Nothing Special   »   [go: up one dir, main page]

JP2008041893A - Heat radiating apparatus - Google Patents

Heat radiating apparatus Download PDF

Info

Publication number
JP2008041893A
JP2008041893A JP2006213493A JP2006213493A JP2008041893A JP 2008041893 A JP2008041893 A JP 2008041893A JP 2006213493 A JP2006213493 A JP 2006213493A JP 2006213493 A JP2006213493 A JP 2006213493A JP 2008041893 A JP2008041893 A JP 2008041893A
Authority
JP
Japan
Prior art keywords
heat
cpus
cpu
electronic components
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006213493A
Other languages
Japanese (ja)
Inventor
Takashi Tsuchida
高 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006213493A priority Critical patent/JP2008041893A/en
Publication of JP2008041893A publication Critical patent/JP2008041893A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cool effectively all of electronic components in a heat radiating apparatus wherein the heats produced by the plurality of electronic components are radiated with a member common to each other. <P>SOLUTION: In the heat radiating apparatus, since respective CPUs 1, 3 are attached to different substrates 5, 7 from each other, the CPUs 1, 3 can be disposed in the heat radiating apparatus regardless of the height of CPU 3 having a large height to optimize their positions adaptively to their heights. Therefore, the thickness of a thermally conductive layer 15 can be minimized independently of the difference between the dimensions of the CPUs 1, 3, up to the limit wherein the clearance is eliminated between a heat sink 11 and each of the CPUs 1, 3. The thermal resistance is thereby suppressed between the heat sink 11 and each of the CPUs 1, 3 in all the CPUs 1, 3. All the CPUs 1, 3 can be cooled (heat-radiated) effectively since their heat radiating effects is suppressed from lowering. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、CPU等の電子部品が発生する熱を放散させる放熱装置に関する。   The present invention relates to a heat dissipation device that dissipates heat generated by an electronic component such as a CPU.

放熱装置は、CPUが発生する熱を放散させるための放熱板を有して構成されており、この放熱板は、CPUが取り付けられた基板のCPU側に配置されている(例えば、特許文献1参照)。   The heat dissipating device is configured to include a heat dissipating plate for dissipating heat generated by the CPU, and this heat dissipating plate is disposed on the CPU side of the substrate to which the CPU is attached (for example, Patent Document 1). reference).

また、特許文献1に記載の発明では、CPUと放熱板との間に空隙があると放熱効果が低下してしまうので、CPUと放熱板との間にグリスを塗布することで、CPUと放熱板との間に空隙ができてしまうのを防止している。   Further, in the invention described in Patent Document 1, if there is a gap between the CPU and the heat radiating plate, the heat radiating effect is lowered. Therefore, by applying grease between the CPU and the heat radiating plate, the CPU and the heat radiating plate are dissipated. A gap is prevented from being formed between the plates.

そして、CPUが発生した熱はグリスを介して放熱板に吸収され、その吸収された熱は放熱板から大気中へ放散される。
特許第3381899号明細書
And the heat which CPU generate | occur | produced is absorbed by the heat sink via grease, and the absorbed heat is dissipated from the heat sink to the atmosphere.
Japanese Patent No. 3381899

ところで、近年のカーナビゲーション装置等では、音声データの圧縮及び解凍や、画像データの圧縮及び解凍や、画像認識などの複数の処理がCPUで実行されているので、CPUの負荷を軽減するために、CPUを複数設けて複数の処理を各CPUに分担させている。   By the way, in recent car navigation devices and the like, a plurality of processes such as compression and decompression of audio data, compression and decompression of image data, and image recognition are executed by the CPU, so that the load on the CPU is reduced. A plurality of CPUs are provided, and a plurality of processes are assigned to each CPU.

そこで、この場合は、複数のCPUを同一の基板に取り付け、CPU側の面が平板状に形成された共通の放熱板を用いてCPUの各々が発生する熱を放散させるようにしていた。   Therefore, in this case, a plurality of CPUs are attached to the same substrate, and the heat generated by each of the CPUs is dissipated using a common heat radiating plate whose surface on the CPU side is formed in a flat plate shape.

しかしながら、CPUの寸法はそれぞれ異なるので、CPUが同一の基板に取り付けられた状態では、各CPUの高さ(基板からCPU表面までの距離)もそれぞれ異なってくる。   However, since the CPU dimensions are different, the height of each CPU (distance from the board to the CPU surface) also differs when the CPU is mounted on the same board.

このため、複数のCPUが同一の基板に取り付けられ、かつ、CPU側の面が平面状に形成された共通の放熱板を用いてCPUの各々が発生する熱を放散させる場合には、基板と放熱板との間隔(高さ)を、基板に取り付けられたCPUのうち最も高さが大きいCPUに合わせなければならなくなってしまう。   For this reason, when a plurality of CPUs are mounted on the same substrate and the heat generated by each of the CPUs is dissipated using a common heat sink having a flat CPU-side surface, The distance (height) from the heat sink must be matched with the CPU having the highest height among the CPUs attached to the substrate.

したがって、放熱板とCPUとの間隔が各CPU毎に異なってしまうので、従来では高さが小さいCPUにグリスを厚く塗布することで、放熱板と各CPUとの間隔の違いを補うようにしていた。   Therefore, since the distance between the heat sink and the CPU differs for each CPU, conventionally, a thick grease is applied to the CPU having a small height to compensate for the difference in the distance between the heat sink and each CPU. It was.

しかし、グリスを厚く塗布してしまうと、CPUと放熱板との間の熱抵抗が大きくなってしまうので、そのCPUの放熱効果が著しく低下してしまう。
このため、放熱板との間隔が広いCPUについては、放熱板との間隔が狭いCPUに比べて放熱効果が低下してしまうので、全てのCPUを放熱装置で十分に冷却することができなかった。
However, if grease is applied thickly, the thermal resistance between the CPU and the heat radiating plate increases, so that the heat dissipation effect of the CPU is significantly reduced.
For this reason, since the heat dissipation effect of a CPU having a wide space from the heat sink is reduced compared to a CPU having a small space from the heat sink, all the CPUs cannot be sufficiently cooled by the heat sink. .

そして、このように放熱装置で十分に冷却することができないCPUがあると、そのCPUの温度が上昇してしまうので、そのCPUは誤動作したり故障したりしてしまうおそれがある。   If there is a CPU that cannot be sufficiently cooled by the heat dissipation device, the temperature of the CPU rises, and the CPU may malfunction or break down.

本発明は、上記点に鑑み、複数の電子部品が発生する熱を共通の部材で放散させる放熱装置において、全ての電子部品を効果的に冷却(放熱)することを目的とする。   In view of the above points, an object of the present invention is to effectively cool (dissipate) all electronic components in a heat dissipation device that dissipates heat generated by a plurality of electronic components using a common member.

本発明は、上記目的を達成するために、請求項1に記載の発明では、電子部品の各々と所定の間隔を空けて配置され、電子部品の各々が発生する熱を放散させる共通の放熱部材を備える。そして、放熱部材と電子部品との間には、空気よりも熱伝導率の高い材料からなる熱伝導層が形成されており、さらに、放熱部材と電子部品との間隔は、全ての電子部品において略同一である。   In order to achieve the above object, according to the present invention, a common heat dissipating member is disposed at a predetermined distance from each electronic component and dissipates heat generated by each electronic component. Is provided. A heat conductive layer made of a material having a higher thermal conductivity than air is formed between the heat radiating member and the electronic component, and the distance between the heat radiating member and the electronic component is the same for all electronic components. It is almost the same.

このため、電子部品と放熱部材との間の空隙がなくなる程度の厚さとなるように熱伝導層を形成することが可能となるので、電子部品と放熱部材との間の熱抵抗が大きくなってしまうことを、全ての電子部品において抑制することができる。   For this reason, since it becomes possible to form a heat conductive layer so that the space | gap between an electronic component and a heat radiating member may be eliminated, the thermal resistance between an electronic component and a heat radiating member becomes large. It can suppress in all the electronic components.

したがって、請求項1に記載の発明によれば、放熱効果が低下してしまうのを抑制することができるので、全ての電子部品を効果的に冷却(放熱)することができる。
また、請求項2に記載の発明では、電子部品の各々と対向する位置に配置され、電子部品の各々が発生する熱を吸収する共通の吸熱部と、吸熱部の少なくとも一端側に設けられ、吸熱部に吸収された熱を外部へ放散する放熱部とを備え、吸熱部と電子部品との間には、空気よりも熱伝導率の高い材料からなる熱伝導層が形成されており、さらに、電子部品の各々は、互いに異なる基板に取り付けられていることを特徴とする。
Therefore, according to the first aspect of the present invention, it is possible to prevent the heat dissipation effect from deteriorating, so that all electronic components can be effectively cooled (heat dissipated).
Further, in the invention according to claim 2, provided at a position facing each of the electronic components, provided in a common endothermic portion that absorbs heat generated by each of the electronic components, and at least one end side of the endothermic portion, A heat-dissipating part that dissipates heat absorbed by the heat-absorbing part to the outside, and between the heat-absorbing part and the electronic component, a heat conductive layer made of a material having a higher thermal conductivity than air is formed, and Each of the electronic components is attached to different substrates.

このような請求項2に記載の発明では、電子部品の各々が互いに異なる基板に取り付けられているので、他の電子部品の高さに合わせることなく、各電子部品の高さに合った最適な位置となるように、各電子部品を放熱装置に配置することができる。   In the invention according to the second aspect, since each of the electronic components is mounted on different substrates, the optimum matching the height of each electronic component can be achieved without matching the height of other electronic components. Each electronic component can be arranged in a heat dissipation device so as to be positioned.

このため、CPUの寸法の違いに関係なく、熱伝導層の厚さを最小限度の厚さにすることが可能となるので、電子部品と吸熱部との間の熱抵抗が大きくなってしまうことを、全ての電子部品において抑制することができる。   For this reason, since it becomes possible to make the thickness of a heat conductive layer into the minimum thickness irrespective of the difference in the dimension of CPU, the thermal resistance between an electronic component and a heat absorption part will become large. Can be suppressed in all electronic components.

したがって、請求項2に記載の発明によれば、放熱効果が低下してしまうのを抑制することができるので、全ての電子部品を効果的に冷却することができる。
また、電子部品は、請求項3に記載のように、吸熱部を挟んだ両側に配置されていれば、複数の電子部品を吸熱部の片面側(同一平面側)に配置する場合に比べて、吸熱部の表面積を小さくすることができるので、吸熱部の大きさを小さくすることができる。
Therefore, according to the second aspect of the present invention, it is possible to suppress a reduction in the heat dissipation effect, so that all electronic components can be effectively cooled.
In addition, as described in claim 3, if the electronic parts are arranged on both sides sandwiching the heat absorbing part, the plurality of electronic parts are compared with a case where the electronic parts are arranged on one side (same plane side) of the heat absorbing part. Since the surface area of the endothermic part can be reduced, the size of the endothermic part can be reduced.

本実施形態は、本発明に係る放熱装置を、カーナビゲーション装置が備えるCPUの放熱装置に適用したものであり、以下に実施形態を図面と共に説明する。
(第1実施形態)
1.放熱装置の全体構成
図1(a)は第1実施形態の放熱装置の構成を説明する説明図であり、図1(b)は図1(a)のA−A断面図である。
In the present embodiment, the heat radiating device according to the present invention is applied to a heat radiating device of a CPU included in a car navigation device, and the embodiment will be described below with reference to the drawings.
(First embodiment)
1. Overall Configuration of Heat Dissipation Device FIG. 1A is an explanatory diagram illustrating the configuration of the heat dissipation device of the first embodiment, and FIG. 1B is a cross-sectional view taken along the line AA in FIG.

本実施形態の放熱装置は、図1(a)及び図1(b)に示すように、カーナビゲーション装置が備えるCPU1、3が発生する熱を放散させる放熱部材9、及びCPU1、3を保護する平板状のカバー10等を有して構成されており、この放熱部材9及びカバー10は、アルミニウムや銅等の熱伝導率の高い金属からなる。   As shown in FIGS. 1A and 1B, the heat dissipating device of the present embodiment protects the heat dissipating member 9 that dissipates heat generated by the CPUs 1 and 3 included in the car navigation device, and the CPUs 1 and 3. The heat sink 9 and the cover 10 are made of a metal having high thermal conductivity such as aluminum or copper.

そして、放熱部材9は、CPU1、3が発生する熱を吸収する共通の吸熱部11、及び吸熱部11に吸収された熱を大気中へ放散する放熱部13等を有して構成されており、吸熱部11及び放熱部13は一体成形されている。   The heat radiating member 9 includes a common heat absorbing portion 11 that absorbs heat generated by the CPUs 1 and 3, and a heat radiating portion 13 that dissipates heat absorbed by the heat absorbing portion 11 into the atmosphere. The heat absorbing part 11 and the heat radiating part 13 are integrally formed.

吸熱部11は、上方側から見て矩形状に形成されており、この吸熱部11の外周(図1(a)でいう前後左右方向)には、4つの壁部13a、13b、13c、13dが形成されている。   The heat absorbing portion 11 is formed in a rectangular shape when viewed from above, and four wall portions 13a, 13b, 13c, and 13d are formed on the outer periphery of the heat absorbing portion 11 (front and rear, right and left directions in FIG. 1A). Is formed.

また、壁部13a〜13dの上下方向略中央部分には、図1(b)に示すように、CPU1、3が吸熱部11の上下両面側に配置することができるように、吸熱部11が一体に形成されている。   Further, the heat absorbing portion 11 is provided at the substantially central portion in the vertical direction of the walls 13a to 13d so that the CPUs 1 and 3 can be arranged on both the upper and lower surfaces of the heat absorbing portion 11, as shown in FIG. It is integrally formed.

また、壁部13a〜13dのうち左右1組の壁部13b、13dには、複数のフィン13eが形成されており、左右1組の壁部13b、13dは、吸熱部11により吸収された熱をフィン13eに伝達する熱伝達部として構成されている。   In addition, a plurality of fins 13e are formed on the left and right set of wall portions 13b and 13d among the wall portions 13a to 13d, and the left and right set of wall portions 13b and 13d are heat absorbed by the heat absorbing portion 11. It is comprised as a heat transfer part which transmits to the fin 13e.

フィン13eは、壁部(熱伝達部)13b、13dから伝達されてきた熱を大気中へ放散するためのものであり、このフィン13eは、壁部13b、13dから外側(吸熱部11側とは反対側)に向かって突出している。因みに、本実施形態では、フィン13e及び壁部13b、13dが放熱部13に相当している。   The fin 13e is for radiating the heat transmitted from the wall portions (heat transfer portions) 13b and 13d to the atmosphere, and the fin 13e is disposed outside the heat sink portion 11 side from the wall portions 13b and 13d. Protrudes toward the opposite side. Incidentally, in the present embodiment, the fin 13e and the wall portions 13b and 13d correspond to the heat radiating portion 13.

一方、各CPU1、3は、互いに異なる基板5、7に取り付けられており、CPU1は、吸熱部11を挟んで一方側(下方側)に配置され、CPU3は、吸熱部11を挟んで他方側(上方側)に配置されている。なお、本実施形態において、CPU1の高さは、CPU3の高さよりも低い。   On the other hand, the CPUs 1 and 3 are attached to different substrates 5 and 7, respectively. The CPU 1 is arranged on one side (downward side) with the heat absorption part 11 in between, and the CPU 3 has the other side with the heat absorption part 11 in between. (Upper side). In the present embodiment, the height of the CPU 1 is lower than the height of the CPU 3.

また、吸熱部11と各CPU1、3との間には、吸熱部11とCPU1、3との間の空隙をなくすために、空気よりも熱伝導率の高い材料からなる熱伝導層15が形成されており、この熱伝導層15は、各CPU1、3の表面にグリスが塗布されてその塗布面が吸熱部11の表面側となるように、基板5、7が吸熱部11に取り付けられることで形成される。   Further, a heat conduction layer 15 made of a material having a higher thermal conductivity than air is formed between the heat absorption unit 11 and each of the CPUs 1 and 3 in order to eliminate a gap between the heat absorption unit 11 and the CPUs 1 and 3. The heat conducting layer 15 has the substrates 5 and 7 attached to the heat absorbing portion 11 such that grease is applied to the surfaces of the CPUs 1 and 3 and the coated surface is on the surface side of the heat absorbing portion 11. Formed with.

なお、基板5、7は、図示しないネジ及びスペーサにより吸熱部に取り付けられており、カバー10は、放熱部材9の上下方向両側から図示しないネジにより壁部13a〜13dに取り付けられている。   In addition, the board | substrates 5 and 7 are attached to the heat absorption part with the screw | thread and spacer which are not shown in figure, and the cover 10 is attached to wall part 13a-13d with the screw | thread not shown from the up-down direction both sides of the thermal radiation member 9.

2.本実施形態に係る放熱装置の特徴
以上説明したように、本実施形態の放熱装置では、各CPU1、3が互いに異なる基板5、7に取り付けられているので、高さの大きいCPU3に合わせることなく、各CPU1、3の高さに合った最適な位置となるように、各CPU1、3を放熱装置に配置することができる。
2. Features of Heat Dissipating Device According to this Embodiment As described above, in the heat dissipating device of this embodiment, the CPUs 1 and 3 are attached to different substrates 5 and 7, so that they do not match the CPU 3 having a large height. The CPUs 1 and 3 can be arranged in the heat dissipating device so as to be in an optimum position according to the height of the CPUs 1 and 3.

このため、CPU1、3の寸法の違いに関係なく、熱伝導層15の厚さを、CPU1、3と吸熱部11との間の空隙がなくなる程度の最小限(略同一)の厚さにすることが可能となるので、高さの小さいCPU1と吸熱部11との間の熱抵抗が大きくなってしまうことを、全てのCPU1、3において抑制することができる。   For this reason, regardless of the difference in the dimensions of the CPUs 1 and 3, the thickness of the heat conductive layer 15 is set to the minimum (substantially the same) thickness that eliminates the gap between the CPUs 1 and 3 and the heat absorbing part 11. Therefore, it is possible to suppress in all the CPUs 1 and 3 that the thermal resistance between the CPU 1 having a small height and the heat absorbing unit 11 is increased.

したがって、本実施形態によれば、放熱効果が低下してしまうのを抑制することができるので、全てのCPU1、3を効果的に冷却(放熱)することができる。
また、本実施形態によれば、全てのCPU1、3を効果的に冷却することができるので、そのCPU1、3が誤動作したり故障したりしてしまうことを防止することができる。
Therefore, according to this embodiment, since it can suppress that a heat dissipation effect falls, all CPU1, 3 can be cooled effectively (heat radiation).
In addition, according to the present embodiment, since all the CPUs 1 and 3 can be effectively cooled, it is possible to prevent the CPUs 1 and 3 from malfunctioning or failing.

また、本実施形態では、吸熱部11が略平板状に形成されているので、後述する第2実施形態(図2参照)のように、吸熱部11のCPU1、3側の面に段差をつけた場合に比べて、製品(放熱装置)毎に吸熱部11の表面の形状を変更しなくてもよいので、放熱装置の製造原価上昇を抑制することができる。   Further, in the present embodiment, since the heat absorbing portion 11 is formed in a substantially flat plate shape, a step is provided on the surface of the heat absorbing portion 11 on the CPU 1 and 3 side as in a second embodiment (see FIG. 2) described later. Compared to the case, it is not necessary to change the shape of the surface of the heat absorbing part 11 for each product (heat radiating device), so that an increase in the manufacturing cost of the heat radiating device can be suppressed.

また、本実施形態では、吸熱部11を挟んだ両側にCPU1、3を配置するようにしている。
このため、2つのCPU1、3を吸熱部11の同一平面側(例えば下側)に配置する場合に比べて、吸熱部11の表面積を小さくすることができる。
In the present embodiment, the CPUs 1 and 3 are arranged on both sides of the heat absorption part 11.
For this reason, compared with the case where two CPU1 and 3 are arrange | positioned on the same plane side (for example, lower side) of the heat absorption part 11, the surface area of the heat absorption part 11 can be made small.

例えば、吸熱部11の下側平面の面積が、2つのCPU1、3のうち表面(吸熱部11側)の面積が大きい方の大きさとなるように、吸熱部11を設計することで、2つのCPU1、3を吸熱部11の同一平面側に配置する場合に比べて、吸熱部11の表面積を小さくすることができ、この結果、吸熱部11の大きさを小さくすることができる。   For example, by designing the endothermic part 11 so that the area of the lower plane of the endothermic part 11 is the larger of the area of the surface (the endothermic part 11 side) of the two CPUs 1 and 3, Compared with the case where the CPUs 1 and 3 are arranged on the same plane side of the heat absorbing part 11, the surface area of the heat absorbing part 11 can be reduced, and as a result, the size of the heat absorbing part 11 can be reduced.

(第2実施形態)
第1実施形態では、CPU1、3を互いに異なる基板5、7に取り付けて、各CPU1、3が発生する熱を同一の放熱部材9から放散させるようにしていたが、本実施形態は、CPU1、3を同一の基板5に取り付けて、各CPU1、3が発生する熱を同一の放熱部材9から放散させるようにしたものである。
(Second Embodiment)
In the first embodiment, the CPUs 1 and 3 are attached to different substrates 5 and 7 so that the heat generated by the CPUs 1 and 3 is dissipated from the same heat radiating member 9. 3 is attached to the same substrate 5 so that the heat generated by the CPUs 1 and 3 is dissipated from the same heat radiating member 9.

図2は、第2実施形態の放熱装置の説明をする説明図である。
本実施形態では、図2に示すように、CPU1、3が同一の基板5に取り付けられるとともに、吸熱部11のCPU1、3側の面には、各CPU1、3の高さに合わせて、その高さを吸収するための段差が形成されている。
FIG. 2 is an explanatory diagram illustrating a heat dissipation device according to the second embodiment.
In the present embodiment, as shown in FIG. 2, the CPUs 1 and 3 are attached to the same substrate 5, and the surface of the heat absorption part 11 on the CPU 1 and 3 side is adjusted to the height of each CPU 1 and 3. A step for absorbing the height is formed.

以上のような本実施形態では、吸熱部11のCPU1、3側にCPU1、3の高さを吸収するための段差が形成されているので、高さの大きいCPU3に合わせることなく、各CPU1、3の高さに合った最適な位置となるように、各CPU1、3を放熱装置に配置することができる。   In the present embodiment as described above, the steps for absorbing the heights of the CPUs 1 and 3 are formed on the CPUs 1 and 3 side of the heat absorption unit 11, so that each CPU 1, Each of the CPUs 1 and 3 can be arranged in the heat dissipation device so as to be in an optimum position according to the height of 3.

したがって、上述した第1実施形態と同様に、放熱効果が低下してしまうのを抑制することができるので、全てのCPU1、3を効果的に冷却(放熱)することができる。
(その他の実施形態)
上記実施形態では、熱伝導層15としてグリスを用いたが、これに限らず、放熱シートを用いてもよい。
Accordingly, as in the first embodiment described above, it is possible to suppress a decrease in the heat dissipation effect, so that all the CPUs 1 and 3 can be effectively cooled (heat dissipated).
(Other embodiments)
In the said embodiment, although grease was used as the heat conductive layer 15, it is not restricted to this, You may use a thermal radiation sheet.

また、上記実施形態では、2つのCPU1、3が発生する熱を放散するようにしていたが、これに限らず、3つ以上のCPUが発生する熱を放散するようにしてもよい。
この場合、例えば、各CPUを互いに異なる基板に取り付け、熱伝導層15の厚さがCPUと吸熱部11との間の空隙がなくなる程度の最小限度の厚さとなるように、各CPUを位置調整するとよい。
In the above embodiment, the heat generated by the two CPUs 1 and 3 is dissipated. However, the present invention is not limited to this, and the heat generated by three or more CPUs may be dissipated.
In this case, for example, the CPUs are mounted on different substrates, and the positions of the CPUs are adjusted so that the thickness of the heat conduction layer 15 is a minimum thickness that eliminates the gap between the CPU and the heat absorption unit 11. Good.

また、上記実施形態では、CPU1、3が発生した熱を空気で冷やすようにしていたが、これに限らず、水を循環させることでCPU1、3が発生した熱を冷却するようにしてもよい。   In the above embodiment, the heat generated by the CPUs 1 and 3 is cooled by air. However, the present invention is not limited to this, and the heat generated by the CPUs 1 and 3 may be cooled by circulating water. .

また、上記実施形態では、壁部13a〜13dが吸熱部11に一体成形されているものとして説明したが、これに限らず、壁部13a〜13dのうち壁部13a、13cは吸熱部11に一体成形されていなくてもよい。   Moreover, in the said embodiment, although wall part 13a-13d was demonstrated as what was integrally molded by the heat absorption part 11, not only this but wall part 13a, 13c is the heat absorption part 11 among wall parts 13a-13d. It does not need to be integrally molded.

この場合、壁部13a、13cとカバー10とを一体成形して角筒状のケースを形成し、フィン13e、壁部13b、13d及び吸熱部11からなる放熱部材9をケースに挿入することで、放熱装置を組み立てるようにするとよい。   In this case, the wall portions 13a, 13c and the cover 10 are integrally formed to form a rectangular tube case, and the heat radiating member 9 including the fins 13e, the wall portions 13b, 13d and the heat absorbing portion 11 is inserted into the case. It is better to assemble the heat dissipation device.

また、上記実施形態では、壁部13b、13dにフィン13eが形成されていたが、壁部13a、13cにフィン13eが形成されていてもよい。
また、本発明は、特許請求の範囲に記載された発明の趣旨に合致するものであればよく、上述の実施形態に限定されるものではない。
Moreover, in the said embodiment, although the fin 13e was formed in wall part 13b, 13d, the fin 13e may be formed in wall part 13a, 13c.
Further, the present invention is not limited to the above-described embodiment as long as it matches the gist of the invention described in the claims.

第1実施形態の放熱装置を説明する説明図である。It is explanatory drawing explaining the thermal radiation apparatus of 1st Embodiment. 第2実施形態の放熱装置を説明する説明図である。It is explanatory drawing explaining the thermal radiation apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

1,3…CPU、5,7…基板、9…放熱部材、10…カバー、11…吸熱部、13…放熱部、13a〜13d…壁部、13e…フィン、15…熱伝導層。 DESCRIPTION OF SYMBOLS 1,3 ... CPU, 5,7 ... Board | substrate, 9 ... Heat dissipation member, 10 ... Cover, 11 ... Heat absorption part, 13 ... Heat dissipation part, 13a-13d ... Wall part, 13e ... Fin, 15 ... Heat conduction layer.

Claims (3)

電子部品の各々と所定の間隔を空けて配置され、前記電子部品の各々が発生する熱を放散させる共通の放熱部材を備え、
前記放熱部材と前記電子部品との間には、空気よりも熱伝導率の高い材料からなる熱伝導層が形成されており、
さらに、前記放熱部材と前記電子部品との間隔は、全ての電子部品において略同一であることを特徴とする放熱装置。
Each electronic component is disposed at a predetermined interval, and includes a common heat dissipation member that dissipates heat generated by each of the electronic components.
Between the heat dissipation member and the electronic component, a heat conductive layer made of a material having a higher thermal conductivity than air is formed,
Furthermore, the space | interval of the said heat radiating member and the said electronic component is substantially the same in all the electronic components, The heat radiating device characterized by the above-mentioned.
電子部品の各々と対向する位置に配置され、前記電子部品の各々が発生する熱を吸収する共通の吸熱部と、
前記吸熱部の少なくとも一端側に設けられ、前記吸熱部に吸収された熱を外部へ放散する放熱部とを備え、
前記吸熱部と前記電子部品との間には、空気よりも熱伝導率の高い材料からなる熱伝導層が形成されており、
さらに、前記電子部品の各々は、互いに異なる基板に取り付けられていることを特徴とする放熱装置。
A common endothermic part that is disposed at a position facing each of the electronic components and absorbs heat generated by each of the electronic components;
A heat dissipating part that is provided on at least one end of the heat absorbing part and dissipates heat absorbed by the heat absorbing part to the outside;
Between the heat absorption part and the electronic component, a heat conductive layer made of a material having a higher thermal conductivity than air is formed,
Furthermore, each of the said electronic components is attached to a mutually different board | substrate, The thermal radiation apparatus characterized by the above-mentioned.
前記電子部品は、前記吸熱部を挟んだ両側に配置されていることを特徴とする請求項2に記載の放熱装置。   The heat dissipation device according to claim 2, wherein the electronic components are disposed on both sides of the heat absorption part.
JP2006213493A 2006-08-04 2006-08-04 Heat radiating apparatus Pending JP2008041893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213493A JP2008041893A (en) 2006-08-04 2006-08-04 Heat radiating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213493A JP2008041893A (en) 2006-08-04 2006-08-04 Heat radiating apparatus

Publications (1)

Publication Number Publication Date
JP2008041893A true JP2008041893A (en) 2008-02-21

Family

ID=39176590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213493A Pending JP2008041893A (en) 2006-08-04 2006-08-04 Heat radiating apparatus

Country Status (1)

Country Link
JP (1) JP2008041893A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211103A (en) * 2010-03-30 2011-10-20 Aisin Aw Co Ltd Cooling structure of cpu in navigation device and navigation device
JP2013201233A (en) * 2012-03-23 2013-10-03 Tdk Corp Power supply device
JP2016063055A (en) * 2014-09-18 2016-04-25 サクサ株式会社 Heat dissipation structure of electronic apparatus
CN106357124A (en) * 2015-07-15 2017-01-25 富士电机株式会社 Power conversion device
JP2018160499A (en) * 2017-03-22 2018-10-11 トヨタ自動車株式会社 Method of manufacturing heat dissipation type electronic component
DE112015001037B4 (en) * 2014-02-28 2020-10-15 Murata Manufacturing Co., Ltd. Electronic device module and power supply module
CN111954428A (en) * 2019-05-15 2020-11-17 浙江宇视科技有限公司 Heat radiation structure and electronic assembly with same
EP3806295A1 (en) * 2019-10-11 2021-04-14 Jtekt Corporation Control device and motor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864732A (en) * 1994-08-26 1996-03-08 Mitsubishi Electric Corp Semiconductor integrated circuit device
JP2001196775A (en) * 2000-01-07 2001-07-19 Furukawa Electric Co Ltd:The Method of mounting heat-releasing component on heat sink and cooling device of heat-releasing component
JP2002232172A (en) * 2001-02-07 2002-08-16 Matsushita Electric Ind Co Ltd Heat radiating device for electronic component
JP2005057088A (en) * 2003-08-05 2005-03-03 Agilent Technol Inc Heat-conductive member of multilayer structure and electronic apparatus using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864732A (en) * 1994-08-26 1996-03-08 Mitsubishi Electric Corp Semiconductor integrated circuit device
JP2001196775A (en) * 2000-01-07 2001-07-19 Furukawa Electric Co Ltd:The Method of mounting heat-releasing component on heat sink and cooling device of heat-releasing component
JP2002232172A (en) * 2001-02-07 2002-08-16 Matsushita Electric Ind Co Ltd Heat radiating device for electronic component
JP2005057088A (en) * 2003-08-05 2005-03-03 Agilent Technol Inc Heat-conductive member of multilayer structure and electronic apparatus using it

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211103A (en) * 2010-03-30 2011-10-20 Aisin Aw Co Ltd Cooling structure of cpu in navigation device and navigation device
JP2013201233A (en) * 2012-03-23 2013-10-03 Tdk Corp Power supply device
DE112015001037B4 (en) * 2014-02-28 2020-10-15 Murata Manufacturing Co., Ltd. Electronic device module and power supply module
JP2016063055A (en) * 2014-09-18 2016-04-25 サクサ株式会社 Heat dissipation structure of electronic apparatus
CN106357124A (en) * 2015-07-15 2017-01-25 富士电机株式会社 Power conversion device
JP2017022337A (en) * 2015-07-15 2017-01-26 富士電機株式会社 Power conversion device
CN106357124B (en) * 2015-07-15 2020-08-14 富士电机株式会社 Power conversion device
JP2018160499A (en) * 2017-03-22 2018-10-11 トヨタ自動車株式会社 Method of manufacturing heat dissipation type electronic component
CN111954428A (en) * 2019-05-15 2020-11-17 浙江宇视科技有限公司 Heat radiation structure and electronic assembly with same
CN111954428B (en) * 2019-05-15 2023-09-01 浙江宇视科技有限公司 Heat radiation structure and electronic component with same
EP3806295A1 (en) * 2019-10-11 2021-04-14 Jtekt Corporation Control device and motor device
US11632013B2 (en) 2019-10-11 2023-04-18 Jtekt Corporation Control device and motor device that ensure heat dissipation while reducing the size of the motor device

Similar Documents

Publication Publication Date Title
US8982559B2 (en) Heat sink, cooling module and coolable electronic board
JP2008041893A (en) Heat radiating apparatus
US20130206367A1 (en) Heat dissipating module
JP5949988B1 (en) Electronic equipment
JPWO2011105364A1 (en) heatsink
JP6036894B2 (en) Cooling device and equipment
JP6885194B2 (en) Electronics
US7365978B2 (en) Heat dissipating device
JP2009200144A (en) Cooling apparatus
JP2006339223A (en) Heat dissipation structure of cpu
JP4438526B2 (en) Power component cooling system
JP2007027520A (en) Radiator
JP2008206252A (en) Semiconductor power converter
JP2012129379A (en) Radiation fin
JP4529703B2 (en) Heat dissipation structure and heat dissipation parts
TWI479983B (en) Monolithical fin-type heat sink
JP2008160029A (en) Cooling structure, and electronic equipment
JP5896124B2 (en) heatsink
TWM531125U (en) Heat sink board assembly and electronic device
JP5480123B2 (en) Heat dissipation structure
JP2006203016A (en) Heat radiating component
JP2016131218A (en) Heat radiation device
JP6628476B2 (en) Heat radiator of heating element and surveillance camera device having the same
JP2006013043A (en) Heat-piped heatsink
JP2007102533A (en) Heat radiator for information processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004