Nothing Special   »   [go: up one dir, main page]

JP2007145345A - Packaging system, packaging box, and packaging method - Google Patents

Packaging system, packaging box, and packaging method Download PDF

Info

Publication number
JP2007145345A
JP2007145345A JP2005339860A JP2005339860A JP2007145345A JP 2007145345 A JP2007145345 A JP 2007145345A JP 2005339860 A JP2005339860 A JP 2005339860A JP 2005339860 A JP2005339860 A JP 2005339860A JP 2007145345 A JP2007145345 A JP 2007145345A
Authority
JP
Japan
Prior art keywords
weight
vibration
packaging
packing
spring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2005339860A
Other languages
Japanese (ja)
Inventor
Seiichi Kitagawa
誠一 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to JP2005339860A priority Critical patent/JP2007145345A/en
Publication of JP2007145345A publication Critical patent/JP2007145345A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Packaging Frangible Articles (AREA)
  • Packaging Of Machine Parts And Wound Products (AREA)
  • Buffer Packaging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a packaging system, a packaging box and a packaging method that show a high vibration isolation and that can be utilized for precision machines. <P>SOLUTION: Resonance generated with a resonance frequency of a vibration system constituted of a box 10, a casing 2 and a vibration isolation member 3 is eliminated by a dynamic vibration reducer constituted of a weight 11 and a dynamic vibration reducer shock absorbing material 12, and then vibration applied to the casing 2 is restricted as small as possible. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、精密機器の梱包システム、梱包箱及び梱包方法に関する。   The present invention relates to a precision instrument packaging system, a packaging box, and a packaging method.

MR等医療機器で使用されている電子筐体は精密機器を含み、背が高いものが多い。
これら精密機器を梱包する際には、振動や衝撃等、輸送時に機器にかかる負荷を軽減する必要がある。
Electronic cases used in medical equipment such as MR include precision equipment and are often tall.
When packing these precision devices, it is necessary to reduce the load on the devices during transportation, such as vibration and impact.

負荷を軽減する梱包方法としては、例えば、梱包箱の下部に防振・緩衝材を入れる方法がある。
以下、このような一般的な防振系における防振効果について簡単に説明する。
As a packing method for reducing the load, for example, there is a method of putting a vibration proof / buffer material in the lower part of the packing box.
Hereinafter, the anti-vibration effect in such a general anti-vibration system will be briefly described.

防振効果は、振動伝達率と周波数の関係によって説明される。
一般的な減衰がある場合の振動伝達率Trと周波数fの関係を図3に示す。
図3は、振動伝達率Trと周波数fの関係を示す図である。
振動伝達率Trは、防振系の振動と、基礎(床等)の振動との比であり、すなわち、1より小さい場合に防振効果が現れていることになる。
防振対象物の周波数fと防振した時の固有振動数が同じ場合(図3のP1)、振動が増幅されてしまう。この現象を共振現象、このときの周波数を共振周波数(≒固有振動数)という。
振動伝達率Trが1より小さくなる部分では、上述したように防振の効果が発揮されている。すなわち、共振周波数が低くなればなるほど、防振効果のある範囲が広くなる。
The anti-vibration effect is explained by the relationship between vibration transmissibility and frequency.
FIG. 3 shows the relationship between the vibration transmissibility Tr and the frequency f when there is general attenuation.
FIG. 3 is a diagram showing the relationship between the vibration transmissibility Tr and the frequency f.
The vibration transmissibility Tr is the ratio of the vibration of the vibration isolation system and the vibration of the foundation (floor etc.), that is, when it is smaller than 1, the vibration isolation effect appears.
When the frequency f of the vibration-proof object is the same as the natural frequency when the vibration is prevented (P1 in FIG. 3), the vibration is amplified. This phenomenon is called a resonance phenomenon, and the frequency at this time is called a resonance frequency (≈natural frequency).
In the portion where the vibration transmissibility Tr is smaller than 1, as described above, the anti-vibration effect is exhibited. In other words, the lower the resonance frequency is, the wider the range having an anti-vibration effect is.

しかし、上述した一般的な防振系においては、図3の振動伝達率Trが1以上の範囲が示すように、防振しきれない周波数帯がある、という不利益があった。
また、耐振動・衝撃性を上げるためには、機器を柔らかく支持することが望ましいが、背の高い筐体を有する医療機器等を梱包する際には、支持を弱くすると不安定になり、防振系の形成が難しくなる、という不利益があった。
However, in the general vibration isolation system described above, there is a disadvantage that there is a frequency band that cannot be fully vibration-proofed as indicated by a range in which the vibration transmissibility Tr in FIG.
In order to increase vibration resistance and impact resistance, it is desirable to support the device softly. However, when packing medical devices with a tall casing, weakening the support may cause instability. There was a disadvantage that it was difficult to form a vibration system.

本発明は上述した不利益を解消するために、防振性が高く精密機器に利用できる梱包システム、梱包箱及び梱包方法を提供することを目的とする。   In order to eliminate the disadvantages described above, an object of the present invention is to provide a packing system, a packing box, and a packing method that have high vibration isolation and can be used for precision equipment.

上述した不利益を解消するために、第1の観点の発明の梱包システムは、被梱包体を梱包する梱包システムであって、重りと、前記被梱包体及び前記重りを支持する第1の支持体と、前記被梱包体と、前記重りと、前記第1との支持体を梱包する梱包箱と、を有し、前記第1の支持体は、第1のばね要素を含み、前記重りと前記第1のばね要素は、動吸振器を構成する。   In order to eliminate the disadvantages described above, the packaging system of the first aspect of the invention is a packaging system for packaging a packaged body, and a first support for supporting a weight, the packaged body, and the weight. A body, a body to be packed, the weight, and a packaging box for packing the first support, and the first support includes a first spring element, and the weight The first spring element constitutes a dynamic vibration absorber.

好適には、前記梱包箱を支持する第2の支持体を更に有し、前記第2の支持体は、第2のばね要素を含み、前記重り及び前記第1のばね要素が構成する前記動吸振器は、前記梱包箱及び前記第2のばね要素が構成する防振系の共振周波数を基に設計されている。   Preferably, the apparatus further includes a second support for supporting the packaging box, and the second support includes a second spring element, and the weight and the first spring element constitute the movement. The vibration absorber is designed on the basis of the resonance frequency of the vibration isolation system constituted by the packing box and the second spring element.

更に好適には、前記重りの重さは、前記梱包箱及び前記第2のばね要素が構成する前記防振系の等価質量を基に算出されている。   More preferably, the weight of the weight is calculated based on an equivalent mass of the vibration isolation system formed by the packaging box and the second spring element.

更に好適には、前記第1のばね要素は、ばね定数及び減衰定数を有し、前記第1のばね要素が有するばね定数及び減衰定数は、前記重りの重さと前記防振系の前記等価質量との質量比及び前記梱包箱及び前記第2のばね要素が構成する防振系の共振周波数を基に算出されている。   More preferably, the first spring element has a spring constant and a damping constant, and the spring constant and the damping constant of the first spring element are the weight of the weight and the equivalent mass of the vibration isolation system. And the resonance frequency of the vibration isolation system constituted by the packing box and the second spring element.

更に好適には、前記被梱包体は、医療機器の筐体を含む。   More preferably, the packaged body includes a housing of a medical device.

更に好適には、前記重りは、前記医療機器の同梱物を含む。   More preferably, the weight includes a package of the medical device.

第2の観点の発明の梱包箱は、被梱包体及び当該被梱包体の同梱物を梱包する梱包箱であって、被梱包体及び当該被梱包体の同梱物を支持する第1の支持体を有し、前記被梱包物の前記同梱物は、重りとして、前記第1の支持体と共に動吸振器を構成する。   A packaging box according to a second aspect of the present invention is a packaging box for packing a packaged body and a packaged product of the packaged body, and supports the packaged body and the packaged product of the packaged body. The package includes a support, and the package of the packaged object constitutes a dynamic vibration absorber together with the first support as a weight.

第3の観点の発明の梱包方法は、被梱包体と、重りと、前記被梱包体及び前記重りを支持する第1の支持体とを梱包箱に梱包する梱包方法であって、前記重り及び前記第1の支持体によって動吸振器を構成する。   The packing method of the invention of the third aspect is a packing method for packing a packaged body, a weight, and the packaged body and a first support body supporting the weight in a packaging box, the weight and A dynamic vibration absorber is constituted by the first support.

本発明によれば、防振性が高く精密機器に利用できる梱包システム、梱包箱及び梱包方法を提供することができる。   According to the present invention, it is possible to provide a packing system, a packing box, and a packing method that are highly vibration-proof and can be used for precision equipment.

以下、本発明の実施形態について説明する。
図1は、本実施形態の梱包箱1のブロック図である。
図1に示すように、梱包箱1は、箱10、重り11、動吸振器緩衝材12、筐体2によって構成され、防振材3、土台4上に支持され、防振系を構成している。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a block diagram of the packaging box 1 of the present embodiment.
As shown in FIG. 1, the packaging box 1 includes a box 10, a weight 11, a dynamic vibration damper cushioning material 12, and a housing 2, and is supported on a vibration isolation material 3 and a base 4 to constitute a vibration isolation system. ing.

箱10は筐体2を梱包する箱であり、電子機器を梱包することを念頭において選定される。例えば、段ボール等が挙げられる。
重り11と動吸振器緩衝材12は、合わせて動吸振器を形成する。
重り11は、動吸振器の重りであり、筐体2内の電子機器の同梱物、すなわちケーブルやマニュアル等を利用する。
後述するように、動吸振器の効果を最大にするためには重り11の質量を適切に設定しなければならないが、筐体2内の電子機器の同梱物が適切な質量に足りない場合は、適当な重量物を加えて利用してもよい。
The box 10 is a box for packing the casing 2 and is selected in consideration of packing an electronic device. For example, corrugated board etc. are mentioned.
The weight 11 and the dynamic vibration absorber cushioning material 12 together form a dynamic vibration absorber.
The weight 11 is a weight of the dynamic vibration absorber, and uses a packaged electronic device in the housing 2, that is, a cable, a manual, or the like.
As will be described later, in order to maximize the effect of the dynamic vibration absorber, the mass of the weight 11 must be set appropriately, but the packaged electronic equipment in the housing 2 is insufficient for the appropriate mass. May be used by adding an appropriate weight.

動吸振器緩衝材12は、筐体2及び重り11を、重り11が揺動可能な状態になるように支持し、箱10に接続する。
動吸振器緩衝材12は、例えば、ウレタンエラストマー等、エラストマーを中心に減衰の大きい材料を用い、動吸振器として高い効果を上げるようにする。材料を決定する際に必要なばね定数や減衰定数の設定方法については後述する。
The dynamic vibration damper cushioning material 12 supports the casing 2 and the weight 11 so that the weight 11 can swing, and is connected to the box 10.
As the dynamic vibration absorber cushioning material 12, for example, a material having a large damping centering on an elastomer such as urethane elastomer is used, and a high effect as a dynamic vibration absorber is obtained. A method for setting a spring constant and a damping constant necessary for determining the material will be described later.

筐体2は、精密機器を内包する筐体であり、本発明において梱包の対象且つ防振の対象となる物体である。本実施形態では、筐体2は、例えば、MR装置(磁気共鳴診断装置)の制御装置や、その他医療機器等、精密機器を収めた筐体を想定している。
防振材3は、梱包箱1を支持する防振用の緩衝材である。例えば、防振ゴム等を用いる。
土台4は防振材3に支持された梱包箱1を載せる土台である。
The housing 2 is a housing that encloses precision equipment, and is an object to be packaged and vibration-proof in the present invention. In the present embodiment, the housing 2 is assumed to be a housing containing precision equipment such as a control device of an MR apparatus (magnetic resonance diagnostic apparatus) and other medical equipment.
The anti-vibration material 3 is an anti-vibration cushioning material that supports the packaging box 1. For example, anti-vibration rubber or the like is used.
The base 4 is a base on which the packaging box 1 supported by the vibration isolator 3 is placed.

次に、動吸振器の働きについて簡単に説明する。
図2は、動吸振器の一例を示す図である。
図2に示すように、動吸振器100は重り101、ばね部材102及び減衰部材103から形成され、防振対象の構造体200に取り付けられる。また、構造体200はばね要素300により支持され、床400に接続されている。
Next, the function of the dynamic vibration absorber will be briefly described.
FIG. 2 is a diagram illustrating an example of a dynamic vibration absorber.
As shown in FIG. 2, the dynamic vibration absorber 100 is formed of a weight 101, a spring member 102, and a damping member 103, and is attached to a structure 200 that is an object of vibration isolation. The structure 200 is supported by the spring element 300 and connected to the floor 400.

ばね要素300と、これに支持された構造体200は、これらによって形成される防振系固有の共振周波数を有している。また、構造体200には、これに働く力に応じた振動が発生するものとする。
動吸振器100は、適切な質量を有する重り101、適切なばね定数を有するばね部材102及び適切な減衰定数を有する減衰部材103を選定することにより、全体の共振周波数を適切に調整し、振動、特に共振をキャンセルする力を構造体200に与えることができる。
The spring element 300 and the structure 200 supported by the spring element 300 have a resonance frequency specific to the vibration isolation system formed by them. In addition, it is assumed that vibration corresponding to the force acting on the structure 200 is generated.
The dynamic vibration absorber 100 appropriately adjusts the overall resonance frequency by selecting a weight 101 having an appropriate mass, a spring member 102 having an appropriate spring constant, and a damping member 103 having an appropriate damping constant. In particular, a force that cancels resonance can be applied to the structure 200.

上述したように、動吸振器100が高い効果を上げるためには、重り101の質量、ばね部材102のばね定数及び減衰部材103の減衰定数を適切に設定する必要がある。
以下、最適な値の設定方法について説明する。
As described above, in order for the dynamic vibration absorber 100 to achieve a high effect, it is necessary to appropriately set the mass of the weight 101, the spring constant of the spring member 102, and the damping constant of the damping member 103.
Hereinafter, an optimal value setting method will be described.

重り101とばね部材102と減衰部材103とのそれぞれは、以下の数式(1),数式(2),数式(3)に示すように、構造体200の共振周波数に対応する質量m2、ばね定数k2、減衰定数c2になるように形成されている。   Each of the weight 101, the spring member 102, and the damping member 103 includes a mass m2, a spring constant corresponding to the resonance frequency of the structure 200, as shown in the following formulas (1), (2), and (3). k2 and attenuation constant c2.

なお、数式(1),数式(2),数式(3)において、μは、質量比であり、ω1は、構造体200の固有振動数であり、m1は、固有振動数ω1に対応する構造体200の等価質量である。ここで、質量比μは、数式(4)のように示される。また、構造体200の固有振動数ω1は、構造体200及びばね要素300によって構成される防振系の等価質量m1と弾性係数k1とによって数式(5)のように示される。   In Equations (1), (2), and (3), μ is a mass ratio, ω1 is a natural frequency of the structure 200, and m1 is a structure corresponding to the natural frequency ω1. This is the equivalent mass of the body 200. Here, the mass ratio μ is expressed by Equation (4). In addition, the natural frequency ω1 of the structure 200 is expressed by Equation (5) by the equivalent mass m1 and the elastic coefficient k1 of the vibration isolation system constituted by the structure 200 and the spring element 300.

そして、数式(1),数式(2),数式(3)において、ω2は、動吸振器100の固有振動数であり、γoptは、最適固有振動数比であり、ζ2optは、最適減衰比である。ここで、動吸振器100の固有振動数ω2は、動吸振器100の等価質量m2と弾性係数k2とによって数式(6)のように示される。そして、最適固有振動数比γoptは、数式(7)に示される勾配コイル部13の減衰比ζ1によって、数式(8)のように示される。そして、最適減衰比ζ2optは、数式(9)のように示される。   In Equations (1), (2), and (3), ω2 is the natural frequency of the dynamic vibration absorber 100, γopt is the optimum natural frequency ratio, and ζ2opt is the optimum damping ratio. is there. Here, the natural frequency ω <b> 2 of the dynamic vibration absorber 100 is expressed by Equation (6) by the equivalent mass m <b> 2 and the elastic coefficient k <b> 2 of the dynamic vibration absorber 100. Then, the optimum natural frequency ratio γopt is expressed as in Expression (8) by the damping ratio ζ1 of the gradient coil section 13 expressed in Expression (7). Then, the optimum damping ratio ζ2opt is expressed as Equation (9).

Figure 2007145345
Figure 2007145345

Figure 2007145345
Figure 2007145345

Figure 2007145345
Figure 2007145345

Figure 2007145345
Figure 2007145345

Figure 2007145345
Figure 2007145345

Figure 2007145345
Figure 2007145345

Figure 2007145345
Figure 2007145345

Figure 2007145345
Figure 2007145345

Figure 2007145345
Figure 2007145345

動吸振器100においての質量m2、ばね定数k2、減衰定数c2を設定する際においては、まず、構造体200及びばね要素300によって構成される防振系において振動が低減する固有振動モードについての等価質量m1を求める。ここでは、重りを負荷したときの固有振動数の変化から同定する、モード解析を用いる。つぎに、動吸振器100の質量m2について、質量比μを0.1を目安に大きな値を設定する。つぎに、動吸振器100のばね定数k2について、質量比μから決まる最適な固有振動数比γoptを求めて、決定する。つぎに、動吸振器100の減衰定数c2について、質量比μから決まる最適減衰比ζ2optを求めて決定する。そして、さらに、上記のようにして決定した質量m2、ばね定数k2、減衰定数c2をベースに、設計可能範囲で値を振って最適化する。
こうして求めた最適な条件を基に、重り101の質量、ばね部材102のばね定数及び減衰部材103の減衰定数を決定する。
When setting the mass m2, the spring constant k2, and the damping constant c2 in the dynamic vibration absorber 100, first, an equivalent for the natural vibration mode in which vibration is reduced in the vibration isolation system constituted by the structure 200 and the spring element 300. The mass m1 is obtained. Here, modal analysis is used, which is identified from the change in the natural frequency when a weight is loaded. Next, for the mass m2 of the dynamic vibration absorber 100, a large value is set with the mass ratio μ set to 0.1. Next, the optimum natural frequency ratio γopt determined from the mass ratio μ is determined for the spring constant k2 of the dynamic vibration absorber 100 and determined. Next, the optimum damping ratio ζ2opt determined from the mass ratio μ is determined for the damping constant c2 of the dynamic vibration absorber 100. Further, based on the mass m2, the spring constant k2, and the damping constant c2 determined as described above, the values are optimized within a designable range.
Based on the optimum conditions thus obtained, the mass of the weight 101, the spring constant of the spring member 102, and the damping constant of the damping member 103 are determined.

本実施形態においては、重り11が上記動吸振器100の重り101に相当し、動吸振器緩衝材12がばね部材102及び減衰部材103に相当し、筐体2を収めた箱10が構造体200に、防振材3がばね要素300に、それぞれ対応しており、重り11の質量及び動吸振器緩衝材12の有するばね定数及び減衰定数を上記と同様な方法で決定することが出来る。
なお、動吸振器緩衝材12は、ばね定数を有するばね部材と、これとは独立した減衰定数を有する減衰部材とから形成されてもよいし、例えば、上述した最適な条件を満たすならば、ばね定数と減衰定数を両方有する材料のみで形成してもよい。
In this embodiment, the weight 11 corresponds to the weight 101 of the dynamic vibration absorber 100, the dynamic vibration absorber cushioning material 12 corresponds to the spring member 102 and the damping member 103, and the box 10 containing the housing 2 is a structural body. The vibration isolator 3 corresponds to the spring element 300, and the mass of the weight 11 and the spring constant and damping constant of the dynamic vibration damper cushioning material 12 can be determined by the same method as described above.
The dynamic vibration damper cushioning material 12 may be formed of a spring member having a spring constant and a damping member having a damping constant independent of the spring member. You may form only with the material which has both a spring constant and a damping constant.

上述したように重り11及び動吸振器緩衝材12により構成した動吸振器によって、箱10、筐体2及び防振材3によって構成される振動系の共振周波数における共振が打ち消され、筐体2にかかる振動を最小限に抑えることができる。   As described above, the dynamic vibration absorber constituted by the weight 11 and the dynamic vibration absorber cushioning material 12 cancels the resonance at the resonance frequency of the vibration system constituted by the box 10, the case 2 and the vibration isolation material 3. The vibration applied to can be minimized.

以上説明したように、本実施形態の梱包箱1によれば、重り11及び動吸振器緩衝材12によって動吸振器が構成され、従来の一般的な防振系では振動を抑えられなかった、防振系の共振周波数付近の振動を抑えることができる。
また、本実施形態の梱包箱1によれば、箱10及び動吸振器緩衝材12により筐体をしっかり支持できるので、MR装置等医療機器の背の高い筐体に対しても静的に安定した状態を保つことが出来る。
また、動吸振器の重りとして、筐体2内の電子機器の同梱物を利用するため、効率的な梱包形態を形成できる。
更に、防振系の共振周波数は単一のことが多いので、動吸振器の設計がしやすい、という利点もある。
As described above, according to the packaging box 1 of the present embodiment, the dynamic vibration absorber is configured by the weight 11 and the dynamic vibration absorber cushioning material 12, and vibrations cannot be suppressed in the conventional general vibration isolation system. Vibration near the resonance frequency of the vibration isolation system can be suppressed.
Moreover, according to the packaging box 1 of this embodiment, since a housing | casing can be firmly supported by the box 10 and the dynamic vibration damper cushioning material 12, it is statically stable also with respect to the tall housing | casing of medical equipment, such as MR apparatus. Can be kept.
Moreover, since the package of the electronic device in the housing | casing 2 is utilized as a weight of a dynamic vibration absorber, an efficient packing form can be formed.
Further, since the resonance frequency of the vibration isolation system is often single, there is an advantage that the dynamic vibration absorber can be easily designed.

本発明は上述した実施形態には限定されない。
すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
なお、本実施形態では、筐体2にはMR装置(磁気共鳴診断装置)の制御装置や、その他医療機器等、精密機器を収めた筐体を想定していたが、本発明はこれに限定されず、本発明では、梱包の際に耐振動・衝撃措置を施すべき全ての物体を梱包の対象且つ防振の対象とすることが可能である。
The present invention is not limited to the embodiment described above.
That is, those skilled in the art may make various modifications, combinations, subcombinations, and alternatives regarding the components of the above-described embodiments within the technical scope of the present invention or an equivalent scope thereof.
In the present embodiment, the case 2 is assumed to be a case containing a precision device such as a control device of an MR apparatus (magnetic resonance diagnostic apparatus) or other medical equipment, but the present invention is not limited to this. Instead, in the present invention, it is possible to make all objects to be subjected to vibration resistance / impact measures at the time of packing as targets for packing and vibration isolation.

図1は、本実施形態の梱包箱1のブロック図である。FIG. 1 is a block diagram of the packaging box 1 of the present embodiment. 図2は、動吸振器の一例を示す図である。FIG. 2 is a diagram illustrating an example of a dynamic vibration absorber. 図3は、振動伝達率Trと周波数fの関係を示す図である。FIG. 3 is a diagram showing the relationship between the vibration transmissibility Tr and the frequency f.

符号の説明Explanation of symbols

1…梱包箱、10…箱、11…重り、12…動吸振器緩衝材、2…筐体、3…防振材、4…土台、100…動吸振器、101…重り、102…ばね部材、103…減衰部材、200…構造体、300…ばね要素、400…床   DESCRIPTION OF SYMBOLS 1 ... Packing box, 10 ... Box, 11 ... Weight, 12 ... Dynamic vibration damper cushioning material, 2 ... Housing, 3 ... Anti-vibration material, 4 ... Base, 100 ... Dynamic vibration absorber, 101 ... Weight, 102 ... Spring member 103 ... Damping member, 200 ... Structure, 300 ... Spring element, 400 ... Floor

Claims (8)

被梱包体を梱包する梱包システムであって、
重りと、
前記被梱包体及び前記重りを支持する第1の支持体と、
前記被梱包体と、前記重りと、前記第1との支持体を梱包する梱包箱と、
を有し、
前記第1の支持体は、第1のばね要素を含み、
前記重りと前記第1のばね要素は、動吸振器を構成する
梱包システム。
A packing system for packing an object to be packed,
Weight,
A first support for supporting the packaged body and the weight;
A packing box for packing the packaged body, the weight, and the first support;
Have
The first support includes a first spring element;
The weight and the first spring element constitute a dynamic vibration absorber.
前記梱包箱を支持する第2の支持体
を更に有し、
前記第2の支持体は、第2のばね要素を含み、
前記重り及び前記第1のばね要素が構成する前記動吸振器は、前記梱包箱及び前記第2のばね要素が構成する防振系の共振周波数を基に設計されている
請求項1に記載の梱包システム。
A second support for supporting the packing box;
The second support includes a second spring element;
The dynamic vibration damper which the said weight and said 1st spring element comprise is designed based on the resonant frequency of the vibration proof system which the said packaging box and said 2nd spring element comprise. Packing system.
前記重りの重さは、前記梱包箱及び前記第2のばね要素が構成する前記防振系の等価質量を基に算出されている
請求項2に記載の梱包システム。
The packaging system according to claim 2, wherein the weight of the weight is calculated based on an equivalent mass of the vibration isolation system formed by the packaging box and the second spring element.
前記第1のばね要素は、ばね定数及び減衰定数を有し、
前記第1のばね要素が有するばね定数及び減衰定数は、前記重りの重さと前記防振系の前記等価質量との質量比及び前記梱包箱及び前記第2のばね要素が構成する防振系の共振周波数を基に算出されている
請求項2に記載の梱包システム。
The first spring element has a spring constant and a damping constant;
The spring constant and the damping constant of the first spring element are the mass ratio between the weight of the weight and the equivalent mass of the vibration isolation system, and the vibration isolation system formed by the packing box and the second spring element. The packaging system according to claim 2, wherein the packaging system is calculated based on a resonance frequency.
前記被梱包体は、医療機器の筐体を含む
請求項1から4のいずれかに記載の梱包システム。
The packaging system according to claim 1, wherein the packaged body includes a housing of a medical device.
前記重りは、前記医療機器の同梱物を含む
請求項1から5のいずれかに記載の梱包システム。
The packaging system according to any one of claims 1 to 5, wherein the weight includes a package of the medical device.
被梱包体及び当該被梱包体の同梱物を梱包する梱包箱であって、
被梱包体及び当該被梱包体の同梱物を支持する第1の支持体
を有し、
前記被梱包物の前記同梱物は、重りとして、前記第1の支持体と共に動吸振器を構成する
梱包箱。
A packing box for packing the packaged body and the packaged package.
A first support body for supporting a packaged body and a packaged object of the packaged body;
The package of the packaged object constitutes a dynamic vibration absorber together with the first support as a weight.
被梱包体と、重りと、前記被梱包体及び前記重りを支持する第1の支持体とを梱包箱に梱包する梱包方法であって、
前記重り及び前記第1の支持体によって動吸振器を構成する
梱包方法。
A packing method for packing a packaged body, a weight, and a first support body for supporting the packaged body and the weight in a packaging box,
A packaging method in which a dynamic vibration absorber is constituted by the weight and the first support.
JP2005339860A 2005-11-25 2005-11-25 Packaging system, packaging box, and packaging method Ceased JP2007145345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339860A JP2007145345A (en) 2005-11-25 2005-11-25 Packaging system, packaging box, and packaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339860A JP2007145345A (en) 2005-11-25 2005-11-25 Packaging system, packaging box, and packaging method

Publications (1)

Publication Number Publication Date
JP2007145345A true JP2007145345A (en) 2007-06-14

Family

ID=38207231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339860A Ceased JP2007145345A (en) 2005-11-25 2005-11-25 Packaging system, packaging box, and packaging method

Country Status (1)

Country Link
JP (1) JP2007145345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103465951A (en) * 2013-09-10 2013-12-25 中国科学院国家天文台南京天文光学技术研究所 Floating raft type double-layer buffering and vibration reduction system for adverse transportation conditions of polar lands
KR102128942B1 (en) * 2019-02-25 2020-07-01 강원대학교산학협력단 anti-vibration design method of 2DOF Resonance Type Mixer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052388U (en) * 1973-09-12 1975-05-20
JPS56140906U (en) * 1980-03-24 1981-10-24
JPS63258776A (en) * 1987-04-17 1988-10-26 株式会社ブリヂストン Vibration-damping container for transport
JP2001221733A (en) * 2000-02-04 2001-08-17 Olympus Optical Co Ltd Fine control
JP2001270567A (en) * 2000-03-22 2001-10-02 Kobe Steel Ltd Holding device for carrying precision equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052388U (en) * 1973-09-12 1975-05-20
JPS56140906U (en) * 1980-03-24 1981-10-24
JPS63258776A (en) * 1987-04-17 1988-10-26 株式会社ブリヂストン Vibration-damping container for transport
JP2001221733A (en) * 2000-02-04 2001-08-17 Olympus Optical Co Ltd Fine control
JP2001270567A (en) * 2000-03-22 2001-10-02 Kobe Steel Ltd Holding device for carrying precision equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103465951A (en) * 2013-09-10 2013-12-25 中国科学院国家天文台南京天文光学技术研究所 Floating raft type double-layer buffering and vibration reduction system for adverse transportation conditions of polar lands
CN103465951B (en) * 2013-09-10 2015-07-22 中国科学院国家天文台南京天文光学技术研究所 Floating raft type double-layer buffering and vibration reduction system for adverse transportation conditions of polar lands
KR102128942B1 (en) * 2019-02-25 2020-07-01 강원대학교산학협력단 anti-vibration design method of 2DOF Resonance Type Mixer

Similar Documents

Publication Publication Date Title
Wang et al. Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport
JP6308999B2 (en) Active vibration isolation system
US8807515B2 (en) Instrumented platform for vibration sensitive equipment
CN105229334B (en) Mixing vibration shielding system for measuring table
US20080278828A1 (en) Optical Element
JP2016521833A (en) Self-tuning mass damper and system comprising the same
US11460086B2 (en) Active inertial damper system and method
JP2009014204A (en) Load vibration insulating support device and method
US6315094B1 (en) Passive virtual skyhook vibration isolation system
Park et al. Effect of non-proportional damping on the torque roll axis decoupling of an engine mounting system
JP2018066432A (en) Vibration control device
JP5993658B2 (en) Vibration testing machine
JP2007145345A (en) Packaging system, packaging box, and packaging method
KR100952784B1 (en) Apparatus for Testing Dynamic Vibration Damping Type Active Vibration-Proof Apparatus
US20230391534A1 (en) System for transporting fragile objects
Mukherjee A theoretical study and 3D modeling of nonlinear passive vibration isolator
Kilikevičius et al. Research of Dynamics of a Vibration Isolation Platform.
JP2004332847A (en) Damping device
Dokukova et al. Nonnatural vibrations of hydraulic shock-absorbers
Chini et al. Optimized Vibration Suppression of Structural Floor Using Passive TMD
Demerville et al. Original Elastomeric Dampers for the EXPERT Reentry Vehicle
JPH05302645A (en) Vibration control table
JP2849973B2 (en) Anti-vibration structure of local oscillator
Aksoy Tuned vibration absorber design for a supported hollow cylindrical structure
Brennan Vibration Isolation

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130226