JP2007042503A - Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method - Google Patents
Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method Download PDFInfo
- Publication number
- JP2007042503A JP2007042503A JP2005226785A JP2005226785A JP2007042503A JP 2007042503 A JP2007042503 A JP 2007042503A JP 2005226785 A JP2005226785 A JP 2005226785A JP 2005226785 A JP2005226785 A JP 2005226785A JP 2007042503 A JP2007042503 A JP 2007042503A
- Authority
- JP
- Japan
- Prior art keywords
- atmospheric pressure
- electrode
- pressure plasma
- electric field
- insulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Drying Of Semiconductors (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
本発明は、大気圧プラズマ処理装置および大気圧プラズマ処理方法に関し、さらに詳しくは、反応ガスの大気圧またはその近傍の圧力下において、電界を形成させてプラズマを発生させ、このプラズマにおいて生成した活性種による化学反応を用いて各種被処理物、例えば、シリコン基板への薄膜形成、加工、表面処理等の処理を行う大気圧プラズマ処理装置および大気圧プラズマ処理方法に関する。 The present invention relates to an atmospheric pressure plasma processing apparatus and an atmospheric pressure plasma processing method. More specifically, the present invention relates to an activity generated in a plasma by generating an electric field by generating an electric field under the atmospheric pressure of a reactive gas or in the vicinity thereof. The present invention relates to an atmospheric pressure plasma processing apparatus and an atmospheric pressure plasma processing method for performing processing such as thin film formation, processing, and surface treatment on various objects to be processed, for example, a silicon substrate, using chemical reactions by seeds.
近年、この種の大気圧プラズマ処理装置、大気圧プラズマ処理方法が種々提案されている。特に、大気圧、またはその近傍の圧力下において処理を行うことで、反応容器内を高真空に排気する必要がなく、装置構成を簡略化できるため、プラズマ処理装置の製造コストを大幅に削減できるという利点がある。 In recent years, various atmospheric pressure plasma processing apparatuses and atmospheric pressure plasma processing methods of this type have been proposed. In particular, by performing the treatment at or near atmospheric pressure, it is not necessary to evacuate the inside of the reaction vessel to a high vacuum, and the apparatus configuration can be simplified, so that the manufacturing cost of the plasma processing apparatus can be greatly reduced. There is an advantage.
前記大気圧プラズマ処理装置および大気圧プラズマ処理方法に関しては、例えば、特許第3014111号公報(特許文献1)、等に内容が詳細に開示されている。前記公報では、対向する電極間に電圧を印加することによって前記電極間に大気圧プラズマを発生させ、前記電極間に発生した大気圧プラズマ中に被処理物を配置することで所望の処理を行う。このような処理方法を、ここではダイレクトプラズマ方式と称する。このダイレクトプラズマ方式では、被処理物表面の極めて近傍で活性種が生成され、前記活性種は失活するよりも早く前記被処理物表面に到達できるため、高速処理が可能であるという利点がある。しかしその一方で、プラズマを生成するための電界に直接被処理物がさらされるため、前記電極間でアーク状の放電が発生した場合、前記被処理物はダメージを被るという問題がある。 The details of the atmospheric pressure plasma processing apparatus and the atmospheric pressure plasma processing method are disclosed in detail in, for example, Japanese Patent No. 3014111 (Patent Document 1). In the above publication, an atmospheric pressure plasma is generated between the electrodes by applying a voltage between the opposing electrodes, and an object to be processed is disposed in the atmospheric pressure plasma generated between the electrodes. . Such a processing method is referred to herein as a direct plasma method. In this direct plasma system, active species are generated very close to the surface of the object to be processed, and the active species can reach the surface of the object to be processed earlier than it is deactivated, so that high-speed processing is possible. . However, on the other hand, since the workpiece is directly exposed to an electric field for generating plasma, there is a problem that the workpiece is damaged when an arc-like discharge is generated between the electrodes.
前記ダイレクトプラズマ方式に対し、プラズマを生成するための電界が直接被処理物と接触せずに所望の処理を行うことのできる方法が、例えば特許第2537304号公報(特許文献2)等に開示されている。前記公報では、対向した電極間に電圧を印加することによってプラズマを発生させ、前記プラズマによって生成した活性種を前記電極間に流したガス流によって放電領域外に配置された被処理物に向けて噴出させることで所望の処理を行う。このような処理方式をここではリモートプラズマ方式と称する。このリモートプラズマ方式では、プラズマ生成位置が被処理物から離れた位置にあり、プラズマ中に生成した活性種を、前記電極間のガス流によって前記被処理物表面に輸送することにより処理が行われる。このことより、ダイレクトプラズマ方式ほどプラズマによる被処理物へのダメージが大きくないという利点を有する。しかしその一方で、前記プラズマ生成位置から前記被処理物に到達するまでに失活する活性種が多いために処理速度が遅く、所望の処理速度を確保するために、電極の組数を増加させねばならない。このため、装置コストが上昇すること、対向した電極間にガス流路を形成するために、電極の組数を増加させた場合に、一度放電に用いた反応ガスを再度放電に利用することが難しいため、反応ガスの利用効率が低いことなどの問題が挙げられる。 In contrast to the direct plasma method, for example, Japanese Patent No. 2537304 (Patent Document 2) discloses a method in which an electric field for generating plasma can be directly performed without contacting an object to be processed. ing. In the above publication, plasma is generated by applying a voltage between opposed electrodes, and an active species generated by the plasma is directed toward an object to be processed disposed outside a discharge region by a gas flow flowing between the electrodes. A desired process is performed by ejecting. Such a processing method is referred to herein as a remote plasma method. In this remote plasma system, the plasma generation position is located away from the object to be processed, and the active species generated in the plasma are transported to the surface of the object to be processed by the gas flow between the electrodes. . From this, the direct plasma system has the advantage that damage to the object to be processed by plasma is not great. However, on the other hand, since many active species are deactivated before reaching the object to be processed from the plasma generation position, the processing speed is slow, and in order to secure a desired processing speed, the number of electrode pairs is increased. I have to. For this reason, when the number of sets of electrodes is increased in order to form a gas flow path between the opposed electrodes, the apparatus cost can be increased and the reaction gas once used for the discharge can be used again for the discharge. Since it is difficult, there are problems such as low utilization efficiency of the reaction gas.
これらの大気圧プラズマ処理に対して、処理速度が速く、かつ被処理物にダメージを与えない処理を実現する方法が、特開2000−306848号公報(特許文献3)で開示されている。 Japanese Laid-Open Patent Publication No. 2000-306848 (Patent Document 3) discloses a method for realizing processing that has a high processing speed and does not damage an object to be processed with respect to these atmospheric pressure plasma processing.
図8は、この公報に開示される大気圧プラズマ処理装置の概略構造を横断面図で示す概略構造説明図である。
図8において、大気圧プラズマ処理装置は、電圧印加電極103と接地電極104が絶縁体105を挟んで設置されて電極ユニットH1を形成し、前記電極ユニットH1と対向して試料108を設置することにより、絶縁体105と試料108の間にガス流路を形成する構造を有する。
なお、101は高圧力反応ガス供給口、102は反応ガス排気口、106は電力伝送路開放端、107は試料台、109は大気圧プラズマ、110は反応ガス流方向である。
FIG. 8 is a schematic structural explanatory view showing the schematic structure of the atmospheric pressure plasma processing apparatus disclosed in this publication in a cross-sectional view.
In FIG. 8, in the atmospheric pressure plasma processing apparatus, a voltage application electrode 103 and a ground electrode 104 are installed with an insulator 105 interposed therebetween to form an electrode unit H1, and a sample 108 is installed facing the electrode unit H1. Thus, a gas flow path is formed between the insulator 105 and the sample 108.
In addition, 101 is a high pressure reactive gas supply port, 102 is a reactive gas exhaust port, 106 is a power transmission path open end, 107 is a sample stage, 109 is atmospheric pressure plasma, and 110 is a reactive gas flow direction.
前記ガス流路に反応ガスを供給すると共に、前記電圧印加電極103と前記接地電極104の間に電圧を印加することで大気圧プラズマ109を発生させ、前記大気圧プラズマ109中に発生した活性種によって処理を行うというものである。このような処理方式を、ここではセミリモートプラズマ方式と称する。このセミリモートプラズマ方式によれば、リモートプラズマ方式と同様、プラズマを生成するための電界が、直接被処理物にさらされることがないため、ダイレクトプラズマ方式と比べて被処理物に対してのダメージが少ない。また、前記セミリモートプラズマ方式によれば、前記絶縁体105と前記試料108の間の前記ガス流路において放電が起こるため、リモートプラズマ方式よりもプラズマと被処理物の距離が近いために、失活しないで基板に到達する活性種が多いため、処理が高速になると共に、さらなる処理速度向上のために電極を複数組並べた構造にし、プラズマ本数を増加させた場合、ガス流方向に対して上流の位置でのプラズマ放電に使用した反応ガスを下流位置でのプラズマ放電にも使用できるため、反応ガス利用効率が非常に高くなり、リモートプラズマ方式よりもガスコストを削減できるという特徴を持っている。
以上のような背景でセミリモートプラズマ方式に関する研究・開発が進められている。
With this background, research and development on the semi-remote plasma method is ongoing.
一方、上記に述べた方式によらず、大気圧またはその近傍の圧力下におけるプラズマは不均一になりやすく、そのような大気圧プラズマを利用した大気圧プラズマ処理では、プラズマの分布を反映した処理特性分布が生じるという課題を抱えている。
ここで、放電が発達する様子を述べる。まず始めに印加電圧を増加させ、電界強度がある閾値以上になるとグロー放電と呼ばれる状態のプラズマが生成される。この閾値は、電極の構造や使用する処理ガスなどの条件で異なる。このグロー放電は、空間的に均一な放電ではあるが、プラズマ密度が低いために、活性種密度も低く、そのために処理速度が遅い。そこで、さらに印加電圧を増加させていくと、電極ユニット長手方向(長尺方向)にプラズマに濃淡ができる。その状態から、さらに印加電圧を増加させると、放電領域のごく一部に非常に輝度の高い放電部分が生じる。ここでは、これをフィラメント放電と呼ぶ。
On the other hand, regardless of the method described above, plasma at atmospheric pressure or in the vicinity of pressure is likely to be non-uniform. In atmospheric pressure plasma processing using such atmospheric pressure plasma, processing that reflects the plasma distribution is performed. There is a problem that characteristic distribution occurs.
Here, how the discharge develops will be described. First, the applied voltage is increased, and plasma in a state called glow discharge is generated when the electric field intensity exceeds a certain threshold value. This threshold value varies depending on conditions such as the structure of the electrode and the processing gas used. Although this glow discharge is a spatially uniform discharge, since the plasma density is low, the active species density is also low, and therefore the processing speed is slow. Therefore, if the applied voltage is further increased, the plasma can be shaded in the longitudinal direction (long direction) of the electrode unit. If the applied voltage is further increased from that state, a discharge portion with very high luminance is generated in a very small part of the discharge region. Here, this is called filament discharge.
フィラメント放電では、放電領域のうち、ある一部のみが強く発光した放電となる。このフィラメント放電はさらに印加電圧を増加させると、電極ユニット長手方向に、ガスや電極形状、印加電力に依存した概ね等しいピッチで生成される。そのようなフィラメント放電の領域は、それ以外のグロー放電の領域に比べてプラズマ密度が高いため、活性種密度も非常に高くなる。したがって、前記フィラメント放電の領域で処理が可能であれば大きな処理速度を得ることができる。 In the filament discharge, only a part of the discharge region emits a strong light. When the applied voltage is further increased, the filament discharge is generated in the longitudinal direction of the electrode unit at a substantially equal pitch depending on the gas, electrode shape, and applied power. Since such a filament discharge region has a higher plasma density than other glow discharge regions, the active species density is also very high. Therefore, if processing can be performed in the filament discharge region, a large processing speed can be obtained.
しかしながら、前述したように一部の電極ユニット長手方向に概ね等しいピッチで並んだフィラメント放電が発生している場合、フィラメント放電の発生している領域は、先に説明したように局所的にプラズマ密度が高くなる。そのため、被処理物のうち、フィラメント放電の直下に位置する部分は処理速度が速く、フィラメント放電が発生していない部分の処理速度は遅い。この結果、被処理物には電極ユニット長手方向に概ね等しいピッチで並んだフィラメント放電の影響で、被処理物の搬送により、電極ユニット長手方向に垂直な縞状の処理特性分布が生じるということになる。さらに、フィラメント放電は所望の位置に制御することが不可能なため、フィラメント放電によって現れる処理特性分布の制御も困難である。また、さらに印加電圧を増加させると、フィラメント放電の幅を広げることができる。そのため、処理速度は全体的に上がり、均一性も増すので望ましいが、印加電圧を増加させすぎると、電極と被処理物間にアーク状の放電が起こり被処理物にダメージを与えてしまう。 However, as described above, in the case where filament discharges that are arranged at substantially equal pitches in the longitudinal direction of some electrode units are generated, the region where the filament discharge is generated is locally plasma density as described above. Becomes higher. For this reason, the processing speed of the part located immediately under the filament discharge in the workpiece is high, and the processing speed of the part where the filament discharge is not generated is low. As a result, striped processing characteristic distribution perpendicular to the longitudinal direction of the electrode unit is generated by the transport of the workpiece due to the influence of filament discharge arranged in the longitudinal direction of the electrode unit on the workpiece. Become. Furthermore, since it is impossible to control the filament discharge to a desired position, it is difficult to control the processing characteristic distribution that appears due to the filament discharge. Further, when the applied voltage is further increased, the width of the filament discharge can be expanded. Therefore, it is desirable because the processing speed increases as a whole and the uniformity also increases. However, if the applied voltage is increased too much, an arc-like discharge occurs between the electrode and the object to be processed, and the object to be processed is damaged.
したがって、フィラメント放電を用いての処理は敬遠され、フィラメント放電は抑制し、グロー放電で処理を行うことが多いのが現状である。しかし、グロー放電による処理の場合は前述したように処理速度が遅い。そこで電極本数の増加や印加電圧の増加などで低い処理速度を補い、その結果、装置コストの増加や装置の複雑化を伴っていた。特に被処理物が大型化すればこの問題は顕著になる。
本発明は上記の課題を鑑みてなされたものであり、その目的は、電圧印加電極と接地電極との間の特定の位置に局所的に強い電界、特に、フィラメント放電を生じさせ、それをプラズマ処理に適用することにより、コスト増加や装置の複雑化を避けながら処理特性分布がなく、しかも処理速度の速いプラズマ処理方法を提供することである。
Therefore, in the current situation, treatment using filament discharge is avoided, filament discharge is suppressed, and treatment is often performed by glow discharge. However, in the case of processing by glow discharge, the processing speed is slow as described above. Therefore, an increase in the number of electrodes and an increase in applied voltage compensate for a low processing speed, resulting in an increase in apparatus cost and an increase in apparatus complexity. In particular, this problem becomes more prominent if the workpiece becomes larger.
The present invention has been made in view of the above problems, and its purpose is to generate a locally strong electric field, particularly a filament discharge, at a specific position between the voltage application electrode and the ground electrode, and to generate the plasma. By applying it to processing, it is to provide a plasma processing method having no processing characteristic distribution and high processing speed while avoiding cost increase and complexity of the apparatus.
本発明は、電圧印加電極、この電圧印加電極に対向して配置された接地電極およびこれら両電極の間に配置された絶縁体から構成される少なくとも一つの電極ユニットと、この電極ユニットの絶縁体に対向させるべく被処理物を搬送する被処理物搬送手段と、絶縁体とそれに対向する被処理物との間に反応ガスを供給する反応ガス供給手段と、電極ユニットに電圧を印加する電圧印加手段とを具備し、反応ガスの大気圧またはその近傍の圧力下、両電極の間に局所的に強い電界を形成させてプラズマを発生させ、該プラズマによって生成する活性種を被処理物に照射することにより被処理物に所望の処理を施す大気圧プラズマ処理装置において、 The present invention relates to at least one electrode unit comprising a voltage application electrode, a ground electrode disposed opposite to the voltage application electrode, and an insulator disposed between the two electrodes, and an insulator of the electrode unit A workpiece conveying means for conveying the workpiece to be opposed to the substrate, a reaction gas supply means for supplying a reaction gas between the insulator and the workpiece to be opposed thereto, and a voltage application for applying a voltage to the electrode unit And generating a plasma by locally forming a strong electric field between the electrodes under the atmospheric pressure of the reaction gas or a pressure in the vicinity thereof, and irradiating the object with the active species generated by the plasma In an atmospheric pressure plasma processing apparatus for performing a desired process on an object to be processed,
絶縁体が、その電圧印加電極側部分および/または接地電極側部分に、前記強い電界を特定の位置に形成させ、それによって該強い電界の方向を被処理物の搬送方向に対して傾斜させる少なくとも1つの突起部を備えたことを特徴とする大気圧プラズマ処理装置を提供する。 At least the insulator causes the strong electric field to be formed at a specific position on the voltage application electrode side portion and / or the ground electrode side portion, thereby tilting the direction of the strong electric field with respect to the conveyance direction of the workpiece. Provided is an atmospheric pressure plasma processing apparatus comprising one protrusion.
本発明は、別の観点によれば、絶縁体を介し対向して配設された電圧印加電極と接地電極とに電圧を印加することによって、両電極の間に、大気圧またはその近傍圧力の反応ガス存在下、電界を形成させてプラズマを発生させ、このプラズマによって生成する活性種を、搬送される被処理物に照射することにより被処理物に所望の処理を施す大気圧プラズマ処理方法において、 According to another aspect of the present invention, by applying a voltage to a voltage application electrode and a ground electrode that are disposed to face each other with an insulator interposed therebetween, an atmospheric pressure or a pressure in the vicinity thereof is applied between the two electrodes. In an atmospheric pressure plasma processing method, a plasma is generated by forming an electric field in the presence of a reactive gas, and an active species generated by the plasma is irradiated to the object to be transported to perform a desired process on the object to be processed. ,
絶縁体の電圧印加電極側部分および/または接地電極側部分に形成する突起部により、電圧印加電極と接地電極との間の特定の位置に局所的に強い電界を形成させ、かつこの強い電界の方向を被処理物の搬送方向に対して傾斜させることを特徴とする大気圧プラズマ処理方法を提供できる。 A strong electric field is locally formed at a specific position between the voltage application electrode and the ground electrode by the protrusion formed on the voltage application electrode side portion and / or the ground electrode side portion of the insulator, and this strong electric field It is possible to provide an atmospheric pressure plasma processing method characterized in that the direction is inclined with respect to the conveyance direction of the workpiece.
本発明によれば、被処理物に対向する絶縁体の電圧印加電極側部分および/または接地電極側部分に、電圧印加電極と接地電極との間の特定の位置に局所的に強い電界を形成させ、かつその強い電界の方向(電気力線の方向)を被処理物の搬送方向に対して傾斜させる突起部を備えているので、強い電界によって発生するプラズマによる被処理物の処理速度の速い処理範囲、特にフィラメント放電による被処理物の処理速度の非常に速い処理範囲が、電極ユニット長手方向に広がり、コスト増加や装置の複雑化を伴うことなく処理特性分布が小さく、処理速度の速いプラズマ処理を可能にする。 According to the present invention, a locally strong electric field is formed at a specific position between the voltage application electrode and the ground electrode on the voltage application electrode side portion and / or the ground electrode side portion of the insulator facing the object to be processed. And a projection that inclines the direction of the strong electric field (direction of electric lines of force) with respect to the conveyance direction of the object to be processed, so that the processing speed of the object to be processed by the plasma generated by the strong electric field is high. The processing range, especially the processing range where the processing speed of the object to be processed by filament discharge is very fast, extends in the longitudinal direction of the electrode unit, and the processing characteristic distribution is small and the processing speed distribution is small without increasing the cost and complication of the apparatus. Enable processing.
本発明に係る大気圧プラズマ処理装置は、電極ユニットの絶縁体が、その電圧印加電極側部分および/または接地電極側部分に、強い電界を特定の位置に形成させ、それによって該強い電界の方向を被処理物の搬送方向に対して傾斜させる少なくとも1つの突起部を備えたことを特徴とする。
ここで、突起部としては、具体的には、角柱状突起部(先端部分の角度は、20〜120度が好ましく、40〜90度がより好ましい)、円柱状突起部または半球状突起部が好ましいものとして挙げられる。
In the atmospheric pressure plasma processing apparatus according to the present invention, the insulator of the electrode unit causes a strong electric field to be formed at a specific position on the voltage application electrode side portion and / or the ground electrode side portion. At least one protrusion that inclines the substrate with respect to the conveying direction of the workpiece.
Here, as the protrusion, specifically, a prismatic protrusion (the angle of the tip is preferably 20 to 120 degrees, more preferably 40 to 90 degrees), a cylindrical protrusion, or a hemispherical protrusion. It is mentioned as preferable.
そして、これらの突起部が、絶縁体の電圧印加電極側部分と接地電極側部分とに一対で設けられる場合は、一方の突起部を横に偏らせることによって、強い電界を発生させる位置を特定できる(突起部の先端部分が電界の放電端となる)と共に、強い電界の方向(電気力線の方向)を、両電極ユニットの対向方向に対して傾斜させることができ、それによって両電極ユニットの長手方向を、被処理物の搬送方向に対して垂直に配置できる。
一方、上記突起部が、被処理物に対向する絶縁体の電圧印加電極側部分と接地電極側部分のいずれか一方に設けられる場合は、強い電界を発生させる位置を特定できるが、その強い電界の方向は、両電極ユニットの対向方向と同じ方向になるのが普通であり、従って両電極ユニットの長手方向を、被処理物の搬送方向に対して相対的に垂直ではなく、その垂直に対して傾斜させるのが好ましい。
When these protrusions are provided in pairs on the voltage application electrode side portion and the ground electrode side portion of the insulator, the position where a strong electric field is generated is specified by biasing one protrusion sideways. (The tip portion of the protrusion serves as the discharge end of the electric field), and the direction of the strong electric field (direction of the electric lines of force) can be inclined with respect to the opposing direction of both electrode units, thereby both electrode units. Can be arranged perpendicular to the direction of conveyance of the workpiece.
On the other hand, when the protrusion is provided on either the voltage application electrode side portion or the ground electrode side portion of the insulator facing the object to be processed, the position where the strong electric field is generated can be specified. Is normally the same as the opposing direction of both electrode units. Therefore, the longitudinal direction of both electrode units is not relatively perpendicular to the conveying direction of the workpiece, but is perpendicular to the vertical direction. It is preferable to incline.
ここで、強い電界の方向を、被処理物の搬送方向に対して相対的に傾斜させる程度(角度:θ、図3参照)は、特に限定されないが、0°<θ≦90°、好ましくは20°≦θ≦60°である。
さらに、絶縁体は、電圧印加電極側部分と接地電極側部分とに対向する突起部を複数組備え、かつそれら各組の対向する突起部の先端間の電極ユニット長手方向距離をX、電極ユニット長手方向に隣り合う突起部の先端間の距離をY、各突起部の電極ユニット長手方向に垂直な方向の長さをZ、絶縁体の電圧印加電極側部分の下端と接地電極側部分の下端との間の距離をWとすれば、
Y>2X、W-Z>[(W-2Z)2+X2]1/2
の関係を満たし、かつ各突起部が、電極ユニット長手方向に等間隔に配置されるのが好ましい。
Here, the degree to which the direction of the strong electric field is inclined relative to the conveyance direction of the workpiece (angle: θ, see FIG. 3) is not particularly limited, but 0 ° <θ ≦ 90 °, preferably 20 ° ≦ θ ≦ 60 °.
Further, the insulator includes a plurality of sets of protrusions facing the voltage application electrode side portion and the ground electrode side portion, and the electrode unit longitudinal direction distance between the tips of the protrusions facing each set is X, and the electrode unit The distance between the tips of adjacent projections in the longitudinal direction is Y, the length of each projection in the direction perpendicular to the longitudinal direction of the electrode unit is Z, the lower end of the voltage application electrode side portion of the insulator and the lower end of the ground electrode side portion If the distance between and is W,
Y> 2X, WZ> [(W-2Z) 2 + X 2 ] 1/2
It is preferable that each of the protrusions is arranged at equal intervals in the longitudinal direction of the electrode unit.
本発明において、強い電界によって発生するプラズマは、フィラメント放電によるプラズマが好ましい。
本発明においては、電極ユニットを複数個重ねて備え、各電極ユニットの絶縁体が、それらの電圧印加電極側と接地電極側とに突起部を備え、それらの突起部が、被処理物の電極ユニット長手方向のすべての位置において、フィラメント放電による処理が同じ回数施されるように分配して配置されると、被処理物に対する処理の均一性が保たれ、高品質の処理物が得られるので望ましい。
以下、本発明の大気圧プラズマ処理装置の実施の形態1について、図面を参照しながら具体的に説明する。
In the present invention, plasma generated by a strong electric field is preferably plasma by filament discharge.
In the present invention, a plurality of electrode units are provided so as to overlap each other, and the insulator of each electrode unit includes protrusions on the voltage application electrode side and the ground electrode side, and these protrusions are electrodes of the object to be processed. If all the positions in the longitudinal direction of the unit are distributed and arranged so that the treatment by the filament discharge is performed the same number of times, the uniformity of the treatment on the workpiece can be maintained, and a high-quality treatment can be obtained. desirable.
Hereinafter, Embodiment 1 of the atmospheric pressure plasma processing apparatus of the present invention will be specifically described with reference to the drawings.
[実施の形態1]
図1は本発明にかかる大気圧プラズマ処理装置の実施の形態1の概略構造を、横断面図により示す概略構造説明図、図2は実施の形態1の電極ユニットのうち、絶縁体の概略構造を、下面図と横断面図を用いて示す概略構造説明図である。
図1において、本実施の形態1の大気圧プラズマ処理装置は、電圧印加電極2、接地電極3および絶縁体4からなる電極ユニット1と、被処理物8を搬送するための搬送装置7と、前記電極ユニット1と前記搬送装置7の間に形成されるガス流路6と、電源9とから主として構成されている。
[Embodiment 1]
FIG. 1 is a schematic structural explanatory view showing a schematic structure of a first embodiment of an atmospheric pressure plasma processing apparatus according to the present invention in a cross-sectional view, and FIG. 2 is a schematic structure of an insulator in an electrode unit of the first embodiment. It is a schematic structure explanatory drawing which shows this using a bottom view and a cross-sectional view.
In FIG. 1, the atmospheric pressure plasma processing apparatus according to the first embodiment includes an electrode unit 1 including a voltage application electrode 2, a ground electrode 3, and an insulator 4, a transport apparatus 7 for transporting an object 8 to be processed, The gas flow path 6 formed between the electrode unit 1 and the transfer device 7 and a power source 9 are mainly configured.
前記電圧印加電極2は、前記電源9に接続されており、前記接地電極3は接地されている。前記電圧印加電極2と前記接地電極3との間には絶縁体4が挟まれている。前記絶縁体4の前記ガス流路6側の面には、種プラズマ生成領域11と、プラズマ制限領域12となるくぼみが、前記電圧印加電極2と前記接地電極3との対向面間、または対向面間下方に設けられている。 なお、前記電極ユニット1と、前記搬送装置7と、前記ガス流路6とは、電極ユニット長手方向10 (紙面に垂直な向き、図2参照)に前記被処理物8の処理に十分なだけ連続していて、末端はどのような形態をとっていてもよい。 The voltage application electrode 2 is connected to the power source 9, and the ground electrode 3 is grounded. An insulator 4 is sandwiched between the voltage application electrode 2 and the ground electrode 3. On the surface of the insulator 4 on the side of the gas flow path 6, a recess that becomes a seed plasma generation region 11 and a plasma restriction region 12 is provided between the opposing surfaces of the voltage application electrode 2 and the ground electrode 3, or opposite to each other. It is provided below the plane. The electrode unit 1, the transfer device 7, and the gas flow path 6 are sufficient for processing the workpiece 8 in the electrode unit longitudinal direction 10 (orientation perpendicular to the paper surface, see FIG. 2). It is continuous and the end may take any form.
前記電圧印加電極2および前記接地電極3の材質としては、金属材料から適宜選ばれ、例えば、Al、Cu、真鍮などを用いることができる。前記絶縁体4の材質としては、例えば、Al2O3、MgO、TiO2、AlNなどを用いることができる。前記電源9には必要であれば前記電圧印加電極2に効率よく電圧を印加するために、電極、プラズマを含んだ共振回路を形成するようにインピーダンスを制御する装置を挿入しても良い。
また、前記ガス流路6に反応ガスを導入することで、前記電極ユニット1と前記搬送装置7との間の前記ガス流路6に前記反応ガスが流れる。前記反応ガスには、放電を容易に維持できるよう、He、Ne、Arなどの希ガスが含まれることが望ましく、前記希ガスに所望の処理に応じて添加ガスを加える。前記添加ガスとしては、例えば、被処理物表面の有機物のクリーニング、レジストの除去、有機材料フィルムの加工などの処理を行うのであれば、O2、空気、水蒸気、などの酸化性ガスを用いればよく、Si、SiO2、SiNなどのシリコン材料にエッチングを行うのであれば、CF4、CHF3、SF6などのハロゲンガスを用いればよい。
The material for the voltage application electrode 2 and the ground electrode 3 is appropriately selected from metal materials, and for example, Al, Cu, brass or the like can be used. As the material of the insulator 4, for example, Al 2 O 3 , MgO, TiO 2 , AlN or the like can be used. If necessary, a device for controlling impedance so as to form a resonance circuit including electrodes and plasma may be inserted into the power source 9 in order to efficiently apply a voltage to the voltage application electrode 2.
Further, by introducing the reaction gas into the gas flow path 6, the reaction gas flows into the gas flow path 6 between the electrode unit 1 and the transfer device 7. The reaction gas preferably contains a rare gas such as He, Ne, or Ar so that the discharge can be easily maintained, and an additive gas is added to the rare gas according to a desired treatment. As the additive gas, for example, an oxidizing gas such as O 2 , air, water vapor, or the like may be used if processing such as cleaning of the organic matter on the surface of the object to be processed, removal of the resist, or processing of the organic material film is performed. If etching is performed on a silicon material such as Si, SiO 2 , or SiN, a halogen gas such as CF 4 , CHF 3 , or SF 6 may be used.
前記ガス流路6に前記反応ガスを導入し、前記電圧印加電極2と前記接地電極3との間に電圧を印加すると、前記絶縁体4に囲まれた前記種プラズマ生成領域11に最も強い電界が形成される。さらに、印加電圧を増加していき、前記種プラズマ生成領域11の電界強度がある閾値を超えると、前記種プラズマ生成領域11付近にプラズマが発生する。ここでは、前記種プラズマ生成領域11内に生成されたプラズマを種プラズマと呼ぶ。前記種プラズマが生成された状態からさらに印加電圧を増加させていくことで、プラズマは前記プラズマ制限領域12の中で拡大していく。ここで、前記プラズマ制限領域12とは、前記ガス流路6で、前記電圧印加電極2側の前記絶縁体4と、前記接地電極3側の前記絶縁体4で囲まれた領域で、前記種プラズマ生成領域11を除いた部分を示す。 When the reaction gas is introduced into the gas flow path 6 and a voltage is applied between the voltage application electrode 2 and the ground electrode 3, the strongest electric field is generated in the seed plasma generation region 11 surrounded by the insulator 4. Is formed. Furthermore, when the applied voltage is increased and the electric field intensity of the seed plasma generation region 11 exceeds a certain threshold value, plasma is generated in the vicinity of the seed plasma generation region 11. Here, the plasma generated in the seed plasma generation region 11 is referred to as seed plasma. By further increasing the applied voltage from the state where the seed plasma is generated, the plasma expands in the plasma limited region 12. Here, the plasma restriction region 12 is a region surrounded by the insulator 4 on the voltage application electrode 2 side and the insulator 4 on the ground electrode 3 side in the gas flow path 6. A portion excluding the plasma generation region 11 is shown.
さらに印加電圧を増加させると、突起部13を放電端とするフィラメント放電と呼ばれる放電が放電領域の一部に現れる。そこからさらに印加電圧を増加させることで、突起部13を放電端とする前記フィラメント放電は電極ユニット長手方向に周期的に並ぶ(電極ユニット1に横に等間隔に並ぶ)。 When the applied voltage is further increased, a discharge called a filament discharge having the protrusion 13 as a discharge end appears in a part of the discharge region. By further increasing the applied voltage from there, the filament discharge having the protrusion 13 as a discharge end is periodically arranged in the longitudinal direction of the electrode unit (equally arranged horizontally at the electrode unit 1).
前記プラズマを生成し、前記添加ガスがプラズマ中に添加されると、前記添加ガスが励起されて活性種が生成される。この際に印加する電圧は、大きいほど処理速度を向上することができるので望ましいが、大きくしすぎると前記電圧印加電極2と、前記被処理物8の間の電界がプラズマを生成するための閾値を超えるため、前記電圧印加電極2と前記被処理物8との間で放電が発生し、前記被処理物8に甚大なダメージを与えることがある。印加電圧の値は、前記反応ガスの種類、前記反応ガスの組成、前記反応ガスの流量、前記電極ユニット1と前記被処理物8との距離L、前記電圧印加電極2と前記接地電極3との距離D、必要な処理能力などに応じて適宜決定される。 When the plasma is generated and the additive gas is added to the plasma, the additive gas is excited to generate active species. The larger the voltage applied at this time, the better the processing speed can be improved. However, if the voltage is too large, the electric field between the voltage application electrode 2 and the object 8 to be processed generates a plasma. Therefore, a discharge may occur between the voltage application electrode 2 and the workpiece 8 and the workpiece 8 may be damaged significantly. The value of the applied voltage is the kind of the reaction gas, the composition of the reaction gas, the flow rate of the reaction gas, the distance L between the electrode unit 1 and the workpiece 8, the voltage application electrode 2 and the ground electrode 3 The distance D is appropriately determined according to the required processing capacity and the like.
また、前記電極ユニット1と前記被処理物8との距離も小さくするほど処理能力が向上するので望ましい。しかしながら、これも小さくしすぎると前記電圧印加電極2と前記被処理物8との間で放電が発生してしまう。前記電極ユニット1と前記被処理物8との距離の値は、電極構造や印加電圧、前記電極ユニット1の寸法などで決まる前記プラズマ制限領域12の電界強度や、前記被処理物8の材質などに応じて適宜変更される。
ここで、本実施の形態1において、装置の複雑化やコスト上昇を避け、処理能力を向上させる原理を説明する。
Further, it is desirable that the processing capability is improved as the distance between the electrode unit 1 and the workpiece 8 is reduced. However, if this is too small, a discharge occurs between the voltage application electrode 2 and the workpiece 8. The value of the distance between the electrode unit 1 and the object to be processed 8 is the electric field strength of the plasma limiting region 12 determined by the electrode structure, the applied voltage, the dimensions of the electrode unit 1, the material of the object to be processed 8, etc. It is changed appropriately according to.
Here, in the first embodiment, the principle of improving the processing capability while avoiding the complexity and cost increase of the apparatus will be described.
図2に示したように、突起部13を前記電圧印加電極2側と前記接地電極3側に設けることで、それぞれの前記突起部13を終端点とする電気力線が形成される。
図3は本実施の形態1の電極ユニットのうち、絶縁体の要部の構造を示す要部構造説明図、図4は本実施の形態1の絶縁体構造で、電磁界解析を行った結果の一例を示す、写真による説明図、図5は本実施の形態1の電極ユニットのうち、絶縁体の詳細基本構造を説明する詳細基本構造説明図である。
As shown in FIG. 2, by providing the protrusions 13 on the voltage application electrode 2 side and the ground electrode 3 side, lines of electric force having the respective protrusions 13 as termination points are formed.
FIG. 3 is a main part structure explanatory view showing the structure of the main part of the insulator in the electrode unit of the first embodiment, and FIG. 4 is a result of performing electromagnetic field analysis on the insulator structure of the first embodiment. FIG. 5 is a detailed basic structure explanatory view for explaining a detailed basic structure of an insulator in the electrode unit according to the first embodiment.
本実施の形態1では、図3に示すように、相対する電極上にある前記突起部13の頂点を結ぶ直線と前記電極ユニット長手方向10の角度をθとすれば、0°<θ<180°かつθ≠90°を満たすように配置している。これによって、主要な電気力線の方向が、従来のθ=90°を満たすものから、0°<θ<180°かつθ≠90°を満たす方向へと変化する。このため、この主要な電気力線に拘束される前記フィラメント放電も図2の矢印14のように0°<θ<180°かつθ≠90°を満たし、前記電圧印加電極2側の前記突起部13から前記接地電極3側の前記突起部13を結ぶように発生する。 In the first embodiment, as shown in FIG. 3, assuming that the angle between the straight line connecting the apexes of the protrusions 13 on the opposing electrodes and the electrode unit longitudinal direction 10 is θ, 0 ° <θ <180 It is arranged so as to satisfy ° and θ ≠ 90 °. As a result, the direction of main lines of electric force changes from the conventional direction satisfying θ = 90 ° to the direction satisfying 0 ° <θ <180 ° and θ ≠ 90 °. Therefore, the filament discharge constrained by the main electric lines of force also satisfies 0 ° <θ <180 ° and θ ≠ 90 ° as shown by the arrow 14 in FIG. 13 to connect the protrusion 13 on the ground electrode 3 side.
従来のフィラメント放電は、特に電界分布を故意に作るような仕組みが設けられない限り、電極のどの位置に発生するかは未知であり、またそれを制御することも不可能であったが、本発明では、前記電圧印加電極2側と前記接地電極3側の前記突起部13の間に主要な電気力線が生成されるため、前記フィラメント放電をある特定の位置に固定して発生させることができる。
また、従来のフィラメント放電による処理では、グロー放電による処理速度の遅い領域と、フィラメント放電による処理速度の速い領域で処理特性分布が顕著に現れる。本実施の形態では、0°<θ<180°かつθ≠90°を満たす角度を持ったフィラメント放電での処理を行う。
In the conventional filament discharge, unless it is provided with a mechanism that intentionally creates an electric field distribution, it is unknown where the electrode is generated and it is impossible to control it. In the invention, since the main electric lines of force are generated between the protrusions 13 on the voltage application electrode 2 side and the ground electrode 3 side, the filament discharge may be fixed and generated at a specific position. it can.
Further, in the conventional processing by filament discharge, the processing characteristic distribution is noticeable in a region where the processing speed is low due to glow discharge and a region where the processing speed is high due to filament discharge. In this embodiment, processing is performed with filament discharge having an angle satisfying 0 ° <θ <180 ° and θ ≠ 90 °.
そこに、フィラメント放電の方向には平行にならないような被処理物の搬送を行うことで、電極ユニット長手方向10の方向のフィラメント放電による処理範囲が広がり、処理特性分布を従来よりも均一化した処理が可能である。また、さらに前記電圧印加電極2と前記接地電極3を2組以上並べ、プラズマの本数を2本以上とすることで電極ユニット1に平行な方向に全面の均一な処理が可能となる。
ここで、電磁界シミュレーションで、本発明のような形状の電極絶縁体を用いた場合に電界強度分布がどのように変化するのかを調べた結果を図4に示しているわけである。
By carrying the object to be processed so as not to be parallel to the filament discharge direction, the treatment range by filament discharge in the direction of the electrode unit longitudinal direction 10 is expanded, and the treatment characteristic distribution is made more uniform than before. Processing is possible. Further, by arranging two or more sets of the voltage application electrode 2 and the ground electrode 3 and setting the number of plasmas to two or more, the entire surface can be uniformly processed in a direction parallel to the electrode unit 1.
Here, FIG. 4 shows the result of examining how the electric field strength distribution changes in the electromagnetic field simulation when the electrode insulator having the shape as in the present invention is used.
解析は、実施の形態1にある電極ユニットで行った。これより、従来ではほぼ電極絶縁体に沿った均一な電界が生じるのに対し、突起部13を設けることで電極ユニット長手方向10に電界のコントラストが得られており、また、前記電圧印加電極2側の突起部13と前記接地電極3側の突起部13を結ぶ直線状の電界が強いことが分かる。つまり、この電界の主要な電気力線に拘束されるように発生するフィラメント放電は、突起部13を設けることによって電極ユニット1の長手方向に対して0°<θ<180°かつθ≠90°を満たす角度を持って特定の位置に発生する。 The analysis was performed using the electrode unit in the first embodiment. As a result, a uniform electric field is generated substantially along the electrode insulator in the related art, but by providing the protrusion 13, the electric field contrast is obtained in the longitudinal direction 10 of the electrode unit, and the voltage applying electrode 2 It can be seen that the linear electric field connecting the protrusion 13 on the side and the protrusion 13 on the ground electrode 3 side is strong. That is, the filament discharge generated so as to be restrained by the main electric lines of force of the electric field is 0 ° <θ <180 ° and θ ≠ 90 ° with respect to the longitudinal direction of the electrode unit 1 by providing the protrusion 13. It occurs at a specific position with an angle satisfying.
また、この突起部13は、図5のように相対する電極上にある突起部13の電極ユニット長手方向10に対して平行な距離をX、同じ電極上に隣接する突起部13の距離をY、突起部13の高さをZ、プラズマ制限領域12の幅をWとすると、
Y>2X、W-Z>{(W-2Z)2+X2}1/2
の関係を満たし、かつ電極ユニット長手方向に等間隔に配置されることが望ましい。
Further, as shown in FIG. 5, the protrusion 13 has a distance X parallel to the electrode unit longitudinal direction 10 of the protrusion 13 on the opposite electrode, and a distance Y of the adjacent protrusion 13 on the same electrode. When the height of the protrusion 13 is Z and the width of the plasma restriction region 12 is W,
Y> 2X, WZ> {(W-2Z) 2 + X 2 } 1/2
It is desirable to satisfy the above relationship and to be arranged at equal intervals in the longitudinal direction of the electrode unit.
Y=2Xとなると電圧印加電極2側の突起部13から見たときに、接地電極3側の近接する2つの突起部13が等距離になることになり、フィラメント放電位置を確実に制御するための電界のコントラストが得られないからである。また、W-Z<{(W-2Z)2+X2}1/2となれば、突起部13同士よりも突起部13と対向する突起部13のない部分の距離が短くなるために、主要な電界が被処理物搬送方向15に対して角度を持たず、従来どおり、電極ユニット長手方向10に垂直な電界となるからである。図5に示すような、実際の寸法はガス組成や電源周波数、印加電圧や投入電力など、様々な条件によって適宜変更すればよい。 When Y = 2X, when viewed from the protrusion 13 on the voltage application electrode 2 side, the two adjacent protrusions 13 on the ground electrode 3 side are equidistant, so that the filament discharge position can be controlled reliably. This is because the contrast of the electric field cannot be obtained. Further, if WZ <{(W−2Z) 2 + X 2 } 1/2 , the distance between the protruding portions 13 and the portions without the protruding portions 13 is shorter than the protruding portions 13. This is because the electric field does not have an angle with respect to the workpiece conveyance direction 15 and becomes an electric field perpendicular to the electrode unit longitudinal direction 10 as usual. The actual dimensions as shown in FIG. 5 may be appropriately changed according to various conditions such as gas composition, power supply frequency, applied voltage, and input power.
本発明によれば、従来よりも均一な処理が可能となり、さらに、フィラメント放電による処理が可能とするため、電力効率、処理速度共に向上し、その結果、装置コスト・電力コストの増加、装置の複雑化などを避けることができる。
ここで、図5における各寸法をX=1mm、Y=4mm、Z=2mm、W=6mmとし、エッチング処理を行った。このとき、sinθ=2/51/2である(θ:約63.4度)。使用ガスはHe1SLM、CF43%、O21%。印加電圧は4.8kVを用いた。電源は、13.56MHzの高周波電源である。また、被処理物の搬送は電極ユニット長手方向に対して垂直に行われた。従来のフィラメント放電時の処理では、70nm±40%程度ばらつきのある処理が得られる。本実施の形態1での処理では、70nm±20%ほどの従来例よりも均一な加工を得ることができた。
図6は本発明に係る大気圧プラズマ処理装置の電極ユニットのうち、絶縁体の他の構造例を示す説明図である。
According to the present invention, processing that is more uniform than in the prior art is possible, and further, processing by filament discharge is possible, so both power efficiency and processing speed are improved. As a result, the apparatus cost and the power cost are increased. Complexity can be avoided.
Here, each dimension in FIG. 5 was set to X = 1 mm, Y = 4 mm, Z = 2 mm, and W = 6 mm, and the etching process was performed. At this time, sin θ = 2/5 1/2 (θ: about 63.4 degrees). The gas used is He1SLM, CF 4 3%, O 2 1%. The applied voltage was 4.8 kV. The power supply is a 13.56 MHz high frequency power supply. Moreover, conveyance of the to-be-processed object was performed perpendicularly with respect to the electrode unit longitudinal direction. In the conventional filament discharge process, a process with a variation of about 70 nm ± 40% can be obtained. In the processing in the first embodiment, it was possible to obtain a more uniform processing than the conventional example of about 70 nm ± 20%.
FIG. 6 is an explanatory view showing another structural example of an insulator in the electrode unit of the atmospheric pressure plasma processing apparatus according to the present invention.
本実施の形態1においては、図2のような突起部の形状を用いたが、図6に示すような突起部13の形状でも同様の効果が得られる。図6-aは、突起部13のエッジを無くすために円柱状の突起部13に変えたもの、図6-bは半球状の突起部13をつけたものである。エッジが存在すると電界が集中しすぎ、絶縁体が破壊してしまう可能性がある。大電圧を印加する場合は、エッジのない形状にすることで絶縁体の破損を防止することができる。ただし、電界強度が集中する効果が弱くなるので、印加電圧やガス条件などで適宜変更するとよい。 In the first embodiment, the shape of the protrusion as shown in FIG. 2 is used. However, the same effect can be obtained with the shape of the protrusion 13 as shown in FIG. FIG. 6-a shows the projection 13 changed to a cylindrical projection 13 to eliminate the edge, and FIG. 6-b shows a hemispherical projection 13 added. If there is an edge, the electric field is excessively concentrated and the insulator may be destroyed. When a large voltage is applied, the insulator can be prevented from being damaged by making the shape without an edge. However, since the effect of concentrating the electric field strength is weakened, it may be appropriately changed depending on the applied voltage and gas conditions.
本実施の形態1においては、電極ユニットとして図1に示したような構造を説明したが、このような構造に限るものではない。例えば、種プラズマ生成領域とプラズマ制限領域を図1に示すような形状としたが、どのような形状であってもかまわないし、電圧印加電極と接地電極を1組並べているが、必要に応じて何組並べてもかまわない。また、ガス流路は放電空間に均一なガスを供給できるのであれば、どのような形状でもかまわない。電源の周波数としては、13.56MHzを用いたが、特に制限はなく、どのような周波数でもかまわない。さらに、本実施の形態1においては、被処理物の移動方向とガス流方向が同じである場合を説明したが、これはどの方向でもよく、フィラメント放電の方向に対して平行でなければ搬送方向の角度を適宜変更することで均一性を増すことができる。 In the first embodiment, the structure as shown in FIG. 1 is described as the electrode unit. However, the structure is not limited to such a structure. For example, although the seed plasma generation region and the plasma restriction region have shapes as shown in FIG. 1, they may have any shape, and one set of voltage application electrode and ground electrode is arranged. Any number of groups can be arranged. Further, the gas flow path may have any shape as long as a uniform gas can be supplied to the discharge space. As the frequency of the power source, 13.56 MHz was used, but there is no particular limitation, and any frequency may be used. Furthermore, in the first embodiment, the case where the moving direction of the object to be processed and the gas flow direction are the same has been described. However, this may be any direction, and if it is not parallel to the filament discharge direction, the conveyance direction The uniformity can be increased by appropriately changing the angle.
[実施の形態2]
図7は、本発明に係る大気圧プラズマ処理装置の電極ユニットのうち、絶縁体のさらに他の構造例を実施の形態2として示す説明図である。
図7においては、図1に示したような電極ユニットをN組用いた例を示す。本実施の形態2では、電圧印加電極2と接地電極3を交互に並べており、電圧印加電極2と接地電極3の間に形成されるプラズマ制限領域がN個存在することを特徴としている。その他、電源9や、搬送装置7などの構成は、図1に示したものと同様である。
[Embodiment 2]
FIG. 7 is an explanatory view showing still another structural example of the insulator as the second embodiment in the electrode unit of the atmospheric pressure plasma processing apparatus according to the present invention.
FIG. 7 shows an example in which N electrode units as shown in FIG. 1 are used. The second embodiment is characterized in that the voltage application electrode 2 and the ground electrode 3 are alternately arranged, and there are N plasma limiting regions formed between the voltage application electrode 2 and the ground electrode 3. In addition, the configurations of the power source 9 and the transfer device 7 are the same as those shown in FIG.
図7のように、電圧印加電極2と接地電極3の組がN組できるような電極ユニット1の構成がある。このとき、相対する電極上にある突起部13の電極ユニット長手方向10に対して平行な距離Xと、同じ電極側にある突起部13の距離Yに、Y=NXの関係を持たせ、各組ごとに突起部13の配置を前記電極ユニット長手方向10にXだけずらすことで、被処理物8のどの箇所も必ず1回フィラメント放電による処理が行われるような処理が可能となる。このような構造を持つ電極ユニットを用い、使用ガスHe1SLM、CF43%、O21%、印加電圧4.8kV、高周波電源周波数13.56MHzの条件で実験を行った。この結果、70nm±5%程度の処理結果を得ることができた。 As shown in FIG. 7, there is a configuration of the electrode unit 1 in which N sets of the voltage application electrode 2 and the ground electrode 3 are possible. At this time, the distance X parallel to the electrode unit longitudinal direction 10 of the protruding portion 13 on the opposite electrode and the distance Y of the protruding portion 13 on the same electrode side have a relationship of Y = NX, By shifting the arrangement of the protrusions 13 by X in the longitudinal direction 10 of the electrode unit for each group, it is possible to perform a process in which any part of the workpiece 8 is always subjected to a single filament discharge process. Using the electrode unit having such a structure, the experiment was performed under the conditions of using gas He1SLM, CF 4 3%, O 2 1%, applied voltage 4.8 kV, and high frequency power supply frequency 13.56 MHz. As a result, a processing result of about 70 nm ± 5% could be obtained.
本実施の形態2においては、各組の突起物13の配置を図7のようなものとしたが、被処理物の搬送を行ったときに、被処理物のどの箇所もフィラメント放電による処理を同じ回数だけ経験するような各組の突起部の配置であれば、本実施の形態2に示したような配置ではなくてもかまわず、その条件は、処理条件によって適宜変更されるものである。 In the second embodiment, the arrangement of the projections 13 in each group is as shown in FIG. 7, but when the workpiece is transported, any portion of the workpiece is treated by filament discharge. As long as the arrangement of the protrusions of each set is experienced the same number of times, the arrangement does not have to be as shown in the second embodiment, and the conditions are appropriately changed depending on the processing conditions. .
1 電極ユニット
2 電圧印加電極
3 接地電極
4 絶縁体
5 絶縁体のガス流路側の面
6 ガス流路
7 被処理物搬送装置
8 被処理物
9 電源
10 電極ユニット長手方向(図1では、紙面に垂直な向き)
11 種プラズマ放電領域
12 プラズマ制限領域
13 突起部
14 電界方向
15 搬送方向
DESCRIPTION OF SYMBOLS 1 Electrode unit 2 Voltage application electrode 3 Ground electrode 4 Insulator 5 The gas flow path side surface 6 of an insulator 6 Gas flow path 7 Processed object conveyance apparatus 8 Processed object 9 Power supply 10 Electrode unit longitudinal direction (In FIG. (Vertical orientation)
11 species plasma discharge region 12 plasma limiting region 13 protrusion 14 electric field direction 15 transport direction
Claims (10)
絶縁体が、その電圧印加電極側部分および/または接地電極側部分に、前記強い電界を特定の位置に形成させ、それによって該強い電界の方向を被処理物の搬送方向に対して傾斜させる少なくとも1つの突起部を備えたことを特徴とする大気圧プラズマ処理装置。 At least one electrode unit composed of a voltage application electrode, a ground electrode disposed opposite to the voltage application electrode, and an insulator disposed between the two electrodes, and the electrode unit to be opposed to the insulator A workpiece conveying means for conveying the workpiece, a reactive gas supply means for supplying a reactive gas between the insulator and the workpiece to be treated, and a voltage applying means for applying a voltage to the electrode unit. Then, a plasma is generated by forming a strong electric field locally between the two electrodes under the atmospheric pressure of the reaction gas or in the vicinity thereof, and the object to be processed is irradiated with active species generated by the plasma. In an atmospheric pressure plasma processing apparatus for performing a desired processing on a processing object,
At least the insulator causes the strong electric field to be formed at a specific position on the voltage application electrode side portion and / or the ground electrode side portion, thereby tilting the direction of the strong electric field with respect to the conveyance direction of the workpiece. An atmospheric pressure plasma processing apparatus comprising one protrusion.
Y>2X、W-Z>[(W-2Z)2+X2]1/2
の関係を満たし、かつ各突起部が、電極ユニット長手方向に等間隔に配置されたことを特徴とする請求項1〜3のいずれか一つに記載の大気圧プラズマ処理装置。 The insulator includes a plurality of sets of protrusions facing the voltage application electrode side portion and the ground electrode side portion, and X is the electrode unit longitudinal direction distance between the tips of the opposing protrusions of each set, and the electrode unit longitudinal direction The distance between the tips of adjacent projections is Y, the length of each projection in the direction perpendicular to the longitudinal direction of the electrode unit is Z, and the lower end of the voltage application electrode side portion and the lower end of the ground electrode side portion of the insulator If the distance between them is W,
Y> 2X, WZ> [(W-2Z) 2 + X 2 ] 1/2
The atmospheric pressure plasma processing apparatus according to claim 1, wherein the protrusions are arranged at equal intervals in the longitudinal direction of the electrode unit.
絶縁体の電圧印加電極側部分および/または接地電極側部分に形成する突起部により、電圧印加電極と接地電極との間の特定の位置に局所的に強い電界を形成させ、かつこの強い電界の方向を被処理物の搬送方向に対して傾斜させることを特徴とする大気圧プラズマ処理方法。 By applying a voltage to a voltage application electrode and a ground electrode arranged opposite to each other through an insulator, an electric field is formed between the electrodes in the presence of a reaction gas at atmospheric pressure or a pressure near it, and plasma is generated. In an atmospheric pressure plasma processing method for performing a desired process on an object to be processed by irradiating the object to be processed with active species generated by this plasma,
A strong electric field is locally formed at a specific position between the voltage application electrode and the ground electrode by the protrusion formed on the voltage application electrode side portion and / or the ground electrode side portion of the insulator, and this strong electric field An atmospheric pressure plasma processing method, wherein a direction is inclined with respect to a conveyance direction of an object to be processed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005226785A JP2007042503A (en) | 2005-08-04 | 2005-08-04 | Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005226785A JP2007042503A (en) | 2005-08-04 | 2005-08-04 | Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007042503A true JP2007042503A (en) | 2007-02-15 |
Family
ID=37800292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005226785A Pending JP2007042503A (en) | 2005-08-04 | 2005-08-04 | Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007042503A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009238519A (en) * | 2008-03-26 | 2009-10-15 | Panasonic Electric Works Co Ltd | Plasma processing device and plasma processing method |
CN110868787A (en) * | 2018-08-28 | 2020-03-06 | 日本电产株式会社 | Plasma processing apparatus |
US11352696B2 (en) * | 2014-06-25 | 2022-06-07 | Nederlandse Organisatie Voor Toegepast—Natuurwetenschappelijk Onderzoek Tno | Plasma source and surface treatment method |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291803A (en) * | 1987-05-26 | 1988-11-29 | Sumitomo Heavy Ind Ltd | Ozone generator |
JPH07296993A (en) * | 1994-04-26 | 1995-11-10 | Shimada Phys & Chem Ind Co Ltd | Plasma generating device |
JPH11176808A (en) * | 1997-12-09 | 1999-07-02 | Sharp Corp | Method and equipment for local processing using radical reaction, and function element manufactured by local processing using the radical reaction |
JP2000169977A (en) * | 1998-12-04 | 2000-06-20 | Seiko Epson Corp | Etching method by atmospheric pressure high frequency plasma |
JP2000239005A (en) * | 1999-02-18 | 2000-09-05 | Kobe Steel Ltd | Ozonizer |
JP2001087643A (en) * | 1999-09-22 | 2001-04-03 | Pearl Kogyo Kk | Plasma treatment apparatus |
JP2001314752A (en) * | 2000-05-12 | 2001-11-13 | Hokushin Ind Inc | Plasma reaction vessel and method for decomposing gas by plasma |
JP2002020105A (en) * | 2000-06-29 | 2002-01-23 | Ebara Corp | Ozone generating device |
JP2002093768A (en) * | 2000-06-06 | 2002-03-29 | Matsushita Electric Works Ltd | Plasma processing system and plasma processing method |
JP2003217898A (en) * | 2002-01-16 | 2003-07-31 | Sekisui Chem Co Ltd | Discharge plasma processing device |
JP2004259484A (en) * | 2003-02-24 | 2004-09-16 | Sharp Corp | Plasma processing unit |
JP2004342331A (en) * | 2003-05-12 | 2004-12-02 | Sekisui Chem Co Ltd | Plasma discharge electrode and plasma discharge treatment method |
-
2005
- 2005-08-04 JP JP2005226785A patent/JP2007042503A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291803A (en) * | 1987-05-26 | 1988-11-29 | Sumitomo Heavy Ind Ltd | Ozone generator |
JPH07296993A (en) * | 1994-04-26 | 1995-11-10 | Shimada Phys & Chem Ind Co Ltd | Plasma generating device |
JPH11176808A (en) * | 1997-12-09 | 1999-07-02 | Sharp Corp | Method and equipment for local processing using radical reaction, and function element manufactured by local processing using the radical reaction |
JP2000169977A (en) * | 1998-12-04 | 2000-06-20 | Seiko Epson Corp | Etching method by atmospheric pressure high frequency plasma |
JP2000239005A (en) * | 1999-02-18 | 2000-09-05 | Kobe Steel Ltd | Ozonizer |
JP2001087643A (en) * | 1999-09-22 | 2001-04-03 | Pearl Kogyo Kk | Plasma treatment apparatus |
JP2001314752A (en) * | 2000-05-12 | 2001-11-13 | Hokushin Ind Inc | Plasma reaction vessel and method for decomposing gas by plasma |
JP2002093768A (en) * | 2000-06-06 | 2002-03-29 | Matsushita Electric Works Ltd | Plasma processing system and plasma processing method |
JP2002020105A (en) * | 2000-06-29 | 2002-01-23 | Ebara Corp | Ozone generating device |
JP2003217898A (en) * | 2002-01-16 | 2003-07-31 | Sekisui Chem Co Ltd | Discharge plasma processing device |
JP2004259484A (en) * | 2003-02-24 | 2004-09-16 | Sharp Corp | Plasma processing unit |
JP2004342331A (en) * | 2003-05-12 | 2004-12-02 | Sekisui Chem Co Ltd | Plasma discharge electrode and plasma discharge treatment method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009238519A (en) * | 2008-03-26 | 2009-10-15 | Panasonic Electric Works Co Ltd | Plasma processing device and plasma processing method |
US11352696B2 (en) * | 2014-06-25 | 2022-06-07 | Nederlandse Organisatie Voor Toegepast—Natuurwetenschappelijk Onderzoek Tno | Plasma source and surface treatment method |
CN110868787A (en) * | 2018-08-28 | 2020-03-06 | 日本电产株式会社 | Plasma processing apparatus |
CN110868787B (en) * | 2018-08-28 | 2024-04-26 | 日本电产株式会社 | Plasma processing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8926789B2 (en) | Apparatus for the removal of a fluorinated polymer from a substrate | |
US6417111B2 (en) | Plasma processing apparatus | |
JP2748886B2 (en) | Plasma processing equipment | |
US8298433B2 (en) | Methods for removing an edge polymer from a substrate | |
US20040222367A1 (en) | Beam source and beam processing apparatus | |
JP2008204944A (en) | Improvement relating to ion implanter | |
JP2007042503A (en) | Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method | |
JP5119580B2 (en) | Plasma processing method | |
JP2005209885A (en) | Plasma etching apparatus | |
JP2007027187A (en) | Plasma treatment apparatus and plasma treatment method using the same | |
JP2006331664A (en) | Plasma treatment device | |
JP2007026981A (en) | Plasma processing device | |
JP2006318762A (en) | Plasma process device | |
JP4450407B2 (en) | Plasma processing apparatus and processing method | |
JP2662219B2 (en) | Plasma processing equipment | |
KR100948951B1 (en) | Atmospheric pressure plasma system provided with extended power electrode | |
JP2005050723A (en) | Plasma surface treatment method and device therefor | |
JP4282923B2 (en) | Plasma processing method and apparatus | |
JP5601348B2 (en) | Plasma generation unit and surface wave excitation plasma processing apparatus | |
JP2007087872A (en) | Plasma surface treatment method and device | |
JP2005268709A (en) | Surface treatment apparatus and surface treatment method | |
JP2009070836A (en) | Electrode for placing wafer | |
JP2007026777A (en) | Plasma generation electrode unit and plasma generator | |
JP2008251682A (en) | Thin-film forming apparatus and plasma generation method | |
JP2005044565A (en) | Plasma processing device and plasma processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100330 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100803 |