Nothing Special   »   [go: up one dir, main page]

JP2007123107A - Fuel cell power generation system and fuel treatment device - Google Patents

Fuel cell power generation system and fuel treatment device Download PDF

Info

Publication number
JP2007123107A
JP2007123107A JP2005314894A JP2005314894A JP2007123107A JP 2007123107 A JP2007123107 A JP 2007123107A JP 2005314894 A JP2005314894 A JP 2005314894A JP 2005314894 A JP2005314894 A JP 2005314894A JP 2007123107 A JP2007123107 A JP 2007123107A
Authority
JP
Japan
Prior art keywords
fuel
gas
reforming
fuel cell
reformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005314894A
Other languages
Japanese (ja)
Inventor
Tsutomu Okuzawa
奥澤  務
Hidekazu Fujimura
秀和 藤村
Takaaki Mizukami
貴彰 水上
Akihiko Noya
明彦 野家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005314894A priority Critical patent/JP2007123107A/en
Publication of JP2007123107A publication Critical patent/JP2007123107A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy both shortening of starting time and enhancing of power generation efficiency in a fuel cell power generation system having a fuel treatment device and a fuel cell. <P>SOLUTION: In a fuel cell system comprising the fuel treatment device having a reforming catalyst and the fuel cell, in starting, the fuel treatment device is operated by an inner heat method in which a part of fuel to be reformed is oxidized to make a reformed heat source, and in a stationary operation, the fuel treatment device is operated by an outer heat method in which a reforming catalyst is heated by an outside heat source. Advantages of both of the inner heat type fuel treatment device having quick starting time and low efficiency and the outer heat type fuel treatment device having slow starting time and high efficiency can be exhibited. If an inner heat burner and an outer heat burner are used in starting, starting time can be more shortened than use of only the inner heat burner. When a combustion catalyst is used in the inner heat burner and a cluster burner is used in the outer heat burner, since metal is not heated to the unnecessary temperature, inexpensive metal can be used, and a system having quick starting time, high efficiency, and low cost can be provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池を主電源及び主熱源とする発電システムに係り、特に家庭向けに好適な燃料電池発電システム及び燃料処理装置に関する。   The present invention relates to a power generation system using a fuel cell as a main power source and a main heat source, and more particularly to a fuel cell power generation system and a fuel processing apparatus suitable for home use.

一般に家庭の電力需要は朝夕が多く、夜間は少ない。このため、家庭向けの燃料電池は、電力需要に追随して部分負荷運転するのが効率的且つ経済的であり、特に需要の少ない夜間は停止させるのが合理的である。   Generally, household electricity demand is high in the morning and evening and low at night. For this reason, it is efficient and economical for a fuel cell for home use to perform partial load operation following power demand, and it is reasonable to stop it at night when demand is low.

燃料改質系を備える固体高分子形燃料電池は、通常、外部からの熱源を利用して改質触媒層を加熱する外熱方式によって運転されている。外熱方式の場合、改質触媒層を、触媒層壁を介して間接加熱するため、朝の起動時に改質触媒層が改質反応に好適な温度に昇温するまでに、どうしても1時間ほど時間がかかり、需要の一部に答えられないという問題がある。起動時間短縮のために、空気を添加し、被改質燃料の一部を燃焼させて熱源とする内熱方式を採用すると、昇温速度は速くなるが、改質ガス中に酸化剤である空気中の窒素が残るために水素濃度が低くなり、発電効率の低下が生じる。また、内熱方式の場合、外熱方式に比べて水素流量は同じでも窒素が加わるため、改質ガス量が増え、補機動力が増えるという問題がある。   A polymer electrolyte fuel cell equipped with a fuel reforming system is usually operated by an external heating system in which a reforming catalyst layer is heated using an external heat source. In the case of the external heating method, the reforming catalyst layer is indirectly heated through the catalyst layer wall, so that it takes 1 hour for the reforming catalyst layer to rise to a temperature suitable for the reforming reaction at the start-up in the morning. There is a problem that it takes time and cannot answer a part of demand. In order to shorten the start-up time, if an internal heating method is adopted in which air is added and a part of the fuel to be reformed is burned as a heat source, the rate of temperature rise increases, but it is an oxidant in the reformed gas. Since nitrogen in the air remains, the hydrogen concentration is lowered, resulting in a decrease in power generation efficiency. In addition, in the case of the internal heat method, nitrogen is added even if the hydrogen flow rate is the same as in the external heat method, so that there is a problem that the amount of reformed gas increases and auxiliary power increases.

燃料電池に供給される燃料の処理装置として、外熱バーナを中心に一つ設けて、改質触媒層を、外熱バーナの燃焼排ガスにより、管壁を介して間接加熱する方式のものがあり、例えば、特許文献1,2に記載されている。この方式は、放熱損失の低減に非常に優れている。また、熱容量が最小化されて起動が早くなるという特長がある。   As a processing device for fuel supplied to the fuel cell, there is a type of apparatus in which an external heat burner is provided at the center, and the reforming catalyst layer is indirectly heated by the combustion exhaust gas of the external heat burner through the tube wall. For example, it is described in Patent Documents 1 and 2. This method is very excellent in reducing heat dissipation loss. In addition, the heat capacity is minimized and the start-up is quick.

特開2003−321206号公報(要約)JP 2003-321206 A (summary) 特開2002−187705号公報(要約)JP 2002-187705 A (summary)

外熱バーナを中心に設けて、バーナの燃焼排ガスにより改質触媒層を間接加熱する燃料処理装置は、前述の利点はあるものの、排ガス熱が管壁を介して改質触媒層に伝熱されて所定の温度になるため、起動時間の短縮には熱容量の面で限界がある。   The fuel processing device that is provided around the external heat burner and indirectly heats the reforming catalyst layer with the combustion exhaust gas of the burner has the above-mentioned advantages, but the heat of the exhaust gas is transferred to the reforming catalyst layer through the tube wall. Therefore, there is a limit in shortening the start-up time in terms of heat capacity.

本発明の目的は、急速起動が可能であり、且つ、高効率運転ができるようにした燃料電池発電システム及び燃料処理装置を提供することにある。   An object of the present invention is to provide a fuel cell power generation system and a fuel processing apparatus that can be rapidly started and that can be operated with high efficiency.

本発明は、燃料電池の起動時は被改質燃料の一部を燃焼させて改質触媒層の熱源とする内熱方式を採用し、それ以外の定常時は燃料電池からの戻りガスを燃焼させて高温の燃焼排ガスを発生させて改質触媒層を間接加熱する外熱方式を採用し、内熱方式と外熱方式のハイブリッドにより急速起動と高効率運転を実現したものである。   The present invention employs an internal heat system in which a part of the fuel to be reformed is burned at the start of the fuel cell and used as a heat source for the reforming catalyst layer, and the return gas from the fuel cell is burned at other times of normal operation. It adopts an external heat system that indirectly heats the reforming catalyst layer by generating high-temperature combustion exhaust gas, and realizes rapid start-up and high-efficiency operation by a hybrid of internal heat system and external heat system.

また、本発明の好ましい態様では、燃料電池の起動時に内熱方式と外熱方式を併用し、定常時に外熱方式を採用するようにした。この場合、総合のメリットとして、起動時に両方のバーナを使えるので、改質触媒層を内側と外側から昇温でき、起動時間をより一層短縮することができる。   Further, in a preferred aspect of the present invention, the internal heat method and the external heat method are used together at the time of starting the fuel cell, and the external heat method is adopted at the steady state. In this case, as a general merit, since both burners can be used at the time of startup, the temperature of the reforming catalyst layer can be increased from the inside and the outside, and the startup time can be further shortened.

本発明では、前述の内熱方式と外熱方式を備えた燃料電池発電システム並びに燃料処理装置を提供する。本発明の燃料処理装置は、炭化水素系燃料を水蒸気改質するための改質触媒層と、前記改質触媒層の加熱源として使用する燃焼排ガスを生成するための外熱燃焼器と、前記改質触媒層に供給される炭化水素系燃料の一部を燃焼して前記改質触媒層を内部から加熱するための内熱燃焼器を備える。   In the present invention, a fuel cell power generation system and a fuel processing apparatus provided with the aforementioned internal heat system and external heat system are provided. The fuel processing apparatus of the present invention includes a reforming catalyst layer for steam reforming a hydrocarbon-based fuel, an external heat combustor for generating combustion exhaust gas used as a heating source of the reforming catalyst layer, An internal heat combustor for combusting a part of the hydrocarbon-based fuel supplied to the reforming catalyst layer and heating the reforming catalyst layer from the inside is provided.

本発明により、燃料電池の起動時には急速起動が可能であり、起動時以外の定常運転時に高効率運転ができる燃料電池発電システムが提供できた。   According to the present invention, it is possible to provide a fuel cell power generation system that can be rapidly started when the fuel cell is started and that can perform high-efficiency operation during steady operation other than the start time.

本発明において、内熱方式とは、被改質燃料を改質触媒層に供給する途中で、その一部を酸化して改質熱源として、残りの被改質燃料を改質する方式のことを云う。また、外熱方式とは、改質触媒が設けられた部分に供給した被改質燃料を、外部から高温のガスを基いて加熱する方式のことを云う。   In the present invention, the internal heat system is a system in which a part of the reformed fuel is reformed as a reforming heat source by oxidizing a part of the reformed fuel while supplying the reformed fuel to the reforming catalyst layer. Say. In addition, the external heat system refers to a system in which the fuel to be reformed supplied to the portion where the reforming catalyst is provided is heated from the outside based on a high-temperature gas.

本発明において、燃料電池の起動時には、内熱方式と外熱方式の両方を採用するのが急速起動のために最も望ましい。しかし、両方式ともバーナを用いると、温度が急速に上がり過ぎて、改質触媒層が改質に必要な温度に上昇する前に燃料処理装置を構成しているメタルが耐久温度以上に加熱されてしまう心配がある。そこで、内熱方式では、主として着火を除き低温で燃焼する燃焼触媒を用いて燃焼させることが望ましい。燃焼触媒とリング状のクラスタバーナを組み合わせは、内熱方式の燃焼器を構成する上で非常に好ましい。   In the present invention, it is most desirable to employ both an internal heat system and an external heat system for rapid start-up when the fuel cell is started. However, in both types, if a burner is used, the temperature will rise too rapidly, and the metal constituting the fuel processor will be heated above the endurance temperature before the reforming catalyst layer rises to the temperature required for reforming. I'm worried. Therefore, in the internal heat system, it is desirable to burn using a combustion catalyst that burns at a low temperature except mainly for ignition. A combination of a combustion catalyst and a ring-shaped cluster burner is very preferable in constructing an internal heat type combustor.

本発明の燃料処理装置には、内熱燃焼器と外熱燃焼器が備えられる。内熱燃焼器は前述の燃焼触媒とリング状クラスタバーナの組み合わせが好適であり、外熱燃焼器はクラスタバーナが好適である。発電出力1kw級の家庭向け燃料電池の燃料処理装置では、外熱燃焼器のガス流量が極めて少なく失火しやすいので、低流量での安定燃焼性が優れているクラスタバーナを用いることが望ましい。また、外熱の場合は、アノード戻りガスのほかに補助燃料を加えて燃焼し、これにより改質温度を630℃以上にキープして燃料電池の燃料利用率を上げれば、発電効率向上が図れる。このために、燃焼安定空気比領域の広いクラスタバーナはきわめて有効である。   The fuel processing apparatus of the present invention includes an internal heat combustor and an external heat combustor. The internal heat combustor is preferably a combination of the above-described combustion catalyst and a ring-shaped cluster burner, and the external heat combustor is preferably a cluster burner. In a fuel processor for a household fuel cell having a power generation output of 1 kW, the gas flow rate of the external heat combustor is extremely small and misfire is likely to occur. Therefore, it is desirable to use a cluster burner that is excellent in stable combustibility at a low flow rate. In the case of external heat, combustion is performed by adding auxiliary fuel in addition to the anode return gas, thereby maintaining the reforming temperature at 630 ° C. or higher to increase the fuel utilization rate of the fuel cell, thereby improving power generation efficiency. . For this reason, a cluster burner having a wide combustion stable air ratio region is extremely effective.

以上の改善策を盛り込んだ燃料電池発電システムの燃料処理装置として、外熱燃焼器にフラシール付のクラスタバーナと、内熱燃焼器に燃焼触媒を用いたシステム構成を推奨する。ただし、内熱燃焼器は、初期にリング状クラスタバーナで着火する。従来は、内熱式か外熱式のいずれかであり、両方を合わせたものはなかった。   We recommend a system configuration that uses a cluster burner with a hula seal in the external heat combustor and a combustion catalyst in the internal heat combustor as a fuel processor for the fuel cell power generation system incorporating the above measures. However, the internal heat combustor is initially ignited by the ring-shaped cluster burner. Conventionally, either the internal heat type or the external heat type is used, and there is no combination of both.

また、定常時に燃料電池の燃料利用率を高くして発電効率を上げようとするときには、アノード戻りガスのみでは高い水素変換効率を維持できないし、燃料利用率の変動により、アノード戻りガス中の水素流量が変動する。アノード戻りガスの水素流量が変動すると、それがまた、燃料利用率の変動を招く。この問題を解決するためには、補助燃料を加えて改質触媒層温度を一定に保つようにして、安定高効率を図ることが有効である。   Also, when trying to increase the power generation efficiency by increasing the fuel utilization rate of the fuel cell in a steady state, the high hydrogen conversion efficiency cannot be maintained only with the anode return gas, and the hydrogen in the anode return gas can be reduced due to fluctuations in the fuel utilization rate. The flow rate fluctuates. When the anode return gas hydrogen flow rate fluctuates, it also leads to variations in fuel utilization. In order to solve this problem, it is effective to increase the stability and efficiency by adding auxiliary fuel to keep the reforming catalyst layer temperature constant.

本発明の極めて好適な例では、外熱燃焼器にクラスタバーナ、内熱燃焼器にリング状クラスタバーナと燃焼触媒を採用し、起動時には、外熱のクラスタバーナにより高温排ガスを作り出して主要部を安定加熱しつつ、内熱燃焼器でリング状バーナを着火して燃焼触媒で燃焼しうる温度に加熱する。燃焼触媒で燃焼しうる温度まで被改質燃料が加熱されたならば、リング状クラスタバーナを消して、以後は燃焼触媒で燃焼させてメタルに負担をかけない範囲で急速起動を行う。   In a very preferred example of the present invention, a cluster burner is used for the external heat combustor, a ring-shaped cluster burner and a combustion catalyst are used for the internal heat combustor. While stably heating, the ring-shaped burner is ignited by the internal heat combustor and heated to a temperature at which it can be burned by the combustion catalyst. When the fuel to be reformed is heated to a temperature at which it can be combusted by the combustion catalyst, the ring-shaped cluster burner is turned off, and thereafter, rapid combustion is performed within a range in which the metal is burned by the combustion catalyst and no burden is placed on the metal.

また、他の好適な例では、外熱燃焼排ガス系統に蒸発器を設け、改質ガス系統にCOシフト触媒及びCOガス冷却部を設けて、それぞれ独立に制御性を損なわず、かつ、2相流でない水蒸気を作り出すようにする。   In another preferred example, an evaporator is provided in the externally heated combustion exhaust gas system, a CO shift catalyst and a CO gas cooling unit are provided in the reformed gas system, and controllability is not independently impaired, and Create water vapor that is not flowing.

家庭用燃料電池発電システムにおいて、需要の少ない深夜は運転を停止し、その他の時間帯に運転する、いわゆるDSS(Daily Start and Shutdown)が合理的なため、普通の運転形態になりつつある。この場合、早朝の起動に1時間程度もかかったのでは、早朝の短時間の電力及び給湯需要に答え難い。急速起動をメインにして内熱式燃料処理装置を採用すると、起動が早くなり、15分以下にすることも可能であるが、定常運転時の効率が下がる。本発明により、急速起動可能で、且つ、高効率な運転を両立させることができた。   In a domestic fuel cell power generation system, since the so-called DSS (Daily Start and Shutdown), which stops operation at midnight when demand is low and operates at other times, is reasonable, it is becoming a normal operation mode. In this case, if it takes about an hour to start in the early morning, it is difficult to answer the short-term power and hot water demand in the early morning. When the internal heat type fuel processing device is adopted mainly for rapid start-up, the start-up becomes quick and can be made 15 minutes or less, but the efficiency during steady operation is lowered. According to the present invention, rapid start-up and high-efficiency operation can be achieved.

以下、本発明の実施例について図面を用いて説明する。但し、これらの実施例に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, it is not limited to these examples.

燃料処理装置内部を中心とした燃料電池発電システムの構成を図1に示す。図1の発電システムは、外熱燃焼器を有する燃焼排ガス系統、内熱燃焼器と改質触媒を有する改質ガス系統により構成されている。外熱燃焼器の燃焼排ガス系統及び改質ガス系統の順番で説明する。   A configuration of a fuel cell power generation system centering on the inside of the fuel processing apparatus is shown in FIG. The power generation system of FIG. 1 includes a combustion exhaust gas system having an external heat combustor, and a reformed gas system having an internal heat combustor and a reforming catalyst. Description will be made in the order of the combustion exhaust gas system and the reformed gas system of the external heat combustor.

外熱燃焼器の燃焼排ガス系統には、都市ガス等の補助燃料1-1と、燃料電池33又は改質ガス系統からの戻りガス3を、熱交換部34で昇温された空気10を用いて燃焼させて熱を発生させる外熱燃焼器2が配備されている。また、外熱燃焼器2からの燃焼排ガス25によって改質触媒層36に熱を与える改質触媒層熱交換部9と、改質触媒層熱交換部9で改質触媒層36に熱を与えたあとの燃焼排ガス26を都市ガス等の炭化水素系燃料と水蒸気の混合ガス43と熱交換して混合ガス43を加熱する熱交換部24が備えられている。更に、熱交換部24を出た燃焼排ガス27によって水11-1を蒸発・過熱させる蒸発部38と、蒸発部38を出た燃焼排ガス28によって空気4-1を加熱する熱交換部34が備えられている。   The combustion exhaust gas system of the external heat combustor uses the auxiliary fuel 1-1 such as city gas and the return gas 3 from the fuel cell 33 or the reformed gas system, and the air 10 heated in the heat exchange unit 34 An external heat combustor 2 that generates heat by burning is provided. In addition, the reforming catalyst layer heat exchanging portion 9 that gives heat to the reforming catalyst layer 36 by the combustion exhaust gas 25 from the external heat combustor 2, and the reforming catalyst layer heat exchanging portion 9 gives heat to the reforming catalyst layer 36. A heat exchanging unit 24 that heats the mixed gas 43 by heat-exchanging the combustion exhaust gas 26 after that with a mixed gas 43 of a hydrocarbon-based fuel such as city gas and water vapor is provided. Furthermore, an evaporation unit 38 that evaporates and superheats the water 11-1 with the combustion exhaust gas 27 that exits the heat exchange unit 24, and a heat exchange unit 34 that heats the air 4-1 with the combustion exhaust gas 28 that exits the evaporation unit 38 are provided. It has been.

改質ガス系統には、外熱燃焼器2の燃焼排ガス系統の熱交換部24で昇温された炭化水素系燃料と水蒸気の混合ガスよりなる被改質原料ガス7を、部分酸化用空気4-2で部分酸化させる内熱燃焼器6が備えられている。また、内熱燃焼器6で部分酸化され昇温された部分燃焼改質原料ガス35を、外熱燃焼器2の燃焼排ガス系統の改質触媒層熱交換部9からの熱により改質反応させて、改質ガスを生成する改質触媒層36が備えられている。さらに、改質触媒層36で改質され水素リッチになった改質ガス8から熱を回収し、混合部22からの混合ガス23を加熱する熱交換部5、熱交換部5からの改質ガス16をCOシフト反応させるCOシフト触媒層17が備えられている。COシフト触媒層17内には、水11-2でCOシフト触媒の温度をシフト反応に適した温度範囲に維持するCOシフト冷却部42が備えられている。また、COシフト触媒層17からの改質ガス18を冷却して、下流の1段目CO選択酸化部に適した温度にするため水11-3を用いる熱交換部19が備えられている。また、熱交換部19からの改質ガス20に空気4-3と水11-4を供給して選択酸化反応と冷却を行う1段目CO選択酸化部15と、1段目CO選択酸化部15からの改質ガス30に空気4-4と水11-5を供給して選択酸化反応と冷却を行う2段目CO選択酸化部31が備えられている。   In the reformed gas system, the reformed raw material gas 7 composed of a mixed gas of hydrocarbon fuel and steam heated in the heat exchange section 24 of the flue gas system of the external heat combustor 2 is supplied to the partial oxidation air 4 An internal heat combustor 6 for partial oxidation at -2 is provided. Further, the partial combustion reforming raw material gas 35 that has been partially oxidized and heated in the internal heat combustor 6 is subjected to a reforming reaction by heat from the reforming catalyst layer heat exchange part 9 of the combustion exhaust gas system of the external heat combustor 2. The reforming catalyst layer 36 for generating the reformed gas is provided. Further, heat is recovered from the reformed gas 8 that has been reformed by the reforming catalyst layer 36 and has become hydrogen-rich, and the heat exchange unit 5 that heats the mixed gas 23 from the mixing unit 22 and the reforming from the heat exchange unit 5 A CO shift catalyst layer 17 is provided for causing the gas 16 to undergo a CO shift reaction. In the CO shift catalyst layer 17, a CO shift cooling unit 42 is provided that maintains the temperature of the CO shift catalyst within the temperature range suitable for the shift reaction with the water 11-2. In addition, a heat exchange unit 19 using water 11-3 is provided to cool the reformed gas 18 from the CO shift catalyst layer 17 to a temperature suitable for the downstream first stage CO selective oxidation unit. In addition, a first-stage CO selective oxidation section 15 that supplies air 4-3 and water 11-4 to the reformed gas 20 from the heat exchange section 19 to perform selective oxidation reaction and cooling, and a first-stage CO selective oxidation section A second-stage CO selective oxidation unit 31 is provided that performs selective oxidation reaction and cooling by supplying air 4-4 and water 11-5 to the reformed gas 30 from 15.

2段目CO選択酸化部31からの改質ガス32を利用して、燃料電池33で発電が行われる。外熱燃焼器の燃焼排ガス系統と改質ガス系統を結ぶものとしては、すでに説明済みの改質触媒層熱交換部9と混合部22がある。混合部22では、熱交換部19からの水又は水蒸気12と、COシフト冷却部42からの水又は水蒸気21と、蒸発器38からの水蒸気39と、加熱しない都市ガス等の炭化水素系燃料1-2が混合される。これらにより本発明の燃料電池発電システムが構成される。   Electric power is generated in the fuel cell 33 using the reformed gas 32 from the second-stage CO selective oxidation unit 31. As for connecting the flue gas system of the external heat combustor and the reformed gas system, there are the reforming catalyst layer heat exchanging section 9 and the mixing section 22 which have already been explained. In the mixing unit 22, water or water vapor 12 from the heat exchange unit 19, water or water vapor 21 from the CO shift cooling unit 42, water vapor 39 from the evaporator 38, and hydrocarbon-based fuel 1 such as city gas not heated. -2 is mixed. These constitute the fuel cell power generation system of the present invention.

以上のように構成された燃料電池発電システムについて、まず、定常時、次に起動時の順番で、動作を説明する。なお、定常時とは、起動後の燃料電池運転時のことを云う。   The operation of the fuel cell power generation system configured as described above will be described first in the order of normal operation and then of startup. Note that the steady state refers to the time of fuel cell operation after startup.

定常時は、外熱燃焼器2において、補助燃料1-1と燃料電池33からの戻りガス3を、熱交換部34で昇温した空気10を用いて燃焼させて断熱火炎温度を1,200℃以上として、900〜1,000℃の高温の燃焼排ガス25を発生させる。この高温の燃焼排ガス25を用いて、改質触媒層熱交換部9にて改質触媒層36に輻射を含む熱伝達を行い、改質前の部分燃焼改質原料ガス35に改質反応に必要な熱の注入を行い、改質温度を630℃以上に確保する。改質触媒層36に改質触媒層熱交換部9にて熱を与えて800℃程度になった燃焼排ガス26は、熱交換部24、蒸発器38及び熱交換部34により、それぞれ炭化水素系燃料と水蒸気の混合ガス23、水11-1及び空気4-1に熱を与えて熱を回収して、最終的に130℃程度の燃焼排ガス29となって排出される。予熱された被改質原料ガス7は、定常時の場合、部分酸化用空気4-2を供給しないので、内熱燃焼器6を通過して改質触媒層36で改質触媒層熱交換部9の熱を受けて、改質触媒により下記の(1)式に示す改質反応と(2)式に示すCOシフト反応を起こす。そして、水素リッチな改質ガス8を生成する。   Normally, in the external heat combustor 2, the auxiliary fuel 1-1 and the return gas 3 from the fuel cell 33 are combusted by using the air 10 whose temperature has been raised in the heat exchanging section 34, and the adiabatic flame temperature is 1,200 ° C. or higher. As a result, a high-temperature combustion exhaust gas 25 of 900 to 1,000 ° C. is generated. Using this high-temperature combustion exhaust gas 25, the reforming catalyst layer heat exchanging section 9 performs heat transfer including radiation to the reforming catalyst layer 36, and the reforming reaction is performed on the partial combustion reforming raw material gas 35 before reforming. Inject necessary heat to ensure the reforming temperature is 630 ℃ or higher. Combustion exhaust gas 26, which is heated to about 800 ° C. by applying heat to the reforming catalyst layer 36 in the reforming catalyst layer heat exchanging section 9, is converted into hydrocarbons by the heat exchanging section 24, the evaporator 38 and the heat exchanging section 34 Heat is applied to the mixed gas 23 of fuel and water vapor, water 11-1 and air 4-1, to recover the heat, and finally, it is discharged as a combustion exhaust gas 29 at about 130 ° C. The preheated raw material gas 7 to be reformed does not supply the partial oxidation air 4-2 in a steady state, so it passes through the internal heat combustor 6 and the reforming catalyst layer 36 in the reforming catalyst layer heat exchange section. Under the heat of 9, the reforming catalyst causes the reforming reaction shown in the following formula (1) and the CO shift reaction shown in the formula (2). Then, the reformed gas 8 rich in hydrogen is generated.

+mHO⇔mCO+(m+n/2)H …(1)
CO+HO⇔CO+H …(2)
改質ガス8は熱交換部5で混合ガス23により熱を回収しつつ、熱回収後の改質ガス16をCOシフト触媒層17に供給できる280℃前後にする。この改質ガス16をCOシフト触媒層17で前記(2)式によりCOシフト反応させる。このとき、COシフト反応の適正温度範囲に保つため、COシフト冷却部42で水冷しつつ熱回収する。この後、COシフト反応後の改質ガス18を1段目CO選択酸化部15及び2段目CO選択酸化部31に送るのに適した改質ガス温度にするために、熱交換部19で水11-3により改質ガス18の熱を回収する。そして、1段目CO選択酸化部15と2段目CO選択酸化部31よりなる2段式のCO選択酸化部において、空気4-3,4-4を用いてCOを減少させ、最終的にはCO濃度を10ppm以下にする。この際に、CO選択酸化部に水11-4,11-5を供給して、CO及び水素と(3)式及び(4)式に示す酸化反応を進行させ、発熱を除去する。
C m H n + mH 2 O⇔mCO + (m + n / 2) H 2 (1)
CO + H 2 O⇔CO 2 + H 2 (2)
The reformed gas 8 is recovered to about 280 ° C. at which the heat-recovered reformed gas 16 can be supplied to the CO shift catalyst layer 17 while recovering heat by the mixed gas 23 in the heat exchange section 5. The reformed gas 16 is subjected to a CO shift reaction in the CO shift catalyst layer 17 according to the equation (2). At this time, in order to keep the temperature range appropriate for the CO shift reaction, heat recovery is performed while the water is cooled by the CO shift cooling unit 42. Thereafter, in order to obtain a reformed gas temperature suitable for sending the reformed gas 18 after the CO shift reaction to the first-stage CO selective oxidation section 15 and the second-stage CO selective oxidation section 31, the heat exchange section 19 The heat of the reformed gas 18 is recovered by the water 11-3. Then, in the two-stage CO selective oxidation section consisting of the first-stage CO selective oxidation section 15 and the second-stage CO selective oxidation section 31, CO is reduced using air 4-3 and 4-4, and finally Reduces the CO concentration to 10 ppm or less. At this time, water 11-4 and 11-5 are supplied to the CO selective oxidation unit to advance the oxidation reaction shown in the equations (3) and (4) with CO and hydrogen to remove heat.

2CO+O⇒2CO …(3)
2H+O⇒2HO …(4)
なお、320℃以上になると、下記(5)式に示すメタン化反応が生じるので、温度の維持は重要である。
2CO + O 2 ⇒ 2CO 2 (3)
2H 2 + O 2 ⇒2H 2 O (4)
In addition, when it becomes 320 degreeC or more, since the methanation reaction shown to the following (5) formula arises, maintenance of temperature is important.

CO+3H⇔CH+HO …(5)
得られた改質ガス32を燃料電池33のアノードに供給して発電を行い、改質ガス中の水素を消費する。水素成分が電流分消費されたあとの戻りガス3は、外熱燃焼器2に向かい改質反応の熱源となる。
CO + 3H 2 ⇔CH 4 + H 2 O (5)
The obtained reformed gas 32 is supplied to the anode of the fuel cell 33 to generate power, and hydrogen in the reformed gas is consumed. The return gas 3 after the hydrogen component is consumed by the amount of current is directed to the external heat combustor 2 and becomes a heat source for the reforming reaction.

定常時において発電効率を高めるには、燃料電池で電流を増やす必要があるが、そうすると、改質ガス中の水素がより多く消費されるので、燃料電池を出て行く戻りガス中の水素濃度は低くなる。水素濃度が低くなった戻りガスを外熱燃焼器で燃焼させると、発熱量が減り、改質触媒層で適正改質温度を維持できなくなり、発生水素濃度が低下する。水素濃度が低い状態で燃料電池に供給すると、燃料電池内で水素欠乏が発生して燃料電池にダメージを与える。このようなことから、定常時に都市ガス等の補助燃料1-1を供給して、この補助燃料1-1と戻りガス3を外熱燃焼器2で燃焼することは有効であり、改質触媒層熱交換部9から改質触媒層36に入る熱量を増大して発生水素量を増大させることができる。これにより、燃料利用率を増大させて補助燃料1-1の供給量を上回る改質プロセス効率が得られる。   In order to increase the power generation efficiency at regular times, it is necessary to increase the current in the fuel cell. However, since more hydrogen is consumed in the reformed gas, the hydrogen concentration in the return gas exiting the fuel cell is Lower. When the return gas having a low hydrogen concentration is combusted in the external heat combustor, the calorific value is reduced, the proper reforming temperature cannot be maintained in the reforming catalyst layer, and the generated hydrogen concentration decreases. If the fuel cell is supplied with a low hydrogen concentration, hydrogen deficiency occurs in the fuel cell and damages the fuel cell. For this reason, it is effective to supply the auxiliary fuel 1-1 such as city gas at the normal time, and to burn the auxiliary fuel 1-1 and the return gas 3 in the external heat combustor 2. The amount of generated hydrogen can be increased by increasing the amount of heat entering the reforming catalyst layer 36 from the layer heat exchanger 9. Thereby, the reforming process efficiency exceeding the supply amount of the auxiliary fuel 1-1 by increasing the fuel utilization rate can be obtained.

起動時には、外熱燃焼器2を起動すると同時に、部分酸化用空気4-2を注入することにより改質原料の一部を部分酸化させる内熱燃焼器6をも作動させて、これにより、改質触媒層36を中から加熱するとともに、改質触媒層熱交換部9により外からも加熱する。この両者の加熱により、起動時間が短縮できる。なお、起動時には改質ガス32は燃料電池33をバイパスさせる。   At the time of start-up, the external heat combustor 2 is started, and at the same time, the internal heat combustor 6 that partially oxidizes a part of the reforming raw material is also operated by injecting the partial oxidation air 4-2. The porous catalyst layer 36 is heated from the inside and is also heated from the outside by the reforming catalyst layer heat exchanging section 9. Due to the heating of both, the startup time can be shortened. Note that the reformed gas 32 bypasses the fuel cell 33 during startup.

図2は、改質温度を630℃に設定したときの改質プロセス効率を示す。これを見ると分かるように燃料利用率を向上させると改質プロセス効率が向上する。燃料利用率70%と75%の間で、戻りガス3と補助燃料1-1である都市ガスの燃焼による外熱バーナ断熱火炎温度が1200℃、1320℃及び1400℃別に枝分かれしているのは、この枝分かれした時点で戻りガス3に補助燃料1-1を注入しているからである。従来は補助燃料1-1を加えると、次の(6)式に示す関係式から分母が増えて効率が低下すると考えられていた。   FIG. 2 shows the reforming process efficiency when the reforming temperature is set to 630 ° C. As can be seen from this, reforming process efficiency is improved by increasing the fuel utilization rate. Between the fuel utilization rate of 70% and 75%, the external heat burner adiabatic flame temperature due to the combustion of the return gas 3 and the city gas that is the auxiliary fuel 1-1 is branched according to 1200 ° C, 1320 ° C and 1400 ° C. This is because the auxiliary fuel 1-1 is injected into the return gas 3 at the time of branching. Conventionally, when auxiliary fuel 1-1 is added, it has been considered that the denominator increases from the relational expression shown in the following equation (6) and the efficiency decreases.

改質プロセス効率=(改質ガス32の発熱量−戻りガス3の発熱量)/(補助燃料1-1+炭化水素系燃料1-2) …(6)
このため、補助燃料1-1を加えずに戻りガス3のみで燃料処理装置を加熱して水素を発生させようとしてきた。戻りガス3のみでは、燃料利用率70%付近が固体高分子形燃料電池(PEFC)発電システムの熱物質収支を維持できる限界となる。しかし、実際には、補助燃料1-1を加えても改質温度と熱物質収支が維持でき、かつ、水素製造量が増加させられるので、図2に示すように改質プロセス効率、ひいては、発電効率を向上させることが可能となる。ここで分かることは、このシステムでは断熱火炎温度が変わっても改質プロセスの変動が小さい、すなわち、ロバスト性があることである。これは、燃料処理装置にとって極めて重要な効果である。
Reforming process efficiency = (calorific value of reformed gas 32-calorific value of return gas 3) / (auxiliary fuel 1-1 + hydrocarbon fuel 1-2) (6)
For this reason, it has been attempted to generate hydrogen by heating the fuel processor only with the return gas 3 without adding the auxiliary fuel 1-1. With return gas 3 alone, a fuel utilization rate of around 70% is the limit for maintaining the thermal mass balance of a polymer electrolyte fuel cell (PEFC) power generation system. However, in practice, even if auxiliary fuel 1-1 is added, the reforming temperature and the heat and mass balance can be maintained, and the amount of hydrogen produced can be increased, so that the reforming process efficiency as shown in FIG. It becomes possible to improve the power generation efficiency. It can be seen that this system has little variation in the reforming process even when the adiabatic flame temperature changes, that is, it is robust. This is a very important effect for the fuel processor.

図3は、改質温度を630℃に設定したときの燃料利用率と供給都市ガス中の補助燃料1-1の割合を示す。図2と対照すると分かるように、改質プロセス効率と補助燃料1-1は、燃料利用率を媒体にして比例関係にある。この図3からは、外熱バーナすなわち外熱燃焼器の断熱火炎温度を上げないと補助燃料1-1の量を減らせない、つまり、改質プロセス効率が上げられないことが分かる。しかし、断熱火炎温度を上げると、周囲のメタル温度が上がるため、メタルに低コストのステンレス鋼を使うには、メタル温度が850℃以下になるように選定せざるを得ない。また、燃料利用率を上げていくと改質プロセス効率は上がるが、その反面、補助燃料の供給および燃料電池のカソードへの空気供給に係る補機動力が増えるため、実際には、85%前後が最適運転点である。   FIG. 3 shows the fuel utilization when the reforming temperature is set to 630 ° C. and the ratio of the auxiliary fuel 1-1 in the supplied city gas. As can be seen in contrast to FIG. 2, the reforming process efficiency and the auxiliary fuel 1-1 are in a proportional relationship with the fuel utilization rate as the medium. FIG. 3 shows that the amount of the auxiliary fuel 1-1 cannot be reduced unless the adiabatic flame temperature of the external heat burner, that is, the external heat combustor is increased, that is, the reforming process efficiency cannot be increased. However, if the adiabatic flame temperature is raised, the surrounding metal temperature will rise, so in order to use low-cost stainless steel for the metal, the metal temperature must be selected to be 850 ° C. or lower. In addition, as the fuel utilization rate increases, the reforming process efficiency increases, but on the other hand, the auxiliary power required for supplying auxiliary fuel and supplying air to the cathode of the fuel cell increases. Is the optimum operating point.

図4は、起動時の特性を通常のバーナで検討した結果であり、着火から5分後の改質触媒層内の温度分布を示す。横軸が改質触媒層の入口から出口までの位置を示し、縦軸がその位置での着火5分後の改質触媒層内温度を示している。通常のバーナを内熱燃焼器と外熱燃焼器に用いた場合には、温度上昇は早いものの、上流で850℃を超える部分が発生する。このため、メタルにステンレス鋼が使えない。   FIG. 4 is a result of examining the characteristics at the time of starting with a normal burner, and shows a temperature distribution in the reforming catalyst layer after 5 minutes from ignition. The horizontal axis indicates the position from the inlet to the outlet of the reforming catalyst layer, and the vertical axis indicates the temperature in the reforming catalyst layer after 5 minutes of ignition at that position. When a normal burner is used for an internal heat combustor and an external heat combustor, although the temperature rises quickly, a portion exceeding 850 ° C. is generated upstream. For this reason, stainless steel cannot be used for the metal.

外熱燃焼器に通常のバーナを採用し、内熱燃焼器に燃焼触媒(着火時のみ通常バーナ)を採用した場合の改質触媒層内の温度分布を図5に示す。最高温度が850℃で下流の温度も上がり、図4における問題を解決できた。   FIG. 5 shows the temperature distribution in the reforming catalyst layer when a normal burner is used for the external heat combustor and a combustion catalyst (normal burner only at the time of ignition) is used for the internal heat combustor. The maximum temperature was 850 ° C. and the downstream temperature also increased, and the problem in FIG. 4 could be solved.

図1の燃料電池発電システムを実施するための円筒形燃料処理装置の構成を図6に示す。空気導管53を介して昇温された空気10と、ガス用導管55を通して供給された戻りガス3又は戻りガス3と補助燃料1-1を、装置中心に設けられた、クラスタバーナにより構成された外熱燃焼器2で燃焼させる。外熱燃焼器2での着火は点火栓用導管54の点火栓49により行われる。外熱燃焼器2で発生した高温の燃焼排ガス25は、燃焼排ガスを装置底部に導く下降流路56を通して折り返し流路60に導く。また、下降流路の管壁には複数の孔58を設けておき、燃焼排ガス25の一部を流速の早い折り返し流路60へ流出させ、折り返し流路60を流れる燃焼排ガスの温度が低下するのを防止する。折り返し流路60を流れる燃焼排ガスにより、管壁を介して隣接するハニカム構造の改質触媒層36に熱を与える。改質触媒層36はハニカム構造に限定されるものではないが、起動時間を早めるためにはハニカム構造とするのが良い。その後、燃焼排ガスは、改質原料予熱層52、蒸発器38の回りを通り、改質用の燃料ガス及び水11-1に熱を与えて燃焼排ガス排出管59から排出される。なお、改質原料予熱層52はスチールウールの充填層等により形成可能である。空気導管53、点火栓用導管54及びガス用導管55の周囲には断熱材61を設けて、燃焼排ガスの熱で改質原料予熱層52を十分に加熱できるようにしている。   FIG. 6 shows the configuration of a cylindrical fuel processor for implementing the fuel cell power generation system of FIG. The air 10 heated through the air conduit 53 and the return gas 3 or the return gas 3 and the auxiliary fuel 1-1 supplied through the gas conduit 55 are configured by a cluster burner provided in the center of the apparatus. Burn with external heat combustor 2. The ignition in the external heat combustor 2 is performed by the spark plug 49 of the spark plug conduit 54. The high-temperature combustion exhaust gas 25 generated in the external heat combustor 2 is guided to the return channel 60 through the descending channel 56 that guides the combustion exhaust gas to the bottom of the apparatus. In addition, a plurality of holes 58 are provided in the pipe wall of the descending flow path so that a part of the combustion exhaust gas 25 flows out to the return flow path 60 having a high flow velocity, and the temperature of the combustion exhaust gas flowing through the return flow path 60 decreases. To prevent. Heat is applied to the reforming catalyst layer 36 of the adjacent honeycomb structure through the tube wall by the combustion exhaust gas flowing through the folded flow path 60. The reforming catalyst layer 36 is not limited to a honeycomb structure, but a honeycomb structure is preferable in order to shorten the start-up time. Thereafter, the combustion exhaust gas passes around the reforming raw material preheating layer 52 and the evaporator 38, heats the reforming fuel gas and water 11-1, and is discharged from the combustion exhaust gas discharge pipe 59. The reforming material preheating layer 52 can be formed of a steel wool filling layer or the like. A heat insulating material 61 is provided around the air conduit 53, the spark plug conduit 54, and the gas conduit 55 so that the reformed material preheating layer 52 can be sufficiently heated by the heat of the combustion exhaust gas.

空気4-1は、底部から燃料処理装置に供給され、装置表面を回って熱を回収し、昇温された空気10を作る。昇温された空気10は、空気導管53を通ってクラスタバーナよりなる外熱燃焼器2に送られて高温の燃焼排ガス25を作り出す。   Air 4-1 is supplied to the fuel processing apparatus from the bottom, travels around the apparatus surface, recovers heat, and creates heated air 10. The heated air 10 is sent to the external heat combustor 2 composed of a cluster burner through the air conduit 53 to produce a high-temperature combustion exhaust gas 25.

被改質原料ガス7に含まれている水は、3箇所から供給される。水11-1は、円筒の上部から蒸気供給管64を通して蒸発器38に送り込まれる。水11-2は、COシフト触媒層17に隣接するCOシフト冷却部42に送られ、改質ガスから熱を回収して水及び湿り蒸気を生成する。COシフト冷却部42の上部の熱交換部5には水11-3が供給され、改質ガスから熱を回収して水及び湿り蒸気を生成する。COシフト冷却部42及び熱交換部5で、それぞれ改質ガスから熱を回収するとともに、COシフト反応に適した温度になるように水量を調整して制御する。水11-2及び水11-3から生じた蒸気は、混合部22のある区画に複数の孔65を通して送り込まれる。また、蒸発器38で生成した蒸気も蒸気供給管66により混合部22に供給される。これらの蒸気は混合部22で炭化水素系燃料1-2と混合され、被改質原料ガス7となる。   Water contained in the reformed raw material gas 7 is supplied from three locations. The water 11-1 is fed into the evaporator 38 through the steam supply pipe 64 from the upper part of the cylinder. The water 11-2 is sent to the CO shift cooling unit 42 adjacent to the CO shift catalyst layer 17, and recovers heat from the reformed gas to generate water and wet steam. Water 11-3 is supplied to the heat exchanging unit 5 above the CO shift cooling unit 42, and heat is recovered from the reformed gas to generate water and wet steam. The CO shift cooling unit 42 and the heat exchange unit 5 recover heat from the reformed gas, respectively, and adjust and control the amount of water so that the temperature is suitable for the CO shift reaction. Steam generated from the water 11-2 and the water 11-3 is fed into a section where the mixing unit 22 is located through a plurality of holes 65. Further, the steam generated by the evaporator 38 is also supplied to the mixing unit 22 through the steam supply pipe 66. These steams are mixed with the hydrocarbon-based fuel 1-2 in the mixing unit 22 to become the reformed raw material gas 7.

起動時であれば、被改質原料ガス7は、内熱燃焼器6においてリング状クラスタバーナ50で部分酸化用空気4-2と混合され、点火栓51で着火して、酸素不足の条件で部分酸化燃焼する。部分酸化燃焼したガスの温度が300℃を超えれば、内熱燃焼器6の燃焼触媒により部分酸化反応が進行するようになる。この時点になれば、点火栓51を止めて、燃焼触媒のみで部分酸化燃焼を行う。このとき、リング状クラスタバーナ50は性能の良い混合器として働く。内熱燃焼器6を出る改質前ガスの温度は300〜800℃になる。   At the time of start-up, the reformed raw material gas 7 is mixed with the partial oxidation air 4-2 by the ring-shaped cluster burner 50 in the internal heat combustor 6, ignited by the spark plug 51, and under oxygen-deficient conditions. Partial oxidation combustion. When the temperature of the partially oxidized combustion gas exceeds 300 ° C., the partial oxidation reaction proceeds by the combustion catalyst of the internal heat combustor 6. At this point, the spark plug 51 is stopped and partial oxidation combustion is performed using only the combustion catalyst. At this time, the ring-shaped cluster burner 50 functions as a high-performance mixer. The temperature of the gas before reforming exiting the internal heat combustor 6 becomes 300 to 800 ° C.

定常運転になり部分酸化用空気4-2が供給されなくなると、内熱燃焼器6での燃焼が停止し、燃焼触媒は高性能の整流装置として機能する。これにより、被改質原料ガスの流量分布の偏りが補正される。その後、改質用原料ガスは改質原料予熱層52に流入し、折り返し流路60を流れる燃焼排ガスにより加熱される。その後、被改質原料ガスは改質触媒層36に入り、同じく折り返し流路60を流れる燃焼排ガスにより加熱されて改質反応を起こし、水素リッチな改質ガス8を発生する。このとき、改質ガスの温度は出口で温度検出器72により監視され、所定の温度以上になるように補助燃料1-1の供給量が調節される。改質ガス8は、二度折り返して水11-3により適正な温度に調整されてCOシフト触媒層17に入る。COシフト触媒層17も、COシフト反応が進む適性温度を保つために、外側から水11-2によって反応熱が吸収される。COシフト反応によって、改質ガス8は更に水素リッチな改質ガスとなる。この改質ガスは、1段目CO選択酸化部15に入り、空気4-3によりCO濃度が低減される。その際に発生する熱は水11-4で吸収する。その後、改質ガスは、2段目CO選択酸化部31に入り、CO濃度を空気4-4により低減させて、その際に発生する熱を水11-5で吸収して最終的にCO濃度が10ppm以下の改質ガス32となる。   If the partial oxidation air 4-2 is no longer supplied due to steady operation, combustion in the internal heat combustor 6 stops, and the combustion catalyst functions as a high-performance rectifier. Thereby, the deviation of the flow rate distribution of the raw material gas to be reformed is corrected. Thereafter, the reforming material gas flows into the reforming material preheating layer 52 and is heated by the combustion exhaust gas flowing through the folded flow path 60. Thereafter, the raw material gas to be reformed enters the reforming catalyst layer 36 and is heated by the combustion exhaust gas that also flows through the folded flow path 60 to cause a reforming reaction, thereby generating a hydrogen-rich reformed gas 8. At this time, the temperature of the reformed gas is monitored by the temperature detector 72 at the outlet, and the supply amount of the auxiliary fuel 1-1 is adjusted so as to become a predetermined temperature or higher. The reformed gas 8 is folded twice and adjusted to an appropriate temperature with water 11-3 and enters the CO shift catalyst layer 17. The CO shift catalyst layer 17 also absorbs heat of reaction from the outside by the water 11-2 in order to maintain an appropriate temperature at which the CO shift reaction proceeds. By the CO shift reaction, the reformed gas 8 becomes a hydrogen-rich reformed gas. This reformed gas enters the first-stage CO selective oxidation unit 15, and the CO concentration is reduced by the air 4-3. The heat generated at that time is absorbed by water 11-4. Thereafter, the reformed gas enters the second-stage CO selective oxidation section 31, reduces the CO concentration with air 4-4, absorbs the heat generated at that time with water 11-5, and finally the CO concentration Becomes the reformed gas 32 of 10 ppm or less.

なお、本実施例では、断熱材62をCOシフト触媒層17、1段目CO選択酸化部15及び2段目CO選択酸化部31の内側に設けて、改質触媒層36を冷却し過ぎないようにしている。また、外熱燃焼器2として、複数の小バーナを面上に配置したクラスタバーナを配置し、1kWシステムのような極小流での着火性及び保炎性を向上させている。これにより自然対流に近いガス流速の場にも拘わらず、燃料及び空気の偏流が発生して、いずれかの小バーナが失火しても、他の小バーナにより再着火できるので、安定運転ができるという効果がある。   In this embodiment, the heat insulating material 62 is provided inside the CO shift catalyst layer 17, the first stage CO selective oxidation unit 15, and the second stage CO selective oxidation unit 31, so that the reforming catalyst layer 36 is not overcooled. I am doing so. In addition, a cluster burner in which a plurality of small burners are arranged on the surface is arranged as the external heat combustor 2 to improve the ignitability and flame holding performance in the minimum flow as in the 1 kW system. As a result, even if the gas flow velocity is close to natural convection, even if a small flow of fuel and air occurs and one of the small burners misfires, it can be re-ignited by the other small burners, so that stable operation is possible. There is an effect.

内熱燃焼器6に燃焼触媒を用いて、起動時に300〜500℃程度で燃焼させ、クラスタバーナで構成される外熱燃焼器2と同時に作動させることにより、メタル温度を850℃以上に高めることなく、低コストのステンレス鋼を使用して、起動時間の短縮ができるという効果が得られる。本実施例では、改質原料ガスを燃焼触媒が反応できる温度に加熱するためのバーナとしてリング状クラスタバーナ50を用いている。このリング状クラスタバーナ50は、燃焼時以外は蒸気と炭化水素系燃料の混合器として有効に働いて改質効率向上に寄与する。   Using a combustion catalyst for the internal heat combustor 6 and burning at about 300-500 ° C at start-up and operating at the same time as the external heat combustor 2 consisting of a cluster burner, raise the metal temperature to 850 ° C or higher In addition, the effect of shortening the start-up time can be obtained by using low-cost stainless steel. In this embodiment, a ring-shaped cluster burner 50 is used as a burner for heating the reforming raw material gas to a temperature at which the combustion catalyst can react. The ring-shaped cluster burner 50 works effectively as a mixer for steam and hydrocarbon fuel except during combustion, thereby contributing to improvement in reforming efficiency.

クラスタバーナで構成された外熱燃焼器2の燃焼排ガスの熱が改質触媒層36に入熱する折り返し流路60は、そのまま折り返したのでは、中央部に低温部ができ、改質触媒層での温度が低下して水素変換効率が落ち易くなる。また、周方向に伝熱むらが発生しやすくなる。このため、本実施例では折り返し流路に孔58を複数個設けて、内部の高温ガスと輻射光を外側に取り出して効率向上を図っている。また、折り返し流路に流路の幅を一定に保つスペーサ71-1,71-2,71-3を入れて、流れの均一化を図っている。更に、改質触媒、燃焼触媒及びCOシフト触媒には、ハニカム構造の触媒を用いて起動時間短縮を図っている。また、空気4-1を燃料処理装置の底部から入れて、装置表面からの放熱損失を回収するようにしている。なお、本実施例では説明しなかったが、起動時に、改質ガス32が外熱燃焼器2に戻るまでの間は、補助燃料1-1を外熱燃焼器で燃焼させて、改質触媒層36を加熱するための熱源を得るようにしてもよい。また、外熱燃焼器2は、改質触媒層36の入口と同じ高さレベルか、或いは、それ以下の高さのところに設けることが、燃焼排ガスで改質触媒層を効果的に加熱するために望ましい。   If the folded flow path 60 in which the heat of the combustion exhaust gas of the external heat combustor 2 configured by the cluster burner enters the reforming catalyst layer 36 is folded as it is, a low temperature section is formed at the center, and the reforming catalyst layer As a result, the hydrogen conversion efficiency tends to decrease. Further, uneven heat transfer is likely to occur in the circumferential direction. For this reason, in this embodiment, a plurality of holes 58 are provided in the folded flow path, and the internal high-temperature gas and radiant light are taken out to improve the efficiency. In addition, spacers 71-1, 71-2, 71-3 that keep the width of the flow path constant are inserted in the folded flow path to achieve a uniform flow. Furthermore, the reforming catalyst, the combustion catalyst, and the CO shift catalyst use a honeycomb structure catalyst to shorten the startup time. In addition, air 4-1 is introduced from the bottom of the fuel processing apparatus to recover the heat dissipation loss from the apparatus surface. Although not described in the present embodiment, at the time of start-up, until the reformed gas 32 returns to the external heat combustor 2, the auxiliary fuel 1-1 is combusted by the external heat combustor, and the reforming catalyst A heat source for heating the layer 36 may be obtained. Further, the external heat combustor 2 is provided at a level equal to or lower than the inlet of the reforming catalyst layer 36, so that the reforming catalyst layer is effectively heated with the combustion exhaust gas. Desirable for.

図7に燃料処理装置の他の実施例を示す。図6と異なるのは、下部に水11-6の注入口を設けて下部の熱を回収して蒸気を発生させ、その蒸気を孔70によって、水11-2,11-3が蒸気になったものと合流させている点である。これにより、水素変換効率が上げられるという効果がある。   FIG. 7 shows another embodiment of the fuel processor. The difference from FIG. 6 is that an inlet for water 11-6 is provided at the lower part to recover the heat at the lower part to generate steam, and the water 11-2 and 11-3 become steam through the hole 70. It is the point where it merges with the one. Thereby, there exists an effect that hydrogen conversion efficiency is raised.

又、図7では、改質触媒層36が改質ガスの折り返し流路にも設けられている。これにより、燃焼排ガス25の輻射熱により加熱された底板の熱を回収して改質反応を促進し、水素変換率を向上させることができる。また、このような構成により、改質触媒層の高さを小さくすることができる。   In FIG. 7, the reforming catalyst layer 36 is also provided in the return path of the reformed gas. Thereby, the heat of the bottom plate heated by the radiant heat of the combustion exhaust gas 25 can be recovered to promote the reforming reaction, and the hydrogen conversion rate can be improved. Further, with such a configuration, the height of the reforming catalyst layer can be reduced.

図8に、本発明による燃料電池発電システムの他の実施例を示す。図1と異なる点は、熱交換部5で空気4-1を加熱している点と、炭化水素系燃料1-2を熱交換部34で加熱している点である。この構成は、相変化のない空気量によりCOシフト温度を制御するためロバスト性がある。本実施例により、起動時間の短縮を図ることができ、しかも、発電効率及び制御性の高いシステムを提供できる。   FIG. 8 shows another embodiment of the fuel cell power generation system according to the present invention. The difference from FIG. 1 is that the air 4-1 is heated in the heat exchanging section 5 and the hydrocarbon-based fuel 1-2 is heated in the heat exchanging section 34. This configuration is robust because the CO shift temperature is controlled by the amount of air without phase change. According to the present embodiment, it is possible to shorten the startup time and to provide a system with high power generation efficiency and controllability.

本発明の燃料電池発電システムの一実施例を示すシステム構成図。The system block diagram which shows one Example of the fuel cell power generation system of this invention. 燃料利用率と改質プロセス効率との関係を示した図。The figure which showed the relationship between a fuel utilization rate and a reforming process efficiency. 燃料利用率と供給都市ガス中の補助燃料ガスの割合を示した図。The figure which showed the fuel utilization rate and the ratio of the auxiliary fuel gas in supply city gas. 従来例による起動時の温度分布を示した図。The figure which showed the temperature distribution at the time of starting by a prior art example. 起動時の、外熱クラスタバーナと内熱燃焼触媒の温度分布を示した図。The figure which showed the temperature distribution of the external heat cluster burner and the internal heat combustion catalyst at the time of starting. 本発明に係る燃料処理装置の一実施例を示した構成図。The block diagram which showed one Example of the fuel processing apparatus which concerns on this invention. 本発明に係る燃料処理装置の他の実施例を示した構成図。The block diagram which showed the other Example of the fuel processing apparatus which concerns on this invention. 本発明に係る燃料電池発電システムの他の実施例を示したシステム構成図。The system block diagram which showed the other Example of the fuel cell power generation system which concerns on this invention.

符号の説明Explanation of symbols

1-1…補助燃料、1-2…炭化水素系改質燃料、2…外熱燃焼器、3…戻りガス、4-1…空気、4-2…部分酸化用空気、4-3…空気、4-4…空気、5…熱交換部、6…内熱燃焼器、7…改質用原料ガス、8…改質ガス、9…改質触媒層熱交換部、10…空気、11-1…水、11-2…水、11-3…水、11-4…水、11-5…水、11-6…水、12…水又は水蒸気、15…1段目CO選択酸化部、16…改質ガス、17…COシフト触媒層、18…改質ガス、19…熱交換部、20…改質ガス、21…水又は蒸気、22…混合部、23…混合ガス、24…熱交換部、25…燃焼排ガス、26…燃焼排ガス、27…燃焼排ガス、28…燃焼排ガス、29…燃焼排ガス、30…改質ガス、31…2段目CO選択酸化部、32…改質ガス、33…燃料電池、34…熱交換部、35…部分燃焼改質原料ガス、36…改質触媒層、38…蒸発器、39…水蒸気、42…COシフト冷却部、43…混合ガス、49…点火栓、50…リング状クラスタバーナ、51…点火栓、52…改質原料予熱層、53…空気導管、54…点火栓用導管、55…ガス用導管、56…下降流路、58…孔、59…燃焼排ガス排出管、60…折り返し流路、61…断熱材、62…断熱材、64…蒸気供給管、65…孔、66…蒸気供給管、70…孔、71-1…スペーサ、71-2…スペーサ、71-3…スペーサ、72…温度検出器。   1-1 ... auxiliary fuel, 1-2 ... hydrocarbon reforming fuel, 2 ... external heat combustor, 3 ... return gas, 4-1 ... air, 4-2 ... partial oxidation air, 4-3 ... air , 4-4 ... air, 5 ... heat exchange section, 6 ... internal heat combustor, 7 ... reforming raw material gas, 8 ... reformed gas, 9 ... reforming catalyst layer heat exchange section, 10 ... air, 11- 1 ... water, 11-2 ... water, 11-3 ... water, 11-4 ... water, 11-5 ... water, 11-6 ... water, 12 ... water or steam, 15 ... first stage CO selective oxidation part, 16 ... reformed gas, 17 ... CO shift catalyst layer, 18 ... reformed gas, 19 ... heat exchange part, 20 ... reformed gas, 21 ... water or steam, 22 ... mixing part, 23 ... mixed gas, 24 ... heat Exchange part, 25 ... Combustion exhaust gas, 26 ... Combustion exhaust gas, 27 ... Combustion exhaust gas, 28 ... Combustion exhaust gas, 29 ... Combustion exhaust gas, 30 ... Reformed gas, 31 ... Second stage CO selective oxidation part, 32 ... Reformed gas, 33 ... Fuel cell, 34 ... Heat exchange section, 35 ... Partial combustion reforming raw material gas, 36 ... Reforming catalyst layer, 38 ... Evaporator, 39 ... Steam, 42 ... CO shift cooling section, 43 ... Mixing 49 ... Spark plug, 50 ... Ring cluster burner, 51 ... Spark plug, 52 ... Reforming raw material preheating layer, 53 ... Air conduit, 54 ... Spark plug conduit, 55 ... Gas conduit, 56 ... Downstream , 58 ... hole, 59 ... combustion exhaust gas exhaust pipe, 60 ... folded flow path, 61 ... heat insulating material, 62 ... heat insulating material, 64 ... steam supply pipe, 65 ... hole, 66 ... steam supply pipe, 70 ... hole, 71- 1 ... Spacer, 71-2 ... Spacer, 71-3 ... Spacer, 72 ... Temperature detector.

Claims (19)

炭化水素系燃料と水蒸気を含む被改質原料ガスを改質触媒によって改質して水素リッチの改質ガスを製造する燃料処理装置と、前記燃料処理装置で製造された改質ガスをアノードに供給して発電を行う燃料電池とを具備する燃料電池発電システムにおいて、起動時は被改質原料ガスに部分酸化用空気を添加し燃料改質系統に設けられた燃焼触媒により被改質原料ガスの一部を燃焼させて改質触媒を内部から加熱する内熱方式により前記燃料処理装置を運転し、定常時は前記燃料電池からの戻りガスを燃焼させて燃焼排ガスを発生させ該燃焼排ガスにより前記改質触媒を加熱する外熱方式により前記燃料処理装置を運転するようにしたことを特徴とする燃料電池発電システム。   A fuel processing device for producing a hydrogen-rich reformed gas by reforming a reformed raw material gas containing a hydrocarbon fuel and steam with a reforming catalyst, and the reformed gas produced by the fuel processing device as an anode In a fuel cell power generation system comprising a fuel cell for supplying and generating power, at the time of startup, partial oxidation air is added to the reformed raw material gas, and the reformed raw material gas is provided by a combustion catalyst provided in the fuel reforming system. The fuel processor is operated by an internal heating method in which a part of the fuel is burned and the reforming catalyst is heated from the inside, and in the steady state, the return gas from the fuel cell is burned to generate combustion exhaust gas. A fuel cell power generation system, wherein the fuel processor is operated by an external heating method for heating the reforming catalyst. 炭化水素系燃料と水蒸気を含む被改質原料ガスを改質触媒によって改質して水素リッチの改質ガスを製造する燃料処理装置と、前記燃料処理装置で製造された改質ガスをアノードに供給して発電を行う燃料電池とを具備する燃料電池発電システムにおいて、起動時は被改質原料ガスの一部を燃焼させて改質触媒を内部から加熱する内熱方式と改質触媒を外部から燃焼排ガスを用いて加熱する外熱方式により前記燃料処理装置を運転し、定常時は前記外熱方式により前記燃料処理装置を運転するようにしたことを特徴とする燃料電池発電システム。   A fuel processing device for producing a hydrogen-rich reformed gas by reforming a reformed raw material gas containing a hydrocarbon fuel and steam with a reforming catalyst, and the reformed gas produced by the fuel processing device as an anode In a fuel cell power generation system including a fuel cell that supplies power to generate electricity, an internal heat system that heats the reforming catalyst from the inside by burning a part of the reformed raw material gas and the reforming catalyst at the outside during startup A fuel cell power generation system, wherein the fuel processing apparatus is operated by an external heat system that uses a combustion exhaust gas to heat and the fuel processing apparatus is operated by the external heat system in a steady state. 請求項2において、前記外熱方式では前記燃料電池からの戻りガス或いは前記燃料処理装置で製造された改質ガスを燃焼させて燃焼排ガスを発生させ、その燃焼排ガスにより前記改質触媒を加熱するようにし、起動時には前記燃料処理装置で製造され前記燃料電池をバイパスさせた改質ガスを燃焼して燃焼排ガスを発生させ、定常時には前記燃料電池からの戻りガスを燃焼して燃焼排ガスを発生させるようにしたことを特徴とする燃料電池発電システム。   3. The external heat system according to claim 2, wherein the return gas from the fuel cell or the reformed gas produced by the fuel processing apparatus is combusted to generate combustion exhaust gas, and the reforming catalyst is heated by the combustion exhaust gas. Thus, at the time of startup, the reformed gas manufactured by the fuel processing apparatus is burned to generate the combustion exhaust gas, and in the steady state, the return gas from the fuel cell is burned to generate the combustion exhaust gas. A fuel cell power generation system characterized by the above. 請求項3において、定常時には前記燃料電池からの戻りガスのほかに補助燃料を燃焼させて燃焼排ガスを発生させることを特徴とする燃料電池発電システム。   4. The fuel cell power generation system according to claim 3, wherein combustion gas is generated by burning auxiliary fuel in addition to the return gas from the fuel cell in a steady state. 請求項2において、前記燃料処理装置に、被改質原料ガスに部分酸化用空気を添加して部分酸化燃焼を行う内熱燃焼器と、前記燃料処理装置で製造された改質ガス或いは前記燃料電池からの戻りガスを燃焼して燃焼排ガスを発生させる外熱燃焼器を備えたことを特徴とする燃料電池発電システム。   3. The internal heat combustor for performing partial oxidation combustion by adding partial oxidation air to the reformed raw material gas, and the reformed gas or the fuel produced by the fuel processing apparatus according to claim 2 A fuel cell power generation system comprising an external heat combustor that burns return gas from a battery to generate combustion exhaust gas. 請求項5において、前記外熱燃焼器としてクラスタバーナを備えたことを特徴とする燃料電池発電システム。   6. The fuel cell power generation system according to claim 5, wherein a cluster burner is provided as the external heat combustor. 請求項5において、前記内熱燃焼器として点火栓と燃焼触媒を備えたことを特徴とする燃料電池発電システム。   6. The fuel cell power generation system according to claim 5, wherein an ignition plug and a combustion catalyst are provided as the internal heat combustor. 請求項5において、起動時に、前記燃料処理装置で製造され前記燃料電池をバイパスさせた改質ガスが前記外熱燃焼器に戻るまでの間、前記外熱燃焼器で補助燃料を燃焼させて改質触媒加熱用の燃焼排ガスを生成することを特徴とする燃料電池発電システム。   6. The auxiliary fuel is burned in the external heat combustor at the start-up until the reformed gas manufactured by the fuel processing device and bypassing the fuel cell returns to the external heat combustor. A fuel cell power generation system that generates combustion exhaust gas for heating a porous catalyst. 請求項4において、前記改質触媒の出口の温度を監視しながら、所定の温度以上になるように前記補助燃料の供給量制御を行うことを特徴とする燃料電池発電システム。   5. The fuel cell power generation system according to claim 4, wherein the supply amount of the auxiliary fuel is controlled so as to become a predetermined temperature or higher while monitoring the temperature of the outlet of the reforming catalyst. 炭化水素系燃料を水蒸気改質するための改質触媒層と、前記改質触媒層の加熱源として使用する燃焼排ガスを生成するための外熱燃焼器とを具備した燃料処理装置において、前記改質触媒層に供給される炭化水素系燃料の一部を燃焼して前記改質触媒層を内部から加熱するための内熱燃焼器を備えたことを特徴とする燃料処理装置。   In the fuel processing apparatus comprising: a reforming catalyst layer for steam reforming a hydrocarbon-based fuel; and an external heat combustor for generating combustion exhaust gas used as a heating source for the reforming catalyst layer. A fuel processor comprising an internal heat combustor for combusting a part of the hydrocarbon-based fuel supplied to the porous catalyst layer and heating the reforming catalyst layer from the inside. 請求項10において、前記内熱燃焼器として点火栓と燃焼触媒を備えたことを特徴とする燃料処理装置。   11. The fuel processing apparatus according to claim 10, wherein the internal heat combustor includes an ignition plug and a combustion catalyst. 請求項10において、前記内熱燃焼器として着火時用のリング状クラスタバーナと燃焼触媒を備えたことを特徴とする燃料処理装置。   11. The fuel processor according to claim 10, wherein the internal heat combustor includes a ring-shaped cluster burner and a combustion catalyst for ignition. 請求項10において、前記外熱燃焼器としてクラスタバーナを備えたことを特徴とする燃料処理装置。   The fuel processing apparatus according to claim 10, further comprising a cluster burner as the external heat combustor. 請求項10において、前記外熱燃焼器で発生させた燃焼排ガスを流通させる燃焼排ガス流路と、前記炭化水素系燃料と水蒸気よりなる被改質原料ガスを前記改質触媒層に導き、改質後の改質ガスを出口まで案内する改質系ガス流路を、前記外熱燃焼器を取り囲むように設け、前記燃焼排ガス流路と前記改質系ガス流路が管壁を介して隣接するようにしたことを特徴とする燃料処理装置。   In Claim 10, the flue gas channel which distributes the flue gas generated with the external heat combustor, the reforming raw material gas which consists of the hydrocarbon fuel and water vapor is led to the reforming catalyst layer, reforming A reforming gas passage for guiding the reformed gas to the outlet is provided so as to surround the external heat combustor, and the combustion exhaust gas passage and the reforming gas passage are adjacent to each other through a pipe wall. A fuel processing apparatus characterized by being configured as described above. 請求項14において、前記改質系ガス流路の途中に前記改質触媒層が設置されていることを特徴とする燃料処理装置。   15. The fuel processing apparatus according to claim 14, wherein the reforming catalyst layer is installed in the middle of the reforming system gas flow path. 請求項15において、前記改質系ガス流路の前記改質触媒層よりも上流側に被改質原料ガスに部分酸化用空気を添加して部分燃焼を行う燃焼触媒式の前記内熱燃焼器を設けたことを特徴とする燃料処理装置。   16. The combustion catalytic internal heat combustor according to claim 15, wherein partial combustion is performed by adding partial oxidation air to the reformed raw material gas upstream of the reforming catalyst layer in the reforming gas flow path. A fuel processing apparatus characterized by comprising: 請求項14において、前記改質系ガス流路の前記改質触媒層よりも下流側にCOシフト触媒層とCO選択酸化部が設けられていることを特徴とする燃料処理装置。   15. The fuel processing apparatus according to claim 14, wherein a CO shift catalyst layer and a CO selective oxidation unit are provided downstream of the reforming catalyst layer in the reforming system gas flow path. 請求項14において、前記外熱燃焼器で発生した燃焼排ガスを装置底部に導く下降流路と、装置底部に導かれた燃焼排ガスを上昇流に転換する折り返し流路とを備え、前記下降流路を形成する管壁に複数の孔を設けて前記下降流路を装置底部に向かって流れる燃焼排ガスの一部を前記折り返し流路に流出させるようにしたことを特徴とする燃料処理装置。   15. The descending flow path according to claim 14, further comprising: a descending flow path that guides the combustion exhaust gas generated in the external heat combustor to the bottom of the apparatus; and a return flow path that converts the combustion exhaust gas guided to the apparatus bottom to an upward flow. A fuel processing apparatus characterized in that a plurality of holes are provided in a tube wall forming a gas and a part of the flue gas flowing in the descending flow path toward the bottom of the apparatus flows out to the return flow path. 請求項17において、前記COシフト触媒層と前記CO選択酸化部にて改質ガスから熱を回収することによって温度上昇した水又は水蒸気と、炭化水素系燃料を混合して被改質原料ガスとする混合部を前記改質系ガス流路に備えたことを特徴とする燃料処理装置。   In Claim 17, water or water vapor | steam which raised the temperature by collect | recovering heat | fever from reformed gas in the said CO shift catalyst layer and the said CO selective oxidation part, and hydrocarbon-type fuel are mixed, and to-be-reformed raw material gas A fuel processing apparatus comprising: a reforming gas passage provided with a mixing unit that performs the above-described operation.
JP2005314894A 2005-10-28 2005-10-28 Fuel cell power generation system and fuel treatment device Pending JP2007123107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314894A JP2007123107A (en) 2005-10-28 2005-10-28 Fuel cell power generation system and fuel treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314894A JP2007123107A (en) 2005-10-28 2005-10-28 Fuel cell power generation system and fuel treatment device

Publications (1)

Publication Number Publication Date
JP2007123107A true JP2007123107A (en) 2007-05-17

Family

ID=38146718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314894A Pending JP2007123107A (en) 2005-10-28 2005-10-28 Fuel cell power generation system and fuel treatment device

Country Status (1)

Country Link
JP (1) JP2007123107A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073709A (en) * 2007-09-21 2009-04-09 Nippon Oil Corp Reforming apparatus and hydrogen-producing apparatus
JP2009091188A (en) * 2007-10-05 2009-04-30 Nippon Oil Corp Hydrogen producing apparatus
JP2009274914A (en) * 2008-05-15 2009-11-26 Panasonic Corp Apparatus for generating hydrogen and fuel cell power generation system using it
JP2010231954A (en) * 2009-03-26 2010-10-14 Hitachi Ltd Burner for temperature rise of solid oxide fuel cell and solid oxide fuel cell power generation system using the same
JP2010269956A (en) * 2009-05-20 2010-12-02 Panasonic Corp Hydrogen generator
JP2012038689A (en) * 2010-08-11 2012-02-23 Ngk Spark Plug Co Ltd Operation method of fuel cell
JP2017105695A (en) * 2015-08-28 2017-06-15 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073709A (en) * 2007-09-21 2009-04-09 Nippon Oil Corp Reforming apparatus and hydrogen-producing apparatus
JP2009091188A (en) * 2007-10-05 2009-04-30 Nippon Oil Corp Hydrogen producing apparatus
JP2009274914A (en) * 2008-05-15 2009-11-26 Panasonic Corp Apparatus for generating hydrogen and fuel cell power generation system using it
JP2010231954A (en) * 2009-03-26 2010-10-14 Hitachi Ltd Burner for temperature rise of solid oxide fuel cell and solid oxide fuel cell power generation system using the same
JP2010269956A (en) * 2009-05-20 2010-12-02 Panasonic Corp Hydrogen generator
JP2012038689A (en) * 2010-08-11 2012-02-23 Ngk Spark Plug Co Ltd Operation method of fuel cell
JP2017105695A (en) * 2015-08-28 2017-06-15 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system

Similar Documents

Publication Publication Date Title
JP5416347B2 (en) Solid oxide fuel cell power generation system and startup method thereof
EP1581334B1 (en) Fuel vaporizing device
JP2003197243A (en) Unified fuel processing equipment for rapid starting and operation control
JP3063622B2 (en) Waste power generation system and waste treatment system
JP2003226507A (en) Staged lean combustion for rapid start of fuel processor
JP2008234994A (en) Fuel cell system
JP2007123107A (en) Fuel cell power generation system and fuel treatment device
CN113839073B (en) Solid oxide fuel cell system utilizing tail gas
JP4614515B2 (en) Fuel cell reformer
JP3813391B2 (en) Solid polymer fuel cell power generator and method of operating the same
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2007066551A (en) Fuel cell system and control method of fuel cell system
JP2005203165A (en) Fuel cell system and operation method of the same
JP2005353347A (en) Fuel cell system
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JP2004075435A (en) Fuel reforming device
JP4640052B2 (en) Hydrogen generator and power generation system provided with the same
JP4751589B2 (en) Fuel cell power generation system
JP2004196584A (en) Method of stopping hydrogen production apparatus and fuel cell system operation
JP5344935B2 (en) Hydrogen generator
JP2006260876A (en) Fuel cell power generation system and its operation method
JP5498552B2 (en) Fuel cell system
KR20130030998A (en) Home fuel cell boiler system having combustion catalysis device
KR102563958B1 (en) High efficiency fuel processing device
JP5646000B2 (en) Fuel cell system