyl acrylate-methyl methacrylate copolymer (copolymer mass ratio 20 to 60: 5 to 30:10:50) is mentioned.
Examples of the silicone resin include modified silicone resins produced by reacting a nitrogen-containing silicone resin and a nitrogen-containing silane coupling agent with a silicone resin.

キャリアコアの磁性材料としては、例えば、フェライト、鉄過剰型フェライト、マグネタイト、γ−酸化鉄等の酸化物や、鉄、コバルト、ニッケルのような金属、又はこれらの合金を用いることができる。
また、これらの磁性材料に含まれる元素としては、鉄、コバルト、ニッケル、アルミニウム、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムが挙げられる。これらの中でも特に、銅、亜鉛、及び鉄成分を主成分とする銅−亜鉛−鉄系フェライト、マンガン、マグネシウム及び鉄成分を主成分とするマンガン−マグネシウム−鉄系フェライトが好適に挙げられる。
Examples of the magnetic material for the carrier core include oxides such as ferrite, iron-rich ferrite, magnetite, and γ-iron oxide, metals such as iron, cobalt, and nickel, or alloys thereof.
Examples of elements contained in these magnetic materials include iron, cobalt, nickel, aluminum, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, calcium, manganese, selenium, titanium, tungsten, and vanadium. It is done. Of these, copper-zinc-iron-based ferrites mainly composed of copper, zinc, and iron components, and manganese-magnesium-iron-based ferrites mainly composed of manganese, magnesium, and iron components are preferable.

前記キャリアの抵抗値としては、キャリアの表面の凹凸度合い、被覆する樹脂の量を調整して10〜1010Ω・cmにするのがよい。
前記キャリアの粒径としては、4〜200μmのものが使用できるが、10〜150μmが好ましく、20〜100μmがより好ましい。特に、樹脂コートキャリアは、50%粒径が20〜70μmであることが好ましい。
2成分系現像剤では、キャリア100質量部に対して、本発明のトナー1〜200質量部で使用することが好ましく、キャリア100質量部に対して、トナー2〜50質量部で使用するのがより好ましい。
The resistance value of the carrier is preferably 10 6 to 10 10 Ω · cm by adjusting the unevenness of the surface of the carrier and the amount of resin to be coated.
The carrier having a particle size of 4 to 200 μm can be used, preferably 10 to 150 μm, more preferably 20 to 100 μm. In particular, the resin-coated carrier preferably has a 50% particle size of 20 to 70 μm.
In the two-component developer, it is preferable to use 1 to 200 parts by mass of the toner of the present invention with respect to 100 parts by mass of the carrier, and 2 to 50 parts by mass of toner with respect to 100 parts by mass of the carrier. More preferred.

<流動性向上剤>
本発明のトナーには、流動性向上剤を添加してもよい。該流動性向上剤は、トナー表面に添加することにより、トナーの流動性を改善(流動しやすくなる)するものである。
前記流動性向上剤としては、例えば、カーボンブラック、フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末の如きフッ素系樹脂粉末、湿式製法シリカ、乾式製法シリカの如き微粉末シリカ、微粉未酸化チタン、微粉未アルミナ、それらをシランカップリング剤、チタンカップリング剤若しくはシリコーンオイルにより表面処理を施した処理シリカ,処理酸化チタン,処理アルミナ、などが挙げられる。これらの中でも、微粉末シリカ、微粉未酸化チタン、微粉未アルミナが好ましく、また、これらをシランカップリング剤やシリコーンオイルにより表面処理を施した処理シリカが更に好ましい。
前記流動性向上剤の粒径としては、平均一次粒径として、0.001〜2μmであることが好ましく、0.002〜0.2μmであることがより好ましい。
<Fluidity improver>
A fluidity improver may be added to the toner of the present invention. The fluidity improver improves the fluidity of the toner (becomes easy to flow) when added to the toner surface.
Examples of the fluidity improver include, for example, carbon black, vinylidene fluoride fine powder, fluorine-based resin powder such as polytetrafluoroethylene fine powder, wet process silica, fine powder silica such as dry process silica, fine powder unoxidized titanium, Fine powder non-alumina, treated silica obtained by subjecting them to surface treatment with a silane coupling agent, titanium coupling agent or silicone oil, treated titanium oxide, treated alumina, and the like can be mentioned. Among these, fine powder silica, fine powder unoxidized titanium, and fine powder unalumina are preferable, and treated silica obtained by surface-treating these with a silane coupling agent or silicone oil is more preferable.
The particle size of the fluidity improver is preferably 0.001 to 2 μm, more preferably 0.002 to 0.2 μm, as an average primary particle size.

前記微粉末シリカは、ケイ素ハロゲン化含物の気相酸化により生成された微粉体であり、いわゆる乾式法シリカ又はヒュームドシリカと称されるものである。
ケイ素ハロゲン化合物の気相酸化により生成された市販のシリカ微粉体としては、例えば、AEROSIL(日本アエロジル社商品名、以下同じ)−130、−300、−380、−TT600、−MOX170、−MOX80、−COK84:Ca−O−SiL(CABOT社商品名)−M−5、−MS−7、−MS−75、−HS−5、−EH−5、Wacker HDK(WACKER−CHEMIEGMBH社商品名)−N20 V15、−N20E、−T30、−T40:D−CFineSi1ica(ダウコーニング社商品名):Franso1(Fransi1社商品名)、などが挙げられる。
The fine powder silica is a fine powder produced by vapor phase oxidation of a silicon halide inclusion, and is called so-called dry silica or fumed silica.
Examples of commercially available silica fine powders produced by vapor phase oxidation of silicon halogen compounds include, for example, AEROSIL (trade name of Nippon Aerosil Co., Ltd., hereinafter the same) -130, -300, -380, -TT600, -MOX170, -MOX80, -COK84: Ca-O-SiL (trade name of CABOT)-M-5, -MS-7, -MS-75, -HS-5, -EH-5, Wacker HDK (trade name of WACKER-CHEMIEGMBH)- N20 V15, -N20E, -T30, -T40: D-CFineSi1ica (trade name of Dow Corning): Franco1 (trade name of Franci1), and the like.

更には、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を疎水化処理した処理シリカ微粉体がより好ましい。処理シリカ微粉体において、メタノール滴定試験によって測定された疎水化度が好ましくは30〜80%の値を示すようにシリカ微粉体を処理したものが特に好ましい。疎水化は、シリカ微粉体と反応あるいは物理吸着する有機ケイ素化合物等で化学的あるいは物理的に処理することによって付与される。好ましい方法としては、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を有機ケイ素化合物で処理する方法がよい。   Furthermore, a treated silica fine powder obtained by hydrophobizing a silica fine powder produced by vapor phase oxidation of a silicon halogen compound is more preferable. In the treated silica fine powder, it is particularly preferred to treat the silica fine powder so that the degree of hydrophobicity measured by a methanol titration test is preferably 30 to 80%. Hydrophobization is imparted by chemical or physical treatment with an organosilicon compound that reacts or physically adsorbs with silica fine powder. As a preferred method, a method of treating a silica fine powder produced by vapor phase oxidation of a silicon halogen compound with an organosilicon compound is preferable.

有機ケイ素化合物としては、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、ビニルメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ジメチルビニルクロロシラン、ジビニルクロロシラン、γ−メタクリルオキシプロピルトリメトキシシラン、へキサメチルジシラン、トリメチルシラン、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、アリルジメチルクロロシラン、アリルフェニルジクロロシラン、ベンジルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、α−クロルエチルトリクロロシラン、β−クロロエチルトリクロロシラン、クロロメチルジメチルクロロシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、へキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフエニルテトラメチルジシロキサン及び1分子当り2から12個のシロキサン単位を有し、未端に位置する単位にそれぞれSiに結合した水酸基を0〜1個含有するジメチルポリシロキサン等がある。更に、ジメチルシリコーンオイルの如きシリコーンオイルが挙げられる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。   Examples of organosilicon compounds include hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, vinylmethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, dimethylvinylchlorosilane, Divinylchlorosilane, γ-methacryloxypropyltrimethoxysilane, hexamethyldisilane, trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, benzyldimethylchlorosilane, bromomethyldimethylchlorosilane, α -Chloroethyltrichlorosilane, β-chloroethyltrichlorosilane, chloromethyldimethylchlorosilane , Triorganosilyl mercaptan, trimethylsilyl mercaptan, triorganosilyl acrylate, vinyldimethylacetoxysilane, dimethylethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane , Hexamethyldisiloxane, 1,3-divinyltetramethyldisiloxane, 1,3-diphenyltetramethyldisiloxane, and 2 to 12 siloxane units per molecule, Examples include dimethylpolysiloxane containing 0 to 1 hydroxyl group bonded to Si. Furthermore, silicone oils such as dimethyl silicone oil can be mentioned. These may be used individually by 1 type, and may mix and use 2 or more types.

流動性向上剤の個数平均粒径としては、5〜100nmになるものが好ましく、5〜50nmになるものがより好ましい。
BET法で測定した窒素吸着による比表面積としては、30m/g以上が好ましく、60〜400m/gがより好ましい。表面処理された微粉体としては、20m/g以上が好ましく、40〜300m/gがより好ましい。
これらの微粉体の適用量としては、トナー粒子100質量部に対して0.03〜8質量部が好ましい。
The number average particle diameter of the fluidity improver is preferably 5 to 100 nm, more preferably 5 to 50 nm.
The specific surface area by measuring nitrogen adsorption by the BET method, preferably at least 30m 2 / g, 60~400m 2 / g is more preferable. The surface-treated fine powder, preferably at least 20m 2 / g, 40~300m 2 / g is more preferable.
The application amount of these fine powders is preferably 0.03 to 8 parts by mass with respect to 100 parts by mass of the toner particles.

本発明のトナーには、他の添加剤として、静電潜像担持体・キャリアーの保護、クリーニング性の向上、熱特性・電気特性・物理特性の調整、抵抗調整、軟化点調整、定着率向上等を目的として、各種金属石けん、フッ素系界面活性剤、フタル酸ジオクチルや、導電性付与剤として酸化スズ、酸化亜鉛、カーボンブラック、酸化アンチモン等や、酸化チタン、酸化アルミニウム、アルミナ等の無機微粉体などを必要に応じて添加することができる。これらの無機微粉体は、必要に応じて疎水化してもよい。また、ポリテトラフルオロエチレン、ステアリン酸亜鉛、ポリフッ化ビニリデン等の滑剤、酸化セシウム、炭化ケイ素、チタン酸ストロンチウム等の研磨剤、ケーキング防止剤、更に、トナー粒子と逆極性の白色微粒子及び黒色微粒子とを、現像性向上剤として少量用いることもできる。これらの添加剤は、帯電量コントロール等の目的でシリコーンワニス、各種変性シリコーンワニス、シリコーンオイル、各種変性シリコーンオイル、シランカップリング剤、官能基を有するシランカップリング剤、その他の有機ケイ素化合物等の処理剤、又は種々の処理剤で処理することも好ましい。   In the toner of the present invention, as other additives, protection of the electrostatic latent image carrier / carrier, improvement of cleaning properties, adjustment of thermal characteristics / electrical characteristics / physical characteristics, resistance adjustment, adjustment of softening point, improvement of fixing rate For purposes such as various types of metal soaps, fluorosurfactants, dioctyl phthalate, tin oxide, zinc oxide, carbon black, antimony oxide, etc. as conductivity imparting agents, inorganic fine powders such as titanium oxide, aluminum oxide, alumina, etc. A body etc. can be added as needed. These inorganic fine powders may be hydrophobized as necessary. In addition, lubricants such as polytetrafluoroethylene, zinc stearate, polyvinylidene fluoride, abrasives such as cesium oxide, silicon carbide, strontium titanate, anti-caking agents, white particles and black particles having opposite polarity to the toner particles, Can also be used in small amounts as a developability improver. These additives include silicone varnishes, various modified silicone varnishes, silicone oils, various modified silicone oils, silane coupling agents, silane coupling agents having functional groups, and other organosilicon compounds for the purpose of charge control and the like. It is also preferable to treat with a treating agent or various treating agents.

現像剤を調製する際には、現像剤の流動性や保存性、現像性、転写性を高めるために、先に挙げた疎水性シリカ微粉末等の無機微粒子を添加混合してもよい。外添剤の混合は、一般の粉体の混合機を適宜選択して使用することができるが、ジャケット等を装備して、内部の温度を調節できることが好ましい。外添剤に与える負荷の履歴を変えるには、途中または漸次外添剤を加えていけばよいし、混合機の回転数、転動速度、時間、温度などを変化させてもよく、はじめに強い負荷を、次に比較的弱い負荷を与えても良いし、その逆でも良い。   In preparing the developer, inorganic fine particles such as the hydrophobic silica fine powder mentioned above may be added and mixed in order to improve the fluidity, storage stability, developability and transferability of the developer. For mixing external additives, a general powder mixer can be appropriately selected and used. However, it is preferable to equip a jacket or the like to adjust the internal temperature. In order to change the load history applied to the external additive, the external additive may be added in the middle or gradually, and the rotation speed, rolling speed, time, temperature, etc. of the mixer may be changed. The load may then be given a relatively weak load and vice versa.

使用できる混合機の例としては、例えば、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサー、などが挙げられる。
得られたトナーの形状をさらに調節する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、結着樹脂、着色剤からなるトナー材料を溶融混練後、微粉砕したものをハイブリタイザー、メカノフュージョン等を用いて、機械的に形状を調節する方法や、いわゆるスプレードライ法と呼ばれるトナー材料をトナーバインダーが可溶な溶剤に溶解分散後、スプレードライ装置を用いて脱溶剤化して球形トナーを得る方法、水系媒体中で加熱することにより球形化する方法、などが挙げられる。
Examples of the mixer that can be used include a V-type mixer, a rocking mixer, a Roedige mixer, a Nauter mixer, a Henschel mixer, and the like.
A method for further adjusting the shape of the obtained toner is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a toner material composed of a binder resin and a colorant is melt-kneaded and then finely pulverized. Using a hybridizer, mechano-fusion, etc., the resulting material is mechanically adjusted, or the so-called spray-drying method is used to dissolve and disperse the toner material in a solvent in which the toner binder is soluble, and then using a spray-drying device. Examples thereof include a method of removing a solvent to obtain a spherical toner and a method of forming a spherical toner by heating in an aqueous medium.

前記外添剤としては、無機微粒子を好ましく用いることができる。
前記無機微粒子としては、例えば、シリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ペンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、などを挙げることができる。
前記無機微粒子の一次粒子径は、5mμ〜2μmであることが好ましく、5mμ〜500mμであることがより好ましい。
前記BET法による比表面積は、20〜500m/gであることが好ましい。
前記無機微粒子の使用割合は、トナーの0.01〜5質量%であることが好ましく、0.01〜2.0質量%であることがより好ましい。
As the external additive, inorganic fine particles can be preferably used.
Examples of the inorganic fine particles include silica, alumina, titanium oxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, tin oxide, silica sand, clay, mica, wollastonite, and diatomaceous earth. , Chromium oxide, cerium oxide, pengala, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silicon carbide, silicon nitride, and the like.
The primary particle diameter of the inorganic fine particles is preferably 5 mμ to 2 μm, more preferably 5 mμ to 500 mμ.
The specific surface area according to the BET method is preferably 20 to 500 m 2 / g.
The proportion of the inorganic fine particles used is preferably 0.01 to 5% by mass of the toner, and more preferably 0.01 to 2.0% by mass.

この他、高分子系微粒子たとえばソープフリー乳化重合や懸濁重合、分散重合によって得られるポリスチレン、メタクリル酸エステルやアクリル酸エステル共重合体やシリコーン、ベンゾグアナミン、ナイロンなどの重縮合系、熱硬化性樹脂による重合体粒子が挙げられる。
このような外添剤は、表面処理剤により、疎水性を上げ、高湿度下においても外添剤自身の劣化を防止することができる。
In addition, polymer fine particles such as polystyrene obtained by soap-free emulsion polymerization, suspension polymerization and dispersion polymerization, methacrylic acid ester and acrylic acid ester copolymer, polycondensation system such as silicone, benzoguanamine and nylon, thermosetting resin And polymer particles.
Such an external additive can be made hydrophobic by the surface treatment agent and prevent deterioration of the external additive itself even under high humidity.

前記表面処理剤としては、例えば、シランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンオイル、変性シリコーンオイル、などが好適に挙げられる。
前記無機微粒子の一次粒子径としては、5mμ〜2μmであることが好ましく、5mμ〜500mμであることがより好ましい。また、BET法による比表面積としては、20〜500m/gであることが好ましい。この無機微粒子の使用割合としては、トナーの0.01〜5重量%であることが好ましく、0.01〜2.0重量%であることがより好ましい。
Examples of the surface treatment agent include a silane coupling agent, a silylating agent, a silane coupling agent having a fluorinated alkyl group, an organic titanate coupling agent, an aluminum coupling agent, silicone oil, a modified silicone oil, Etc. are preferable.
The primary particle diameter of the inorganic fine particles is preferably 5 mμ to 2 μm, and more preferably 5 mμ to 500 mμ. Moreover, as a specific surface area by BET method, it is preferable that it is 20-500 m < 2 > / g. The use ratio of the inorganic fine particles is preferably 0.01 to 5% by weight of the toner, and more preferably 0.01 to 2.0% by weight.

静電潜像担持体や一次転写媒体に残存する転写後の現像剤を除去するためのクリーニング性向上剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸等の脂肪酸金属塩、ポリメチルメタクリレート微粒子、ポリスチレン微粒子等のソープフリー乳化重合によって製造されたポリマー微粒子、などを挙げることかできる。ポリマー微粒子は比較的粒度分布が狭く、体積平均粒径が0.01から1μmのものが好ましい。   Examples of the cleaning property improver for removing the developer after transfer remaining on the electrostatic latent image carrier or the primary transfer medium include fatty acid metal salts such as zinc stearate, calcium stearate, stearic acid, and polymethyl methacrylate. There may be mentioned polymer fine particles produced by soap-free emulsion polymerization such as fine particles and polystyrene fine particles. The polymer fine particles preferably have a relatively narrow particle size distribution and a volume average particle size of 0.01 to 1 μm.

本発明の現像方法は、従来の電子写真法に使用する静電潜像担持体が全て使用できるが、例えば、有機静電潜像担持体、非晶質シリカ静電潜像担持体、セレン静電潜像担持体、酸化亜鉛静電潜像担持体、などが好適に使用可能である。   In the developing method of the present invention, all of the electrostatic latent image carriers used in the conventional electrophotographic methods can be used. For example, an organic electrostatic latent image carrier, an amorphous silica electrostatic latent image carrier, and a selenium static image carrier. An electrostatic latent image carrier, a zinc oxide electrostatic latent image carrier, and the like can be suitably used.

以下、実施例により本発明について詳細に説明するが、本発明は、下記実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the following Example at all.

[実施例1]
(トナー組成液の作成)
−未変性ポリエステル(低分子量ポリエステル)の合成−
冷却管、攪拌機及び窒素導入管の付いた反応槽中に、ビスフェノールAエチレンオキサイド2モル付加物67質量部、ビスフェノールAプロピオンオキサイド3モル付加物84質量部、テレフタル酸274質量部、及びジブチルチンオキサイド2質量部を投入し、常圧下、230℃にて8時間反応させた。次いで、該反応液を10〜15mmHgの減圧下にて5時間反応させて、未変性ポリエステルを合成した。
得られた未変性ポリエステルは、数平均分子量(Mn)が1,800、重量平均分子量(Mw)が4,800、ガラス転移温度(Tg)が50℃であった。
[Example 1]
(Preparation of toner composition liquid)
-Synthesis of unmodified polyester (low molecular weight polyester)-
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 67 parts by mass of bisphenol A ethylene oxide 2 mol adduct, 84 parts by mass of bisphenol A propion oxide 3 mol adduct, 274 parts by mass of terephthalic acid, and dibutyltin oxide 2 parts by mass were added and reacted at 230 ° C. under normal pressure for 8 hours. Next, the reaction solution was reacted under reduced pressure of 10 to 15 mmHg for 5 hours to synthesize an unmodified polyester.
The obtained unmodified polyester had a number average molecular weight (Mn) of 1,800, a weight average molecular weight (Mw) of 4,800, and a glass transition temperature (Tg) of 50 ° C.

−プレポリマー(活性水素基と反応可能な部位を持つ重合体)の合成−
冷却管、撹拌機及び窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物682質量部、ビスフェノールAプロピレンオキサイド2モル付加物81質量部、テレフタル酸283質量部、無水トリメリット酸22質量部、及びジブチルチンオキサイド2質量部を仕込み、常圧下で、230℃にて8時間反応させた。次いで、10〜15mHgの減圧下で、5時間反応させて、中間体ポリエステルを合成した。
得られた中間体ポリエステルは、数平均分子量(Mn)が2,100、重量平均分子量(Mw)が9,600、ガラス転移温度(Tg)が55℃、酸価が0.5、水酸基価が49であった。
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、前記中間体ポリエステル411質量部、イソホロンジイソシアネート89質量部、及び酢酸エチル500質量部を仕込み、100℃にて5時間反応させて、プレポリマー(前記活性水素基含有化合物と反応可能な重合体)を合成した。これをプレポリマー溶液1とする。
得られたプレポリマー溶液1の遊離イソシアネート含有量は、1.60質量%であり、プレポリマーの固形分濃度(150℃、45分間放置後)は50質量%であった。
-Synthesis of prepolymer (polymer having a site capable of reacting with active hydrogen group)-
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 682 parts by mass of bisphenol A ethylene oxide 2 mol adduct, 81 parts by mass of bisphenol A propylene oxide 2 mol adduct, 283 parts by mass of terephthalic acid, trimellitic anhydride 22 parts by mass of acid and 2 parts by mass of dibutyltin oxide were charged and reacted at 230 ° C. for 8 hours under normal pressure. Subsequently, it was made to react under reduced pressure of 10-15mHg for 5 hours, and the intermediate polyester was synthesize | combined.
The obtained intermediate polyester has a number average molecular weight (Mn) of 2,100, a weight average molecular weight (Mw) of 9,600, a glass transition temperature (Tg) of 55 ° C., an acid value of 0.5, and a hydroxyl value of 49.
Next, 411 parts by mass of the intermediate polyester, 89 parts by mass of isophorone diisocyanate, and 500 parts by mass of ethyl acetate are charged in a reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen introduction tube, and reacted at 100 ° C. for 5 hours. Thus, a prepolymer (polymer capable of reacting with the active hydrogen group-containing compound) was synthesized. This is designated Prepolymer Solution 1.
The free isocyanate content of the obtained prepolymer solution 1 was 1.60% by mass, and the solid content concentration of the prepolymer (after standing at 150 ° C. for 45 minutes) was 50% by mass.

−着色剤分散液の調製−
先ず、着色剤としての、カーボンブラックの分散液を調製した。
カーボンブラック(Regal400;Cabot社製)15質量部、顔料分散剤3質量部を、酢酸エチル82質量部に、攪拌羽を有するミキサーを使用し、一次分散させた。該顔料分散剤としては、アジスパーPB821(味の素ファインテクノ社製)を使用した。得られた一次分散液を、ダイノーミルを用いて強力なせん断力により細かく分散し、凝集体を完全に除去した二次分散液を調製した。更に、0.45μmの細孔を有するフィルター(PTFE製)を通過させ、サブミクロン領域まで分散させた液を調製した。
-Preparation of colorant dispersion-
First, a carbon black dispersion as a colorant was prepared.
Carbon black (Regal 400; manufactured by Cabot) 15 parts by mass and pigment dispersant 3 parts by mass were primarily dispersed in 82 parts by mass of ethyl acetate using a mixer having stirring blades. As the pigment dispersant, Ajisper PB821 (manufactured by Ajinomoto Fine Techno Co., Ltd.) was used. The obtained primary dispersion was finely dispersed by a strong shearing force using a dyno mill to prepare a secondary dispersion from which aggregates were completely removed. Further, a liquid having a pore size of 0.45 μm (manufactured by PTFE) and passing through a submicron region was prepared.

−樹脂及びワックスを添加した分散液の調製−
次に、結着樹脂としての樹脂、及びワックスを添加した下記組成からなる分散液を調製した。
結着樹脂としての前記未変性ポリエステル樹脂100質量部、前記カーボンブラック分散液30質量部、カルナバワックス5質量部を、酢酸エチル1000質量部に、着色剤分散液調製時と同じく、攪拌羽を有するミキサーを使用して、10分間攪拌を行い、分散させた。溶媒希釈によるショックで顔料などが凝集することを完全に防止することができた。この段階の分散液を、着色剤分散液調製時と同様に、0.45μmのフィルター(PTFE製)で濾過したが、目詰まりの発生はなく、全て通過することを確認した。なお、この分散液の電解伝導率は3.5×10-7S/mであった。これを樹脂及びワックス分散液1とする。
-Preparation of dispersion with added resin and wax-
Next, a dispersion liquid having the following composition to which a resin as a binder resin and a wax were added was prepared.
100 parts by mass of the unmodified polyester resin as a binder resin, 30 parts by mass of the carbon black dispersion, and 5 parts by mass of carnauba wax are mixed with 1000 parts by mass of ethyl acetate, as in the preparation of the colorant dispersion. Using a mixer, the mixture was stirred for 10 minutes and dispersed. It was possible to completely prevent pigments from aggregating due to shock caused by solvent dilution. The dispersion liquid at this stage was filtered with a 0.45 μm filter (made by PTFE) in the same manner as in the preparation of the colorant dispersion liquid, but it was confirmed that no clogging occurred and all passed. The electrolytic conductivity of this dispersion was 3.5 × 10 −7 S / m. This is designated as resin and wax dispersion 1.

―トナー組成液の調製―
得られた前記樹脂及びワックス分散1000質量部に液に、無機微粒子(オルガノシリカゾルMEK−ST−UP(ER=20%)、日産化学社製)を0.6質量部加え、TKホモミキサー(特殊機化製)で混合する。ミキサーの回転数は5000〜12000rpmの範囲が好ましく、時間は5〜20分程度が好ましい。さらに、活性水素基含有化合物としてN−ベヘニル−1,3−プロパンジアミンを0.75部添加し、ミキサーを用いて1分間攪拌を行ない、その後、プレポリマー溶液1を30質量部加え、さらに1分間攪拌羽を有したミキサーで攪拌した。これをトナー組成液1とする。
-Preparation of toner composition liquid-
To 1000 parts by mass of the obtained resin and wax dispersion, 0.6 parts by mass of inorganic fine particles (organosilica sol MEK-ST-UP (ER = 20%), manufactured by Nissan Chemical Co., Ltd.) are added, and TK homomixer (special Mix by machine). The rotation speed of the mixer is preferably in the range of 5000 to 12000 rpm, and the time is preferably about 5 to 20 minutes. Further, 0.75 parts of N-behenyl-1,3-propanediamine was added as an active hydrogen group-containing compound, and the mixture was stirred for 1 minute using a mixer, and then 30 parts by mass of prepolymer solution 1 was added. The mixture was stirred with a mixer having a stirring blade for a minute. This is designated as Toner Composition Liquid 1.

−トナーの作製−
得られた分散液更に固形分が6.0%になるよう酢酸エチルを用いて希釈し、液を図2に示したトナー製造装置の、貯留部1に供給した。使用した貫通孔を有する板は、厚み20μmのニッケルプレートに、真円形状の出口直径8.0μmの貫通孔を、フェムト秒レーザによるマスク縮小投影法による除去加工(レーザアブレーション)により同心円上に500個作製した。貫通孔の存在する部分は、一辺0.5mmの正方形の範囲であった。
分散液調製後、以下のようなトナー作製条件で、液滴を形成させた後、該液滴を乾燥固化することにより、トナーを作製した。
〔トナー作製条件〕
分散液固形分 :6.0 %
液流量 :400ml/hr
乾燥空気流量 :シース 2.0L/分、装置内エアー 20L/分
装置内温度 :27〜28℃
露点温度 :−20℃
共通液室振動周波数:601.0kHz
乾燥固化したトナー粒子は、サイクロンで捕集し実施例1のトナー母体粒子1が得られた。捕集した粒子の粒度捕集した粒子の粒度分布をフロー式粒子像解析装置(FPIA−2000)で測定したところ、体積平均粒径Dvと個数平均粒径Dnとの比Dv/Dnが、1.02、個数平均粒径が6.0μmのトナー母体粒子が1時間の製造で26.5g 得られた。得られた粒子の光学顕微鏡写真を図14に示した。
-Preparation of toner-
The obtained dispersion was further diluted with ethyl acetate so that the solid content was 6.0%, and the liquid was supplied to the storage unit 1 of the toner production apparatus shown in FIG. The used plate having through-holes is a concentric circle having a through-hole of 8.0 μm in a perfect circle formed on a nickel plate having a thickness of 20 μm by removal processing (laser ablation) by a mask reduction projection method using a femtosecond laser. Individually produced. The portion where the through-hole was present was a square area with a side of 0.5 mm.
After the dispersion was prepared, droplets were formed under the following toner production conditions, and then the droplets were dried and solidified to produce a toner.
[Toner preparation conditions]
Dispersion solid content: 6.0%
Liquid flow rate: 400 ml / hr
Dry air flow rate: Sheath 2.0 L / min, Air in device 20 L / min Temperature in device: 27-28 ° C
Dew point temperature: -20 ° C
Common liquid chamber vibration frequency: 601.0 kHz
The dried and solidified toner particles were collected by a cyclone to obtain toner base particles 1 of Example 1. Particle size of collected particles The particle size distribution of the collected particles was measured with a flow type particle image analyzer (FPIA-2000). The ratio Dv / Dn of the volume average particle diameter Dv to the number average particle diameter Dn was 1 A toner base particle having a number average particle size of 6.0 μm and 0.02 μm was obtained in 2 hours. An optical micrograph of the obtained particles is shown in FIG.

[実施例2]
『トナ−組成液の調製』の際に添加する無機微粒子(オルガノシリカゾルMEK−ST−UP(ER=20%)、日産化学社製)を3質量部にした以外は実施例1同様にして実施例2のトナー母体粒子2を作成した。
[実施例3]
『トナ−組成液の調製』の際に添加する無機微粒子(オルガノシリカゾルMEK−ST−UP(ER=20%)、日産化学社製)を50質量部にした以外は実施例1同様にして実施例3のトナー母体粒子3を作成した。
[実施例4]
『トナ−組成液の調製』の際に添加する無機微粒子(オルガノシリカゾルMEK−ST−UP(ER=20%)、日産化学社製)を500質量部にした以外は実施例1同様にして実施例4のトナー母体粒子4を作成した。
[Example 2]
The same procedure as in Example 1 was conducted except that 3 parts by mass of inorganic fine particles (organosilica sol MEK-ST-UP (ER = 20%), manufactured by Nissan Chemical Co., Ltd.) to be added in the “preparation of toner composition” was used. Toner base particles 2 of Example 2 were prepared.
[Example 3]
The same procedure as in Example 1 was conducted except that 50 parts by mass of the inorganic fine particles (organosilica sol MEK-ST-UP (ER = 20%), manufactured by Nissan Chemical Co., Ltd.) to be added at the “preparation of toner composition” was used. Toner base particles 3 of Example 3 were prepared.
[Example 4]
The same procedure as in Example 1 was performed except that 500 parts by mass of inorganic fine particles (organosilica sol MEK-ST-UP (ER = 20%), manufactured by Nissan Chemical Co., Ltd.) to be added at the time of “preparing the toner composition liquid” was used. Toner base particles 4 of Example 4 were prepared.

[実施例5]
『トナ−組成液の調製』の際に添加する無機微粒子を疎水性酸化チタン(MT−150AFM、テイカ製)10質量部にした以外は実施例1同様にして実施例5のトナー母体粒子5を作成した。
[実施例6]
『トナ−組成液の調製』の際に添加する無機微粒子(オルガノシリカゾルMEK−ST−UP(ER=20%)、日産化学社製)を3質量部と疎水性酸化チタン(MT−150AFM、テイカ製)0.6質量部にした以外は実施例1同様にして実施例6のトナー母体粒子6を作成した。
[実施例7]
『プレポリマー(活性水素基と反応可能な部位を持つ重合体)の合成』において中間体ポリエステルとしてMn=5,200、Mw=21,000、Tg=65℃のものを合成し、代わりに用いた以外は実施例1と同様にして実施例7のトナー母体粒子7を作成した。
[実施例8]
実施例1において、『トナ−組成液の調製』の際に添加する酢酸エチル量を1760部にし、『トナーの作製』において前記貫通孔の直径を8μmにした以外は実施例1と同様にして実施例8のトナー母体粒子8を作成した。
[Example 5]
The toner base particles 5 of Example 5 were prepared in the same manner as in Example 1 except that 10 parts by mass of hydrophobic fine titanium oxide (MT-150AFM, manufactured by Teica) was added as an inorganic fine particle to be added in the “preparation of toner composition”. Created.
[Example 6]
3 parts by weight of inorganic fine particles (organosilica sol MEK-ST-UP (ER = 20%), manufactured by Nissan Chemical Co., Ltd.) and hydrophobic titanium oxide (MT-150AFM, taker) to be added in the “preparation of toner composition” Product) Toner base particles 6 of Example 6 were prepared in the same manner as in Example 1 except that the amount was 0.6 parts by mass.
[Example 7]
In “Synthesis of prepolymer (polymer having a site capable of reacting with active hydrogen group)”, an intermediate polyester having Mn = 5,200, Mw = 21,000, Tg = 65 ° C. was synthesized and used instead. A toner base particle 7 of Example 7 was produced in the same manner as in Example 1 except that.
[Example 8]
In Example 1, the amount of ethyl acetate added in the “preparation of toner composition” was 1760 parts, and the diameter of the through hole was changed to 8 μm in the “preparation of toner”. Toner base particles 8 of Example 8 were prepared.

[比較例1]
『トナ−組成液の調製』の際に添加する無機微粒子(オルガノシリカゾルMEK−ST−UP(ER=20%)、日産化学社製)を0質量部にした以外は実施例1同様にして比較例1のトナー母体粒子9を作成した。
[Comparative Example 1]
Comparison was made in the same manner as in Example 1 except that 0 part by mass of inorganic fine particles (organosilica sol MEK-ST-UP (ER = 20%), manufactured by Nissan Chemical Co., Ltd.) to be added in the “preparation of toner composition liquid” was compared. Toner base particles 9 of Example 1 were prepared.

−外添剤処理−
得られた実施例1〜8及び比較例1のトナー母体粒子100質量部に対し、外添剤としての疎水性シリカ(「H2000」;クラリアントジャパン社製)1.0質量部をヘンシェルミキサー(三井鉱山社製)を用い、周速30m/sとして30秒間混合し1分間休止する処理を5サイクル行い、目開き35μmメッシュで篩い、実施例1〜8及び比較例1のトナーを製造した。
-External additive treatment-
With respect to 100 parts by mass of the obtained toner base particles of Examples 1 to 8 and Comparative Example 1, 1.0 part by mass of hydrophobic silica (“H2000”, manufactured by Clariant Japan) as an external additive was added to a Henschel mixer (Mitsui). The toners of Examples 1 to 8 and Comparative Example 1 were manufactured by performing 5 cycles of mixing at a peripheral speed of 30 m / s for 30 seconds and resting for 1 minute, and sieving with an opening of 35 μm mesh.

[比較例2]
−分散液の調製−
着色剤の分散液、樹脂及びワックスを添加した分散液を、実施例1と同様の条件で調製した。
−トナーの作製−
実施例1で用いた、分散液を貯留する貯留部と、この貯留部に圧電体の伸縮により圧力パルスを与え、これにより液物質を液滴としてノズルから吐出することが可能なヘッド部を設けた装置に変え、比較例2の装置は、ノズル部に直接圧電素子が接し、この圧電体の伸縮による圧力パルスがノズル部そのものを加振する点が実施例1の構造と大きく異なる。この液滴化部が異なる以外は、実施例1と同じトナー作製条件で、液滴を吐出させ、該液滴を乾燥固化することによりトナーを作製した。また、本比較例で用いた液滴吐出部のノズル数も実施例1と同様に500個であった。
乾燥固化したトナー粒子は、1μmの細孔を有するフィルターで吸引捕集した。捕集した粒子の粒度捕集した粒子の粒度分布をフロー式粒子像解析装置(FPIA−2000)で測定したところ、体積平均粒径は4.8μm、Dv/Dnが1.32であり、粒度分布の広いトナー母体粒子となった。また、1時間あたりの生産量は24.8gであった。得られた粒子の光学顕微鏡写真を図5に示した。
[Comparative Example 2]
-Preparation of dispersion-
A colorant dispersion, a dispersion containing a resin and a wax were prepared under the same conditions as in Example 1.
-Preparation of toner-
A storage unit for storing the dispersion liquid used in Example 1 and a head unit capable of applying a pressure pulse to the storage unit by expansion and contraction of the piezoelectric body and thereby discharging the liquid substance as droplets from the nozzle are provided. The apparatus of Comparative Example 2 is significantly different from the structure of Example 1 in that the piezoelectric element is in direct contact with the nozzle part and the pressure pulse generated by the expansion and contraction of the piezoelectric body vibrates the nozzle part itself. Except for the difference in the droplet forming portion, the toner was prepared by discharging the droplet under the same toner preparation conditions as in Example 1 and drying and solidifying the droplet. Further, the number of nozzles of the droplet discharge section used in this comparative example was 500 as in the first embodiment.
The dried and solidified toner particles were collected by suction with a filter having 1 μm pores. Particle size of collected particles The particle size distribution of the collected particles was measured with a flow type particle image analyzer (FPIA-2000). The volume average particle size was 4.8 μm and Dv / Dn was 1.32. The toner base particles had a wide distribution. The production amount per hour was 24.8 g. An optical micrograph of the obtained particles is shown in FIG.

次に、以下のようにして、キャリアを作製した。
トルエン100質量部に、シリコーン樹脂(「オルガノストレートシリコーン」100質量部、r−(2−アミノエチル)アミノプロピルトリメトキシシラン5質量部、及びカーボンブラック10質量部を添加し、ホモミキサーで20分間分散させて、コート層形成液を調製した。該コート層形成液を流動床型コーティング装置を用い、粒径50μmの球状マグネタイト1,000質量部の表面にコーティングして磁性キャリアを作製した。
外添剤処理済の実施例1〜8及び比較例1の各トナー5質量部と前記キャリア95質量部とをボールミル混合し、実施例1〜8及び比較例1の各二成分現像剤を製造した。
Next, a carrier was produced as follows.
To 100 parts by mass of toluene, 100 parts by mass of a silicone resin (“organostraight silicone”, 5 parts by mass of r- (2-aminoethyl) aminopropyltrimethoxysilane, and 10 parts by mass of carbon black were added, and the mixture was mixed with a homomixer for 20 minutes. A magnetic layer was prepared by coating the surface of 1,000 parts by mass of spherical magnetite having a particle diameter of 50 μm using a fluidized bed coating apparatus.
5 parts by mass of each of the toners of Examples 1 to 8 and Comparative Example 1 that have been treated with the external additive and 95 parts by mass of the carrier are ball mill mixed to produce the two-component developers of Examples 1 to 8 and Comparative Example 1. did.

[評価方法]
(評価項目)
(1)トナー母体粒子中の無機微粒子含有量の測定
本発明におけるトナー母体粒子中の無機微粒子の含有量は、以下の方法で測定することが出来る。あらかじめ無機微粒子の含有量が明らかなトナー母体粒子を用いて、蛍光X線分析で検量線を作成し、この検量線を使ってトナー母体粒子中の無機微粒子含有量を蛍光X線分析法で求める。蛍光X線装置には、例えば(株)RIGAKU社製のZSX−100Eを用いて測定可能である。また、用いる無機微粒子が2種類以上の場合は、それぞれ無機微粒子含有量の分析値の総和を、トナー母体粒子中の無機微粒子含有量とした。
[Evaluation methods]
(Evaluation item)
(1) Measurement of content of inorganic fine particles in toner base particles The content of inorganic fine particles in the toner base particles in the present invention can be measured by the following method. A calibration curve is prepared by fluorescent X-ray analysis using toner base particles in which the content of inorganic fine particles is clear in advance, and the content of inorganic fine particles in the toner base particles is obtained by fluorescent X-ray analysis using the calibration curve. . For example, ZSX-100E manufactured by Rigaku Corporation can be used as the fluorescent X-ray apparatus. Further, when two or more kinds of inorganic fine particles were used, the total of the analysis values of the inorganic fine particle content was used as the inorganic fine particle content in the toner base particles.

(2)体積平均粒径、および(Dv/Dn)の測定
体積平均粒径(Dv)および個数平均粒径(Dn)は、コールターカウンター法により測定することができる。コールターカウンター法によるトナー粒子の粒度分布の測定装置としては、コールターカウンターTA−IIやコールターマルチサイザーII(いずれもコールター社製)があげられる。以下に測定方法について述べる。
まず、電解水溶液100〜150ml中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルフォン酸塩)を0.1〜5ml加える。ここで、電解液とは1級塩化ナトリウムを用いて約1%NaCl水溶液を調製したもので、例えばISOTON−II(コールター社製)が使用できる。ここで、更に測定試料を2〜20mg加える。試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行ない、前記測定装置により、アパーチャーとして100μmアパーチャーを用いて、トナー粒子又はトナーの体積、個数を測定して、体積分布と個数分布を算出する。得られた分布から、トナーの体積平均粒径(Dv)、個数平均粒径を求めることができる。
(2) Volume average particle diameter and measurement of (Dv / Dn) Volume average particle diameter (Dv) and number average particle diameter (Dn) can be measured by a Coulter counter method. Examples of the measuring device for the particle size distribution of toner particles by the Coulter counter method include Coulter Counter TA-II and Coulter Multisizer II (both manufactured by Coulter). The measurement method is described below.
First, 0.1 to 5 ml of a surfactant (preferably alkylbenzene sulfonate) is added as a dispersant to 100 to 150 ml of an aqueous electrolytic solution. Here, the electrolytic solution is a solution prepared by preparing a 1% NaCl aqueous solution using primary sodium chloride. For example, ISOTON-II (manufactured by Coulter) can be used. Here, 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes, and the measurement device is used to measure the volume and number of toner particles or toner using a 100 μm aperture as an aperture Volume distribution and number distribution are calculated. From the obtained distribution, the volume average particle diameter (Dv) and the number average particle diameter of the toner can be obtained.

チャンネルとしては、2.00〜2.52μm未満;2.52〜3.17μm未満;3.17〜4.00μm未満;4.00〜5.04μm未満;5.04〜6.35μm未満;6.35〜8.00μm未満;8.00〜10.08μm未満;10.08〜12.70μm未満;12.70〜16.00μm未満;16.00〜20.20μm未満;20.20〜25.40μm未満;25.40〜32.00μm未満;32.00〜40.30μm未満の13チャンネルを使用し、粒径2.00μm以上乃至40.30μm未満の粒子を対象とする。   As channels, 2.00 to less than 2.52 μm; 2.52 to less than 3.17 μm; 3.17 to less than 4.00 μm; 4.00 to less than 5.04 μm; 5.04 to less than 6.35 μm; 6 Less than 35 to 8.00 μm; less than 8.00 to less than 10.08 μm; less than 10.08 to less than 12.70 μm; less than 12.70 to less than 16.00 μm; less than 16.00 to less than 20.20 μm; Uses 13 channels of less than 40 μm; 25.40 to less than 32.00 μm; 32.00 to less than 40.30 μm, and targets particles having a particle size of 2.00 μm to less than 40.30 μm.

(3)平均円形度
円形度は、フロー式粒子像分析装置(Flow Particle Image Analyzer)を使用して測定することができる。フロー式粒子像分析装置(Flow Particle Image Analyzer)を使用した測定方法に関して以下に説明する。
トナー、トナー粒子及び外添剤のフロー式粒子像分析装置による測定は、例えば、東亜医用電子社(株)製フロー式粒子像分析装置FPIA−2000を用いて測定することができる。
測定は、フィルターを通して微細なごみを取り除き、その結果として10−3cm の水中に測定範囲(例えば、円相当径0.60μm以上159.21μm未満)の粒子数が20個以下の水10ml中にノニオン系界面活性剤(好ましくは和光純薬社製コンタミノンN)を数滴加え、更に、測定試料を5mg加え、超音波分散器STM社製UH−50で20kHz,50W/10cm の条件で1分間分散処理を行い、さらに、合計5分間の分散処理を行い測定試料の粒子濃度が4000〜8000個/10−3cm (測定円相当径範囲の粒子を対象として)の試料分散液を用いて、0.60μm以上159.21μm未満の円相当径を有する粒子の粒度分布を測定する。
(3) Average circularity The circularity can be measured using a flow particle image analyzer (Flow Particle Image Analyzer). A measurement method using a flow particle image analyzer (Flow Particle Image Analyzer) will be described below.
The measurement of toner, toner particles and external additives using a flow particle image analyzer can be performed using, for example, a flow particle image analyzer FPIA-2000 manufactured by Toa Medical Electronics Co., Ltd.
The measurement is performed by removing fine dust through a filter, and as a result, in 10-3 water of 10 −3 cm 3 of water having a measurement range (for example, an equivalent circle diameter of 0.60 μm or more and less than 159.21 μm) of 20 particles or less. Add a few drops of a nonionic surfactant (preferably Contaminone N manufactured by Wako Pure Chemical Industries, Ltd.), add 5 mg of a measurement sample, and under conditions of 20 kHz and 50 W / 10 cm 3 with an ultrasonic dispersing device STM UH-50. Dispersion treatment is performed for 1 minute, and further, dispersion treatment is performed for a total of 5 minutes, and a sample dispersion liquid in which a measurement sample has a particle concentration of 4000 to 8000 pieces / 10 −3 cm 3 (targeting particles in a measurement circle equivalent diameter range) The particle size distribution of particles having an equivalent circle diameter of 0.60 μm or more and less than 159.21 μm is measured.

試料分散液は、フラットで偏平な透明フローセル(厚み約200μm)の流路(流れ方向に沿って広がっている)を通過させる。フローセルの厚みに対して交差して通過する光路を形成するために、ストロボとCCDカメラが、フローセルに対して、相互に反対側に位置するように装着される。試料分散液が流れている間に、ストロボ光がフローセルを流れている粒子の画像を得るために1/30秒間隔で照射され、その結果、それぞれの粒子は、フローセルに平行な一定範囲を有する2次元画像として撮影される。それぞれの粒子の2次元画像の面積から、同一の面積を有する円の直径を円相当径として算出する。
約1分間で、1200個以上の粒子の円相当径を測定することができ、円相当径分布に基づく数及び規定された円相当径を有する粒子の割合(個数%)を測定できる。結果(頻度%及び累積%)は、表1に示す通り、0.06−400μmの範囲を226チャンネル(1オクターブに対し30チャンネルに分割)に分割して得ることができる。実際の測定では、円相当径が0.60μm以上159.21μm未満の範囲で粒子の測定を行う。
The sample dispersion liquid is passed through a flow path (expanded along the flow direction) of a flat and flat transparent flow cell (thickness: about 200 μm). In order to form an optical path that passes across the thickness of the flow cell, the strobe and the CCD camera are mounted on the flow cell so as to be opposite to each other. While the sample dispersion is flowing, strobe light is irradiated at 1/30 second intervals to obtain an image of the particles flowing through the flow cell, so that each particle has a certain range parallel to the flow cell. Photographed as a two-dimensional image. From the area of the two-dimensional image of each particle, the diameter of a circle having the same area is calculated as the equivalent circle diameter.
In about 1 minute, the equivalent circle diameter of 1200 or more particles can be measured, and the number based on the equivalent circle diameter distribution and the ratio (number%) of particles having a prescribed equivalent circle diameter can be measured. As shown in Table 1, the results (frequency% and cumulative%) can be obtained by dividing the range of 0.06-400 μm into 226 channels (divided into 30 channels for one octave). In actual measurement, particles are measured in the range where the equivalent circle diameter is 0.60 μm or more and less than 159.21 μm.

(4)帯電立ち上がり性(TA15)
温度20℃、湿度50%の環境下、上記キャリア100部と本発明のトナー5部を、ステンレス性のポットに仕込み、ボールミル架台上で300rpmにて回転混合させた。回転開始から15秒後に停止させ、得られた現像剤の帯電量を、ブローオフ装置によって測定した。
(4) Charging rising property (TA15)
Under an environment of a temperature of 20 ° C. and a humidity of 50%, 100 parts of the carrier and 5 parts of the toner of the present invention were charged into a stainless steel pot and rotated and mixed at 300 rpm on a ball mill stand. The developer was stopped 15 seconds after the start of rotation, and the charge amount of the resulting developer was measured with a blow-off device.

(5)飽和帯電性(TA600)
帯電立ち上がりと同様の操作で、10分間経過後の現像剤材料の帯電性を、ブローオフ装置で測定した。
(5) Saturation chargeability (TA600)
The chargeability of the developer material after 10 minutes was measured with a blow-off device in the same manner as in the charging start-up.

(6)ガラス転移温度(Tg) 各トナー及びトナー樹脂のガラス転移温度(以下Tg)は、DSCシステム(示差走査熱量計)(「DSC−60」、島津製作所製)を用いて、以下の方法により測定した。
まず、樹脂又はトナー(試料)約5.0mgをアルミニウム製の試料容器に入れ、該試料容器をホルダーユニットに載せ、電気炉中にセットした。次いで、窒素雰囲気下、20℃から昇温速度10℃/minにて150℃まで加熱し、示差走査熱量計(「DSC−60」;島津製作所製)によりDSC曲線を計測した。得られたDSC曲線から、DSC−60システム中の解析プログラムを用いて、樹脂(又はトナー)の変極点以前の曲線と変極点以降の曲線との接線の交点から算出した。また、同時に離型剤に由来するピークの値から、離型剤の融点(Tp)も求めることができる。結果を表1に記す。
(6) Glass transition temperature (Tg) The glass transition temperature (hereinafter referred to as Tg) of each toner and toner resin is determined by the following method using a DSC system (differential scanning calorimeter) (“DSC-60”, manufactured by Shimadzu Corporation). It was measured by.
First, about 5.0 mg of resin or toner (sample) was placed in an aluminum sample container, and the sample container was placed on a holder unit and set in an electric furnace. Subsequently, it heated from 20 degreeC to 150 degreeC by the temperature increase rate of 10 degree-C / min in nitrogen atmosphere, and the DSC curve was measured with the differential scanning calorimeter ("DSC-60"; Shimadzu Corporation make). From the obtained DSC curve, it calculated from the intersection of the tangent of the curve before the inflection point of the resin (or toner) and the curve after the inflection point using the analysis program in the DSC-60 system. At the same time, the melting point (Tp) of the release agent can be obtained from the peak value derived from the release agent. The results are shown in Table 1.

(7)トナー流動性
パウダーテスター(PT−N型、ホソカワミクロン製)に、上から順に目開き75μm、45μm、22μmのメッシュを重ねて装填し、トナー母体を一番上側の75μmメッシュ上に2g入れ、縦方向に1mmの振動を10秒間与え、各メッシュ上のトナー残存量からトナー母体の流動性(凝集度)を算出した。
凝集度(%)=(5×(75μmメッシュ上の残トナー量(g))
+3×(45μmメッシュ上の残トナー量(g))
+(22μmメッシュ上の残トナー量(g)))×10
凝集度が8%以下の場合は◎、8〜16%の場合は○、16〜25%の場合は△、25%以上の場合は×とした。
(7) Toner fluidity A powder tester (PT-N type, manufactured by Hosokawa Micron) is loaded with meshes of 75 μm, 45 μm, and 22 μm openings in order from the top, and 2 g of the toner base is put on the uppermost 75 μm mesh. Then, a vibration of 1 mm in the vertical direction was applied for 10 seconds, and the fluidity (cohesion degree) of the toner base was calculated from the residual amount of toner on each mesh.
Aggregation degree (%) = (5 × (remaining toner amount (g) on 75 μm mesh))
+ 3 × (residual toner amount on 45 μm mesh (g))
+ (Residual toner amount on 22 μm mesh (g))) × 10
When the degree of aggregation was 8% or less, ◎, when it was 8 to 16%, ◯, when it was 16 to 25%, Δ, and when it was 25% or more, ×.

(8)画像濃度
リコー製imagio Neo 450を用い、単色モードで50%画像面積の画像チャートを150,000枚ランニング出力した後、ベタ画像をリコー社製6000ペーパーに画像出力後、画像濃度をX−Rite(X−Rite社製)により測定を行なった。これを4色単独に行ない平均を求めた。この値が、1.2未満の場合は×、1.2以上1.4未満の場合は△、1.4以上1.8未満の場合は○、1.8以上2.2未満の場合は◎とした。
(8) Image density After running 150,000 image charts of 50% image area in monochromatic mode using Ricoh's imgio Neo 450, the solid image was output to 6000 paper manufactured by Ricoh, and the image density was set to X Measurement was performed by -Rite (manufactured by X-Rite). This was performed for four colors alone, and the average was obtained. If this value is less than 1.2, x, if it is 1.2 or more and less than 1.4, Δ, if it is 1.4 or more and less than 1.8, ○, if it is 1.8 or more and less than 2.2 ◎.

(9)画像粒状性、鮮鋭性
リコー製imagio Neo 450を用い、単色で写真画像の出力を行ない、粒状性、鮮鋭性の度合を目視にて評価した。良好なものから◎、○、△、×で評価した。◎はオフセット印刷並、○はオフセット印刷よりわずかに悪い程度、△はオフセット印刷よりかなり悪い程度、×は従来の電子写真画像程度で非常に悪い。
(9) Image granularity and sharpness Using a Ricoh imagio Neo 450, a photographic image was output in a single color, and the degree of granularity and sharpness was visually evaluated. Evaluations were made from GOOD, ◎, ○, Δ, and ×.並 is equivalent to offset printing, ◯ is slightly worse than offset printing, Δ is much worse than offset printing, and × is very bad compared to conventional electrophotographic images.

(10)定着性
リコー製imagio Neo 450を用い、普通紙及び厚紙の転写紙(リコー製、タイプ6200及びNBSリコー製複写印刷用紙<135>)にベタ画像で、0.85±0.1mg/cmのトナー付着量で定着評価した。定着ベルトの温度を変化させて定着試験を行ない、普通紙でホットオフセットの発生しない上限温度を定着上限温度とした。また厚紙で定着下限温度を測定した。定着下限温度は、得られた定着画像をパットで擦った後の画像濃度の残存率が70%以上となる定着ロール温度をもって定着下限温度とした。定着上限温度は190℃以上の場合は◎、190〜180℃の場合は○、180〜170℃の場合は△、170℃以下の場合は×とした。また、定着下限温度は135℃以下の場合は◎、135〜145℃の場合は○、145〜155℃の場合は△、155℃以上の場合は×とした。 表1に、使用したトナーの特性を示し、表2にこれらのトナーの評価結果を示す。
(10) Fixing property Using a RICOH Imagio Neo 450, a plain image and a cardboard transfer paper (Ricoh, Type 6200 and NBS Ricoh copy printing paper <135>), a solid image of 0.85 ± 0.1 mg / Fixing evaluation was performed with a toner adhesion amount of cm 2 . A fixing test was performed by changing the temperature of the fixing belt, and an upper limit temperature at which hot offset did not occur on plain paper was defined as an upper limit fixing temperature. Further, the minimum fixing temperature was measured with a thick paper. The lower limit fixing temperature was determined as the fixing lower limit temperature at the fixing roll temperature at which the residual ratio of the image density after rubbing the obtained fixed image with a pad was 70% or more. The upper limit fixing temperature was ◎ for 190 ° C or higher, ○ for 190-180 ° C, △ for 180-170 ° C, and x for 170 ° C or lower. The lower limit fixing temperature was ◎ for 135 ° C. or less, ◯ for 135 to 145 ° C., Δ for 145 to 155 ° C., and × for 155 ° C. or more. Table 1 shows the characteristics of the toners used, and Table 2 shows the evaluation results of these toners.

表2に示すように、本発明により、トナー流動性、画像濃度、画像粒状性・鮮鋭性、定着下限温度、ホットオフセット発生温度に優れ、かつトナーを効率よくトナー化することが可能となった。また、本発明で作製したトナーを用いて現像を行い得られた画像は、静電潜像に忠実な極めて画像品質に優れ、かつ消費電力を大きく低減出来ることがわかった。   As shown in Table 2, according to the present invention, the toner fluidity, the image density, the image graininess / sharpness, the fixing minimum temperature, the hot offset occurrence temperature are excellent, and the toner can be efficiently converted into a toner. . Further, it has been found that an image obtained by developing using the toner produced in the present invention is extremely excellent in image quality faithful to an electrostatic latent image and can greatly reduce power consumption.

本発明のトナーは、トナー流動性、画像濃度、画像粒状性・鮮鋭性、定着下限温度、ホットオフセット発生温度に優れ、かつ、これまでにない粒度の単一分散性を有した粒子であることにより、流動性や帯電特性といったトナーに求められる多くの特性値において、これまでの製造方法にみられた粒子による変動の幅が全くないか、非常に少ない、電子写真、静電記録、静電印刷等に於ける静電荷像を現像するための現像剤に使用可能である。また、本発明のトナーの製造方法を用いることで、トナーを高い効率で生産することができる。   The toner of the present invention is excellent in toner fluidity, image density, image graininess / sharpness, minimum fixing temperature and hot offset generation temperature, and has a monodispersibility with a particle size never seen before. Therefore, in many of the characteristic values required for the toner, such as fluidity and charging characteristics, there is no or very little variation in the particle size observed in the conventional production methods. Electrophotography, electrostatic recording, electrostatic It can be used as a developer for developing an electrostatic image in printing or the like. Further, the toner can be produced with high efficiency by using the toner production method of the present invention.

本発明を実施するためのトナー粒子製造装置の一例の説明図である。It is explanatory drawing of an example of the toner particle manufacturing apparatus for implementing this invention. 本発明における貯留部の一例の説明図である。It is explanatory drawing of an example of the storage part in this invention. 液柱の液滴化現象を説明する図である。It is a figure explaining the droplet formation phenomenon of a liquid column. 実施例1で得られたトナーの顕微鏡写真を示す図である。3 is a view showing a micrograph of the toner obtained in Example 1. FIG. 比較例2で得られたトナーの顕微鏡写真を示す図である。6 is a micrograph of the toner obtained in Comparative Example 2. FIG.

符号の説明Explanation of symbols

1 貯留部
2 振動手段
3 支持手段
4 貫通孔
5 液供給手段
6 溶媒除去設備
7 トナー捕集部
8 配管
9 貫通孔保持機構
10 振動発生装置
11 導電線
12 開放弁
13 液滴
14 乾燥手段
15 トナー粒子
DESCRIPTION OF SYMBOLS 1 Storage part 2 Vibration means 3 Support means 4 Through-hole 5 Liquid supply means 6 Solvent removal equipment 7 Toner collection part 8 Piping 9 Through-hole holding mechanism 10 Vibration generator 11 Conductive wire 12 Release valve 13 Droplet 14 Drying means 15 Toner particle

Claims (15)

少なくとも樹脂と着色剤と1種類以上の無機微粒子とを含有するトナー組成物を溶媒に溶解及び/又は分散させたトナー組成液を、貫通孔より放出し液滴化してトナー粒子を製造するトナー製造方法において、前記トナー組成液を貯留部へ供給し、少なくとも貯留部の一部に接する振動手段により、前記貯留部を介して前記トナー組成液を励振しながら、貯留部に設けた複数の貫通孔より前記トナー組成液を造粒空間に放出し、前記トナー組成液を柱状から括れ状態を経て液滴化し、該液滴を造粒空間において固体粒子に変化させることによりトナーを製造することを特徴とするトナーの製造方法。   Toner production in which a toner composition liquid in which a toner composition containing at least a resin, a colorant, and one or more kinds of inorganic fine particles is dissolved and / or dispersed in a solvent is discharged from a through hole to form droplets. In the method, the toner composition liquid is supplied to the storage portion, and a plurality of through holes provided in the storage portion are excited while the toner composition liquid is excited through the storage portion by vibration means that contacts at least a part of the storage portion. Further, the toner composition liquid is discharged into a granulation space, the toner composition liquid is changed from a columnar shape into droplets through a constricted state, and the toner is manufactured by changing the droplets into solid particles in the granulation space. A method for producing toner. 蛍光X線分析法によって求められる無機微粒子の全量が、トナー組成物に対して0.1〜50wt%であることを特徴とする請求項1に記載のトナーの製造方法。   The method for producing a toner according to claim 1, wherein the total amount of inorganic fine particles obtained by X-ray fluorescence analysis is 0.1 to 50 wt% with respect to the toner composition. 前記無機微粒子は、オルガノゾル体を用いて製造されたものであることを特徴とする請求項1又は2に記載のトナーの製造方法。   The method for producing a toner according to claim 1, wherein the inorganic fine particles are produced using an organosol body. 前記液滴から溶媒を脱溶剤することによって固体粒子化することを特徴とする請求項1〜3のいずれかに記載のトナーの製造方法。   The toner production method according to claim 1, wherein the solvent is removed from the droplets to form solid particles. 前記溶媒が有機溶剤であることを特徴とする請求項4に記載のトナーの製造方法。   The method for producing a toner according to claim 4, wherein the solvent is an organic solvent. 前記トナー組成液の固形分比が5〜20重量%であることを特徴とする請求項1〜5のいずれかに記載のトナーの製造方法。   The toner production method according to claim 1, wherein a solid content ratio of the toner composition liquid is 5 to 20% by weight. 前記貫通孔は、前記振動手段1つ当たりに複数個存在することを特徴とする請求項1〜6のいずれかに記載のトナーの製造方法。   The toner manufacturing method according to claim 1, wherein there are a plurality of the through holes per vibration means. 前記貫通孔の開口径が1〜40μmであることを特徴とする請求項1〜7のいずれかに記載のトナー製造方法。   The toner manufacturing method according to claim 1, wherein an opening diameter of the through hole is 1 to 40 μm. 貫通孔から放出される液滴に、誘導荷電により、正電荷又は負電荷を与える請求項1〜8のいずれかに記載のトナー製造方法。   The toner manufacturing method according to claim 1, wherein a positive charge or a negative charge is given to the droplets discharged from the through holes by induction charge. 液滴吐出方向と同方向に乾燥気体を流すことにより気流を発生させ、該気流により、液滴を溶媒除去設備内で搬送させると共に、該搬送中に前記液滴中の溶媒を除去させることにより、トナー粒子を形成する請求項1〜9のいずれかに記載のトナー製造方法。   By causing a dry gas to flow in the same direction as the droplet discharge direction, an air flow is generated, and the air flow causes the droplets to be transported in the solvent removal equipment, and the solvent in the droplets is removed during the transport. The toner manufacturing method according to claim 1, wherein toner particles are formed. 乾燥気体が、空気及び窒素ガスのいずれかである請求項10に記載のトナー製造方法。   The toner manufacturing method according to claim 10, wherein the dry gas is one of air and nitrogen gas. 乾燥気体の温度が、40〜200℃である請求項11または12に記載のトナー製造方法。   The toner manufacturing method according to claim 11 or 12, wherein the temperature of the dry gas is 40 to 200 ° C. 請求項1〜12のいずれかに記載のトナーの製造方法によって製造されたことを特徴とする静電荷像現像用トナー。   An electrostatic image developing toner produced by the method for producing a toner according to claim 1. 粒度分布(体積平均粒径/個数平均粒径)が、1.00〜1.05の範囲にあることを特徴とする請求項13に記載の静電荷像現像用トナー。   14. The electrostatic image developing toner according to claim 13, wherein the particle size distribution (volume average particle size / number average particle size) is in the range of 1.00 to 1.05. 質量体積平均粒径が1〜20μmであることを特徴とする請求項13又は14に記載の静電荷像現像用トナー。
The toner for developing an electrostatic charge image according to claim 13 or 14, wherein the toner has a mass volume average particle diameter of 1 to 20 µm.
JP2006242222A 2006-09-07 2006-09-07 Electrostatic charge image development toner, and method for producing toner Pending JP2008065005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242222A JP2008065005A (en) 2006-09-07 2006-09-07 Electrostatic charge image development toner, and method for producing toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242222A JP2008065005A (en) 2006-09-07 2006-09-07 Electrostatic charge image development toner, and method for producing toner

Publications (1)

Publication Number Publication Date
JP2008065005A true JP2008065005A (en) 2008-03-21

Family

ID=39287783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242222A Pending JP2008065005A (en) 2006-09-07 2006-09-07 Electrostatic charge image development toner, and method for producing toner

Country Status (1)

Country Link
JP (1) JP2008065005A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049228A (en) * 2008-07-23 2010-03-04 Ricoh Co Ltd Toner, developer ,and image forming apparatus
JP2010107904A (en) * 2008-10-31 2010-05-13 Ricoh Co Ltd Toner, method of manufacturing the same, and toner manufacturing equipment
JP2010117383A (en) * 2008-11-11 2010-05-27 Ricoh Co Ltd Toner, developer, and image forming apparatus
JP2010271538A (en) * 2009-05-21 2010-12-02 Ricoh Co Ltd Toner and developer
JP2015026060A (en) * 2013-06-17 2015-02-05 株式会社リコー Toner and manufacturing method of toner
WO2017150122A1 (en) * 2016-03-03 2017-09-08 株式会社リコー Toner, toner containing unit, and image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072159A (en) * 2004-09-03 2006-03-16 Seiko Epson Corp Method for manufacturing toner, and toner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072159A (en) * 2004-09-03 2006-03-16 Seiko Epson Corp Method for manufacturing toner, and toner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049228A (en) * 2008-07-23 2010-03-04 Ricoh Co Ltd Toner, developer ,and image forming apparatus
JP2010107904A (en) * 2008-10-31 2010-05-13 Ricoh Co Ltd Toner, method of manufacturing the same, and toner manufacturing equipment
JP2010117383A (en) * 2008-11-11 2010-05-27 Ricoh Co Ltd Toner, developer, and image forming apparatus
JP2010271538A (en) * 2009-05-21 2010-12-02 Ricoh Co Ltd Toner and developer
JP2015026060A (en) * 2013-06-17 2015-02-05 株式会社リコー Toner and manufacturing method of toner
WO2017150122A1 (en) * 2016-03-03 2017-09-08 株式会社リコー Toner, toner containing unit, and image forming apparatus
JPWO2017150122A1 (en) * 2016-03-03 2018-12-27 株式会社リコー Toner, toner storage unit, and image forming apparatus
US10451989B2 (en) 2016-03-03 2019-10-22 Ricoh Company, Ltd. Toner, toner stored unit, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4607029B2 (en) Toner manufacturing method, toner, and toner manufacturing apparatus
JP5229606B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP4647506B2 (en) Particle manufacturing method, toner particle manufacturing apparatus, and toner
JP5433986B2 (en) Toner and method for producing the same
JP5047688B2 (en) Toner manufacturing method, toner manufacturing apparatus and toner
JP5365848B2 (en) Toner production method
JP4594789B2 (en) Particle manufacturing apparatus and particle group manufacturing method
JP4209405B2 (en) Toner, toner manufacturing method, and toner manufacturing apparatus
JP5239410B2 (en) Toner manufacturing method and manufacturing apparatus thereof
JP5391612B2 (en) Toner manufacturing method, toner manufacturing apparatus and toner
JP5090786B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP5064885B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP4587400B2 (en) Toner manufacturing method and toner
JP4562707B2 (en) Toner manufacturing method and toner
JP6471460B2 (en) Toner and toner production method
JP2008065005A (en) Electrostatic charge image development toner, and method for producing toner
JP2013063387A (en) Fine particle manufacturing apparatus and method, and toner manufacturing apparatus and method
JP2009286902A (en) Method and apparatus for producing wax dispersion, wax dispersion and toner
JP4949121B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP4721443B2 (en) Toner, image forming apparatus using the same, and process cartridge
JP4991386B2 (en) Toner manufacturing method and toner manufacturing apparatus
JP5463895B2 (en) Particle manufacturing method, particle manufacturing apparatus, toner, and manufacturing method thereof
JP4512523B2 (en) Toner manufacturing apparatus, toner and developer, process cartridge
JP4803811B2 (en) Toner manufacturing method, toner, and toner manufacturing apparatus
JP2009020349A (en) Method for producing toner, toner and developer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120301