JP2007309881A - 波長掃引光源および光断層画像化装置 - Google Patents
波長掃引光源および光断層画像化装置 Download PDFInfo
- Publication number
- JP2007309881A JP2007309881A JP2006141570A JP2006141570A JP2007309881A JP 2007309881 A JP2007309881 A JP 2007309881A JP 2006141570 A JP2006141570 A JP 2006141570A JP 2006141570 A JP2006141570 A JP 2006141570A JP 2007309881 A JP2007309881 A JP 2007309881A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- optical
- light source
- dispersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】良好な発振効率で発振する波長掃引光源を実現する
【解決手段】半導体レーザ媒質211から射出した光は、コリメートレンズ212により平行光に変換され、ポリゴンミラー213において反射され、リレーレンズ217aおよび217bによりリレーされ、回折格子214に入射する。回折格子214により分散された光のうち、共役反射光学系221により反射された戻り光は、再度回折格子214に入射し、半導体レーザ媒質211 へ帰還する。ポリゴンミラー213が回転し、戻り光の波長が時間の経過に伴って一定の周期で変化するため、光源ユニット210からは、一定の周期で波長掃引されたレーザ光Laが射出される。ポリゴンミラー213に面倒れが生じ、回折格子214により分散される光の方向がポリゴンミラー213の回転軸方向へずれてしまっても、共役反射光学系221により、入射方向と並行かつ逆方向へ反射され、半導体レーザ媒質211へ帰還する。
【選択図】図6
【解決手段】半導体レーザ媒質211から射出した光は、コリメートレンズ212により平行光に変換され、ポリゴンミラー213において反射され、リレーレンズ217aおよび217bによりリレーされ、回折格子214に入射する。回折格子214により分散された光のうち、共役反射光学系221により反射された戻り光は、再度回折格子214に入射し、半導体レーザ媒質211 へ帰還する。ポリゴンミラー213が回転し、戻り光の波長が時間の経過に伴って一定の周期で変化するため、光源ユニット210からは、一定の周期で波長掃引されたレーザ光Laが射出される。ポリゴンミラー213に面倒れが生じ、回折格子214により分散される光の方向がポリゴンミラー213の回転軸方向へずれてしまっても、共役反射光学系221により、入射方向と並行かつ逆方向へ反射され、半導体レーザ媒質211へ帰還する。
【選択図】図6
Description
本発明は、発振波長が掃引される波長掃引光源および該波長掃引光源を用いて測定対象の光断層画像を取得する光断層画像化装置に関する。
従来、波長掃引型の光源としてはリトロー型と呼ばれる外部共振器型の波長掃引光源が知られている。このリトロー型の光源は、基本的に示す構造を有している。
図1に示した波長掃引光源は、半導体レーザ媒質101の低反射面からの出射光をコリメートレンズ102によって平行光に変換して、光を回折する回折格子103の回折面へ入射し、回折格子103により回折された回折光を半導体レーザ媒質101に戻すことにより、発振波長を選択している。
この構造の波長掃引光源では、半導体レーザ媒質101から出射され回折格子103で回折された光の波長成分のうち、特定の波長成分のみが半導体レーザ媒質101に戻る。半導体レーザ媒質101は、その戻ってきた特定波長の光に誘導されて定在波をつくり、その特定波長(以下発振波長と記載)の光を出射する。
この発振波長は、半導体レーザ媒質101から射出された光の光軸と回折格子103とのなす角度および回折格子103の格子周期の両者で規定されるため、光の光軸に対して、回折格子103を回転させることで発振波長を連続的に掃引すること、すなわち発振波長を掃引することができる。
一方、生体組織等の測定対象の断層画像を取得する方法の一つとして、光源から射出されたコヒーレンス光を測定光と参照光とに分割した後、測定光が測定対象に照射されたときの反射光と参照光とを合波し、反射光と参照光との干渉光の強度に基づいて光断層画像を取得する方法が知られている。この方法の一つとして光源から射出される光の周波数を時間的に変化させながら干渉光の検出を行うOCT装置が提案されている(たとえば特許文献1参照)。このOCT装置においては、マイケルソン型干渉計を用いて、光源から射出されるレーザ光の周波数を時間的に変化させながら反射光と参照光との干渉が行われるようになっている。そして、光周波数領域のインターフェログラムから所定の測定対象の深さ位置における反射強度を検出し、これを用いて断層画像を生成するようになっている。このようなOCT装置により光断層画像を取得するためには、光源における波長掃引を高速で繰り返し行う必要がある。
また、特許文献2にも、波長掃引を高速で繰り返し行うことのできる波長掃引光源が記載されている。この波長掃引光源110は、図2に示すように、レーザ媒質111 と、コリメートレンズ112 と、ポリゴンミラー113 と、回折格子114を備えている。レーザ媒質111から射出した光は、コリメートレンズ112により平行光に変換され、ポリゴンミラー113において反射され、回折格子114に入射する。回折格子114により分散された光のうち、入射方向へ分散された光(以下戻り光と記載)は、ポリゴンミラー113において反射され、レーザ媒質111 へ帰還する。レーザ媒質111の射出端面111aおよび回折格子114により、共振器が構成され、レーザ媒質111の射出端面111aから、レーザ光Lが射出される。なお、この際、レーザ光Lの波長は、戻り光の波長である。
ここで、ポリゴンミラー113は矢印R1方向に回転するものであって、各反射面において、反射角度が連続的に変化するようになっている。これにより、回折格子114に入射する光の角度が連続的に変化し、発振波長も連続的に変化することとなる。
また、ポリゴンミラー113が矢印R1方向に等速で回転したとき、戻り光の波長は、時間の経過に伴って一定の周期で変化することになる。このため、波長掃引光源110からは、一定の周期で波長掃引されたレーザ光Lが射出される。
また、本発明者は、特願2005−374519において、より小型な回折格子を用いて波長を掃引可能である波長掃引光源を提案している。この波長掃引光源120は、図3に示すように、レーザ媒質111 と、コリメートレンズ112 と、ポリゴンミラー113 と、リレーレンズ121aおよび121bと、回折格子114を備えている。半導体レーザ媒質111の端面111bから射出した光は、コリメートレンズ112により平行光に変換され、ポリゴンミラー113において反射され、リレーレンズ121aおよび121bによりリレーされ、回折格子114に入射する。回折格子114により分散された光のうち、入射方向へ分散された光(以下戻り光と記載)は、リレーレンズ121bおよび121aを通り、ポリゴンミラー113において反射され、半導体レーザ媒質111 へ帰還する。半導体レーザ媒質111の射出端面111aおよび回折格子114により、共振器が構成され、半導体レーザ媒質111の射出端面111aから、レーザ光Laが射出される。なお、この際、レーザ光Laの波長は、戻り光の波長である。
ここで、ポリゴンミラー113は矢印R1方向に回転するものであって、各反射面において、反射角度がリレーレンズ121aおよび121bの光軸に対して連続的に変化するようになっている。これにより、回折格子114に入射する光の角度も、連続的に変化する。このため、発振波長も連続的に変化する。
US2005/0035295 A1
US4601036号公報
しかしながら、図3に示す波長掃引光源においては、レーザ媒質111の端面111bと共振器の端部にあたる回折格子114とが、共役な配置となっていないため、例えばポリゴンミラー113に面倒れが生じた場合には、レーザ媒質111の端面111bにおける戻り光の焦点が、端面111bに沿って移動してしまい、良好な発振状態が得られないおそれがある。
このため、本発明者は、図4に示すような、シリンドリカルレンズ131を備え、ポリゴンミラー113の反射面および回折格子114上において、光をライン状に集光させることにより、面倒れの影響を抑制できる波長掃引光源130について検討した。しかしながら、この場合には回折格子114上において、光が集光するのはライン中心部のみであり、ライン端においては、集光位置からずれてしまう。このため、レーザ媒質111の端面111bにおける戻り光の焦点が、端面111bと垂直な方向へばらついてしまい、いわゆる焦点ボケが生じ、やはり良好な発振状態が得られないという問題がある。
本発明はこの問題を鑑みなされたもので、光増幅手段と、該光増幅手段から射出された光を偏向する回転型の光偏向手段と、該光偏向手段により偏向された光を分散させる光分散手段とを備えた波長掃引光源において、面倒れの影響を抑制でき、かつ光増幅手段の端面における焦点ボケをも抑制可能で、良好な発振状態を得ることができる波長掃引光源および該波長掃引光源を用いた光断層画像化装置を実現することを目的とするものである。
本発明の波長掃引光源は、光増幅手段と、
該光増幅手段から射出された光を偏向する回転型の光偏向手段と、
該光偏向手段により偏向された光を波長分散させる光分散手段と、
前記光偏向手段により偏向された光を略平行光として前記光分散手段へ入射させる第1の光学手段と、
前記光分散手段で分散された光の内、所定の方向へ分散した光を前記光分散手段へ反射する第2の光学手段とを有する波長掃引光源において、
前記第2の光学手段が、前記所定の方向へ分散した光を共役的に反射する共役反射光学系であることを特徴とするものである。
該光増幅手段から射出された光を偏向する回転型の光偏向手段と、
該光偏向手段により偏向された光を波長分散させる光分散手段と、
前記光偏向手段により偏向された光を略平行光として前記光分散手段へ入射させる第1の光学手段と、
前記光分散手段で分散された光の内、所定の方向へ分散した光を前記光分散手段へ反射する第2の光学手段とを有する波長掃引光源において、
前記第2の光学手段が、前記所定の方向へ分散した光を共役的に反射する共役反射光学系であることを特徴とするものである。
なお、「共役的に反射する」とは、光の入射方向と平行な方向へ反射することを意味している。
なお、ここで「光分散手段」とは、例えば回折格子、プリズムまたはグリズム等である。また、「光偏向手段」とは、例えばポリゴンミラー、回転ミラー、ガルバノまたはリゾナントスキャナー等である。
また、前記光分散手段が、前記光偏向手段により偏向された光を前記光偏向手段の回転軸に対して垂直な平面内において波長分散するものであれば、
前記共役反射光学系は、前記所定の方向へ分散した光が、前記光偏向手段の回転軸と垂直な平面に対して角度を有する光であっても、共役的に反射するものであってもよい。
前記共役反射光学系は、前記所定の方向へ分散した光が、前記光偏向手段の回転軸と垂直な平面に対して角度を有する光であっても、共役的に反射するものであってもよい。
前記共役反射光学系は、集光レンズと、該集光レンズの焦点位置に配置され、前記光偏向手段の回転軸方向へ延びた線状ミラーとを有するものであってもよい。あるいは、シリンドリカルレンズと、該シリンドリカルレンズの焦点位置に配置されたミラーとを有するものであってもよい。また、レトロリフレクタを有するものであってもよい。
前記光分散手段が複数の光分散部を有するものであれば、各光分散部に対応して前記共役反射光学系が設けられていることが好ましい。
本波長掃引光源は、前記光偏向手段と前記光分散手段との間に配置された、前記光増幅手段から射出された光を前記光偏向手段の回転中心の方向へ偏向し、かつ前記光偏向手段により偏向され、前記光分散手段により分散され、前記共役反射光学系により反射された光を前記光増幅手段へ帰還させる光偏向・帰還手段を備えるものであってもよい。
また、前記光偏向・帰還手段は、偏光ビームスプリッタおよび1/4波長位相シフタから構成されているものであってもよい。
本発明の光断層画像化装置は、波長を一定の周期で掃引させながらコヒーレント光を射出する光源と、
該光源から射出された前記コヒーレント光を測定光と参照光とに分割する光分割手段と、
前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
該合波手段により合波された前記反射光と前記参照光との干渉光の周波数および強度に基づいて、前記測定対象の各深さ位置における前記反射光の強度を検出する干渉光検出手段と、
該干渉光検出手段により検出された前記各深さ位置における前記干渉光の強度を用いて前記測定対象の断層画像を取得する画像取得手段とを有する光断層画像化装置において、
前記光源が、光増幅手段と、
該光増幅手段から射出された光を偏向する回転型の光偏向手段と、
該光偏向手段の回転軸に対して垂直な面内において光を分散させるように配置された光分散手段と、
前記光偏向手段により偏向された光を略平行光として前記光分散手段へ入射させる第1の光学手段と、
前記光分散手段で分散された光の内、所定の方向へ分散した光を前記光分散手段へ反射する第2の光学手段とを有する波長掃引光源であって、
前記第2の光学手段が、所定の方向へ分散した光を共役的に反射する共役反射光学系であることを特徴とするものである。
該光源から射出された前記コヒーレント光を測定光と参照光とに分割する光分割手段と、
前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
該合波手段により合波された前記反射光と前記参照光との干渉光の周波数および強度に基づいて、前記測定対象の各深さ位置における前記反射光の強度を検出する干渉光検出手段と、
該干渉光検出手段により検出された前記各深さ位置における前記干渉光の強度を用いて前記測定対象の断層画像を取得する画像取得手段とを有する光断層画像化装置において、
前記光源が、光増幅手段と、
該光増幅手段から射出された光を偏向する回転型の光偏向手段と、
該光偏向手段の回転軸に対して垂直な面内において光を分散させるように配置された光分散手段と、
前記光偏向手段により偏向された光を略平行光として前記光分散手段へ入射させる第1の光学手段と、
前記光分散手段で分散された光の内、所定の方向へ分散した光を前記光分散手段へ反射する第2の光学手段とを有する波長掃引光源であって、
前記第2の光学手段が、所定の方向へ分散した光を共役的に反射する共役反射光学系であることを特徴とするものである。
本発明の波長掃引光源は、光分散手段で分散された光の内、所定の方向へ分散した光を光分散手段へ反射する第2の光学手段を有し、この第2の光学手段が、所定の方向へ分散した光が、前記光偏向手段に面倒れが生じていない場合に前記光が前記光分散手段により波長分散される平面に対して角度を有する光であっても、共役的に反射する、すなわち光の入射方向に対して平行に反射するため、光は入射光路とほぼ同じ光路を戻ることになり、戻り光の多くが光増幅手段に帰還するので、安定した良好な発振状態を得ることができる。また、光増幅手段の端面における焦点ボケが生じることもない。
また、本発明の光断層画像化装置は、光分散手段で分散された光の内、所定の方向へ分散した光を光分散手段へ反射する第2の光学手段を有し、この第2の光学手段が、所定の方向へ分散した光が、前記光偏向手段に面倒れが生じていない場合に前記光が前記光分散手段により波長分散される平面に対して角度を有する光であっても、共役的に反射する、すなわち光の入射方向に対して平行に反射するため安定な発振状態を得ることができる波長掃引光源を有しているため、出力が安定しているコヒーレンス光を用いて、良好な光断層画像を取得できる。
以下、本発明の具体的な第1の実施形態である光断層画像化装置について図5を参照して説明する。図5は本発明の第1の実施の形態である光断層画像化装置の概略構成図である。
図5に示す光断層画像化装置200は、例えば体腔内の生体組織や細胞等の測定対象の断層画像を前述のSS−OCT計測により取得するものであって、発振波長を一定の周期で掃引させながらレーザ光Laを射出する光源ユニット210と、光源ユニット210から射出されたレーザ光Laを測定光L1と参照光L2とに分割する光分割手段3と、光分割手段3により分割された参照光L2の光路長を調整する光路長調整手段220と、光分割手段3により分割された測定光L1を測定対象Sbに照射する光プローブ230と、こうして測定対象Sbに測定光L1が照射されたとき該測定対象Sbで反射した反射光L3と参照光L2とを合波する合波手段4と、合波された反射光L3と参照光L2との間の干渉光L4を検出する干渉光検出手段240と、該干渉光検出手段240の検出結果に基づいて、測定対象の光断層画像を生成する画像取得部241と、この光断層画像を表示する表示装置242とを有している。
光源ユニット210は、発振波長λcが950nm〜1150nmの範囲になるように、発振波長を一定の周期で掃引させながらレーザ光Laを射出する波長掃引レーザ装置であり、光増幅手段としては、半導体レーザに使用される半導体レーザ媒質が使用されている。なお、光源ユニット210についての詳細は後述する。
光分割手段3は、例えば2×2の光ファイバカプラから構成されており、光源ユニット210から光ファイバFB1を介して導波した光Laを測定光L1と参照光L2とに分割する。この光分割手段3は、2本の光ファイバFB2、FB3にそれぞれ光学的に接続されており、測定光L1は光ファイバFB2を導波し、参照光L2は光ファイバFB3を導波する。なお、本例におけるこの光分割手段3は、合波手段4としても機能するものである。
光ファイバFB2には、光プローブ230が光学的に接続されており、測定光L1は光ファイバFB2から光プローブ230へ導波する。光プローブ230は、例えば鉗子口から鉗子チャンネルを介して体腔内に挿入されるものであって、光学コネクタ31により光ファイバFB2に対して着脱可能に取り付けられている。
光プローブ230は、先端が閉じられた円筒状のプローブ外筒15と、このプローブ外筒15の内部空間に、該外筒15の軸方向に延びる状態に配設された1本の光ファイバ13と、光ファイバ13の先端から出射した光Lをプローブ外筒15の周方向に偏向させるプリズムミラー17と、光ファイバ13の先端から出射した光L1を、プローブ外筒15の周外方に配された被走査体としての測定対象Sbにおいて収束するように集光するロッドレンズ18と、光ファイバ13を該光ファイバ13の光軸を回転軸として回転させるモータ14とを備えている。なお、ロッドレンズ18およびプリズムミラー17は、光ファイバ13とともに回転するように配設されている。
一方、光ファイバFB3の参照光L2の射出側には光路長調整手段220が配置されている。光路長調整手段220は、断層画像の取得を開始する位置を調整するために、参照光L2の光路長を変更するものであって、光ファイバFB3から射出された参照光L2を反射させる反射ミラー22と、反射ミラー22と光ファイバFB3との間に配置された第1光学レンズ21aと、第1光学レンズ21aと反射ミラー22との間に配置された第2光学レンズ21bとを有している。
第1光学レンズ21aは、光ファイバFB3のコアから射出された参照光L2を平行光にするとともに、反射ミラー22により反射された参照光L2を光ファイバFB3のコアに集光する機能を有している。また、第2光学レンズ21bは、第1光学レンズ21aにより平行光にされた参照光L2を反射ミラー22上に集光するとともに、反射ミラー22により反射された参照光L2を平行光にする機能を有している。つまり、第1光学レンズ21aと第2光学レンズ21bとにより共焦点光学系が形成されている。
したがって、光ファイバFB3から射出した参照光L2は、第1光学レンズ21aにより平行光になり、第2光学レンズ21bにより反射ミラー22上に集光される。その後、反射ミラー22により反射された参照光L2は、第2光学レンズ21bにより平行光になり、第1光学レンズ21aにより光ファイバFB3のコアに集光される。
さらに光路長調整手段220は、第2光学レンズ21bと反射ミラー22とを固定した基台23と、該基台23を第1光学レンズ21aの光軸方向に移動させるミラー移動手段24とを有している。そして基台23が矢印A方向に移動することにより、参照光L2の光路長が変えられるようになっている。
また合波手段4は、前述の通り2×2の光ファイバカプラからなり、光路長調整手段220により光路長が変更された参照光L2と、測定対象Sbからの反射光L3とを合波し、光ファイバFB4を介して干渉光検出手段240側に射出するように構成されている。
干渉光検出手段240は、合波手段4により合波された反射光L3と参照光L2との干渉光L4を検出する。なお本例の装置においては、干渉光L4を光ファイバカプラ3で二分した光を光検出器40aと40bに導き、演算手段41においてバランス検波を行う機構を有している。
画像取得手段241は、干渉光検出手段240により検出された干渉光L4をフーリエ変換することにより、測定対象Sbの各深さ位置における反射光L3の強度を検出し、測定対象Sbの断層画像を取得する。この断像画像は表示装置242に表示される。
以下、上記構成を有する光断層画像化装置200の作用について説明する。断層画像を取得する際には、まず基台23を矢印A方向に移動させることにより、測定可能領域内に測定対象Sbが位置するように光路長の調整が行われる。その後、光源ユニット210から光Laが射出され、この光Laは光分割手段3により測定光L1と参照光L2とに分割される。測定光L1は光プローブ230から体腔内に向けて射出され、測定対象Sbに照射される。このとき、前述したように作動する該光プローブ230により、そこから出射した測定光L1が測定対象Sbを1次元に走査する。そして、測定対象Sbからの反射光L3が反射ミラー22において反射した参照光L2と合波され、反射光L3と参照光L2との干渉光L4が干渉光検出手段240によって検出される。
ここで、干渉光検出手段240および画像取得手段241における干渉光L4の検出および画像の生成について簡単に説明する。なお、この点の詳細については「武田 光夫、「光周波数走査スペクトル干渉顕微鏡」、光技術コンタクト、2003、Vol.41、No.7、p426−p432」に詳しい記載がなされている。
測定光L1が測定対象Sbに照射されたとき、測定対象Sbの各深さからの反射光L3と参照光L2とがいろいろな光路長差をもって干渉しあう際の各光路長差lに対する干渉縞の光強度をS(l)とすると、干渉光検出手段240において検出される光強度I(k)は、
I(k)=∫0 ∞S(l)[1+cos(kl)]dl
で表される。ここで、kは波数、lは光路長差である。上式は波数k=ω/cを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。このため、画像取得手段241において、干渉光検出手段240が検出したスペクトル干渉縞をフーリエ変換し、干渉光L4の光強度S(l)を決定することにより、測定対象Sbの測定開始位置からの距離情報と反射強度情報とを取得し、断層画像を生成することができる。この断層画像は表示装置242に表示される。
I(k)=∫0 ∞S(l)[1+cos(kl)]dl
で表される。ここで、kは波数、lは光路長差である。上式は波数k=ω/cを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。このため、画像取得手段241において、干渉光検出手段240が検出したスペクトル干渉縞をフーリエ変換し、干渉光L4の光強度S(l)を決定することにより、測定対象Sbの測定開始位置からの距離情報と反射強度情報とを取得し、断層画像を生成することができる。この断層画像は表示装置242に表示される。
以下光源ユニット210について、その詳細を説明する。この光源ユニット210は、図6に示すように、半導体レーザ媒質211 と、コリメートレンズ212 と、ポリゴンミラー213 と、回折格子214と、偏光ビームスプリッタ215と、1/4波長板216と、リレーレンズ217aおよび217bと、集光レンズ218および該集光レンズ218の焦点位置に配置され、ポリゴンミラー213の回転軸方向へ延びた線状ミラー219からなる共役反射光学系221とを備えている。なお、線状ミラー219は、不図示のホルダーにより保持されている。このホルダーには無反射コーティングが施されていることが好ましい。また、1/4波長板216の代わりに、1/4波長だけ偏光が変化するファラデーローテータを用いることもできる。
また、半導体レーザ媒質211は、直線偏光された光を射出するものであり、半導体レーザ媒質211から射出された光が、偏光ビームスプリッタ215へs偏光として入射するように配置されている。
偏光ビームスプリッタ215および1/4波長板216は、ポリゴンミラー213と回折格子214との間に配置されている。また、偏光ビームスプリッタ215は、p偏光は透過し、s偏光は直角に反射するものである。半導体レーザ媒質211から射出され、コリメートレンズ212により平行光に変換された光はポリゴンミラー213の回転軸と平行な角度で偏光ビームスプリッタ215へ入射し、該偏光ビームスプリッタ215で直角に反射されたs偏光はポリゴンミラー213に対し、回転中心方向へ入射するように、半導体レーザ媒質211、コリメートレンズ212、偏光ビームスプリッタ215およびポリゴンミラー213は配置されている。
まず、半導体レーザ媒質211から射出した光は、コリメートレンズ212により平行光に変換され、偏光ビームスプリッタ215の面215aへ入射する。偏光ビームスプリッタ215では、入射した光の内、p偏光は透過され、s偏光は直角に反射されて、面215bから射出される。このs偏光は、1/4波長板216を透過して円偏光となる。この円偏光は、ポリゴンミラー213へ対して、回転中心方向へ入射する。ポリゴンミラー213において反射された光は、再度1/4波長板216を透過してp偏光となる。このp偏光は偏光ビームスプリッタ215を透過して、リレーレンズ217aおよび217bによりリレーされ、回折格子214に入射する。
回折格子214により分散されたp偏光のうち、集光レンズ218により集光され、線状ミラー219により反射された光(以下戻り光と記載)は、再度回折格子214に入射する。なお共役反射光学系221における作用の詳細は後述する。回折格子214により偏光ビームスプリッタ215の方へ分散された光は、偏光ビームスプリッタ215を透過して、さらに1/4波長板216を透過して円偏光となる。この円偏光は、ポリゴンミラー213において反射され、再度1/4波長板216を透過してs偏光となる。このs偏光は、偏光ビームスプリッタ215の面215bへ入射し、直角に反射されて、面215aから射出され、半導体レーザ媒質211 へ帰還する。半導体レーザ媒質211の射出端面211aおよび回折格子214により、共振器が構成され、半導体レーザ媒質211の射出端面211aから、レーザ光Laが射出される。なお、この際、レーザ光Laの波長は、戻り光の波長である。
ここで、ポリゴンミラー213は矢印R1方向に回転するものであって、各反射面において、反射角度が連続的に変化するようになっている。これにより、回折格子214に入射する光の角度も、連続的に変化する。分散された光のうち入射方向へ戻る戻り光の波長をλ、回折格子の溝周期をG、回折格子214 への入射光の入射角度をθとすると、戻り光が1次回折光である場合には、これらの関係は次式で表すことができる。
2Sinθ=λ/G (1)
したがって、回折格子214 への入射光の入射角度θが連続的に変化した場合には、発振波長も連続的に変化することとなる。また、ポリゴンミラー213が矢印R1方向に等速で回転したとき、戻り光の波長は、時間の経過に伴って一定の周期で変化することになる。このため、光源ユニット210からは、一定の周期で波長掃引されたレーザ光Laが、光ファイバFB1側に射出される。
したがって、回折格子214 への入射光の入射角度θが連続的に変化した場合には、発振波長も連続的に変化することとなる。また、ポリゴンミラー213が矢印R1方向に等速で回転したとき、戻り光の波長は、時間の経過に伴って一定の周期で変化することになる。このため、光源ユニット210からは、一定の周期で波長掃引されたレーザ光Laが、光ファイバFB1側に射出される。
以下、共役反射光学系221について詳細に説明する。共役反射光学系221の上面図を図7(A)に、側面図を図7(B)に示す。回折格子214により分散された光は、集光レンズ218により集光されるが、線状ミラー219において反射された分散光のみが、回折格子214に戻る。すなわち、図7(A)に示すように、回折格子214における波長の分散方向においては、線状ミラー219に集光する方向である集光レンズ218の光軸方向と平行な方向、すなわち図7(A)におけるX方向へ分散した光のみが、回折格子214へ戻る。これは、共役反射光学系221の代わりに通常のミラーが配置されている場合と同様であり、波長選択機能が働く。
一方、ポリゴンミラー213に面倒れが生じた場合、回折格子214により分散される光の方向がポリゴンミラー213の回転軸方向、すなわち図7(B)におけるY方向へずれてしまうことがある。このように分散方向がずれた場合であっても、図7(B)に示すように、共役反射光学系221に入射した光は、入射方向と並行かつ逆方向へ反射される。このため、この光は、入射した光路とほぼ同じ光路を逆にたどって、半導体レーザ媒質211へ帰還する。このため、ポリゴンミラー213の面倒れの影響を受けにくくなる。なお、光が線状ミラー219に対して大きくY方向へ傾いて入射した場合には、入射した光路と反射光路は異なるものとなるが、通常の場合ポリゴンミラー213の面倒れの角度は微小な角度であり、共役反射光学系221において、光が反射された場合には、入射光路と反射光路の大部分は重なるため、反射した光の大部分は半導体レーザ媒質211へ帰還する。このため、ポリゴンミラー213の面倒れが生じた場合であっても、安定した発振が可能となる。
なお、光源210においては、半導体レーザ媒質211から射出された光は、偏光ビームスプリッタ215により偏向され、ポリゴンミラー213の回転中心に向かって入射する。このため例えば反射面が入射光の光軸に対して垂直である場合に、光の入射面積は光の断面積と略等しくなり、最小面積となる。即ち、常に光がポリゴンミラー213に斜めに入射するように構成されている従来の光源に比べ、ポリゴンミラー213の反射面における回転方向における入射幅小さくなり、その結果ポリゴンミラー213の回転角度を有効に使用することができ、広い波長帯域で波長を掃引することができる。
なお、共役反射光学系としては、図8(A)に上面図を、図8(B)に側面図を示すように、Y方向(ポリゴンミラー213の回転軸方向)およびX方向と直交する方向に線状に光を集光するように配置されたシリンドリカルレンズ251および該シリンドリカルレンズ251の焦点位置に配置されたミラー252からなる共役反射光学系253を用いることもできる。この場合にも図8(A)に示すように、回折格子214の波長分散方向においてはミラー252のみが配置されている場合と同様に波長選択機能が働く。また図8(B)に示すように、回折格子214により分散される光の方向がポリゴンミラー213の回転軸方向、すなわち図8(B)におけるY方向へずれた場合であって、共役反射光学系253に入射した光は、入射方向と並行かつ逆方向へ反射される。
さらに、共役反射光学系としては、図9(A)に上面図を図9(B)に側面図を示すように配置されたレトロリフレクタ254を用いることもできる。この場合にも図9(A)に示すように、回折格子214の波長分散方向においてはミラーが配置されている場合と同様に波長選択機能が働く。また図9(B)に示すように、回折格子214により分散される光の方向がポリゴンミラー213の回転軸方向、すなわち図9(B)におけるY方向へずれた場合であって、レトロリフレクタ254に入射した光は、入射方向と並行かつ逆方向へ反射される。
以上の説明で明らかなように、本発明の波長掃引光源は、回折格子214で分散された光を選択的に反射する共役反射光学系を有し、この共役反射光学系が、回折格子214で分散された光がポリゴンミラー213に面倒れが生じていない場合に光が回折格子214により波長分散される平面に対して角度を有する光であっても、共役的に反射する、すなわち光の入射方向に対して平行に反射するため、共役反射光学系で反射された光は、入射光路とほぼ同じ光路を戻ることになり、戻り光の多くが半導体レーザ媒質211へ帰還するので、安定な発振状態を得ることができる。また、半導体レーザ媒質211の端面における焦点ボケが生じることもない。
また、本発明の光断層画像化装置は、安定な発振状態を得ることができる波長掃引光源を有しているため、出力が安定しているコヒーレンス光を用いて、良好な光断層画像を取得できる。
また、光源ユニット210の代わりに、図10に示すように、半導体レーザ媒質211 と、コリメートレンズ212 と、ポリゴンミラー213 と、リレーレンズ217aおよび217bと、回折格子214と、共役反射光学系221とを備えた光源ユニット260を用いることもできる。
さらに、図11に示すように、ポリゴンミラー213の反射面1枚に対して、2回の波長掃引が可能となる光源ユニット270を用いることもできる。
光源ユニット270は、リレーレンズ271aおよび271bと、該リレーレンズ271aおよび271bの間に異なる角度で配置されたミラー272aおよび272bと、異なる角度で配置された2枚の同形状の回折格子273aおよび273bと、ポリゴンミラー213に面倒れが生じていない場合に各回折格子において光が波長分散される平面に対して角度を有する光であっても、共役的に反射する共役反射光学系274aおよび274bとを備えている。
共役反射光学系274aは、集光レンズ275aと、該集光レンズ275aの焦点位置に配置され、ポリゴンミラー213に面倒れが生じていない場合に回折格子273aにおいて光が波長分散される平面に対して垂直な方向へ延びた線状ミラー276aとを備えている。また、同様に、共役反射光学系274bは、集光レンズ275bと、該集光レンズ275bの焦点位置に配置され、ポリゴンミラー213に面倒れが生じていない場合に回折格子273bにおいて光が波長分散される平面に対して垂直な方向へ延びた線状ミラー276bとを備えている
図11に示すように、ミラー272aおよびリレーレンズ271bは、ポリゴンミラー213の回転に伴って、リレーレンズ271aの図11における上半分を通る光が、回折格子273aへ入射するように、光の光路を変更するものである。またミラー272bおよびリレーレンズ271bは、リレーレンズ271aの図11における下半分を通る光が、回折格子273bへ入射するように、光の光路を変更するものである。なお、リレーレンズ271aおよび271bと、ミラー272aおよび272bと、回折格子273aおよび273bとは、リレーレンズ271aの上半分を通る光が回折格子273aへ入射する入射角度の範囲と、リレーレンズ271aの下半分を通る光が回折格子273bへ入射する入射角度の範囲とが等しくなるように、配置されている。
図11に示すように、ミラー272aおよびリレーレンズ271bは、ポリゴンミラー213の回転に伴って、リレーレンズ271aの図11における上半分を通る光が、回折格子273aへ入射するように、光の光路を変更するものである。またミラー272bおよびリレーレンズ271bは、リレーレンズ271aの図11における下半分を通る光が、回折格子273bへ入射するように、光の光路を変更するものである。なお、リレーレンズ271aおよび271bと、ミラー272aおよび272bと、回折格子273aおよび273bとは、リレーレンズ271aの上半分を通る光が回折格子273aへ入射する入射角度の範囲と、リレーレンズ271aの下半分を通る光が回折格子273bへ入射する入射角度の範囲とが等しくなるように、配置されている。
光源ユニット270では、まず、図11に点線で示すように、半導体レーザ媒質211から射出した光は、コリメートレンズ212により平行光に変換され、偏光ビームスプリッタ215によりs偏光とp偏光へ分岐され、s偏光はポリゴンミラー213において反射され、リレーレンズ271aおよび271bによりリレーされ、かつミラー272aにより光路を変更されて、回折格子273aに入射する。回折格子273aにより分散された光のうち、共役反射光学系274aにより反射され、再度回折格子273aにより分散された光である戻り光は、入射の場合と逆の光路を通り、半導体レーザ媒質211 へ帰還する。光源ユニット210と同様に、半導体レーザ媒質211の射出端面211aおよびミラー276aにより、共振器が構成され、半導体レーザ媒質211の射出端面211aから、レーザ光Laが射出される。ポリゴンミラー213が回転すると、回折格子273aへ入射する光の入射角は連続的に変化し、戻り光の波長も連続的に変化し、レーザ光Laの波長が掃引される。
なお、ポリゴンミラー213が、さらに回転すると、半導体レーザ媒質211から射出した光は、リレーレンズ271aの図11における下半分を通り、回折格子273bへ入射する。上記と同様に、回折格子273bへ入射する光の入射角が連続的に変化し、戻り光の波長も連続的に変化し、レーザ光Laの波長が掃引される。
このため、ポリゴンミラー213の反射面1枚に対して、2回の波長掃引が可能となり、従来使用されているポリゴンミラー213を使用して、高い繰り返し周期で波長を掃引することができる。
なお、光源ユニット260および270においても、共役反射光学系として、図8に示すシリンドリカルレンズおよび該シリンドリカルレンズの焦点位置に配置されたミラーからなる共役反射光学系や、図9に示すレトロリフレクタを用いることができる。
なお、各実施の形態において、光増幅手段として半導体レーザ媒質211を用いたが、光増幅手段は光増幅機能を有するものであれば如何なるものであってもよく、例えば色素レーザを構成する色素や、ファイバレーザを構成するファイバなどであってもよい。
3 光分割手段
4 合波手段
210,260,270 光源ユニット
211 半導体レーザ媒質
212 コリメートレンズ
213 ポリゴンミラー
214 回折格子
217a,217b リレーレンズ
218 集光レンズ
219 線状ミラー
220 光路長調整手段
221,253 共役反射光学系
230 光プローブ
240 干渉光検出手段
241 画像取得手段
242 表示装置
251 シリンドリカルミラー
252 ミラー
254 レトロリフレクタ
4 合波手段
210,260,270 光源ユニット
211 半導体レーザ媒質
212 コリメートレンズ
213 ポリゴンミラー
214 回折格子
217a,217b リレーレンズ
218 集光レンズ
219 線状ミラー
220 光路長調整手段
221,253 共役反射光学系
230 光プローブ
240 干渉光検出手段
241 画像取得手段
242 表示装置
251 シリンドリカルミラー
252 ミラー
254 レトロリフレクタ
Claims (9)
- 光増幅手段と、
該光増幅手段から射出された光を偏向する回転型の光偏向手段と、
該光偏向手段により偏向された光を波長分散させる光分散手段と、
前記光偏向手段により偏向された光を略平行光として前記光分散手段へ入射させる第1の光学手段と、
前記光分散手段で分散された光の内、所定の方向へ分散した光を前記光分散手段へ反射する第2の光学手段とを有する波長掃引光源において、
前記第2の光学手段が、前記所定の方向へ分散した光を共役的に反射する共役反射光学系であることを特徴とする波長掃引光源。 - 前記光分散手段が、前記光偏向手段により偏向された光を前記光偏向手段の回転軸に対して垂直な平面内において波長分散するものであり、
前記共役反射光学系が、前記所定の方向へ分散した光が、前記光偏向手段の回転軸と垂直な平面に対して角度を有する光であっても、共役的に反射するものである事を特徴とする請求項1記載の波長掃引光源。 - 前記共役反射光学系が、集光レンズと、該集光レンズの焦点位置に配置された線状ミラーとを有することを特徴とする請求項1または2記載の波長掃引光源。
- 前記共役反射光学系が、シリンドリカルレンズと、該シリンドリカルレンズの焦点位置に配置されたミラーとを有することを特徴とする請求項1または2記載の波長掃引光源。
- 前記共役反射光学系が、レトロリフレクタを有することを特徴とする請求項1または2記載の波長掃引光源。
- 前記光分散手段が複数の光分散部を有するものであり、各光分散部に対応して前記共役反射光学系が設けられていることを特徴とする請求項1から5いずれか1項記載の波長掃引光源。
- 前記光偏向手段と前記光分散手段との間に配置された、前記光増幅手段から射出された光を前記光偏向手段の回転中心の方向へ偏向し、かつ前記光偏向手段により偏向され、前記光分散手段により分散され、前記共役反射光学系により反射された光を前記光増幅手段へ帰還させる光偏向・帰還手段を備えることを特徴とする請求項1から6いずれか1項記の波長掃引光源。
- 前記光偏向・帰還手段が、偏光ビームスプリッタおよび1/4波長位相シフタから構成されているものであることを特徴とする請求項7記載の波長掃引光源。
- 波長を一定の周期で掃引させながらコヒーレント光を射出する光源と、
該光源から射出された前記コヒーレント光を測定光と参照光とに分割する光分割手段と、
前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
該合波手段により合波された前記反射光と前記参照光との干渉光の周波数および強度に基づいて、前記測定対象の各深さ位置における前記反射光の強度を検出する干渉光検出手段と、
該干渉光検出手段により検出された前記各深さ位置における前記干渉光の強度を用いて前記測定対象の断層画像を取得する画像取得手段とを有する光断層画像化装置において、
前記光源が、光増幅手段と、
該光増幅手段から射出された光を偏向する回転型の光偏向手段と、
該光偏向手段により偏向された光を分散させる光分散手段と、
前記光偏向手段により偏向された光を略平行光として前記光分散手段へ入射させる第1の光学手段と、
前記光分散手段で分散された光の内、所定の方向へ分散した光を前記光分散手段へ反射する第2の光学手段とを有する波長掃引光源であって、
前記第2の光学手段が、所定の方向へ分散した光を共役的に反射する共役反射光学系であることを特徴とする光断層画像化装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006141570A JP2007309881A (ja) | 2006-05-22 | 2006-05-22 | 波長掃引光源および光断層画像化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006141570A JP2007309881A (ja) | 2006-05-22 | 2006-05-22 | 波長掃引光源および光断層画像化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007309881A true JP2007309881A (ja) | 2007-11-29 |
Family
ID=38842858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006141570A Abandoned JP2007309881A (ja) | 2006-05-22 | 2006-05-22 | 波長掃引光源および光断層画像化装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007309881A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111538222A (zh) * | 2019-02-07 | 2020-08-14 | 株式会社岛津制作所 | 光源装置以及全息观察装置 |
CN112352186A (zh) * | 2018-06-25 | 2021-02-09 | 川崎重工业株式会社 | 导光装置及激光加工装置 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57193085A (en) * | 1981-05-22 | 1982-11-27 | Takumi Tomijima | Controller for oscillation wavelength and wavelength width of semiconductor laser |
JPS5984487A (ja) * | 1982-09-30 | 1984-05-16 | ハネウエル・インコ−ポレ−テツド | 迅速同調レーザ |
JPH02176716A (ja) * | 1988-12-28 | 1990-07-09 | Fuji Photo Film Co Ltd | レーザビーム走査光学系 |
JPH06165784A (ja) * | 1992-11-30 | 1994-06-14 | Olympus Optical Co Ltd | 光断層イメージング装置 |
JP2000164980A (ja) * | 1998-11-25 | 2000-06-16 | Ando Electric Co Ltd | 外部共振器型波長可変半導体レーザ光源 |
JP2004134704A (ja) * | 2002-10-15 | 2004-04-30 | Aisin Seiki Co Ltd | 短パルス光増幅器 |
JP2004172230A (ja) * | 2002-11-18 | 2004-06-17 | Communication Research Laboratory | 二つのレーザー媒体を用いたレーザー装置 |
WO2005001401A2 (en) * | 2003-06-06 | 2005-01-06 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
JP2006024876A (ja) * | 2004-06-07 | 2006-01-26 | Sun Tec Kk | 波長走査型ファイバレーザ光源 |
JP2006080384A (ja) * | 2004-09-10 | 2006-03-23 | Sun Tec Kk | 波長走査型ファイバレーザ光源 |
JP2006522341A (ja) * | 2003-03-31 | 2006-09-28 | ザ・ジェネラル・ホスピタル・コーポレイション | 光路長が変更された異なる角度の光の合成により光学的に干渉する断層撮影におけるスペックルの減少 |
JP2007178169A (ja) * | 2005-12-27 | 2007-07-12 | Fujifilm Corp | 光断層画像化装置 |
-
2006
- 2006-05-22 JP JP2006141570A patent/JP2007309881A/ja not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57193085A (en) * | 1981-05-22 | 1982-11-27 | Takumi Tomijima | Controller for oscillation wavelength and wavelength width of semiconductor laser |
JPS5984487A (ja) * | 1982-09-30 | 1984-05-16 | ハネウエル・インコ−ポレ−テツド | 迅速同調レーザ |
JPH02176716A (ja) * | 1988-12-28 | 1990-07-09 | Fuji Photo Film Co Ltd | レーザビーム走査光学系 |
JPH06165784A (ja) * | 1992-11-30 | 1994-06-14 | Olympus Optical Co Ltd | 光断層イメージング装置 |
JP2000164980A (ja) * | 1998-11-25 | 2000-06-16 | Ando Electric Co Ltd | 外部共振器型波長可変半導体レーザ光源 |
JP2004134704A (ja) * | 2002-10-15 | 2004-04-30 | Aisin Seiki Co Ltd | 短パルス光増幅器 |
JP2004172230A (ja) * | 2002-11-18 | 2004-06-17 | Communication Research Laboratory | 二つのレーザー媒体を用いたレーザー装置 |
JP2006522341A (ja) * | 2003-03-31 | 2006-09-28 | ザ・ジェネラル・ホスピタル・コーポレイション | 光路長が変更された異なる角度の光の合成により光学的に干渉する断層撮影におけるスペックルの減少 |
WO2005001401A2 (en) * | 2003-06-06 | 2005-01-06 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
JP2006024876A (ja) * | 2004-06-07 | 2006-01-26 | Sun Tec Kk | 波長走査型ファイバレーザ光源 |
JP2006080384A (ja) * | 2004-09-10 | 2006-03-23 | Sun Tec Kk | 波長走査型ファイバレーザ光源 |
JP2007178169A (ja) * | 2005-12-27 | 2007-07-12 | Fujifilm Corp | 光断層画像化装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112352186A (zh) * | 2018-06-25 | 2021-02-09 | 川崎重工业株式会社 | 导光装置及激光加工装置 |
CN112352186B (zh) * | 2018-06-25 | 2022-08-19 | 川崎重工业株式会社 | 导光装置及激光加工装置 |
CN111538222A (zh) * | 2019-02-07 | 2020-08-14 | 株式会社岛津制作所 | 光源装置以及全息观察装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7002407B2 (ja) | 波長同調発信源装置 | |
US9658054B2 (en) | Optical measuring apparatus | |
US7633623B2 (en) | Optical tomography system | |
US8570525B2 (en) | Apparatus for optical frequency domain tomography with adjusting system | |
JP2006052954A (ja) | 多重化スペクトル干渉光コヒーレンストモグラフィー | |
JP4907279B2 (ja) | 光断層画像化装置 | |
JP2011007775A (ja) | 撮像装置及び撮像方法 | |
JP2007242747A (ja) | 波長可変レーザ装置および光断層画像化装置 | |
JP4999147B2 (ja) | 波長掃引光源および光断層画像化装置 | |
JP2011212432A (ja) | 眼科撮影装置 | |
US8786862B2 (en) | Spectral optical coherence tomography | |
JP7339447B2 (ja) | ライン走査マイクロスコピー用の装置および方法 | |
JP2007101266A (ja) | 光断層画像化装置 | |
JP2007309881A (ja) | 波長掃引光源および光断層画像化装置 | |
JP4642653B2 (ja) | 光断層画像化装置 | |
JP2007309882A (ja) | 波長掃引光源および光断層画像化装置 | |
JP4804977B2 (ja) | 波長可変レーザ装置および光断層画像化装置 | |
JP2007309880A (ja) | 波長掃引光源および光断層画像化装置 | |
JP2008047730A (ja) | 波長可変光源および光断層画像化装置 | |
US20240344819A1 (en) | Spectral domain optical imaging with wavelength comb illumination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20110401 |