JP2007071615A - Surface plasmon resonance angle spectrum measuring device - Google Patents
Surface plasmon resonance angle spectrum measuring device Download PDFInfo
- Publication number
- JP2007071615A JP2007071615A JP2005257323A JP2005257323A JP2007071615A JP 2007071615 A JP2007071615 A JP 2007071615A JP 2005257323 A JP2005257323 A JP 2005257323A JP 2005257323 A JP2005257323 A JP 2005257323A JP 2007071615 A JP2007071615 A JP 2007071615A
- Authority
- JP
- Japan
- Prior art keywords
- surface plasmon
- plasmon resonance
- angle spectrum
- resonance angle
- spectrum measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、光導波路や光回路作製技術を応用して開発され、小型軽量・高集積並列解析を可能とし、DNA、たんぱく質、糖鎖など生体分子間の相互作用等の電気化学反応解析や液体/気体成分分析に用いられる表面プラズモン共鳴を測定する表面プラズモン共鳴角スペクトル測定装置に関する。 The present invention was developed by applying optical waveguide and optical circuit fabrication technology, enables small, light and highly integrated parallel analysis, and analyzes electrochemical reactions such as interactions between biomolecules such as DNA, proteins, sugar chains, etc. / It relates to a surface plasmon resonance angle spectrum measuring apparatus for measuring surface plasmon resonance used for gas component analysis.
表面プラズモンポラリトンとは、金属表面に発生する光の表面波モードであり、金属表面の伝導電子密度波と入射光の共鳴現象に伴って、光波を金属表面のごく近傍にエバネッセント界として局在分布させられる(例えば、非特許文献1を参照。)。位相・界分布など表面プラズモンポラリトンとなった光波の状態は表面状態が変化すればそれに応じて敏感に変化するので、金属表面近傍での試料物質(分子など)の吸着・離脱、あるいは金属表面に固定された結合種との選択的結合・解離などが検知できる(例えば、非特許文献2等を参照。)。 Surface plasmon polariton is a surface wave mode of light generated on a metal surface, and the light wave is localized as an evanescent field in the immediate vicinity of the metal surface due to the resonance phenomenon of conduction electron density wave and incident light on the metal surface. (See, for example, Non-Patent Document 1). The state of the light wave that has become surface plasmon polariton, such as phase and field distribution, changes sensitively if the surface state changes, so that sample substances (molecules, etc.) are adsorbed and desorbed near the metal surface, or on the metal surface. Selective binding / dissociation with a fixed binding species can be detected (see, for example, Non-Patent Document 2).
したがって、表面プラズモン共鳴は、金属表面極近傍状態の変化を敏感に検知することができ、また、ラベリング等によって生理学的な状態を変えることなく、生理学的、生化学的、化学的または物理的計測を可能にしており、物質の吸着・離脱又は結合・解離、あるいは相転移や構造変化の計測に応用されている(例えば、特許文献1を参照。)。 Therefore, surface plasmon resonance can sensitively detect changes in the state near the metal surface, and can measure physiological, biochemical, chemical or physical measurements without changing the physiological state by labeling or the like. It is applied to the measurement of adsorption / desorption or bonding / dissociation of substances, phase transitions and structural changes (see, for example, Patent Document 1).
従来の表面プラズモン共鳴センサーの基本構成は、図1に示すようであり、約0.5〜10cm程度の寸法を持つプリズム結合部とそれを取り囲む配置で測角器に光源を取り付け、光線を入射させて表面プラズモンポラリトンを金属薄膜表面のセンサー検知部に発生させる。入射光と表面プラズモンポラリトンとの間の位相が整合する条件となった時、入射光は表面プラズモンポラリトンに変換され金属表面に分布するため、その分だけ反射光強度が減少する。この反射光強度の減少を全反射減衰(ATR)という。検知部で試料物質の吸着・離脱又は結合・解離があると、検知部近傍での等価屈折率が変化するので入射光と表面プラズモンポラリトンの間の位相整合条件も変化し、ATR強度に変化が現れる。詳細に、ATR強度変化を検出するスペクトル計測を行い、スペクトル中の減衰ピークの変化のリアルタイムな計測から、試料の検知部からの吸着・離脱、結合・解離、あるいは相転移や分子配向など構造変化の量や、それらの速度係数などを求めることができる。 The basic structure of a conventional surface plasmon resonance sensor is as shown in FIG. 1. A prism coupling portion having a dimension of about 0.5 to 10 cm and an arrangement surrounding the prism coupling portion are attached with a light source, and a light beam is incident. Then, surface plasmon polariton is generated in the sensor detection part on the surface of the metal thin film. When the phase between the incident light and the surface plasmon polariton is matched, the incident light is converted into the surface plasmon polariton and distributed on the metal surface, so that the reflected light intensity decreases accordingly. This decrease in reflected light intensity is called total reflection attenuation (ATR). If the sample part is adsorbed / detached or bound / dissociated in the detection part, the equivalent refractive index in the vicinity of the detection part changes, so the phase matching condition between the incident light and the surface plasmon polariton also changes, and the ATR intensity changes. appear. In detail, spectrum measurement is performed to detect changes in ATR intensity, real-time measurement of attenuation peak change in the spectrum, adsorption / desorption, binding / dissociation from sample detector, or structural changes such as phase transition and molecular orientation. And the speed coefficient thereof can be obtained.
従来の表面プラズモン共鳴センサーは、プリズム結合部や、入射角や検出角を決める測角機構が装置全体の容積・重量の大きな割合を占めている。高精度な計測を実現するために、光入射位置や焦点ずれを生じさせずに0.01°以下の精度で入射角や検出角を掃引する必要があるので、測角機械、光学系などの基本構成だけでも装置の大容積・増重量化が避けられない。また、スクリーニング計測のように複数条件下での試料の特性を高速に調べるためにセンサー検知部を基板上に並列配置して計測を一度に行う場合、プリズム結合部を介しての光入射・測角となるため、基板上の任意位置で同照射条件の計測を行うように調整するのは難しく、測定位置ごとの照射ビーム径など光照射条件の変動による差異が計測に含まれることになる。そのため、解析結果の妥当性が保証された高集積、並列計測を実施することは難しい。 In a conventional surface plasmon resonance sensor, a prism coupling portion and an angle measuring mechanism that determines an incident angle and a detection angle occupy a large proportion of the volume and weight of the entire apparatus. In order to realize highly accurate measurement, it is necessary to sweep the incident angle and detection angle with an accuracy of 0.01 ° or less without causing the light incident position and defocusing. The basic configuration alone cannot avoid increasing the volume and weight of the device. In addition, when performing measurement at the same time with sensor detectors arranged in parallel on the substrate in order to investigate the characteristics of the sample under multiple conditions at high speed, such as screening measurement, light incidence / measurement via the prism coupling part is performed. Since it becomes a corner, it is difficult to adjust the measurement so that the same irradiation condition is measured at an arbitrary position on the substrate, and the measurement includes a difference due to variation in the light irradiation condition such as the irradiation beam diameter at each measurement position. Therefore, it is difficult to implement highly integrated and parallel measurement in which the validity of analysis results is guaranteed.
上述した問題点から、表面プラズモン共鳴測定装置は、ATR角スペクトル測定の適用領域を広げるために、装置が容積・重量を取らず配置する場所の制限が少ないことが求められる。そして試料を多数の条件下での測定を同一基板内で並列に実施させるために、同一条件下で計測可能なセンサー検知部を基板上に高集積に複数配置できることが求められる。 In view of the above-described problems, the surface plasmon resonance measuring apparatus is required to have a limited number of places where the apparatus can be placed without taking up volume and weight in order to expand the application area of ATR angle spectrum measurement. In order to perform measurement under a large number of conditions in parallel on the same substrate, it is required that a plurality of sensor detection units that can be measured under the same conditions can be arranged on the substrate in a highly integrated manner.
そこで、本発明は、上記事情に鑑みてなされたもので、表面プラズモン共鳴測定装置の小型軽量化、及び高集積・並列検出機構を有する表面プラズモン共鳴測定装置を提供することを課題としている。 Therefore, the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a surface plasmon resonance measurement apparatus having a small and light surface plasmon resonance measurement apparatus and a highly integrated / parallel detection mechanism.
上記課題を解決する手段である本発明の特徴を以下に挙げる。
本発明の表面プラズモン共鳴角スペクトル測定装置は、金属表面上への物質を表面プラズモンポラリトン共鳴を測定する表面プラズモン共鳴角スペクトル測定装置において、一層以上の金属膜上に一層以上の誘電体膜を設け、この誘電体膜に入力光結合部、2次元平面導波路、検知部とを備え、かつ、誘電体膜内の光線の軌跡から共鳴結合角を計測する測角機構を備えることを特徴とする。
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置は、検知部が直線状に配列した溝又は孔構造を有し、その底面及び側面で検知することを特徴とする。
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置は、直線状に配列した溝又は孔構造の直線形状を測角時の基準線として利用することを特徴とする。
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置は、平面導波路中での導波光線の伝搬方向を特定方位に屈曲させるために、誘電体膜面内に屈折率の異なる誘電体の領域を、それらの界面が2次曲線として表されるように配置し、屈折現象により屈曲された導波光線が、検知部の一部に収束する機構を有することを特徴とする。
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置は、2次元導波路中に導波光線を結合させる入力光結合部として、誘電体と溝による構造の側端面を結合部として機能させる機構を採用していることを特徴とする。
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置は、溝と隣接する誘電体コア構造を一組と考え、導波光への結合のための位相整合条件:K+killum・sinθ≒nave・killum(ここで、Kは2π/(一組の溝と誘電体の断面幅の和)の値、killumは外部入射光の波数で、naveそれぞれの屈折率と容積分率の積の和から求めた平均屈折率に補正項(0.9〜1.1)を積して求めた値とする。)の関係を満たすことを特徴とする。
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置は、入力光結合部への入力結合光線は、ビーム径を入力光結合部の相互作用長の1から10倍にすることを特徴とする。
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置は、金属膜は、Ag、Cu、Au、Ptの元素を主成分とし、誘電体膜は、透明誘電体であって、酸化物、弗化物又は有機高分子である
ことを特徴とする。
The features of the present invention, which is a means for solving the above problems, are listed below.
The surface plasmon resonance angle spectrum measuring apparatus of the present invention is a surface plasmon resonance angle spectrum measuring apparatus for measuring surface plasmon polariton resonance of a substance on a metal surface, wherein one or more dielectric films are provided on one or more metal films. The dielectric film includes an input optical coupling unit, a two-dimensional planar waveguide, and a detection unit, and an angle measuring mechanism that measures a resonance coupling angle from a ray trajectory in the dielectric film. .
Furthermore, the surface plasmon resonance angle spectrum measuring apparatus of the present invention is characterized in that the detection unit has a groove or hole structure arranged in a straight line, and the detection is performed on the bottom and side surfaces thereof.
Furthermore, the surface plasmon resonance angle spectrum measuring apparatus of the present invention is characterized in that a linear shape of a groove or hole structure arranged in a straight line is used as a reference line at the time of angle measurement.
Furthermore, in the surface plasmon resonance angle spectrum measuring apparatus of the present invention, in order to bend the propagation direction of the guided light beam in the planar waveguide in a specific direction, a dielectric region having a different refractive index is formed in the dielectric film surface. These are arranged so that their interfaces are represented as quadratic curves, and the waveguide light bent by the refraction phenomenon has a mechanism for converging on a part of the detection unit.
Further, the surface plasmon resonance angle spectrum measuring apparatus according to the present invention employs a mechanism that functions as a coupling portion on the side end face of the structure composed of a dielectric and a groove as an input optical coupling portion for coupling a guided light beam into a two-dimensional waveguide. It is characterized by that.
Further, the surface plasmon resonance angle spectrum measuring apparatus of the present invention, a dielectric core structure adjacent the groove considered pair, the phase matching condition for binding to guided light: K + k illum · sinθ ≒ n ave · k illum (where, K is 2 [pi / (a set of grooves and the dielectric value of the cross-section sum of the width), k illum at wave number of the external incident light from the sum of the product of n ave respective refractive index and the volume fraction It is characterized by satisfying the relationship of a value obtained by multiplying the obtained average refractive index by a correction term (0.9 to 1.1).
Furthermore, the surface plasmon resonance angle spectrum measuring apparatus of the present invention is characterized in that the beam diameter of the input coupled light beam to the input optical coupling unit is 1 to 10 times the interaction length of the input optical coupling unit.
Further, in the surface plasmon resonance angle spectrum measuring apparatus according to the present invention, the metal film is mainly composed of elements of Ag, Cu, Au, and Pt, and the dielectric film is a transparent dielectric, which is an oxide, fluoride, or It is an organic polymer.
以上説明したように、本発明の表面プラズモン共鳴角スペクトル測定装置によれば、平面導波路コア中の溝や孔の底面や側面を検知部とすることで、センサー光学系の2次元面内配置が可能となり、単純な構成とすることが出来る。そのため光線の導波制御や外部との入力光結合部の設計及び製造が容易となる効果が得られる。図1のような従来のATR角スペクトル検出法では、入射光の光軸が検知部平面の垂直断面上に無いと、入射角を変動させた時に入射光の偏光やスポットサイズが変動したり、光軸が反射光の検出器から外れたりすることでピーク角検出の誤差要因となるが、平面導波路を採用することで、常に光軸は平面導波路に対し平行を保つので、この問題が生じなくなる効果が得られる。また基板上に形成された流路と結合させて利用することも容易であるため、本発明は化学チップ、生体チップなど多方面へ利用が可能となる。光線のスポットサイズは導波路厚さ程度に抑えられ、更に1次元プラズモンポラリトンのような光の回折限界以下の感度分布を実現させることで、極微量試料検出のための感度向上が期待できる。 As described above, according to the surface plasmon resonance angle spectrum measuring apparatus of the present invention, the two-dimensional in-plane arrangement of the sensor optical system is achieved by using the bottom surface and side surface of the groove or hole in the planar waveguide core as the detection unit. Is possible, and a simple configuration can be obtained. For this reason, the effect of facilitating the design and manufacture of the waveguide control of the light beam and the input light coupling portion with the outside can be obtained. In the conventional ATR angle spectrum detection method as shown in FIG. 1, if the optical axis of the incident light is not on the vertical section of the detector plane, the polarization or spot size of the incident light changes when the incident angle is changed, When the optical axis deviates from the reflected light detector, it becomes an error factor for peak angle detection. However, by adopting a planar waveguide, the optical axis is always kept parallel to the planar waveguide. An effect that does not occur is obtained. In addition, since it can be easily combined with a channel formed on a substrate, the present invention can be used in various fields such as a chemical chip and a biological chip. The spot size of the light beam is suppressed to about the thickness of the waveguide. Further, by realizing a sensitivity distribution below the diffraction limit of light, such as one-dimensional plasmon polaritons, an improvement in sensitivity for detecting a very small amount of sample can be expected.
また、本発明の表面プラズモン共鳴角スペクトル測定装置によれば、平面導波路内に偏向機構を作りこむことで、外部入射光の入射角を変動させることなく検知部への入射角度の掃引が可能となる。それにより大型測角器を用いなくて済むため、装置の小型軽量化を発展させる効果が得られる。 Further, according to the surface plasmon resonance angle spectrum measuring apparatus of the present invention, the deflection angle is built in the planar waveguide, so that the incident angle to the detection unit can be swept without changing the incident angle of the external incident light. It becomes. This eliminates the need for using a large angle measuring instrument, so that the effect of developing a smaller and lighter device can be obtained.
また、本発明の表面プラズモン共鳴角スペクトル測定装置によれば、平面導波路中に入力光結合部3を作りこむことで、大型のプリズム結合部や導波路調芯機構を用いずに高効率に導波光を結合させられる。コア下面が金属であるため基板側への結合回折がなく、金属膜がない場合よりもコア上面からの光入出力の結合効率を高める効果が得られる。また、溝と誘電体構造の屈折率差を大きくとることで短い相互作用長の結合部とすることができコンパクトな結合部とすることができ、溝が光の波長よりも薄いことで外部入射光結合の入射角に対する条件を緩やかにする効果が得られる。
コア上面からの光入力であるため平面導波路中の任意の位置に結合部を配置することが出来る。そのためプリズム結合や端面結合の機構と比べて、角スペクトル測定機構の設計自由度を高めることができる。その寸法も一つの結合部あたり一辺1μm〜1mm程度で済むため、センサーの集積・並列化も容易となる効果が得られる。
Further, according to the surface plasmon resonance angle spectrum measuring apparatus of the present invention, the input optical coupling unit 3 is formed in the planar waveguide, so that it is highly efficient without using a large prism coupling unit or a waveguide alignment mechanism. Guided light can be coupled. Since the lower surface of the core is made of metal, there is no coupling diffraction toward the substrate side, and the effect of increasing the coupling efficiency of light input / output from the upper surface of the core can be obtained as compared with the case where there is no metal film. In addition, by making the difference in refractive index between the groove and the dielectric structure large, it is possible to make a coupling part with a short interaction length, which makes it possible to make a compact coupling part, and because the groove is thinner than the wavelength of light, external incidence An effect of relaxing the condition for the incident angle of optical coupling can be obtained.
Since the light is input from the upper surface of the core, the coupling portion can be arranged at an arbitrary position in the planar waveguide. Therefore, the degree of freedom in designing the angular spectrum measurement mechanism can be increased as compared with the prism coupling and end surface coupling mechanisms. Since the dimension is only about 1 μm to 1 mm per side per coupling portion, the effect of facilitating sensor integration and parallelization can be obtained.
また、本発明の表面プラズモン共鳴角スペクトル測定装置によれば、光線の軌跡を直接読み取ることで、角スペクトル情報を得ることができる。従来のプリズム結合器を用いたATR角スペクトル検出法では測定面の位置や傾きなど光学系の精密な調整が必要となる。本発明では、製造時に厳密に偏向機構や結合部を設計・作製することで、測定時の調整を軽減する効果が得られる。
また、測定時の照射スポットサイズや照射位置の変動を直接観測して、ATRピーク角変動におけるそれらの影響を確認しながら評価できるので、測定結果の信頼性が向上する効果が得られる。
コンピュータ−による画像処理や画像計測技術などとの組み合わせたけ計測や、蛍光、吸収、表面増強ラマン散乱信号の分布計測など他の顕微分光技術との組み合わせも可能となる効果が得られる。
Moreover, according to the surface plasmon resonance angle spectrum measuring apparatus of the present invention, the angle spectrum information can be obtained by directly reading the locus of the light beam. The conventional ATR angle spectrum detection method using a prism coupler requires precise adjustment of the optical system such as the position and tilt of the measurement surface. In the present invention, an effect of reducing adjustment at the time of measurement can be obtained by strictly designing and producing a deflection mechanism and a coupling portion at the time of manufacture.
In addition, since the irradiation spot size and the irradiation position at the time of measurement can be directly observed and evaluated while checking their influence on the ATR peak angle fluctuation, an effect of improving the reliability of the measurement result can be obtained.
There is an effect that it is possible to combine with other microspectroscopic techniques such as measurement only in combination with image processing or image measurement technology by a computer, and distribution measurement of fluorescence, absorption, and surface enhanced Raman scattering signals.
以下に、本発明を実施するための最良の形態を図面に基づいて説明する。なお、いわゆる当業者は特許請求の範囲内における本発明を変更・修正をして他の実施形態をなすことは容易であり、これらの変更・修正はこの特許請求の範囲に含まれるものであり、以下の説明はこの発明における最良の形態の例であって、この特許請求の範囲を限定するものではない。 The best mode for carrying out the present invention will be described below with reference to the drawings. Note that it is easy for a person skilled in the art to make other embodiments by changing or correcting the present invention within the scope of the claims, and these changes and modifications are included in the scope of the claims. The following description is an example of the best mode of the present invention, and does not limit the scope of the claims.
図2は、本発明の一実施形態を示す斜視図である。図3は、本発明の一実施形態を示す断面図である。本発明の表面プラズモン共鳴角スペクトル測定装置によれば、表面プラズモン共鳴検知部や結合部の配置、及びATR角スペクトルの検出方法について、図2に示す。斜視図ような金属5−誘電体平面導波路6と、その中に作りこまれた検知部1、面内屈曲機構2、入力光結合部3とからなり、さらに、表面プラズモン共鳴角スペクトル測定装置として顕微鏡及び撮像器からなり測角機構4を備える。
表面プラズモン共鳴角スペクトル測定装置による計測の概略を述べると、図2及び図3中の1の検知部での試料の吸着・離脱又は結合・解離を検出するために、外部入射光線(主にレーザー光)7が入力光結合部3で導波光線に変換され、その光線が面内屈曲機構2で特定の入射角に変換されて、検知部1に照射される。外部入射光線(主にレーザー光)7の入射位置を水平に結合部3に沿って掃引して、入射角毎の検知部1での反射、透過など光線の応答特性を測角機構4で観測して、共鳴結合角を測定する。
FIG. 2 is a perspective view showing an embodiment of the present invention. FIG. 3 is a cross-sectional view showing an embodiment of the present invention. According to the surface plasmon resonance angle spectrum measuring apparatus of the present invention, the arrangement of the surface plasmon resonance detection unit and the coupling unit and the method for detecting the ATR angle spectrum are shown in FIG. It comprises a metal 5-dielectric planar waveguide 6 as shown in a perspective view, a detection unit 1, an in-plane bending mechanism 2 and an input optical coupling unit 3 incorporated therein, and further a surface plasmon resonance angle spectrum measuring apparatus. It comprises a microscope and an imager and includes an angle measuring mechanism 4.
The outline of the measurement by the surface plasmon resonance angle spectrum measuring apparatus is as follows. In order to detect the adsorption / desorption or binding / dissociation of the sample at the detection unit 1 in FIGS. Light) 7 is converted into a guided light beam by the input light coupling unit 3, and the light beam is converted into a specific incident angle by the in-plane bending mechanism 2 and irradiated to the detection unit 1. The incident position of the externally incident light beam (mainly laser light) 7 is swept horizontally along the coupling unit 3, and the response characteristics of the light beam such as reflection and transmission at the detection unit 1 for each incident angle are observed by the angle measuring mechanism 4. Then, the resonance coupling angle is measured.
本発明の表面プラズモン共鳴角スペクトル測定装置では、2次元平面導波路6の構造中に検知部1として機能する構造の配置構成を発明した。ここで表面プラズモン共鳴角スペクトル測定装置とは、1層以上の金属(Ag、Au、Cu、Al等)が堆積した金属膜5上に、1層以上の透明誘電体(SiO2、MgF2など無機化合物、高分子など有機物)による平面導波路6が堆積されたもので、透明誘電体を導波路コアとして光線を導波するものである。金属膜は1層以上であっても良い。また、同様に、誘電体膜6も1層以上であっても良い。特に、平面導波路6として機能するために、誘電体膜6の屈折率や厚さによって導波モードのカットオフが選定され、各測定に適した厚さ及び屈折率分布に調整することができる。この導波路6中に励起される導波モードの偏光を定義すると、導波路6平面に平行な電界成分をもつTEモードと垂直な電界成分をもつTMモードが考えられる。本発明においては、TE、TMの各偏光の最低次モードを利用することが好ましい。導波モードの偏光は入射光の偏光状態で制御することができる。 In the surface plasmon resonance angle spectrum measuring apparatus of the present invention, the arrangement configuration of the structure functioning as the detection unit 1 in the structure of the two-dimensional planar waveguide 6 has been invented. Here, the surface plasmon resonance angle spectrum measuring apparatus means that one or more transparent dielectrics (SiO 2 , MgF 2 , etc.) are formed on the metal film 5 on which one or more metals (Ag, Au, Cu, Al, etc.) are deposited. A planar waveguide 6 made of an organic material such as an inorganic compound or a polymer is deposited, and guides light using a transparent dielectric as a waveguide core. The metal film may be one or more layers. Similarly, the dielectric film 6 may have one or more layers. In particular, in order to function as the planar waveguide 6, a waveguide mode cutoff is selected depending on the refractive index and thickness of the dielectric film 6, and the thickness and refractive index distribution suitable for each measurement can be adjusted. . When the polarization of the waveguide mode excited in the waveguide 6 is defined, a TM mode having an electric field component perpendicular to a TE mode having an electric field component parallel to the plane of the waveguide 6 can be considered. In the present invention, it is preferable to use the lowest order mode of each polarization of TE and TM. The polarization of the waveguide mode can be controlled by the polarization state of the incident light.
この平面導波路6内に溝又は孔構造を形成し、その側面や底面を検知部1として利用する。検知部1は試料の吸着・離脱又は結合・解離が可能なように開放されており、測定自身は固体に対しても可能であるが、試料を含む気体や液体などを満たす。図4は、本発明の検知部の一実施形態を示す平面図および断面図である。図4のように、平面導波路6中に線上の溝1構造を形成し、その溝1に試料溶液を入れて、使用する。
また、図5は、本発明の検知部の一実施形態を示す平面図および断面図である。図5のように、多数の微細な孔構造の検知部1に配置して気体試料の吸着・離脱を検出したりする。導波モードの偏光成分によって検知部1で発生する表面プラズモンポラリトンの伝搬定数や界分布が異なり、検出感度や感度分布が異なることになる。導波モードがTM成分である場合、コア下面の金属膜5によってTM最低次モードは表面プラズモンポラリトンと同様の界分布、伝搬定数を持つため、検知部1では下面金属膜5近傍の試料の吸着・離脱が観測されることになる。
また、図6は、本発明の検知部の一実施形態を示す平面図および断面図である。導波モードがTE成分である場合、図6のように検知部1の側面に表皮厚さより薄い(厚さ1〜60nm)の金属(Au、Ag等)膜を堆積し、いわゆるKretschmann配置のような測定構成とする。この場合側端面膜近傍の試料の吸着・離脱を検出することになる。また図6のように側端面と下面の金属膜5を検知部1として利用すると、検知部1の角隅に1次元的に局在した界分布を持つ一次元プラズモンポラリトンのモードも存在する。
用いる検知部1の形態や導波モードを選択することで、検出感度や感度分布の大きさを調整できる。
A groove or hole structure is formed in the planar waveguide 6, and the side and bottom surfaces thereof are used as the detection unit 1. The detection unit 1 is open so that the sample can be adsorbed / detached or combined / dissociated, and the measurement itself can be performed on a solid, but fills a gas or liquid containing the sample. FIG. 4 is a plan view and a cross-sectional view showing an embodiment of the detection unit of the present invention. As shown in FIG. 4, a linear groove 1 structure is formed in the planar waveguide 6, and the sample solution is put into the groove 1 for use.
Moreover, FIG. 5 is the top view and sectional drawing which show one Embodiment of the detection part of this invention. As shown in FIG. 5, the gas sample is detected and adsorbed / separated by being arranged in a number of detection units 1 having a fine pore structure. The propagation constant and field distribution of the surface plasmon polariton generated in the detector 1 are different depending on the polarization component of the waveguide mode, and the detection sensitivity and sensitivity distribution are different. When the waveguide mode is a TM component, the TM lowest order mode has the same field distribution and propagation constant as the surface plasmon polariton due to the metal film 5 on the lower surface of the core.・ Leaving will be observed.
Moreover, FIG. 6 is the top view and sectional drawing which show one Embodiment of the detection part of this invention. When the guided mode is a TE component, a metal (Au, Ag, etc.) film thinner than the skin thickness (1 to 60 nm) is deposited on the side surface of the detection unit 1 as shown in FIG. Measurement configuration. In this case, the adsorption / detachment of the sample in the vicinity of the side end face film is detected. Further, when the metal films 5 on the side end surfaces and the lower surface are used as the detection unit 1 as shown in FIG. 6, there is also a one-dimensional plasmon polariton mode having a field distribution localized one-dimensionally at the corners of the detection unit 1.
By selecting the form of the detector 1 to be used and the waveguide mode, the detection sensitivity and the size of the sensitivity distribution can be adjusted.
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置では、角スペクトル測定のために、平面導波路面6内で検知部1への入射角掃引を容易に実行するための機構を用いた。導波路6中に二次曲線(楕円弧、あるいは放物線、双曲線など)の一部の形状、あるいは分散補正やビーム形状補正を目的とした修正が加わった二次曲線に近い形状で異なる屈折率の領域を作製し、光の屈折現象を利用して光線の進行方向を変え任意の入射角で検知部1へと導く。図6のように、導波光線は屈折率が変化する界面でスネルの法則に基づき下式の関係を満たして屈曲する。
n1sinθ1=n2sinθ2 (1)式
(ここで、n1は界面入射側の等価屈折率、θ1は入射角、n2は界面出射側の等価屈折率、θ2は出射角である。)
この現象を利用して平面導波路中の二次曲線の焦点近傍に検知部1を配置することで、外部入射光源7の入射角は固定したままで角スペクトル測定を行うことが出来る。
Furthermore, in the surface plasmon resonance angle spectrum measuring apparatus of the present invention, a mechanism for easily executing the incident angle sweep to the detector 1 in the planar waveguide surface 6 is used for the angle spectrum measurement. Different refractive index regions in the waveguide 6 with a shape of a part of a quadratic curve (elliptic arc, parabola, hyperbola, etc.), or a shape close to a quadratic curve modified for dispersion correction and beam shape correction And using the light refraction phenomenon, the direction of travel of the light beam is changed and guided to the detection unit 1 at an arbitrary incident angle. As shown in FIG. 6, the guided light beam bends at the interface where the refractive index changes, satisfying the relationship of the following equation based on Snell's law.
n 1 sinθ 1 = n 2 sinθ 2 (1) (where n 1 is the equivalent refractive index on the interface incident side, θ 1 is the incident angle, n 2 is the equivalent refractive index on the interface exit side, and θ 2 is the exit angle) .)
By utilizing this phenomenon and arranging the detector 1 in the vicinity of the focal point of the quadratic curve in the planar waveguide, angular spectrum measurement can be performed with the incident angle of the external incident light source 7 fixed.
さらに、本発明の表面プラズモン共鳴角スペクトル測定装置では、金属5−誘電体の平面導波路6中への光結合のために、溝−誘電体構造の入力光結合部3を1〜100個程度並べて配置し、それによる高効率な入射光を得ることができる。本発明では、誘電体構造の側端面から結合させるためこれを入力光結合部3と呼称する。
図2又は図3に示すように、平面導波路6中の任意の位置に深さが金属面近傍まで届く溝を作製する、あるいは平面導波路6とは異なる材料で誘電体構造を作製することで、入力光結合部3とする。その溝による誘電体コア構造の側端部に適当なビーム径、入射角で光入射することで導波光(p偏光入射では、表面プラズモンポラリトン)を発生させることができる。溝の部分は真空や空気など屈折率が誘電体構造よりも小さい気体、液体、あるいは固体が占めているものとする。通常、小型で高効率な結合部とするため溝と誘電体コア構造の屈折率差ができるだけ大きくなるように、溝の部分は屈折率が1に近い空気などが占める。
Furthermore, in the surface plasmon resonance angle spectrum measuring apparatus of the present invention, about 1 to 100 input optical coupling portions 3 having a groove-dielectric structure are provided for optical coupling of the metal 5-dielectric into the planar waveguide 6. By arranging them side by side, it is possible to obtain highly efficient incident light. In the present invention, this is referred to as the input optical coupling unit 3 for coupling from the side end face of the dielectric structure.
As shown in FIG. 2 or 3, a groove whose depth reaches the vicinity of the metal surface is formed at an arbitrary position in the planar waveguide 6, or a dielectric structure is fabricated with a material different from that of the planar waveguide 6. Thus, the input optical coupling unit 3 is used. Waveguide light (surface plasmon polariton when p-polarized light is incident) can be generated by making light incident at an appropriate beam diameter and incident angle on the side end of the dielectric core structure formed by the groove. It is assumed that the groove portion is occupied by a gas, liquid, or solid whose refractive index is smaller than that of the dielectric structure, such as vacuum or air. Normally, the groove portion is occupied by air having a refractive index close to 1 so that the refractive index difference between the groove and the dielectric core structure is as large as possible in order to make the coupling portion small and highly efficient.
入力光結合部3の誘電体コア構造の厚さが充分(波長/[4×コア物質の屈折率]以上)な厚さを持ち、かつ溝の底が金属層に届くかそれに近い場合における外部入射光と導波光の位相整合条件の解析法を述べる。溝と、その隣り合う誘電体コア構造を一組と考え、その一組のうちの溝と誘電体の容積分率δを用いて次式のように平均屈折率を求める。
nave=a[(δ−1)×n0+δ×n1] (2)式
(ここで、δ=溝の容積/(溝の容積+誘電体の容積)、n0は溝を占める物質の屈折率、n1は誘電体構造の屈折率、aは等価屈折率の補正項で、コアの厚さや金属の種類、測定波長、モード、偏光に拠るが0.9〜1.1程度の値である。)これを用いて、次の位相整合の関係に合うように入射角、溝と誘電体の長さを設定することで入射光は導波光に変換する。
K+killumsinθ=navekillum (3)式
ここで、Kは2π/(一組の溝と誘電体の断面幅:図3の8参照)で逆格子定数に相当する。killumは外部入射光の波数、θは外部入射光の入射角で、右辺は導波光の伝搬定数を表している。ここで、溝と誘電体コア構造を複数配置する場合、断面幅や配置する間隔は必ずしも一定でなくても良く、溝と誘電体構造の一組について求めた平均屈折率が各々(3)式の関係を満たしたランダム構造でもよい。また効率は劣るが一組の溝と誘電体コア構造だけでも入力光結合部3として利用できる。更に溝と誘電体コア構造の端面が垂直ではなくて、端面が傾斜を持っていても良い。特に同じ構造を一定周期で配置した場合には、回折格子結合器(グレーティングカプラ)とみなせ、この場合には高次の位相整合条件についても同様に(3)式の関係から解析できる。
溝が入射光の波長よりも浅い場合(3)式の関係を厳密に満たしていなくても導波光との結合は生じ、設計値に対して実施時の各パラメータの許容誤差を比較的大きくとれる。
External when the thickness of the dielectric core structure of the input optical coupling part 3 is sufficient (wavelength / [4 × refractive index of core material] or more) and the bottom of the groove reaches or is close to the metal layer A method for analyzing the phase matching condition between incident light and guided light is described. The groove and the adjacent dielectric core structure are considered as one set, and the average refractive index is obtained by the following equation using the volume fraction δ of the groove and the dielectric in the set.
n ave = a [(δ−1) × n 0 + δ × n 1 ] (2) Equation (where δ = groove volume / (groove volume + dielectric volume), n 0 is the material occupying the groove) N 1 is the refractive index of the dielectric structure, a is a correction term for the equivalent refractive index, and is about 0.9 to 1.1 depending on the thickness of the core, the type of metal, the measurement wavelength, the mode, and the polarization. Using this, the incident light is converted into guided light by setting the incident angle, the groove and the length of the dielectric so as to meet the following phase matching relationship.
K + k illum sin θ = n ave k illum (3) where K is 2π / (cross-sectional width of a pair of grooves and dielectric: refer to 8 in FIG. 3) and corresponds to the reciprocal lattice constant. killum is the wave number of the external incident light, θ is the incident angle of the external incident light, and the right side represents the propagation constant of the guided light. Here, in the case where a plurality of grooves and dielectric core structures are arranged, the cross-sectional width and the arrangement interval are not necessarily constant, and the average refractive index obtained for one set of the grooves and the dielectric structures is expressed by Equation (3). A random structure satisfying this relationship may be used. Further, although the efficiency is inferior, only a pair of grooves and a dielectric core structure can be used as the input optical coupling unit 3. Furthermore, the end surface of the groove and the dielectric core structure may not be vertical, but the end surface may have an inclination. In particular, when the same structure is arranged at a constant period, it can be regarded as a diffraction grating coupler (grating coupler), and in this case, higher-order phase matching conditions can be similarly analyzed from the relationship of equation (3).
When the groove is shallower than the wavelength of the incident light, coupling with the guided light occurs even if the relationship of the expression (3) is not strictly satisfied, and the tolerance of each parameter at the time of implementation can be relatively large with respect to the design value. .
結合効率を向上させるために、位相条件(3)式と合わせて入射ビームの界分布を最適化することが必要となり、それは入射光線のビーム径を調整することで実施される。
入射ビーム界分布の最適条件は、その結合部3からの出射光の界分布と合同の空間分布であり、入射光のビーム径を入力光結合部3の相互作用長と同程度の寸法となるように調整することで80%程度の入力結合効率が実現可能である。出力結合時の入力光結合部3における導波モードの放射損失係数をαrad[μm−1]とすると、金属の吸収による導破損失係数αabs<<αradであればガウス分布の入射光の場合でビーム径=1.3〜1.4×αrad −1で最大効率となる。これらの関係は誘電体導波路の回折格子結合部と同様である。電界分布の整合についても上記の最適条件でなくても入射光を導波光に結合させることが出来る。むしろ最適分布よりやや太めの光線を用いて入射光掃引駆動による振動やクリープ等による照射位置の変動や、基板平面の水平からの傾きの影響を緩和させ、測定の安定性を保持させる。
In order to improve the coupling efficiency, it is necessary to optimize the field distribution of the incident beam in combination with the phase condition (3), which is carried out by adjusting the beam diameter of the incident beam.
The optimum condition of the incident beam field distribution is a spatial distribution that is congruent with the field distribution of the outgoing light from the coupling portion 3, and the beam diameter of the incident light has the same size as the interaction length of the input optical coupling portion 3. By adjusting in this way, an input coupling efficiency of about 80% can be realized. Assuming that the radiation loss coefficient of the waveguide mode in the input optical coupling unit 3 at the time of output coupling is α rad [μm −1 ], the incident light with a Gaussian distribution is obtained if the metal loss coefficient α abs << α rad due to metal absorption In this case, the maximum efficiency is obtained when the beam diameter is 1.3 to 1.4 × α rad −1 . These relationships are the same as the diffraction grating coupling portion of the dielectric waveguide. Even for the matching of the electric field distribution, the incident light can be coupled to the guided light even if the above optimum conditions are not met. Rather, by using light rays that are slightly thicker than the optimum distribution, the effects of fluctuations in irradiation position due to vibration and creep due to incident light sweep drive, and the inclination of the substrate plane from the horizontal are alleviated, and measurement stability is maintained.
本発明の結合部一般的な使用法は、平面導波路に、図7のように直線状の入力光結合部3を配置して使用する。図7は、本発明の面内屈曲機構及び入力光結合部の一実施形態を示す平面図である。
この場合、外部入射光を直線状に掃引すれば、面内屈曲機構2により任意の入射角に導波光線を偏向させることができる。図8は、本発明の面内屈曲機構2及び入力光結合部の一実施形態を示す射視図である。入力光結合部3を2次曲線状に配置して、屈曲機構2の機能も併せて持たせている。この面内屈曲機構2は、平面導波路6中での導波光線の伝搬方向を特定方位に屈曲させるために、誘電体膜6面内に屈折率の異なる誘電体の領域を、それらの界面が2次曲線として表されるように配置したものである。この配置により、入射光の屈折現象が生じ、屈曲された導波光線が、検知部1の一部に収束させることができる。
図8のように2次曲線形状に入力光結合部3を配置して、導波光の入力光結合部3と入射角屈曲の両方の機能を担わせる方法もある。この場合、作製も容易となり、より小型な角スペクトル測定機構となるが、外部入力光の掃引を2次曲線に沿って行うか、入力光結合部3を含む平面内をラスタースキャンする事が必要となる。2次曲線形状としては、具体的には、円弧状、楕円状、放物線状、双曲線状の形状を挙げることができる。
In the general usage of the coupling portion of the present invention, the linear input optical coupling portion 3 is arranged and used in a planar waveguide as shown in FIG. FIG. 7 is a plan view showing an embodiment of the in-plane bending mechanism and the input optical coupling portion of the present invention.
In this case, if the external incident light is swept linearly, the in-plane bending mechanism 2 can deflect the guided light beam to an arbitrary incident angle. FIG. 8 is a perspective view showing an embodiment of the in-plane bending mechanism 2 and the input light coupling portion of the present invention. The input light coupling portion 3 is arranged in a quadratic curve shape and also has the function of the bending mechanism 2. In order to bend the propagation direction of the guided light beam in the planar waveguide 6 in a specific direction, the in-plane bending mechanism 2 is configured to form dielectric regions having different refractive indexes in the surface of the dielectric film 6 and their interfaces. Are arranged so as to be expressed as a quadratic curve. With this arrangement, a refraction phenomenon of incident light occurs, and the bent guided light beam can be converged on a part of the detection unit 1.
As shown in FIG. 8, there is a method in which the input light coupling portion 3 is arranged in a quadratic curve shape so that both functions of the guided light input light coupling portion 3 and the incident angle bending are performed. In this case, the fabrication becomes easy and the angular spectrum measurement mechanism becomes smaller. However, it is necessary to sweep the external input light along a quadratic curve or to perform a raster scan in the plane including the input light coupling unit 3. It becomes. Specific examples of the quadratic curve shape include a circular arc shape, an elliptical shape, a parabolic shape, and a hyperbolic shape.
また、ATR強度の角スペクトル情報を得るために、平面導波路6中の光線の軌跡を測角機構4により検出する構成を備える。測角機構4にはCCDカメラやCMOSカメラ、フォトダイオードアレイなどを用いる。細線ビームを平面導波路6内に伝搬させた時、平面導波路のコア面上部から観測すると輝線が観測される。輝線は金属膜5の表面粗さやコア内の屈折率揺らぎによる散乱で生じており、コア下面の金属鏡面が上面から輝線を観測し易くしている。図2及び図3に示す構成で、レンズを用いて拡大した像を観測し、検知部1に発生した共鳴結合光成分や反射・透過光成分の輝線強度を測定することで、角スペクトルの解析を行うことが出来る。この際、直線に配置した検知部1など、入射角や透過・反射角を計測する際の基準となる構造があると解析が容易となる。 In addition, in order to obtain angular spectrum information of the ATR intensity, a configuration in which the trajectory of the light beam in the planar waveguide 6 is detected by the angle measuring mechanism 4 is provided. The angle measuring mechanism 4 uses a CCD camera, a CMOS camera, a photodiode array, or the like. When the fine beam is propagated into the planar waveguide 6, bright lines are observed when observed from above the core surface of the planar waveguide. The bright lines are generated by scattering due to the surface roughness of the metal film 5 and the refractive index fluctuation in the core, and the metal mirror surface on the lower surface of the core makes it easy to observe the bright lines from the upper surface. With the configuration shown in FIGS. 2 and 3, an enlarged image is observed using a lens, and the angle spectrum analysis is performed by measuring the emission line intensity of the resonance coupling light component and the reflected / transmitted light component generated in the detection unit 1. Can be done. In this case, if there is a structure serving as a reference when measuring the incident angle and the transmission / reflection angle, such as the detection unit 1 arranged in a straight line, the analysis becomes easy.
また、図9は、本発明の一実施形態を示す斜視図である。検知部1に対して表面プラズモンポラリトン共鳴結合角の近傍を詳細に計測できるように入力光結合部3の向きを調整してある。図10は、本発明の一実施形態を示す斜視図である。検知部1に対して表面プラズモンポラリトン共鳴結合角の近傍を詳細に計測できるように入力光結合部3の向きを調整してある。
上述の他に、より実用的な形態の表面プラズモン共鳴角スペクトル測定装置は、平面導波路6内の入射光結合部3、検知部1、面内屈曲機構2について、図9及び図10のように、結合部3の形状や配置位置を、予測される結合共鳴角に合わせて設計し、共鳴角近傍の角スペクトルをより詳細に測定出来るよう作製したものである。
FIG. 9 is a perspective view showing an embodiment of the present invention. The direction of the input light coupling unit 3 is adjusted so that the vicinity of the surface plasmon polariton resonance coupling angle can be measured in detail with respect to the detection unit 1. FIG. 10 is a perspective view showing an embodiment of the present invention. The direction of the input light coupling unit 3 is adjusted so that the vicinity of the surface plasmon polariton resonance coupling angle can be measured in detail with respect to the detection unit 1.
In addition to the above, a more practical form of the surface plasmon resonance angle spectrum measuring apparatus is shown in FIGS. 9 and 10 with respect to the incident light coupling unit 3, the detection unit 1, and the in-plane bending mechanism 2 in the planar waveguide 6. In addition, the shape and arrangement position of the coupling portion 3 are designed according to the predicted coupling resonance angle, and the angular spectrum near the resonance angle can be measured in more detail.
(実施例1)
はじめに金属−誘電体コアによる導波路、入力光結合部、測角機構を含めた装置の設計、動作検証の実施例を示す。
石英ガラス基板上にスパッタリング法によりAg薄膜を厚さ150nm堆積させ、その上から保護層としてSiO2が10nm堆積されている。その上に、透明ポリマー(日本ゼオン株式会社製電子線リソグラフィ用レジストZEP520、屈折率1.54)をスピンコート法により厚さ300nm堆積させ、2次元平面導波路6を作製した。入力光結合部3の寸法・形状については(3)式や電磁場数値解析のコンピュータシミュレーション等で特性を予測して設計した。設計したパターンを電子線描画装置によりパターン転写して、現像後に残ったレジスト膜パターンをそのまま2次元平面導波路の誘電体膜6として用いた。測角機構4は、市販の1/4インチ26万画素インターライン方式のCCDカメラであり、20倍の対物レンズを用いて観測した。
Example 1
First, examples of design and operation verification of a device including a waveguide using a metal-dielectric core, an input optical coupling unit, and an angle measuring mechanism will be described.
An Ag thin film having a thickness of 150 nm is deposited on a quartz glass substrate by sputtering, and 10 nm of SiO 2 is deposited thereon as a protective layer. A transparent polymer (resist ZEP520 for electron beam lithography manufactured by Nippon Zeon Co., Ltd., refractive index 1.54) was deposited thereon by a spin coating method to produce a two-dimensional planar waveguide 6. The dimensions and shape of the input optical coupling part 3 were designed by predicting the characteristics by the equation (3) or computer simulation of electromagnetic field numerical analysis. The designed pattern was transferred by an electron beam drawing apparatus, and the resist film pattern remaining after development was used as it is as the dielectric film 6 of the two-dimensional planar waveguide. The angle measuring mechanism 4 is a commercially available 1/4 inch 260,000 pixel interline CCD camera, and was observed using a 20 × objective lens.
例として最も単純な形態である、溝と誘電体の容積分率が1:1、入力結合部3として、一定ピッチのエッジ(回折格子)結合部の場合について示す。図11は、本発明の入力光結合部の一実施例を示す写真である。図11に示すように、幅4μm、長さ250μmの直線導波路とその両端に入力光結合部3のパターンを作製した。一方を入力結合部、他方を出力結合部として結合効率の評価を実施している。格子定数Λ1200nm、1500nm、2000nmで結合部全体の長さ75mmの場合について、波長780nmビーム径30mmの入射光を用いて、それぞれの入射角に対する出力結合部からの強度を検出した結果、図12のように求まった。図12は、本発明の入力光結合部の結合効率評価の一実施例のグラフである。
このとき平均屈折率naveは1.24であり、それぞれの格子定数Λ及びピーク角度は、(3)式の関係を満たしている。図13は、本発明の入力光結合部の結合効率解析のコンピュータシミュレーションの一実施例のグラフである。図13に示すように、時間領域有限差分法によるシミュレーションの結果で、ピーク角など特徴が実験結果と一致している。以上から本発明で用いられる機構で導波光線を結合・導波する様子が確認され、設計に近い機能を有していることが確認された。但しシミュレーションから見積もられる結合効率は最大80%と求められているが、実験においては入射ビーム径の最適化を行っておらず20%程度であった。
As an example, a case in which the volume fraction of the groove and the dielectric is 1: 1 and the input coupling unit 3 is an edge (diffraction grating) coupling unit having a constant pitch, which is the simplest form, will be described. FIG. 11 is a photograph showing an example of the input optical coupling unit of the present invention. As shown in FIG. 11, a pattern of a linear waveguide having a width of 4 μm and a length of 250 μm and the input optical coupling portion 3 at both ends thereof was produced. The coupling efficiency is evaluated by using one as an input coupling unit and the other as an output coupling unit. As a result of detecting the intensity from the output coupling portion for each incident angle using incident light having a wavelength of 780 nm and a beam diameter of 30 mm in the case of the lattice constant Λ1200 nm, 1500 nm, and 2000 nm and the total length of the coupling portion of 75 mm, as shown in FIG. I asked for it. FIG. 12 is a graph of an example of the coupling efficiency evaluation of the input optical coupling unit of the present invention.
At this time, the average refractive index n ave is 1.24, and the lattice constant Λ and the peak angle satisfy the relationship of the expression (3). FIG. 13 is a graph of an example of computer simulation of the coupling efficiency analysis of the input optical coupling unit of the present invention. As shown in FIG. 13, in the result of the simulation by the time domain finite difference method, the characteristics such as the peak angle coincide with the experimental result. From the above, it was confirmed that the guided light beam was coupled and guided by the mechanism used in the present invention, and it was confirmed that it has a function close to the design. However, although the coupling efficiency estimated from the simulation is required to be 80% at maximum, in the experiment, the incident beam diameter was not optimized and was about 20%.
(実施例2)
表面プラズモンポラリトン共鳴によるATR角計測の一実施形態例を、図14に示す。図14は、本発明の写真である。これは、図8の形態の表面プラズモン共鳴測定装置を作製したものである。上記同様の製法で、半径100μmの半円弧状に入力光結合部3と、円弧の焦点近傍に幅3.5μm、長さ200μmに渡って格子定数500nmで直径250nmの孔を六方格子状に並べている。この多数開けられた孔表面(底面:SiO2、側面:ポリマー)への吸着水量の湿度による変化の検出を試みた。
(Example 2)
An embodiment of ATR angle measurement by surface plasmon polariton resonance is shown in FIG. FIG. 14 is a photograph of the present invention. This is a surface plasmon resonance measuring apparatus of the form shown in FIG. In the same manufacturing method as above, the input optical coupling portion 3 is formed in a semicircular shape with a radius of 100 μm, and holes having a lattice constant of 500 nm and a diameter of 250 nm are arranged in a hexagonal lattice pattern in the vicinity of the focal point of the circular arc over a width of 3.5 μm and length of 200 μm. Yes. An attempt was made to detect changes in the amount of water adsorbed on the surface of the holes (bottom surface: SiO 2 , side surface: polymer) that had been opened in large numbers due to humidity.
図15は、本発明の、湿度25%の場合の一実施結果の写真である。図16は、本発明の、湿度80%以上の場合の一実施結果の写真である。図15、16に共鳴角計測実施結果を示すように、円弧状結合部にp偏光、波長780nm、ビーム径30μmのレーザー光を入射角45°から入射して、検知部1での応答を測角機構4で観測している。試料は室温25℃、相対湿度それぞれ25%と80%以上の環境に置かれている。以下に、入射角度を固定して試料の吸着が無い場合とある場合の差異を検出した結果を示す。(1)式の関係に従い、円弧上の48°の位置に照射した場合に導波光線は検知部1に入射角29°で入射される。直線に並んだ検知部1を角度計測の基準として、入射光線の輝線の中心を通る直線が取る角度を入射角として入射角を求めた。
図15では検知部への入射角28°に調整された時、入射光線は検知部1の孔構造による回折放射モードと結合してATRのピーク角となり、このとき検知部1の列に沿って散乱放射が強く生じている一方、透過光、反射光の成分は微弱となっている様子が確認される。一方、図16は入射角29°での観測結果であるが、検知部1への吸着水量の増大によりATRピーク角が広角側にシフトしたために、放射モードと非結合の光線が透過して導波しているのが強く観測された。このように湿度に応じてATR特性が変化する様子が確認され、大気中の水分、吸着水量の変化を検知することが出来た。
FIG. 15 is a photograph of an implementation result of the present invention at a humidity of 25%. FIG. 16 is a photograph of an implementation result of the present invention when the humidity is 80% or more. As shown in FIGS. 15 and 16, the results of the resonance angle measurement are shown. The p-polarized light, the wavelength of 780 nm, and the beam diameter of 30 μm are incident on the arcuate coupling portion from the incident angle of 45 °, and the response at the detector 1 is measured. Observed by angular mechanism 4. The sample is placed in an environment where the room temperature is 25 ° C. and the relative humidity is 25% and 80% or more, respectively. The results of detecting the difference between the case where the incident angle is fixed and the case where no sample is adsorbed are shown below. In accordance with the relationship of the expression (1), the guided light beam is incident on the detector 1 at an incident angle of 29 ° when irradiated at a position of 48 ° on the arc. Using the detection units 1 arranged in a straight line as a reference for angle measurement, the incident angle was determined with the angle taken by the straight line passing through the center of the emission line of the incident light as the incident angle.
In FIG. 15, when the incident angle to the detection unit is adjusted to 28 °, the incident light is combined with the diffraction radiation mode by the hole structure of the detection unit 1 to become the peak angle of the ATR. While scattered radiation is strongly generated, it is confirmed that the components of transmitted light and reflected light are weak. On the other hand, FIG. 16 shows the observation result at an incident angle of 29 °. Since the ATR peak angle is shifted to the wide-angle side due to the increase in the amount of adsorbed water on the detector 1, the light beam that is not coupled with the radiation mode is transmitted and guided. A strong wave was observed. In this way, it was confirmed that the ATR characteristics changed according to the humidity, and changes in the moisture and the amount of adsorbed water in the atmosphere could be detected.
本発明によって得られる小型軽量かつ集積・並列配置を特徴とする表面プラズモン共鳴検知機構により、従来の主要な応用例であった生体分子間相互作用のリアルタイム解析の大容量、超高速化、測定・解析の信頼性向上、チップ化による量産性の向上によるコスト低下などの効果がもたらされると考えられる。それにより例えば医療・製薬分野における抗原−抗体相互作用、たんぱく質機能解析などスクリーニング計測用バイオチップのセンサーとしての利用が期待できる。それ以外にもチップ内センサーとして保健衛生や環境分野における病原体の特定、水質/大気成分解析、燃料電池や充電池などの電極反応によるイオン電流解析や電池寿命モニターなど多産業への利用展開が期待される。特に小型軽量化が可能な点を活かして、ポータブルな表面プラズモン共鳴センサーとして屋外での利用や組込み機器として利用することが可能となり、例えばロボットの超高感度嗅覚、味覚センサーとして利用するなど新規応用分野への利用も考えられる。 The surface plasmon resonance detection mechanism characterized by the small and light weight and integrated / parallel arrangement obtained by the present invention enables large capacity, ultra-high speed, measurement / It is thought that effects such as improved reliability of analysis and cost reduction due to improvement of mass productivity by chip implementation are expected. Thereby, for example, it can be expected to be used as a biochip for screening measurement such as antigen-antibody interaction and protein function analysis in the medical and pharmaceutical fields. In addition, it is expected to be used in many industries as an on-chip sensor, such as pathogen identification in health and environmental fields, water / air component analysis, ion current analysis by electrode reactions of fuel cells and rechargeable batteries, and battery life monitoring. Is done. Taking advantage of its small size and light weight, it can be used outdoors as a portable surface plasmon resonance sensor or as an embedded device. It can be used in the field.
1 検知部
2 屈曲機構
3 入力光結合部
4 測角機構
5 金属膜
6 誘電体膜
7 外部入射光源
DESCRIPTION OF SYMBOLS 1 Detection part 2 Bending mechanism 3 Input light coupling part 4 Angle measuring mechanism 5 Metal film 6 Dielectric film 7 External incident light source
Claims (8)
前記表面プラズモン共鳴角スペクトル測定装置は、
一層以上の金属膜上に一層以上の誘電体膜を設け、この誘電体膜に入力光結合部、2次元平面導波路、検知部とを備え、かつ、
誘電体膜内の光線の軌跡から共鳴結合角を計測する測角機構を備える
ことを特徴とする表面プラズモン共鳴角スペクトル測定装置。 In a surface plasmon resonance angle spectrum measuring apparatus that measures surface plasmon polariton resonance by irradiating a material on a metal surface with light,
The surface plasmon resonance angle spectrum measuring device is:
One or more dielectric films are provided on one or more metal films, and the dielectric film includes an input optical coupling unit, a two-dimensional planar waveguide, and a detection unit, and
An apparatus for measuring a surface plasmon resonance angle spectrum, comprising an angle measuring mechanism for measuring a resonance coupling angle from a locus of light rays in a dielectric film.
前記表面プラズモン共鳴角スペクトル測定装置は、検知部が直線状に配列した溝又は孔構造を有し、その底面及び側面で検知する
ことを特徴とする表面プラズモン共鳴角スペクトル測定装置。 In the surface plasmon resonance angle spectrum measuring apparatus according to claim 1,
The surface plasmon resonance angle spectrum measuring apparatus, detecting section is a groove or pore structure are arranged linearly, surface plasmon resonance angle spectrum measuring apparatus and detecting at the bottom and side surfaces.
前記表面プラズモン共鳴角スペクトル測定装置は、直線状に配列した溝又は孔構造の直線形状を測角時の基準線として利用する
ことを特徴とする表面プラズモン共鳴角スペクトル測定装置。 In the surface plasmon resonance angle spectrum measuring apparatus according to claim 1 or 2,
The surface plasmon resonance angle spectrum measurement apparatus uses a linear shape of a groove or hole structure arranged in a straight line as a reference line at the time of angle measurement.
前記表面プラズモン共鳴角スペクトル測定装置は、平面導波路中での導波光線の伝搬方向を特定方位に屈曲させるために、誘電体膜面内に屈折率の異なる誘電体の領域を、それらの界面が2次曲線として表されるように配置し、屈折現象により屈曲された導波光線が、検知部の一部に収束する屈曲機構を有する
ことを特徴とする表面プラズモン共鳴角スペクトル測定装置。 In the surface plasmon resonance angle spectrum measuring apparatus according to any one of claims 1 to 3,
The surface plasmon resonance angle spectrum measuring apparatus is designed to place dielectric regions having different refractive indexes in the dielectric film surface in order to bend the propagation direction of the guided light beam in the planar waveguide in a specific direction. The surface plasmon resonance angle spectrum measuring device is characterized in that a waveguide light beam arranged so as to be expressed as a quadratic curve and bent by a refraction phenomenon converges on a part of the detection unit.
前記表面プラズモン共鳴角スペクトル測定装置は、2次元導波路中に導波光線を結合させる入力光結合部として、誘電体と溝による構造の側端面を結合部として機能させる機構を採用している
ことを特徴とする表面プラズモン共鳴角スペクトル測定装置。 In the surface plasmon resonance angle spectrum measuring apparatus according to any one of claims 1 to 4,
The surface plasmon resonance angle spectrum measuring apparatus employs a mechanism that functions as a coupling portion on a side end face of a structure formed by a dielectric and a groove as an input optical coupling portion for coupling a guided light beam into a two-dimensional waveguide. A surface plasmon resonance angle spectrum measuring apparatus.
前記表面プラズモン共鳴角スペクトル測定装置は、溝と隣接する誘電体コア構造を一組と考え、導波光への結合のための位相整合条件:K+killum・sinθ≒nave・killum(ここで、Kは2π/(一組の溝と誘電体の断面幅の和)の値、killumは外部入射光の波数で、naveそれぞれの屈折率と容積分率の積の和から求めた平均屈折率に補正項(0.9〜1.1)を積して求めた値とする。)の関係を満たす
ことを特徴とする表面プラズモン共鳴角スペクトル測定装置。 In the surface plasmon resonance angle spectrum measuring apparatus according to claim 5,
The surface plasmon resonance angle spectrum measuring apparatus considers a dielectric core structure adjacent to a groove as a set, and a phase matching condition for coupling to guided light: K + k illum · sin θ≈n ave · k illum (where, the value of K 2 [pi / (sum of the cross-sectional width of the pair of grooves and the dielectric), k illum at wave number of the external incident light, the average refractive determined from the sum of the products of n ave respective refractive index and the volume fraction The surface plasmon resonance angle spectrum measuring apparatus characterized by satisfying the relationship of the correction term (0.9 to 1.1) multiplied by the rate).
入力光結合部への入力結合光線は、ビーム径を入力光結合部の相互作用長の1から10倍にする
ことを特徴とする表面プラズモン共鳴角スペクトル測定装置。 In the surface plasmon resonance angle spectrum measuring apparatus according to claim 5 or 6,
The surface plasmon resonance angle spectrum measuring apparatus characterized in that the input coupled light beam to the input optical coupling unit has a beam diameter that is 1 to 10 times the interaction length of the input optical coupling unit.
前記表面プラズモン共鳴角スペクトル測定装置は、
金属膜は、Ag、Cu、Au、Ptの元素を主成分と、
誘電体膜は、透明な酸化物、弗化物又は有機高分子を主成分とする
ことを特徴とする表面プラズモン共鳴角スペクトル測定装置。 In the surface plasmon resonance angle spectrum measuring device according to any one of claims 1 to 7,
The surface plasmon resonance angle spectrum measuring device is:
The metal film is composed mainly of Ag, Cu, Au, and Pt elements.
The surface plasmon resonance angle spectrum measuring apparatus characterized in that the dielectric film is composed mainly of a transparent oxide, fluoride or organic polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005257323A JP2007071615A (en) | 2005-09-06 | 2005-09-06 | Surface plasmon resonance angle spectrum measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005257323A JP2007071615A (en) | 2005-09-06 | 2005-09-06 | Surface plasmon resonance angle spectrum measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007071615A true JP2007071615A (en) | 2007-03-22 |
Family
ID=37933186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005257323A Pending JP2007071615A (en) | 2005-09-06 | 2005-09-06 | Surface plasmon resonance angle spectrum measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007071615A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009152606A (en) * | 2007-12-21 | 2009-07-09 | Asml Holding Nv | System and method for lithographic illuminator beam deviation measurement and calibration using grating sensor |
WO2010084523A1 (en) * | 2009-01-20 | 2010-07-29 | 学校法人創価大学 | Humidity sensor and humidity measurement device |
KR20160144999A (en) * | 2014-04-08 | 2016-12-19 | 인스플로리온 센서 시스템즈 에이비 | Battery with sensor |
CN108613949A (en) * | 2018-07-30 | 2018-10-02 | 兰州理工大学 | The angle scanning index sensor of Medium Wave Guide is coated based on unsymmetrical metal |
KR101969313B1 (en) * | 2017-12-15 | 2019-04-16 | 포항공과대학교 산학협력단 | Polarization sensitive perfect absorber with plasmonic grating and manufacturing method thereof |
KR20190096984A (en) * | 2016-12-05 | 2019-08-20 | 아카데미아 시니카 | Broadband meta-optical device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6189504A (en) * | 1984-10-08 | 1986-05-07 | Seiichi Miyazaki | Measuring device of body shape of 3-dimensional body |
JPH0489635A (en) * | 1990-07-25 | 1992-03-23 | Pioneer Electron Corp | Optical pickup device |
JPH04319540A (en) * | 1991-04-19 | 1992-11-10 | Matsushita Electric Ind Co Ltd | Optical head |
JP2002048707A (en) * | 2000-05-22 | 2002-02-15 | Fuji Photo Film Co Ltd | Measuring method and device using total reflection decay |
JP2003215362A (en) * | 2002-01-22 | 2003-07-30 | Nippon Sheet Glass Co Ltd | Optical element |
JP2004239715A (en) * | 2003-02-05 | 2004-08-26 | Fuji Photo Film Co Ltd | Measuring unit |
JP2004361256A (en) * | 2003-06-05 | 2004-12-24 | Aisin Seiki Co Ltd | Surface plasmon resonance sensor and surface plasmon resonance measuring apparatus |
-
2005
- 2005-09-06 JP JP2005257323A patent/JP2007071615A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6189504A (en) * | 1984-10-08 | 1986-05-07 | Seiichi Miyazaki | Measuring device of body shape of 3-dimensional body |
JPH0489635A (en) * | 1990-07-25 | 1992-03-23 | Pioneer Electron Corp | Optical pickup device |
JPH04319540A (en) * | 1991-04-19 | 1992-11-10 | Matsushita Electric Ind Co Ltd | Optical head |
JP2002048707A (en) * | 2000-05-22 | 2002-02-15 | Fuji Photo Film Co Ltd | Measuring method and device using total reflection decay |
JP2003215362A (en) * | 2002-01-22 | 2003-07-30 | Nippon Sheet Glass Co Ltd | Optical element |
JP2004239715A (en) * | 2003-02-05 | 2004-08-26 | Fuji Photo Film Co Ltd | Measuring unit |
JP2004361256A (en) * | 2003-06-05 | 2004-12-24 | Aisin Seiki Co Ltd | Surface plasmon resonance sensor and surface plasmon resonance measuring apparatus |
Non-Patent Citations (1)
Title |
---|
JPN6010040877, 小貫哲平,外1名, ""回折格子構造を用いた表面プラズモンポラリトンの生成と導波 (2)作製と評価"", 第51回応用物理学関係連合講演会 講演予稿集, 200403, 第3分冊, p.1138 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009152606A (en) * | 2007-12-21 | 2009-07-09 | Asml Holding Nv | System and method for lithographic illuminator beam deviation measurement and calibration using grating sensor |
WO2010084523A1 (en) * | 2009-01-20 | 2010-07-29 | 学校法人創価大学 | Humidity sensor and humidity measurement device |
KR20160144999A (en) * | 2014-04-08 | 2016-12-19 | 인스플로리온 센서 시스템즈 에이비 | Battery with sensor |
JP2017514148A (en) * | 2014-04-08 | 2017-06-01 | インスプロリオン・センサー・システムズ・アーベー | Battery with sensor |
JP2020098212A (en) * | 2014-04-08 | 2020-06-25 | インスプロリオン・センサー・システムズ・アーベー | Batter with sensor |
US10930983B2 (en) | 2014-04-08 | 2021-02-23 | Insplorion Sensor Systems Ab | Battery with sensor |
KR102357362B1 (en) * | 2014-04-08 | 2022-02-04 | 인스플로리온 센서 시스템즈 에이비 | Battery with sensor |
KR20190096984A (en) * | 2016-12-05 | 2019-08-20 | 아카데미아 시니카 | Broadband meta-optical device |
KR102209458B1 (en) | 2016-12-05 | 2021-01-29 | 아카데미아 시니카 | Broadband meta-optical device |
KR101969313B1 (en) * | 2017-12-15 | 2019-04-16 | 포항공과대학교 산학협력단 | Polarization sensitive perfect absorber with plasmonic grating and manufacturing method thereof |
CN108613949A (en) * | 2018-07-30 | 2018-10-02 | 兰州理工大学 | The angle scanning index sensor of Medium Wave Guide is coated based on unsymmetrical metal |
CN108613949B (en) * | 2018-07-30 | 2023-11-17 | 兰州理工大学 | Angle scanning refractive index sensor based on asymmetric metal cladding dielectric waveguide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11402374B2 (en) | Method of detecting label particles | |
Zeng et al. | Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings | |
JP4414953B2 (en) | Sample analysis using anti-resonant waveguide sensors | |
Khan et al. | Optical sensing by metamaterials and metasurfaces: from physics to biomolecule detection | |
US8094314B2 (en) | Optical sensing based on surface plasmon resonances in nanostructures | |
KR100860701B1 (en) | Long range surface plasmon optical waveguide sensors having double metal layers | |
TWI364533B (en) | A method for improving surface plasmon resonance by using conducting metal oxide as adhesive layer | |
KR100787046B1 (en) | Apparatus of Localized Surface Plasmon Sensor Using Ordered Nano-Sized Metal Structures and Method Manufacturing the Same | |
US8068995B2 (en) | Biosensing apparatus and system | |
US7436596B2 (en) | Optical sensor based on surface electromagnetic wave resonance in photonic band gap materials and method for using same | |
US7197196B2 (en) | Miniature surface plasmon resonance waveguide device with sinusoidal curvature compensation | |
US8330959B2 (en) | Multi-channel surface plasmon resonance instrument | |
JP2008014732A (en) | Surface plasmon resonance measuring instrument | |
US10330598B2 (en) | Biosensor comprising waveguide | |
EP2208053A2 (en) | Microelectronic optical evanescent field sensor | |
Ahmed et al. | Large-scale functionalized metasurface-based SARS-CoV-2 detection and quantification | |
JP2013510301A (en) | Nanohole array biosensor | |
JP2007071615A (en) | Surface plasmon resonance angle spectrum measuring device | |
KR20070081557A (en) | Surface plasmon resonance biological sensor system using a reconfigurable optical element | |
Zhou et al. | Development of localized surface plasmon resonance-based point-of-care system | |
Chen et al. | Planar photonic chips with tailored dispersion relations for high-efficiency spectrographic detection | |
CN111788473A (en) | Device for detecting binding affinity | |
Sarapukdee et al. | Optimizing stability and performance of silver-based grating structures for surface plasmon resonance sensors | |
US20230341384A1 (en) | Resonant nanophotonic biosensors | |
CN104568850B (en) | A kind of computing chip Imaging biological sensing platform using surface plasma chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101116 |