JP2007312449A - Periodic magnetic field generator and motor employing the same - Google Patents
Periodic magnetic field generator and motor employing the same Download PDFInfo
- Publication number
- JP2007312449A JP2007312449A JP2006136108A JP2006136108A JP2007312449A JP 2007312449 A JP2007312449 A JP 2007312449A JP 2006136108 A JP2006136108 A JP 2006136108A JP 2006136108 A JP2006136108 A JP 2006136108A JP 2007312449 A JP2007312449 A JP 2007312449A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnetic pole
- magnetic
- field generator
- periodic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Linear Motors (AREA)
Abstract
Description
本発明は、ハルバッハ磁石配列構造の永久磁石で構成される界磁極を備えた周期磁界発生装置およびこれを用いた電動機に関する。 The present invention relates to a periodic magnetic field generator having a field pole composed of permanent magnets having a Halbach magnet arrangement structure and an electric motor using the same.
従来から、NC工作機械や半導体製造装置などのFA分野では、送りや加工の高速化、高精度化を達成できるようにリニアモータが用いられている。
このうちリニアモータの界磁極には、(1)磁極毎に磁石を配置し隣接する磁石の磁化方向を180度異なるように配置した周期磁界発生装置と、(2)磁極の向きが異なる主磁極と副磁極とから構成されるハルバッハ磁石配列構造の永久磁石を配置した周期磁界発生装置の2種類が提案されている(例えば、特許文献1参照)。後者の周期磁界発生装置は、前者の周期磁界発生装置に比べ、発生磁界が大きく、発生磁界が正弦波分布となる、などの特長を有することから、リニアモータに適用した場合、推力向上や推力リプルの低減を図れるという利点がある。後者の周期磁界発生装置について三つの例を説明する。
(第1の従来例)
第1の従来例を図8に示す。図8は、従来のハルバッハ磁石配列構造の永久磁石を配置した周期磁界発生装置の側断面図である。図8において、111は永久磁石からなる主磁極、112は永久磁石からなる副磁極、102は磁化の方向、103はヨーク、105は磁界発生面であり、ヨーク103の反対側(図の上側)の磁界発生面105に、正弦波またはそれに近い磁束密度波形を有する周期的な磁界を発生させることができる。
Conventionally, in the FA field such as NC machine tools and semiconductor manufacturing apparatuses, linear motors have been used so as to achieve high speed and high precision of feeding and processing.
Among these, the field pole of the linear motor includes (1) a periodic magnetic field generator in which a magnet is arranged for each magnetic pole so that the magnetization directions of adjacent magnets are 180 degrees different from each other, and (2) a main magnetic pole having a different magnetic pole orientation. There have been proposed two types of periodic magnetic field generators in which permanent magnets having a Halbach magnet arrangement structure composed of a magnetic pole and a sub-magnetic pole are arranged (see, for example, Patent Document 1). The latter periodic magnetic field generator has features such as a larger generated magnetic field and a sinusoidal distribution of the generated magnetic field than the former periodic magnetic field generator. There is an advantage that ripple can be reduced. Three examples of the latter periodic magnetic field generator will be described.
(First conventional example)
A first conventional example is shown in FIG. FIG. 8 is a side sectional view of a periodic magnetic field generator in which permanent magnets having a conventional Halbach magnet arrangement structure are arranged. In FIG. 8, 111 is a main magnetic pole made of a permanent magnet, 112 is a sub magnetic pole made of a permanent magnet, 102 is a direction of magnetization, 103 is a yoke, and 105 is a magnetic field generating surface. It is possible to generate a periodic magnetic field having a sine wave or a magnetic flux density waveform close thereto on the magnetic field generating surface 105.
(第2の従来例)
第2の従来例として、周期の異なるハルバッハ磁石配列を2列に配置した周期磁界発生装置が提案されているものがある(例えば、特許文献2参照)。
図9は、第2の従来例を示す周期磁界発生装置の側断面図である。周期の異なるハルバッハ磁石配列を2列に配置した構造を示している。図9において、121および122は永久磁石からなる第1の磁石列の主磁極および副磁極、131および132は永久磁石からなる第2の磁石列の主磁極および副磁極、103はヨーク、105は磁界発生面である。その結果、ピーク磁界強度が高い三角波型に近似できるような磁界を発生することができる。
(Second conventional example)
As a second conventional example, there has been proposed a periodic magnetic field generator in which Halbach magnet arrays having different periods are arranged in two rows (see, for example, Patent Document 2).
FIG. 9 is a side sectional view of a periodic magnetic field generator showing a second conventional example. A structure in which Halbach magnet arrays with different periods are arranged in two rows is shown. In FIG. 9, 121 and 122 are main magnetic poles and sub magnetic poles of a first magnet row made of permanent magnets, 131 and 132 are main magnetic poles and sub magnetic poles of a second magnet row made of permanent magnets, 103 is a yoke, 105 is It is a magnetic field generating surface. As a result, a magnetic field that can be approximated to a triangular wave type having a high peak magnetic field intensity can be generated.
(第3の従来例)
上記のハルバッハ磁石配列構造における永久磁石の形状は直方体であるが、直方体以外の形状を有する磁石を用いたハルバッハ磁石配列構造の周期磁界発生装置が提案されている(例えば、特許文献3参照)。
図10は、第3の従来例を示す周期磁界発生装置の側断面図である。直方体以外の形状を有する磁石を用いたハルバッハ磁石配列構造の周期磁界発生装置の側断面図を示しており、特許文献3の回転型モータの固定子をリニア構造に変換したものである。図10において、111は永久磁石からなる主磁極、112は永久磁石からなる副磁極、102は磁化の方向、103はヨーク、105は磁界発生面であり、ヨーク103の反対側(図の上側)の磁界発生面105に、正弦波またはそれに近い磁束密度波形を有する周期的な磁界を発生させることができ、磁石を薄肉化できる。
Although the shape of the permanent magnet in the Halbach magnet arrangement structure is a rectangular parallelepiped, a periodic magnetic field generator having a Halbach magnet arrangement structure using a magnet having a shape other than a rectangular parallelepiped has been proposed (see, for example, Patent Document 3).
FIG. 10 is a side sectional view of a periodic magnetic field generator showing a third conventional example. The side sectional view of the periodic magnetic field generator of the Halbach magnet arrangement structure using the magnet which has shapes other than a rectangular parallelepiped is shown, and the stator of the rotation type motor of patent documents 3 is changed into the linear structure. In FIG. 10, 111 is a main magnetic pole made of a permanent magnet, 112 is a sub magnetic pole made of a permanent magnet, 102 is a direction of magnetization, 103 is a yoke, 105 is a magnetic field generating surface, and is opposite to the yoke 103 (upper side in the figure). A periodic magnetic field having a sine wave or a magnetic flux density waveform close to the sine wave can be generated on the magnetic field generating surface 105, and the magnet can be thinned.
ところが、従来のハルバッハ磁石配列構造の周期磁界発生装置では、磁気回路の構成上、磁界発生面に発生磁界に直接的には貢献しない副磁極(永久磁石)の配置が必須であり、磁界発生面は主磁極永久磁石および副磁極(永久磁石)だけから構成されるため、発生磁界強度および波形の形状などを自由に設計することができないという問題があった。 However, in the conventional periodic magnetic field generator having the Halbach magnet arrangement structure, the arrangement of the sub magnetic pole (permanent magnet) that does not directly contribute to the generated magnetic field is essential on the magnetic field configuration due to the configuration of the magnetic circuit. Is composed of only a main magnetic pole permanent magnet and a sub magnetic pole (permanent magnet), there is a problem that the generated magnetic field strength and the waveform shape cannot be designed freely.
本発明はこのような問題点を鑑みてなされたものであり、任意の発生磁界強度および波形を有する設計自由度の大きい高周期磁界発生装置およびこれを用いた電動機を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a high-period magnetic field generator having an arbitrary generated magnetic field strength and waveform and a high degree of design freedom, and an electric motor using the same. .
上記問題を解決するため、本発明は、次のように構成したものである。
請求項1の発明は、発生磁界の方向に磁化された永久磁石からなる主磁極とこの近傍に配置される永久磁石からなる副磁極とから構成されるハルバッハ磁石配列構造の界磁極を備えた周期磁界発生装置において、前記主磁極は磁界発生面に配置され、前記副磁極は前記主磁極の磁界発生面から離れた位置に配置されたことを特徴としている。
また、請求項2の発明は、請求項1記載の周期磁界発生装置において、前記主磁極の配列は、隣接する主磁極の境界に隙間を設けたことを特徴としている。
また、請求項3の発明は、請求項1または2記載の周期磁界発生装置において、前記副磁極の配列は、隣接する副磁極の境界に隙間が設けてあることを特徴としている。
また、請求項4の発明は、請求項1から請求項3に記載の周期磁界発生装置において、前記主磁極の形状は、磁極中心部の磁石高さが高く磁極間部の磁石高さが低いことを特徴としている。
また、請求項5の発明は、請求項1から4に記載の周期磁界発生装置において、前記ハルバッハ磁石配列構造の界磁極を少なくとも2個対向させたことを特徴としている。
また、請求項6の発明は、請求項1から5に記載の周期磁界発生装置を用いて製作されたことを特徴とする電動機である。
In order to solve the above problems, the present invention is configured as follows.
According to the first aspect of the present invention, there is provided a period provided with a field pole having a Halbach magnet array structure composed of a main magnetic pole made of a permanent magnet magnetized in the direction of the generated magnetic field and a sub-magnetic pole made of a permanent magnet arranged in the vicinity thereof. In the magnetic field generator, the main magnetic pole is disposed on a magnetic field generating surface, and the sub magnetic pole is disposed at a position away from the magnetic field generating surface of the main magnetic pole.
According to a second aspect of the present invention, in the periodic magnetic field generator according to the first aspect, the arrangement of the main magnetic poles is characterized in that a gap is provided at a boundary between adjacent main magnetic poles.
According to a third aspect of the present invention, in the periodic magnetic field generator according to the first or second aspect, the arrangement of the sub magnetic poles is characterized in that a gap is provided at a boundary between adjacent sub magnetic poles.
According to a fourth aspect of the present invention, in the periodic magnetic field generator according to any one of the first to third aspects, the shape of the main magnetic pole is such that the magnet height at the center of the magnetic pole is high and the magnet height at the portion between the magnetic poles is low. It is characterized by that.
According to a fifth aspect of the present invention, in the periodic magnetic field generator according to any of the first to fourth aspects, at least two field poles of the Halbach magnet arrangement structure are opposed to each other.
A sixth aspect of the present invention is an electric motor manufactured using the periodic magnetic field generator according to the first to fifth aspects.
請求項1から請求項6に記載の発明によると、発生磁界に直接的には貢献しない副磁極を磁界発生面から取り除くことが可能であり、磁界発生面の主磁極と隣接する主磁極との間に隙間を設けることもできるので、任意の発生磁界強度および波形を有する設計自由度の大きい周期磁界発生装置およびこれを用いた電動機を提供できる。 According to the first to sixth aspects of the invention, it is possible to remove from the magnetic field generation surface the sub-magnetic pole that does not directly contribute to the generated magnetic field. Since a gap can be provided between them, it is possible to provide a periodic magnetic field generator having an arbitrary generated magnetic field strength and waveform and a high degree of design freedom, and an electric motor using the same.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の第1の実施例を示す周期磁界発生装置の断面図である。図1において、1は永久磁石からなる磁極、11は永久磁石からなる主磁極、12は永久磁石からなる副磁極、2は磁化の方向、3はバックヨーク、5は磁界発生面である。なお、主磁極11および副磁極12の永久磁石としてNd−Fe−B系の焼結磁石を、バックヨーク3として純鉄を用いた。
本発明が従来技術と異なる点は以下のとおりである。
すなわち、磁界発生面(図の上)には発生磁界の方向に磁化された主磁極11だけを配置し、副磁極12は主磁極11よりも磁界発生面から離れた位置にし、かつ、主磁極11に隣接させ、主磁極11の発生磁束をつなぐように配置している点である。なお、主磁極11の磁化方向は、上向き(↑)と下向き(↓)が交互なるように配置した。
このように主磁極11と副磁極12を配置したので、異方性を有する磁路となる副磁極11を残したまま、発生磁界強度に直接寄与する主磁極を発生磁界面全面に配置できる。したがって、動作点を高く、かつ磁石量を増やせることから、発生磁界強度を高めることができる。
FIG. 1 is a cross-sectional view of a periodic magnetic field generator showing a first embodiment of the present invention. In FIG. 1, 1 is a magnetic pole made of a permanent magnet, 11 is a main magnetic pole made of a permanent magnet, 12 is a sub magnetic pole made of a permanent magnet, 2 is a direction of magnetization, 3 is a back yoke, and 5 is a magnetic field generating surface. Note that Nd—Fe—B sintered magnets were used as the permanent magnets of the main magnetic pole 11 and the sub magnetic pole 12, and pure iron was used as the back yoke 3.
The present invention is different from the prior art as follows.
That is, only the main magnetic pole 11 magnetized in the direction of the generated magnetic field is arranged on the magnetic field generating surface (upper figure), the sub magnetic pole 12 is located farther from the magnetic field generating surface than the main magnetic pole 11, and the main magnetic pole 11 is adjacent to 11 and arranged so as to connect the magnetic flux generated by the main magnetic pole 11. The magnetization direction of the main magnetic pole 11 is arranged so that upward (↑) and downward (↓) are alternated.
Since the main magnetic pole 11 and the sub magnetic pole 12 are arranged in this way, the main magnetic pole that directly contributes to the generated magnetic field strength can be arranged on the entire surface of the generated magnetic field while leaving the sub magnetic pole 11 serving as an anisotropic magnetic path. Therefore, since the operating point is high and the amount of magnets can be increased, the generated magnetic field strength can be increased.
図2は、本発明の第2の実施例を示す周期磁界発生装置の断面図である。図2において、41は主磁極間隙間である。他の符号は実施例1と同じであるため以後説明を省略する。
実施例1と異なる点は、主磁極11と隣接する主磁極11との間に主磁極間隙間41が設けてある点であり、従来技術と異なる点でもある。
従来技術のハルバッハ磁石配列構造では磁界発生面の磁石間に隙間を設けることは磁気回路上できなかったが、本実施例ではこの主磁極隙間41を自由に設定することができるため、発生磁界の波形を自由に設計することができる。
FIG. 2 is a sectional view of a periodic magnetic field generator showing a second embodiment of the present invention. In FIG. 2, 41 is a gap between main magnetic poles. Since other reference numerals are the same as those in the first embodiment, the description thereof will be omitted.
The difference from the first embodiment is that a main magnetic pole gap 41 is provided between the main magnetic pole 11 and the adjacent main magnetic pole 11, which is also different from the prior art.
In the prior art Halbach magnet arrangement structure, it was impossible to provide a gap between the magnets on the magnetic field generating surface on the magnetic circuit. However, in this embodiment, the main magnetic pole gap 41 can be set freely, Waveforms can be designed freely.
図3は、本発明の第3の実施例を示す周期磁界発生装置の断面図である。図3において、42は副磁極間隙間である。
本実施例では、副磁極12の間にも自由に隙間を設けることができるので、発生磁界の波形を自由に設計することができるという従来技術のハルバッハ磁石配列構造にはないメリットである。
FIG. 3 is a sectional view of a periodic magnetic field generator showing a third embodiment of the present invention. In FIG. 3, reference numeral 42 denotes a gap between the sub magnetic poles.
In this embodiment, since a gap can be freely provided between the sub magnetic poles 12, this is an advantage not found in the conventional Halbach magnet arrangement structure in which the waveform of the generated magnetic field can be designed freely.
図4は、本発明の第4の実施例を示す周期磁界発生装置の断面図である。
本実施例では、主磁極11の間と副磁極12の間に同時に主磁極隙間41と副磁極間隙間42を設けることもでき、磁気回路の設計自由度は高くなる。
FIG. 4 is a sectional view of a periodic magnetic field generator showing a fourth embodiment of the present invention.
In the present embodiment, the main magnetic pole gap 41 and the sub magnetic pole gap 42 can be provided simultaneously between the main magnetic poles 11 and between the sub magnetic poles 12, thereby increasing the degree of freedom in designing the magnetic circuit.
図5は、本発明の第5の実施例を示す周期磁界発生装置の断面図である。
本実施例は、主磁極11の形状を直方体ではなく、磁極中心部の磁石高さを高く、磁極間部の磁石高さを低くしたものである。この点が実施例1から実施例4と異なる点である。主磁極11および副磁極12の磁石高さを高くした部分は、磁束が多く通るため磁束密度が高くなりやすい部分でもあり、その部分の磁石高さを高くすることにより、永久磁石中の磁気飽和を低減できるので、磁気回路的に有利となる。
また、任意の発生磁界強度および波形を得るために、主磁極間隙間41を設けた例を図6に示した。ここでは主磁極間隙間41を設けた例だけを図示したが、副磁極間隙間42を設けても、主磁極間隙間41と副磁極間隙間42を同時に設けても、本発明が有効である。
FIG. 5 is a cross-sectional view of a periodic magnetic field generator showing a fifth embodiment of the present invention.
In the present embodiment, the shape of the main magnetic pole 11 is not a rectangular parallelepiped, but the magnet height at the center of the magnetic pole is increased and the magnet height at the portion between the magnetic poles is decreased. This point is different from the first to fourth embodiments. The portion where the magnet height of the main magnetic pole 11 and the sub magnetic pole 12 is increased is also a portion where the magnetic flux density tends to increase because a large amount of magnetic flux passes. By increasing the magnet height of the portion, the magnetic saturation in the permanent magnet is increased. This is advantageous in terms of a magnetic circuit.
FIG. 6 shows an example in which a main magnetic pole gap 41 is provided in order to obtain an arbitrary generated magnetic field strength and waveform. Here, only the example in which the main magnetic pole gap 41 is provided is shown, but the present invention is effective even if the sub magnetic pole gap 42 is provided or the main magnetic pole gap 41 and the sub magnetic pole gap 42 are provided simultaneously. .
図7は、本発明の第6の実施例を示す周期磁界発生装置の断面図である。本実施例は実施例1で用いた界磁極を2個対向させることにより、発生磁界強度を高めたものである。図7には、磁石形状が直方体で、磁極間隙間のない例を示したが、複数の磁気回路を対向させる場合においても、それらに限定されることはない。
FIG. 7 is a cross-sectional view of a periodic magnetic field generator showing a sixth embodiment of the present invention. In this embodiment, the generated magnetic field strength is increased by making two field poles used in
なお、以上の本発明の実施例の説明では、永久磁石としてNd−Fe−B系の焼結磁石を、軟磁性材料としては純鉄を用いたが、本発明で用いる永久磁石としては、希土類磁石、フェライト磁石、鋳造磁石、ボンド磁石などが使用可能であり、本発明で用いる軟磁性材料としては、軟鋼、ケイ素鋼板、Fe−Co−V系材料などが使用可能であり、本発明は永久磁石や軟磁性材料の種類に限定されるものではない。 In the above description of the embodiments of the present invention, an Nd—Fe—B sintered magnet is used as a permanent magnet, and pure iron is used as a soft magnetic material. However, as a permanent magnet used in the present invention, a rare earth is used. Magnets, ferrite magnets, cast magnets, bonded magnets and the like can be used. As soft magnetic materials used in the present invention, soft steels, silicon steel plates, Fe-Co-V materials, etc. can be used, and the present invention is permanent. It is not limited to the type of magnet or soft magnetic material.
また、1磁極に対し1個の主磁極と1個の副磁極の例を示したが、永久磁石の製造可能な大きさや吸引・反発力による組立上の困難さなどの制約を回避することや、永久磁石中の渦電流の発生およびそれに伴う発熱や損失を回避することなどを目的に、複数個の永久磁石から構成しても良い。 In addition, an example of one main magnetic pole and one sub magnetic pole is shown for one magnetic pole. For the purpose of avoiding the generation of eddy current in the permanent magnet and the accompanying heat generation and loss, the permanent magnet may be composed of a plurality of permanent magnets.
本発明の周期磁界発生装置は、発生磁界を高くできることから、リニアモータに代表される機器に適用できる。
また、本発明のリニアモータ、回転型モータ、揺動モータは、推力やトルクが高いことから、半導体/液晶製造装置や電子部品実装機、工作機械、金属加工機械、産業用ロボットなどの装置に適用できる。
Since the periodic magnetic field generator of the present invention can increase the generated magnetic field, it can be applied to equipment typified by a linear motor.
In addition, since the linear motor, rotary motor, and swing motor of the present invention have high thrust and torque, they can be used in devices such as semiconductor / liquid crystal manufacturing equipment, electronic component mounting machines, machine tools, metal processing machines, and industrial robots. Applicable.
1 磁極(永久磁石)
11 主磁極
12 副磁極
2 磁化方向
3 バックヨーク
41 主磁極間隙間
42 副磁極間隙間
5 磁界発生面
111 主磁極(永久磁石)
112 副磁極(永久磁石)
121 主磁極(第1の永久磁石列)
122 副磁極(第1の永久磁石列)
131 主磁極(第2の永久磁石列)
132 副磁極(第2の永久磁石列)
102 磁化方向
103 バックヨーク
105 磁界発生面
1 Magnetic pole (permanent magnet)
11 Main magnetic pole 12 Sub magnetic pole 2 Magnetization direction 3 Back yoke 41 Main magnetic pole gap 42 Sub magnetic pole gap 5 Magnetic field generating surface 111 Main magnetic pole (permanent magnet)
112 Sub magnetic pole (permanent magnet)
121 Main pole (first permanent magnet array)
122 Sub magnetic pole (first permanent magnet array)
131 Main pole (second permanent magnet array)
132 Sub magnetic pole (second permanent magnet array)
102 Magnetization direction 103 Back yoke 105 Magnetic field generating surface
Claims (6)
前記主磁極は磁界発生面に配置され、前記副磁極は前記主磁極の磁界発生面から離れた位置に配置されたことを特徴とする周期磁界発生装置。 In a periodic magnetic field generator comprising a field pole of a Halbach magnet array structure composed of a main magnetic pole made of a permanent magnet magnetized in the direction of the generated magnetic field and a sub magnetic pole made of a permanent magnet arranged in the vicinity thereof,
The periodic magnetic field generator according to claim 1, wherein the main magnetic pole is disposed on a magnetic field generating surface, and the sub magnetic pole is disposed at a position away from the magnetic field generating surface of the main magnetic pole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006136108A JP2007312449A (en) | 2006-05-16 | 2006-05-16 | Periodic magnetic field generator and motor employing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006136108A JP2007312449A (en) | 2006-05-16 | 2006-05-16 | Periodic magnetic field generator and motor employing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007312449A true JP2007312449A (en) | 2007-11-29 |
Family
ID=38844798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006136108A Pending JP2007312449A (en) | 2006-05-16 | 2006-05-16 | Periodic magnetic field generator and motor employing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007312449A (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009153332A (en) * | 2007-12-21 | 2009-07-09 | Yaskawa Electric Corp | Rotor for embedded magneto rotating electric machine, embedded magneto rotating electric machine, and vehicle, elevator, fluid machinery and finishing machine using rotating electric machine |
JP2009284740A (en) * | 2008-05-26 | 2009-12-03 | Mitsubishi Electric Corp | Linear motor |
JP2010114980A (en) * | 2008-11-05 | 2010-05-20 | Mitsubishi Heavy Ind Ltd | Linear actuator |
US20110012440A1 (en) * | 2009-07-17 | 2011-01-20 | Kabushiki Kaisha Yaskawa Denki | Periodic magnetic field generation device, and linear motor and rotary motor using the same |
JP2012217312A (en) * | 2011-03-30 | 2012-11-08 | Toshiba Corp | Transverse flux type rotary electric machine and vehicle |
JP2012228016A (en) * | 2011-04-18 | 2012-11-15 | Tamagawa Seiki Co Ltd | Embedded magnet rotor structure |
JP2013048522A (en) * | 2011-08-29 | 2013-03-07 | Nissei Corp | Magnetic gear device |
CN103151862A (en) * | 2013-03-15 | 2013-06-12 | 西安交通大学 | High-speed permanent magnetic synchronous motor rotor structure |
JP2013128374A (en) * | 2011-12-19 | 2013-06-27 | Toyota Central R&D Labs Inc | Rotary electric machine |
CN103580444A (en) * | 2012-07-31 | 2014-02-12 | 上海微电子装备有限公司 | Linear motor |
US8946964B1 (en) | 2010-07-23 | 2015-02-03 | Christopher Moore | Modular windings for an electric machine |
CN104333150A (en) * | 2014-11-02 | 2015-02-04 | 北京理工大学 | Halbach permanent magnet array of convex magnetic block |
CN104467343A (en) * | 2014-11-27 | 2015-03-25 | 金陵科技学院 | Cylindrical magnetic-pole combined linear generator |
WO2015072328A1 (en) * | 2013-11-12 | 2015-05-21 | 日立金属株式会社 | Magnetic-field generation device and linear motor |
JP2015171285A (en) * | 2014-03-10 | 2015-09-28 | 三菱電機株式会社 | Electric machine |
CN105280324A (en) * | 2014-07-18 | 2016-01-27 | 日立金属株式会社 | Magnet unit and manufacturing method therefor |
CN105305756A (en) * | 2015-11-30 | 2016-02-03 | 河南理工大学 | Salient-pole halbach composite permanent magnet rotation motor |
CN105305767A (en) * | 2015-11-30 | 2016-02-03 | 焦作市华鹰机电技术有限公司 | Salient-pole halbach composite array and permanent magnet motor |
CN105406684A (en) * | 2015-12-29 | 2016-03-16 | 河南理工大学 | Tooth-slot salient permanent magnet composite array linear motor |
CN105406627A (en) * | 2015-12-29 | 2016-03-16 | 河南理工大学 | Tooth-slot salient permanent magnet composite array and electromagnetic apparatus |
US20160093428A1 (en) * | 2014-09-25 | 2016-03-31 | Panasonic Intellectual Property Management Co., Ltd. | Periodic magnetic field generator and actuator equipped with same |
JP2017502646A (en) * | 2013-12-31 | 2017-01-19 | シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド | Magnet array and magnetically levitated planar motor |
JP2017022914A (en) * | 2015-07-13 | 2017-01-26 | アスモ株式会社 | Rotor and brushless motor |
DE102015115347A1 (en) * | 2015-09-11 | 2017-03-16 | Beckhoff Automation Gmbh | Magnet arrangement for an electric motor |
CN106849430A (en) * | 2017-03-15 | 2017-06-13 | 中能投资国际控股有限公司 | The manufacture method of rotor for electromotor, motor, generator and rotor for electromotor |
CN108347113A (en) * | 2018-04-10 | 2018-07-31 | 合肥工业大学 | A kind of permanent magnetic brushless of bilayer combination magnetic pole |
CN109412385A (en) * | 2018-11-14 | 2019-03-01 | 江苏大学 | A kind of Halbach type array double-cylinder type Adjustuble speed magnetic mechanical couple |
CN110809729A (en) * | 2017-08-10 | 2020-02-18 | 浜松光子学株式会社 | Optical module and method for manufacturing optical module |
CN111130228A (en) * | 2019-12-25 | 2020-05-08 | 中国航空工业集团公司金城南京机电液压工程研究中心 | High-torque-density outer rotor permanent magnet synchronous motor |
JP2020129882A (en) * | 2019-02-08 | 2020-08-27 | 株式会社デンソー | Permanent magnet type rotor |
JP6947340B1 (en) * | 2020-09-24 | 2021-10-13 | 三菱電機株式会社 | Field magnet and motor with field magnet |
US20220352799A1 (en) * | 2021-04-30 | 2022-11-03 | Seiko Epson Corporation | Rotary motor and robot arm |
WO2024158016A1 (en) * | 2023-01-24 | 2024-08-02 | Tdk株式会社 | Voice coil actuator |
WO2024158014A1 (en) * | 2023-01-24 | 2024-08-02 | Tdk株式会社 | Cylindrical magnetic body, outer rotor, and motor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0880027A (en) * | 1994-08-31 | 1996-03-22 | Okuma Mach Works Ltd | Linear motor |
JPH0992497A (en) * | 1995-09-26 | 1997-04-04 | Shin Etsu Chem Co Ltd | Magnetic circuit for inserted light source device |
JP2000341930A (en) * | 1999-05-25 | 2000-12-08 | Hitachi Kiden Kogyo Ltd | Linear motor utilizing permanent magnet |
JP2004015906A (en) * | 2002-06-06 | 2004-01-15 | Yaskawa Electric Corp | Permanent magnet motor |
JP2005045984A (en) * | 2003-07-25 | 2005-02-17 | Yaskawa Electric Corp | Rotor for permanent magnet synchronous motor |
JP2006121081A (en) * | 2004-10-19 | 2006-05-11 | Asml Netherlands Bv | Actuator assembly and lithograpfy apparatus comprising such actuator assembly |
-
2006
- 2006-05-16 JP JP2006136108A patent/JP2007312449A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0880027A (en) * | 1994-08-31 | 1996-03-22 | Okuma Mach Works Ltd | Linear motor |
JPH0992497A (en) * | 1995-09-26 | 1997-04-04 | Shin Etsu Chem Co Ltd | Magnetic circuit for inserted light source device |
JP2000341930A (en) * | 1999-05-25 | 2000-12-08 | Hitachi Kiden Kogyo Ltd | Linear motor utilizing permanent magnet |
JP2004015906A (en) * | 2002-06-06 | 2004-01-15 | Yaskawa Electric Corp | Permanent magnet motor |
JP2005045984A (en) * | 2003-07-25 | 2005-02-17 | Yaskawa Electric Corp | Rotor for permanent magnet synchronous motor |
JP2006121081A (en) * | 2004-10-19 | 2006-05-11 | Asml Netherlands Bv | Actuator assembly and lithograpfy apparatus comprising such actuator assembly |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009153332A (en) * | 2007-12-21 | 2009-07-09 | Yaskawa Electric Corp | Rotor for embedded magneto rotating electric machine, embedded magneto rotating electric machine, and vehicle, elevator, fluid machinery and finishing machine using rotating electric machine |
JP2009284740A (en) * | 2008-05-26 | 2009-12-03 | Mitsubishi Electric Corp | Linear motor |
US8723375B2 (en) | 2008-11-05 | 2014-05-13 | Mitsubishi Heavy Industries, Ltd. | Linear actuator |
JP2010114980A (en) * | 2008-11-05 | 2010-05-20 | Mitsubishi Heavy Ind Ltd | Linear actuator |
US20110012440A1 (en) * | 2009-07-17 | 2011-01-20 | Kabushiki Kaisha Yaskawa Denki | Periodic magnetic field generation device, and linear motor and rotary motor using the same |
CN101958583A (en) * | 2009-07-17 | 2011-01-26 | 株式会社安川电机 | Periodic magnetic field generation device and use its linear motor, rotary-type motor |
US8446054B2 (en) * | 2009-07-17 | 2013-05-21 | Kabushiki Kaisha Yaskawa Denki | Periodic magnetic field generation device, and linear motor and rotary motor using the same |
US8946964B1 (en) | 2010-07-23 | 2015-02-03 | Christopher Moore | Modular windings for an electric machine |
JP2012217312A (en) * | 2011-03-30 | 2012-11-08 | Toshiba Corp | Transverse flux type rotary electric machine and vehicle |
US8860270B2 (en) | 2011-03-30 | 2014-10-14 | Kabushiki Kaisha Toshiba | Transverse flux machine and vehicle |
JP2012228016A (en) * | 2011-04-18 | 2012-11-15 | Tamagawa Seiki Co Ltd | Embedded magnet rotor structure |
JP2013048522A (en) * | 2011-08-29 | 2013-03-07 | Nissei Corp | Magnetic gear device |
JP2013128374A (en) * | 2011-12-19 | 2013-06-27 | Toyota Central R&D Labs Inc | Rotary electric machine |
CN103580444A (en) * | 2012-07-31 | 2014-02-12 | 上海微电子装备有限公司 | Linear motor |
CN103151862A (en) * | 2013-03-15 | 2013-06-12 | 西安交通大学 | High-speed permanent magnetic synchronous motor rotor structure |
WO2015072328A1 (en) * | 2013-11-12 | 2015-05-21 | 日立金属株式会社 | Magnetic-field generation device and linear motor |
JP2017502646A (en) * | 2013-12-31 | 2017-01-19 | シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド | Magnet array and magnetically levitated planar motor |
JP2015171285A (en) * | 2014-03-10 | 2015-09-28 | 三菱電機株式会社 | Electric machine |
CN105280324A (en) * | 2014-07-18 | 2016-01-27 | 日立金属株式会社 | Magnet unit and manufacturing method therefor |
US9941778B2 (en) * | 2014-09-25 | 2018-04-10 | Panasonic Intellectual Property Management Co., Ltd. | Periodic magnetic field generator and actuator equipped with same |
US20160093428A1 (en) * | 2014-09-25 | 2016-03-31 | Panasonic Intellectual Property Management Co., Ltd. | Periodic magnetic field generator and actuator equipped with same |
CN104333150A (en) * | 2014-11-02 | 2015-02-04 | 北京理工大学 | Halbach permanent magnet array of convex magnetic block |
CN104467343A (en) * | 2014-11-27 | 2015-03-25 | 金陵科技学院 | Cylindrical magnetic-pole combined linear generator |
JP2017022914A (en) * | 2015-07-13 | 2017-01-26 | アスモ株式会社 | Rotor and brushless motor |
US10291085B2 (en) | 2015-09-11 | 2019-05-14 | Beckhoff Automation Gmbh | Magnetic assembly for an electric motor |
DE102015115347A1 (en) * | 2015-09-11 | 2017-03-16 | Beckhoff Automation Gmbh | Magnet arrangement for an electric motor |
CN105305767A (en) * | 2015-11-30 | 2016-02-03 | 焦作市华鹰机电技术有限公司 | Salient-pole halbach composite array and permanent magnet motor |
CN105305756A (en) * | 2015-11-30 | 2016-02-03 | 河南理工大学 | Salient-pole halbach composite permanent magnet rotation motor |
CN105406684A (en) * | 2015-12-29 | 2016-03-16 | 河南理工大学 | Tooth-slot salient permanent magnet composite array linear motor |
CN105406627A (en) * | 2015-12-29 | 2016-03-16 | 河南理工大学 | Tooth-slot salient permanent magnet composite array and electromagnetic apparatus |
CN106849430A (en) * | 2017-03-15 | 2017-06-13 | 中能投资国际控股有限公司 | The manufacture method of rotor for electromotor, motor, generator and rotor for electromotor |
US11385455B2 (en) | 2017-08-10 | 2022-07-12 | Hamamatsu Photonics K.K. | Optical module and method for manufacturing optical module |
CN110809729A (en) * | 2017-08-10 | 2020-02-18 | 浜松光子学株式会社 | Optical module and method for manufacturing optical module |
US11789255B2 (en) | 2017-08-10 | 2023-10-17 | Hamamatsu Photonics K.K. | Optical module and method for manufacturing optical module |
CN108347113A (en) * | 2018-04-10 | 2018-07-31 | 合肥工业大学 | A kind of permanent magnetic brushless of bilayer combination magnetic pole |
CN109412385A (en) * | 2018-11-14 | 2019-03-01 | 江苏大学 | A kind of Halbach type array double-cylinder type Adjustuble speed magnetic mechanical couple |
JP2020129882A (en) * | 2019-02-08 | 2020-08-27 | 株式会社デンソー | Permanent magnet type rotor |
JP7172686B2 (en) | 2019-02-08 | 2022-11-16 | 株式会社デンソー | Permanent magnet rotor |
CN111130228A (en) * | 2019-12-25 | 2020-05-08 | 中国航空工业集团公司金城南京机电液压工程研究中心 | High-torque-density outer rotor permanent magnet synchronous motor |
JP6947340B1 (en) * | 2020-09-24 | 2021-10-13 | 三菱電機株式会社 | Field magnet and motor with field magnet |
WO2022064614A1 (en) * | 2020-09-24 | 2022-03-31 | 三菱電機株式会社 | Field element, and electric motor comprising field element |
US20220352799A1 (en) * | 2021-04-30 | 2022-11-03 | Seiko Epson Corporation | Rotary motor and robot arm |
WO2024158016A1 (en) * | 2023-01-24 | 2024-08-02 | Tdk株式会社 | Voice coil actuator |
WO2024158014A1 (en) * | 2023-01-24 | 2024-08-02 | Tdk株式会社 | Cylindrical magnetic body, outer rotor, and motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007312449A (en) | Periodic magnetic field generator and motor employing the same | |
JP5515478B2 (en) | Periodic magnetic field generator and linear motor and rotary motor using the same | |
JP2007006545A (en) | Periodical magnetic filed generator and linear motor employing it, rotatory motor, oscillating motor | |
US10700585B2 (en) | Linear motor | |
JP2007019127A (en) | Periodic magnetic field generator and linear motor using the same | |
JP2010130871A (en) | Linear motor | |
JP2012050180A (en) | Linear motor | |
JP5300325B2 (en) | Linear motor | |
JP2019004665A (en) | Linear motor | |
JP2006174583A (en) | Linear motor | |
JP2008067561A (en) | Permanent-magnet electromotor | |
JP5352982B2 (en) | Motor and electronic equipment using it | |
JP6083640B2 (en) | Permanent magnet embedded motor | |
JP2011155757A (en) | Linear motor | |
JP2006340492A (en) | Linear motor | |
JP5589507B2 (en) | Mover and stator of linear drive unit | |
JP2002186244A (en) | Permanent magnet linear motor | |
JP2001333565A (en) | Planar motor | |
JP7466475B2 (en) | Linear motor | |
KR20120036286A (en) | Linear motor and stage device | |
JPWO2018167970A1 (en) | Linear motor | |
JP2017147810A (en) | Embedded magnet type motor | |
JP4720024B2 (en) | Permanent magnet synchronous motor | |
JP2019161834A (en) | Plane motor | |
JP6444354B2 (en) | Magnetizing head, multi-pole magnetizing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111011 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120910 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20121017 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20121207 |