JP2006241516A - Production method for thin film by gaseous mixture and apparatus for the same - Google Patents
Production method for thin film by gaseous mixture and apparatus for the same Download PDFInfo
- Publication number
- JP2006241516A JP2006241516A JP2005058402A JP2005058402A JP2006241516A JP 2006241516 A JP2006241516 A JP 2006241516A JP 2005058402 A JP2005058402 A JP 2005058402A JP 2005058402 A JP2005058402 A JP 2005058402A JP 2006241516 A JP2006241516 A JP 2006241516A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- mixed gas
- concentration
- physical property
- process chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、プロセス装置内のガスの成分圧力の比の制御が重要な、混合ガスを利用した薄膜堆積装置に関し、特に薄膜を堆積させるプロセス室内に供給した各混合ガスの流量を計測して得られる流量比が、プロセス室内の実際のガス成分分圧比と異なる場合においても、プロセス室内のガス成分分圧比を精密に測定することができ、所望の薄膜を作製することができるようにした混合ガスによる薄膜作製方法とその方法を実施する装置に関する。 The present invention relates to a thin film deposition apparatus using a mixed gas, in which it is important to control the ratio of the component pressures of the gas in the process apparatus, and in particular, obtained by measuring the flow rate of each mixed gas supplied into the process chamber in which the thin film is deposited. Even if the flow rate ratio is different from the actual gas component partial pressure ratio in the process chamber, the gas mixture partial pressure ratio in the process chamber can be accurately measured and a desired thin film can be produced. The present invention relates to a thin film manufacturing method and an apparatus for performing the method.
本発明は上記のような技術分野に属するものであり、各種の混合ガスを利用して薄膜を作成する装置に適用することができるものであるが、説明の便宜のためこの技術分野で広く用いられている2成分ガス系のうち、水素―シラン混合ガス系について説明する。従来の水素―シラン混合ガスを利用してアモルファスシリコンを作製する工程では、例えば図5に示すように、シランのガス供給源51から薄膜堆積プロセス室57へのシラン供給配管52にシラン用流量調節器53を、また水素のガス供給源54から薄膜堆積プロセス室57への水素供給配管55に水素用流量調節器56を設け、各流量調節器では各ガスの供給路を流れる流量を正確に計測して、所定の流量となるように調節し、薄膜堆積プロセス室57内のガスは排気ポンプ58で排出している。薄膜堆積プロセス室57内には基板59が配置され、この表面に薄膜が形成される。 The present invention belongs to the technical field as described above, and can be applied to an apparatus for forming a thin film using various mixed gases. However, it is widely used in this technical field for convenience of explanation. Among the two-component gas systems, a hydrogen-silane mixed gas system will be described. In the conventional process of producing amorphous silicon using a hydrogen-silane mixed gas, for example, as shown in FIG. 5, the flow rate for silane is adjusted in the silane supply pipe 52 from the silane gas supply source 51 to the thin film deposition process chamber 57. The hydrogen flow controller 56 is provided in the hydrogen supply pipe 55 from the hydrogen gas supply source 54 to the thin film deposition process chamber 57, and each flow controller accurately measures the flow rate flowing through each gas supply path. The gas is adjusted to a predetermined flow rate, and the gas in the thin film deposition process chamber 57 is exhausted by the exhaust pump 58. A substrate 59 is disposed in the thin film deposition process chamber 57, and a thin film is formed on this surface.
このように、各ガス供給路の流量調節器を制御することにより、薄膜堆積プロセス室57に所定混合比のガスが存在するようにし、基板に所定の成膜を行うようにしているが、この成膜に適切な条件探索に際してもその流量比を変えることによって行われていた。なお、混合ガスを用いた薄膜作製装置は例えば下記特許文献記載されている。
上記のような従来の薄膜作製装置を用いて、最適な成膜条件は流量調整により試行錯誤して見い出すこととなるが、たとえ適切な成膜条件を見出したとしても、そのガス流量比はその装置固有のものであり、他の装置に適用することができないことがしばしばあった。これは成膜の条件を決めているのが薄膜堆積プロセス室内での成分圧力比(分圧比)であってガスの流量比ではないことと、ガスの流量比と分圧比の差異は薄膜作製装置を構成するシステムによって異なることによる。以下にそれを説明する。 Using the conventional thin film production apparatus as described above, the optimum film formation conditions can be found by trial and error by adjusting the flow rate, but even if an appropriate film formation condition is found, the gas flow rate ratio is Often it was device specific and could not be applied to other devices. The film forming conditions are determined by the component pressure ratio (partial pressure ratio) in the thin film deposition process chamber, not the gas flow ratio, and the difference between the gas flow ratio and the partial pressure ratio is the thin film production equipment. Depends on the system that constitutes. This is explained below.
一般に薄膜製作装置の構成は、前記のようにガス配管の上流側に流量調節器があり、その流量調節器の下流側に薄膜堆積プロセス室が設置され、薄膜堆積プロセス室内で混合ガスが基板表面で反応して薄膜が堆積する方式であり、薄膜堆積プロセス室内は減圧状態にする場合が多い。この装置においては、薄膜堆積プロセス室内の分圧比を制御するために、流量調節器で流量比を制御するものであるが、基板上に薄膜を堆積させるための条件探索方法は、流量比と薄膜の膜質の相関をとって決定する方式である。しかしながらこの方式では、薄膜形成を左右する分圧比をモニターすることはできないという問題があった。 In general, the configuration of a thin film production apparatus has a flow rate regulator on the upstream side of the gas pipe as described above, and a thin film deposition process chamber is installed on the downstream side of the flow rate regulator. In this method, a thin film is deposited by reaction, and the inside of the thin film deposition process chamber is often in a reduced pressure state. In this apparatus, in order to control the partial pressure ratio in the thin film deposition process chamber, the flow rate controller controls the flow ratio. However, the condition search method for depositing a thin film on a substrate includes the flow ratio and the thin film This is a method of determining by taking the correlation of the film quality. However, this method has a problem that it is not possible to monitor the partial pressure ratio that affects the formation of the thin film.
水素−シランの混合ガスを用いる成膜方法では前記図5に示すような流量調節器を用いる方法がよくとられるが、ここで問題となるのは水素の粘性である。水素の粘性は他のガスよりもはるかに小さい。そのためシランガスよりも配管中を流れやすい。そのため配管の入り口と出口での圧力の差(差圧)は図6のグラフに示すように、水素ガスのほうがシランよりも小さい。そのため同じ流量で水素とシランを流しても薄膜堆積プロセス室内の分圧は水素がはるかに小さくなる。このようにガス供給路で設定した流量比と薄膜作製プロセス室内の分圧比が異なるという問題があった。 As a film forming method using a mixed gas of hydrogen-silane, a method using a flow rate controller as shown in FIG. 5 is often used, but the problem here is the viscosity of hydrogen. The viscosity of hydrogen is much smaller than other gases. Therefore, it flows more easily in the piping than silane gas. Therefore, the difference in pressure (differential pressure) between the inlet and outlet of the pipe is smaller in hydrogen gas than in silane, as shown in the graph of FIG. Therefore, even if hydrogen and silane are flowed at the same flow rate, the partial pressure in the thin film deposition process chamber is much smaller. Thus, there has been a problem that the flow rate ratio set in the gas supply path is different from the partial pressure ratio in the thin film fabrication process chamber.
上記装置における配管の長さや太さ、バルブ内のガスの流れやすさ、配管の曲げ等の配管構成は、装置が異なれば当然異なるため、ある装置で見いだした最適となる混合ガスの流量比を使用しても別の装置では薄膜堆積プロセス室内の分圧比が異なってしまうという問題があった。 The length and thickness of the pipe in the above equipment, the ease of gas flow in the valve, and the pipe configuration such as the bending of the pipe are naturally different for different equipment, so the optimal mixed gas flow ratio found in a certain equipment is Even if it is used, another apparatus has a problem that the partial pressure ratio in the thin film deposition process chamber is different.
前記従来の装置における薄膜堆積プロセス室内のガス成分を計測するために、例えば図7に示すように、質量分析器60を接続して質量ごとの成分比を計測する方法がある。但し、質量分析器60の内部と薄膜堆積プロセス室57は通常圧力差があってガス成分毎の流れやすさの差異がここにも存在するため、質量分析器60内の分圧比と薄膜堆積プロセス室57内の分圧比が異なることとなり、薄膜堆積プロセス室57内の正確な各ガスの濃度は測定できず、混合ガス成分比の計測はできないという問題があった。 In order to measure the gas component in the thin film deposition process chamber in the conventional apparatus, there is a method of measuring the component ratio for each mass by connecting a mass analyzer 60 as shown in FIG. 7, for example. However, since there is usually a pressure difference between the inside of the mass analyzer 60 and the thin film deposition process chamber 57 and there is a difference in ease of flow for each gas component, the partial pressure ratio in the mass analyzer 60 and the thin film deposition process are also present. Since the partial pressure ratios in the chamber 57 are different, there is a problem in that the accurate concentration of each gas in the thin film deposition process chamber 57 cannot be measured, and the mixed gas component ratio cannot be measured.
濃度計測方法は更に種々の手法があるが、例えば光吸収法では、特定の波長の光が吸収される度合いを計測して濃度に換算する。しかし圧力が減少すると見かけの濃度が減少するなど圧力依存性があり、吸光度だけでは正確な濃度を求めることができない。また、光吸収法を利用した濃度測定法では、光源が必要であるが、このランプは寿命が有限であり、定期的な交換が必要であって、メンテナンスに手数と費用がかかる。更に光の吸光度を利用して濃度測定する手法は、気体の種類毎に吸収波長が異なるため必要な光の波長を生成する光源が必要となり、波長選択性の問題を生じる。 For example, in the light absorption method, the degree of absorption of light of a specific wavelength is measured and converted into a concentration. However, when the pressure decreases, there is a pressure dependency such as an apparent concentration decreasing, and an accurate concentration cannot be obtained only by absorbance. Further, in the concentration measurement method using the light absorption method, a light source is required, but this lamp has a finite lifetime, requires periodic replacement, and requires maintenance and cost. Furthermore, the method of measuring the concentration using the light absorbance requires a light source that generates a necessary light wavelength because the absorption wavelength differs depending on the type of gas, which causes a problem of wavelength selectivity.
また、熱や光を加えることで混合気体の分解率を測定する原理を利用した測定法では、爆発・引火性の混合気体を濃度測定するときは、誘爆・引火の危険性があった。たとえば、大気圧オゾン酸素混合気体でオゾン濃度が50%をこえると引火したときに轟爆の危険性が伴うため、光照射よるオゾン分解を伴う紫外線吸光法では高濃度オゾン気体の測定には危険があった。更に、濃度測定で分解を伴う手法を採用するときには、大量の被測定混合気体をサンプリングする必要があった。たとえばオゾン酸素混合気体の場合、サンプリングした混合気体中のオゾンは紫外線の照射により分解されて酸素になるため混合気体中のオゾン濃度は減少してしまう。そのため精度の高い濃度測定にはオゾン分解による混合気体濃度の変化を無視できるような、混合気体の大量のサンプリングが必要であった。また、混合気体を一部抜きとった後別の場所で化学分析する手法は、時々刻々気体濃度が変化する場合は対応できなかった。 In addition, in the measurement method using the principle of measuring the decomposition rate of the mixed gas by applying heat or light, there is a risk of explosion or ignition when measuring the concentration of the explosive / flammable mixed gas. For example, if the ozone concentration exceeds 50% with an atmospheric pressure ozone-oxygen mixture, there is a risk of explosion when ignited. Therefore, it is dangerous to measure high-concentration ozone gas in ultraviolet absorption method with ozone decomposition by light irradiation. was there. Furthermore, when adopting a technique involving decomposition in concentration measurement, it is necessary to sample a large amount of the gas mixture to be measured. For example, in the case of an ozone-oxygen mixed gas, ozone in the sampled mixed gas is decomposed by irradiation with ultraviolet rays to become oxygen, so that the ozone concentration in the mixed gas decreases. Therefore, high-precision concentration measurement required a large amount of sampling of the mixed gas so that changes in the mixed gas concentration due to ozonolysis can be ignored. In addition, the method of performing chemical analysis in another place after extracting a part of the mixed gas cannot cope with the case where the gas concentration changes every moment.
したがって本発明は、ガス供給システムの相違にかかわらず、全ての薄膜作製装置において薄膜堆積プロセス室内に適切な混合比のガスを供給することができるようにすると共に、各種の計測方法における圧力依存性、消耗品の管理、波長選択性、爆発性、大量のサンプリングが必要となる問題、リアルタイムで測定できない問題等を生じることのない混合ガスによる薄膜作製装置及びその制御方法を提供することを目的とする。 Therefore, the present invention makes it possible to supply a gas having an appropriate mixing ratio into the thin film deposition process chamber in all thin film production apparatuses regardless of the difference in the gas supply system, and to depend on pressure in various measurement methods. It is intended to provide a thin film production apparatus using a mixed gas and its control method that does not cause consumables management, wavelength selectivity, explosiveness, problems that require a large amount of sampling, problems that cannot be measured in real time, etc. To do.
上記従来の課題を解決するために、本発明は、前記従来の流量調節器のみを用いてガス流量比を設定する方式の代わりに、薄膜堆積装置に取り付けた濃度計からの値をもとに薄膜堆積プロセス室内の分圧比を制御する方式を採用する。ここで濃度測定は、たとえば粘性・熱伝導率・密度・分子量およびそれらの関数等の混合気体の物性値を測定し、混合するガスの純粋気体固有の物性値をもとにして気体の濃度を算出することにより行う。このため本発明では、サンプリングによる大量のガスの流れがないため成分ごとのガスの流れやすさによって引き起こされる、計測値と真の濃度の差を抑制できる。また本発明では、熱や光による刺激によって爆発の起こる混合気体でも、熱や光を照射しない手法であるため、被測定混合気体に含むことができる。 In order to solve the above-described conventional problems, the present invention is based on values from a densitometer attached to a thin film deposition apparatus, instead of a method of setting a gas flow rate ratio using only the conventional flow controller. A method of controlling the partial pressure ratio in the thin film deposition process chamber is adopted. Here, the concentration measurement measures the physical properties of the gas mixture, such as viscosity, thermal conductivity, density, molecular weight, and their functions, and determines the concentration of the gas based on the physical properties specific to the pure gas of the gas to be mixed. This is done by calculating. For this reason, in this invention, since there is no flow of a lot of gas by sampling, the difference of a measured value and a true density | concentration caused by the ease of the flow of the gas for every component can be suppressed. Further, in the present invention, even a mixed gas in which an explosion occurs due to stimulation by heat or light is a technique that does not irradiate heat or light, and therefore can be included in the measured mixed gas.
本発明において濃度を求める方法は、圧力と物性値(たとえば粘性)に敏感な測定子Aと、圧力のみに敏感な測定子Bを同時に用いて対象混合気体を計測し、演算処理によって圧力の影響をのぞいて混合気体の物性値(たとえば粘性)を算出することで、物性値に応じた混合気体の濃度を求めるものである。上記測定子Aと測定子Bに、測定子Aの対象圧力範囲以外に対応した測定子Cを追加することでさらに測定圧力範囲を広げることができる。 In the present invention, the method for obtaining the concentration is to measure the target mixed gas simultaneously using the measuring element A sensitive to pressure and physical properties (for example, viscosity) and the measuring element B sensitive only to pressure, and the influence of the pressure by arithmetic processing. By calculating the physical property value (for example, viscosity) of the mixed gas, the concentration of the mixed gas corresponding to the physical property value is obtained. The measurement pressure range can be further expanded by adding a measurement element C corresponding to the measurement element A and the measurement element B other than the target pressure range of the measurement element A.
濃度の校正は、混合ガスを構成する成分ガスをあらかじめ既知割合で混合して各種濃度の標準気体を作成し、前記濃度測定装置で標準気体を実測してみて検量線を得て、この検量線を濃度計算機に記録させておくことで行うことができる。 Concentration calibration is performed by preparing standard gases of various concentrations by mixing the component gases constituting the mixed gas at a known ratio in advance, and obtaining a calibration curve by actually measuring the standard gas with the concentration measuring device. This can be done by recording in a density calculator.
本発明における使用測定子の例としては、圧力のみに敏感なもの(例:液柱差真空計・圧縮真空計・隔膜真空計・ブルドン管真空計)や、圧力に依存して変わる、運動固体が気体から受ける摩擦力変化・固体から気体への熱伝導率変化・固体表面近傍で気体が反応したときの固体が受ける分解生成熱といった物理量のうち、いずれかの物理量を測るもの(例:粘性(摩擦)を利用したもの[水晶摩擦真空計、スピニングロータゲージ]、熱伝導を利用したもの[熱電対真空計、ピラニー真空計]、クヌーセン真空計)や電離現象を利用するもの(例:熱陰極電離真空計・冷陰極電離真空計・放射線電離真空計)が使用できる。これら測定子は、引火性・爆発性といった気体の性質・対象混合気体の濃度・圧力によって使い分けることができる。 Examples of measuring elements used in the present invention include those sensitive only to pressure (eg, liquid column differential gauge, compression vacuum gauge, diaphragm vacuum gauge, Bourdon tube vacuum gauge), and moving solids that change depending on pressure. Measures any physical quantity such as change in friction force received from gas, change in thermal conductivity from solid to gas, and heat generated by decomposition when gas reacts near the solid surface (eg, viscosity) (Friction) (crystal friction vacuum gauge, spinning rotor gauge), heat conduction [thermocouple vacuum gauge, Pirani vacuum gauge], Knudsen vacuum gauge) and those using ionization (eg heat) Cathode ionization vacuum gauge, cold cathode ionization vacuum gauge, radiation ionization vacuum gauge) can be used. These probes can be used properly depending on the gas properties such as flammability and explosiveness, the concentration and pressure of the target mixed gas.
薄膜堆積プロセス室の中の混合ガスの濃度は、混合ガスの各成分流量が一定でも、成膜条件の変化(基板温度変化、プラズマ発生条件の変化)で時間的に変動する可能性があるが、本発明では気体濃度を実時間で測定できるので、成分流量の変動要因以外の分圧比変動要因に対応できる。 The concentration of the mixed gas in the thin film deposition process chamber may vary over time due to changes in film formation conditions (changes in substrate temperature and plasma generation conditions) even if the component flow rates of the mixed gas are constant. In the present invention, since the gas concentration can be measured in real time, it is possible to cope with the partial pressure ratio fluctuation factor other than the fluctuation factor of the component flow rate.
より具体的には、本発明に係る薄膜作製方法は、粘性から組成が一意的に定義される組成変化を行う混合気体を用い、圧力だけでなく物性値にも敏感な圧力測定装置と前記物性値に影響を受けない圧力測定装置の両測定値からの混合気体の圧力値を入力して物性値を求め、前記求めた物性値からあらかじめ取得している組成に対応した物性値のデータベースに基づき組成を求め、基板上に薄膜を堆積させる薄膜堆積プロセス室に供給する複数のガス供給装置の流量を、各々独立して前記組成により制御することを特徴とする。 More specifically, the thin film manufacturing method according to the present invention uses a gas mixture that undergoes a composition change in which the composition is uniquely defined from the viscosity, and a pressure measuring device that is sensitive not only to pressure but also to physical properties and the physical properties described above. Input the pressure value of the gas mixture from both measured values of the pressure measuring device not affected by the value, obtain the physical property value, based on the physical property value database corresponding to the composition obtained in advance from the obtained physical property value A flow rate of a plurality of gas supply devices that determine a composition and supply a thin film deposition process chamber for depositing a thin film on a substrate is independently controlled by the composition.
また、本発明による他の薄膜作製方法は、前記薄膜作製方法において、前記薄膜堆積プロセス室内のガスを、混合ガス排気用のポンプにより排出しながら薄膜作製を行うことを特徴とする。 Another thin film production method according to the present invention is characterized in that, in the thin film production method, the thin film production is performed while the gas in the thin film deposition process chamber is discharged by a pump for exhausting a mixed gas.
また、本発明による他の薄膜作製方法は、前記薄膜作製方法において、前記薄膜堆積プロセス室のガスを排出しない状態で薄膜作製を行うことを特徴とする。 Further, another thin film manufacturing method according to the present invention is characterized in that in the thin film manufacturing method, the thin film is manufactured without exhausting the gas in the thin film deposition process chamber.
また、本発明による他の薄膜作製方法は、前記薄膜作製方法において、前記混合ガスは、水素―シラン混合ガス、水素―メタノール混合ガス、MOCVDを含むCVDの混合ガスのいずれかの混合ガスであることを特徴とする。 In another thin film manufacturing method according to the present invention, in the thin film manufacturing method, the mixed gas is a mixed gas of any one of a hydrogen-silane mixed gas, a hydrogen-methanol mixed gas, and a CVD mixed gas including MOCVD. It is characterized by that.
また、本発明による他の薄膜作製方法は、前記薄膜作製方法において、前記濃度センサーは、物性値に敏感な圧力測定装置と、前記物性値に影響を受けない圧力測定装置と、両圧力測定装置からの圧力値を入力して物性値を求めると共に、該物性値から予め取得されている濃度に対応した物性値のデータに基づき濃度を求めるものであることを特徴とする。 According to another thin film manufacturing method of the present invention, in the thin film manufacturing method, the concentration sensor is a pressure measuring device sensitive to a physical property value, a pressure measuring device not affected by the physical property value, and a both pressure measuring device. The physical property value is obtained by inputting the pressure value from the physical property value, and the concentration is obtained based on the physical property value data corresponding to the concentration previously obtained from the physical property value.
また、本発明による他の薄膜作製方法は、前記薄膜作製方法において、前記物性値に敏感な圧力測定装置として、互いに特性値に対する応答特性の異なる複数の圧力測定装置を用いて同時に被測定混合気体の圧力を測定し、各圧力測定値と前記物性値に影響を受けない圧力測定装置の測定値から混合気体の物性値を求めることを特徴とする。 According to another thin film manufacturing method of the present invention, in the thin film manufacturing method, as the pressure measuring device sensitive to the physical property value, a plurality of pressure measuring devices having different response characteristics with respect to the characteristic values are used to simultaneously measure the mixed gas to be measured. , And the physical property value of the mixed gas is obtained from each pressure measurement value and the measurement value of the pressure measurement device that is not affected by the physical property value.
また、本発明による他の薄膜作製方法は、前記薄膜作製方法において、前記物性値は粘性であり、該物性値に敏感な圧力測定装置として水晶摩擦真空計またはスピニングロータゲージを用い、物性値に影響を受けない圧力測定装置として隔膜真空計を用いたことを特徴とする。 Further, in another thin film manufacturing method according to the present invention, in the thin film manufacturing method, the physical property value is viscous, and a quartz friction vacuum gauge or a spinning rotor gauge is used as a pressure measuring device sensitive to the physical property value. A diaphragm vacuum gauge is used as an unaffected pressure measuring device.
また、本発明による他の薄膜作製方法は、前記薄膜作製方法において、前記薄膜堆積プロセス室における、薄膜堆積プロセス室内の濃度が類推できる箇所、または薄膜堆積プロセス室の濃度と濃度の相関がある場所に取り付けられた濃度センサーにより濃度を測定することを特徴とする。 According to another thin film manufacturing method of the present invention, in the thin film manufacturing method, in the thin film deposition process chamber, the concentration in the thin film deposition process chamber can be estimated, or the concentration of the thin film deposition process chamber has a correlation with the concentration. The concentration is measured by a concentration sensor attached to the head.
また、本発明による他の薄膜作製方法は、前記薄膜作製方法において、各混合ガスの流量を設定するためのパラメータとして、前記濃度演算部で得られた実際の濃度のほかに、薄膜堆積プロセス室内の基板温度、または堆積容器内でプラズマを使用している場合はプラズマ生成条件を合わせて利用し流量を制御することを特徴とする。 Further, another thin film manufacturing method according to the present invention includes a thin film deposition process chamber in addition to an actual concentration obtained by the concentration calculation unit as a parameter for setting a flow rate of each mixed gas in the thin film manufacturing method. In the case where plasma is used in the deposition temperature or in the deposition container, the flow rate is controlled by using the plasma generation conditions together.
また、本発明による他の薄膜作製装置は、基板上に薄膜を堆積させる薄膜堆積プロセス室と、流量制御装置により制御される流量調節器を備え、ガス供給源から前記薄膜プロセス室に異なった成分のガスを供給するガス供給系統を各々独立して複数備えたガス供給装置と、前記薄膜堆積プロセス室内の成分ガスの組成を計測する濃度センサーと、前記濃度センサーの出力により前記薄膜堆積プロセス室内の前記成分ガスの実際の濃度を演算する濃度演算部とを備え、前記流量制御装置は、前記濃度演算部からの濃度値を元に流量調節器を制御することを特徴とする。 In addition, another thin film manufacturing apparatus according to the present invention includes a thin film deposition process chamber for depositing a thin film on a substrate and a flow rate controller controlled by a flow rate control device, and includes different components from a gas supply source to the thin film process chamber. A gas supply system including a plurality of gas supply systems independently supplying each gas, a concentration sensor for measuring a composition of a component gas in the thin film deposition process chamber, an output of the concentration sensor, A concentration calculation unit that calculates an actual concentration of the component gas, and the flow rate control device controls the flow rate controller based on a concentration value from the concentration calculation unit.
また、本発明による他の薄膜作製装置は、前記薄膜作製装置において、前記薄膜堆積プロセス室には、混合ガス排気用のポンプを備えていることを特徴とする。 Another thin film production apparatus according to the present invention is characterized in that, in the thin film production apparatus, the thin film deposition process chamber includes a pump for exhausting mixed gas.
また、本発明による他の薄膜作製装置は、前記薄膜作製装置において、前記薄膜堆積プロセス室には、混合ガス排気用のポンプを備えていないことを特徴とする。 In addition, another thin film manufacturing apparatus according to the present invention is characterized in that the thin film deposition process chamber does not include a pump for exhausting mixed gas in the thin film manufacturing apparatus.
また、本発明による他の薄膜作製装置は、前記薄膜作製装置において、前記混合ガスは、水素―シラン混合ガス、水素―メタノール混合ガス、MOCVDを含むCVDの混合ガス、のいずれかの混合ガスであることを特徴とする。 Another thin film production apparatus according to the present invention is the thin film production apparatus, wherein the mixed gas is any one of a hydrogen-silane mixed gas, a hydrogen-methanol mixed gas, and a CVD mixed gas including MOCVD. It is characterized by being.
また、本発明による他の薄膜作製装置は、前記薄膜作製装置において、前記濃度センサーは、物性値に敏感な圧力測定装置と、前記物性値に影響を受けない圧力測定装置と、両圧力測定装置からの圧力値を入力して物性値を求めると共に、該物性値から予め取得されている濃度に対応した物性値のデータに基づき濃度を求めるものであることを特徴とする。 Another thin film production apparatus according to the present invention is the thin film production apparatus, wherein the concentration sensor is a pressure measurement device sensitive to a physical property value, a pressure measurement device not affected by the physical property value, and a both pressure measurement device. The physical property value is obtained by inputting the pressure value from the physical property value, and the concentration is obtained based on the physical property value data corresponding to the concentration previously obtained from the physical property value.
また、本発明による他の薄膜作製装置は、前記薄膜作製装置において、前記物性値に敏感な圧力測定装置として、互いに特性の異なる複数の圧力測定装置を用いて同時に被測定混合気体の圧力を測定し、各圧力測定値と前記物性値に影響を受けない圧力測定装置の測定値から混合気体の物性値を求めることを特徴とする。 Another thin film production apparatus according to the present invention is the thin film production apparatus, wherein the pressure of the mixed gas to be measured is simultaneously measured using a plurality of pressure measurement apparatuses having different characteristics as pressure measurement apparatuses sensitive to the physical property values. Then, the physical property value of the mixed gas is obtained from each pressure measurement value and the measurement value of the pressure measurement device which is not affected by the physical property value.
また、本発明による他の薄膜作製装置は、前記薄膜作製装置において、前記物性値は粘性であり、該物性値に敏感な圧力測定装置として水晶摩擦真空計またはスピニングロータゲージを用い、物性値に影響を受けない圧力測定装置として隔膜真空計を用いたことを特徴とする。 According to another thin film manufacturing apparatus of the present invention, in the thin film manufacturing apparatus, the physical property value is viscous, and a quartz friction vacuum gauge or a spinning rotor gauge is used as a pressure measuring device sensitive to the physical property value. A diaphragm vacuum gauge is used as an unaffected pressure measuring device.
また、本発明による他の薄膜作製装置は、前記薄膜作製装置において、前記濃度センサーは前記薄膜堆積プロセス室に対して、薄膜堆積プロセス室内の濃度が類推できる箇所、または薄膜堆積プロセス室の濃度と濃度の相関がある場所に取り付けられていることを特徴とする。 In addition, in another thin film manufacturing apparatus according to the present invention, in the thin film manufacturing apparatus, the concentration sensor may be compared with the thin film deposition process chamber where the concentration in the thin film deposition process chamber can be estimated, or in the thin film deposition process chamber. It is characterized by being attached at a location where there is a correlation of concentration.
また、本発明による他の薄膜作製装置は、前記薄膜作製装置において、前記流量制御演算部は、各混合ガスの流量を設定するためのパラメータとして、前記濃度演算部で得られた実際の濃度のほかに、薄膜堆積プロセス室内の基板温度、または堆積容器内でプラズマを使用している場合はプラズマ生成条件を合わせて利用することを特徴とする。 In addition, in another thin film manufacturing apparatus according to the present invention, in the thin film manufacturing apparatus, the flow rate control calculation unit has an actual concentration obtained by the concentration calculation unit as a parameter for setting a flow rate of each mixed gas. In addition, the present invention is characterized in that the substrate temperature in the thin film deposition process chamber or the plasma generation conditions when plasma is used in the deposition container are used.
バルブ、配管の長さや直径、配管の曲げ位置など流量調節器と成膜容器の間の配管構成が装置毎に変わることにより各成分ガスの流れやすさが装置毎に変わる可能性があるが、本発明では薄膜堆積プロセス室内では配管構成の差の影響を受けることなく、分圧比を同じに制御できる。 The ease of the flow of each component gas may change from device to device due to changes in the piping configuration between the flow controller and film formation vessel, such as the length and diameter of the valve, piping, and the bending position of the piping. In the present invention, the partial pressure ratio can be controlled to be the same in the thin film deposition process chamber without being affected by the difference in piping configuration.
また、成膜容器の中の混合ガスの濃度は、混合ガスの各成分流量が一定でも、基板温度変化、プラズマ発生条件の変化等の成膜条件の変化で時間的に変動する可能性があるが、本発明では気体濃度を実時間で測定できるので、成分流量の変動要因以外の分圧比変動要因に対応できる。 In addition, the concentration of the mixed gas in the film formation container may fluctuate over time due to changes in film formation conditions such as changes in substrate temperature and plasma generation conditions, even if the component flow rates of the mixed gas are constant. However, in the present invention, since the gas concentration can be measured in real time, it is possible to cope with the partial pressure ratio fluctuation factor other than the fluctuation factor of the component flow rate.
更に本発明による濃度測定方式は、サンプリングによる大量のガスの流れを生じないため、成分ごとのガスの流れやすさによって引き起こされる、計測値と真の濃度の差を抑制できる。 Furthermore, since the concentration measurement method according to the present invention does not cause a large amount of gas flow due to sampling, it is possible to suppress the difference between the measured value and the true concentration caused by the ease of gas flow for each component.
本発明は特に、薄膜堆積プロセス室内では配管構成の差の影響を受けることなく、分圧比を同じに制御するため、粘性から組成が一意的に定義される組成変化を行う混合気体を用い、圧力だけでなく物性値にも敏感な圧力測定装置と前記物性値に影響を受けない圧力測定装置の両測定値から混合気体の圧力値を入力して物性値を求め、前記求めた物性値からあらかじめ取得している組成に対応した物性値のデータベースに基づき組成を求め、基板状に薄膜を堆積させる薄膜堆積プロセス室に供給する複数のガス供給装置の流量を、各々独立して前記組成により制御する混合ガスによる薄膜作製方法としたものであり、また、基板上に薄膜を堆積させる薄膜堆積プロセス室と、流量制御装置により制御される流量調節器を備え、ガス供給源から前記薄膜プロセス室に異なった成分のガスを供給するガス供給系統を各々独立して複数備えたガス供給装置と、前記薄膜堆積プロセス室内の成分ガスの組成を計測する濃度センサーと、前記濃度センサーの出力により前記薄膜堆積プロセス室内の前記成分ガスの実際の濃度を演算する濃度演算部とを備え、前記流量制御装置は、前記濃度演算部からの濃度値を元に流量調節器を制御する混合ガスによる薄膜作製装置としたものである。 In particular, the present invention uses a gas mixture that undergoes a composition change in which the composition is uniquely defined from the viscosity in order to control the partial pressure ratio in the thin film deposition process chamber without being affected by the difference in piping configuration. The pressure value of the mixed gas is input from both the pressure measurement device that is sensitive not only to the physical property value but also the pressure measurement device that is not affected by the physical property value to obtain the physical property value. A composition is obtained based on a database of physical property values corresponding to the obtained composition, and the flow rates of a plurality of gas supply devices that supply a thin film deposition process chamber for depositing a thin film on a substrate are independently controlled by the composition. A thin film production method using a mixed gas, and a thin film deposition process chamber for depositing a thin film on a substrate, and a flow rate controller controlled by a flow rate control device, are provided from a gas supply source. A gas supply device provided with a plurality of gas supply systems independently supplying gas of different components to the thin film process chamber, a concentration sensor for measuring the composition of the component gas in the thin film deposition process chamber, A gas concentration control unit that calculates an actual concentration of the component gas in the thin film deposition process chamber according to an output, and the flow rate control device controls a flow rate controller based on a concentration value from the concentration calculation unit This is a thin film manufacturing apparatus.
図1は本発明の実施例を適用した薄膜作製方法、及びその方法を実施する薄膜作製装置の概要構成を示し、ガスAのガス供給源1から薄膜堆積プロセス室7へのガスA供給配管2にガスA用流量調節器A3を、またガスBのガス供給源4から薄膜堆積プロセス室7へのガスB供給配管5にガスB用流量調節器6を設け、各流量調節器では各ガスの供給路を流れるガス流量を測定しながら、流量調節を可能としている。また、図示の例においては、薄膜堆積プロセス室7内のガスは排気ポンプ8で排出している。但し、この排気ポンプ8は必ずしも必要ではなく、薄膜堆積プロセス室内に所定の混合ガスが供給された状態で薄膜堆積を行うことも可能である。なお、薄膜堆積プロセス室7内には基板9が配置され、この表面に薄膜が形成される点は前記従来のものと同様である。 FIG. 1 shows a schematic configuration of a thin film manufacturing method to which an embodiment of the present invention is applied and a thin film manufacturing apparatus for performing the method, and a gas A supply pipe 2 from a gas A gas supply source 1 to a thin film deposition process chamber 7. A gas A flow rate controller A3 is provided, and a gas B flow rate controller 6 is provided in the gas B supply pipe 5 from the gas B gas supply source 4 to the thin film deposition process chamber 7. The flow rate can be adjusted while measuring the flow rate of the gas flowing through the supply path. In the illustrated example, the gas in the thin film deposition process chamber 7 is exhausted by the exhaust pump 8. However, the exhaust pump 8 is not necessarily required, and thin film deposition can be performed in a state where a predetermined mixed gas is supplied into the thin film deposition process chamber. The substrate 9 is disposed in the thin film deposition process chamber 7, and a thin film is formed on the surface of the substrate 9, similar to the conventional one.
本発明においては、薄膜堆積プロセス室7に供給される複数のガスの濃度を測定し、分圧比を求めて各ガスの流量を制御するものであるが、図1に示す実施例においては、そのガス濃度を測定する手段として、薄膜堆積プロセス室7の圧力を、濃度センサーを用いて濃度の計測を行うに際して、隔膜圧力計10と水晶振動式圧力計11の2個の圧力計を併設して圧力の計測を行い、両圧力計の出力データにより薄膜堆積プロセス室7内の混合ガスの濃度を濃度演算部12で求め、その濃度信号を流量制御装置13に出力するようにしている。流量制御装置13では薄膜堆積プロセス室7内の混合気体の分圧比に対応する混合濃度になるように、ガスAの流量調節器AとガスBの流量調節器Bにおいて各々流量を計測しつつ所定の流量になるように制御する。 In the present invention, the concentration of a plurality of gases supplied to the thin film deposition process chamber 7 is measured and the partial pressure ratio is obtained to control the flow rate of each gas. In the embodiment shown in FIG. As means for measuring the gas concentration, when measuring the pressure of the thin film deposition process chamber 7 using a concentration sensor, two pressure gauges of a diaphragm pressure gauge 10 and a quartz vibration type pressure gauge 11 are provided side by side. The pressure is measured, the concentration calculation unit 12 obtains the concentration of the mixed gas in the thin film deposition process chamber 7 from the output data of both pressure gauges, and the concentration signal is output to the flow rate control device 13. In the flow rate control device 13, a predetermined flow rate is measured while measuring the flow rates in the flow rate regulator A of the gas A and the flow rate regulator B of the gas B so that the mixed concentration corresponds to the partial pressure ratio of the mixed gas in the thin film deposition process chamber 7. To control the flow rate.
上記隔膜圧力計10は気体の種別に無関係に、気体圧力の絶対値を与える特性を備えている。このほかの圧力計でも絶対値を与えるものならこの隔膜圧力計の代わりに使用できる。また、水晶振動式圧力計11は、気体の分子量と粘性係数の違いによって、見かけ上異なる圧力を表示する。この理由は、気体に接した水晶振動子が受ける気体との摩擦力が、圧力が粘性流の領域では気体の分子量と気体の粘性係数の積の1/2乗に比例することによる。 The diaphragm pressure gauge 10 has a characteristic that gives an absolute value of gas pressure regardless of the type of gas. Any other pressure gauge that gives an absolute value can be used in place of this diaphragm pressure gauge. Further, the quartz vibration type pressure gauge 11 displays an apparently different pressure depending on the difference between the molecular weight of the gas and the viscosity coefficient. This is because the frictional force with the gas received by the crystal unit in contact with the gas is proportional to the 1/2 power of the product of the molecular weight of the gas and the viscosity coefficient of the gas in the region where the pressure is a viscous flow.
図2のグラフは、前記図1の水素―シラン混合ガスを用いた装置の濃度センサーとして用いている水晶振動子式圧力計と隔膜式圧力計の圧力指示値をプロットしたものである。パラメータはシランガスの濃度である。このときの水晶振動子式圧力計には計測ガスの粘性として水素の粘性を用いたので、水素100%のときは正しい値を示す。シランガスの濃度が増加すると粘性が増加するため、水晶振動子式圧力計指示値は増大する。図2の特性曲線を用いることにより、圧力と水晶振動子式圧力計指示値とからシランガスの濃度を求めることができる。この濃度を元にして混合ガスの流量比を制御することにより、成膜容器内を所定の濃度(分圧比)に設定することができる。 The graph of FIG. 2 is a plot of pressure indication values of a quartz oscillator type pressure gauge and a diaphragm type pressure gauge used as a concentration sensor of the apparatus using the hydrogen-silane mixed gas of FIG. The parameter is the concentration of silane gas. In this case, since the viscosity of hydrogen is used as the viscosity of the measurement gas in the quartz oscillator type pressure gauge, a correct value is shown when hydrogen is 100%. Since the viscosity increases as the concentration of silane gas increases, the indicated value of the quartz oscillator type pressure gauge increases. By using the characteristic curve of FIG. 2, the concentration of the silane gas can be obtained from the pressure and the crystal oscillator pressure gauge instruction value. By controlling the flow rate ratio of the mixed gas based on this concentration, the inside of the film forming container can be set to a predetermined concentration (partial pressure ratio).
本発明は種々の混合ガスに利用することができるが、特に、水素―シラン混合ガス、水素―メタノール混合ガス、MOCVDを含むCVDの混合ガス等に好適に利用することができる。前記複数の圧力計等からなる濃度センサーは、薄膜堆積プロセス室に対して取り付けるに際して、薄膜堆積プロセス室内の濃度が類推できる箇所、または薄膜堆積プロセス室の濃度と濃度の相関がある場所に取り付けることが好ましい。また、前記流量制御演算部は、各混合ガスの流量を設定するためのパラメータとして、前記濃度演算部で得られた実際の濃度のほかに、薄膜堆積プロセス室内の基板温度、または堆積容器内でプラズマを使用している場合はプラズマ生成条件を合わせて利用することが好ましい。 The present invention can be used for various mixed gases, but can be suitably used particularly for hydrogen-silane mixed gas, hydrogen-methanol mixed gas, CVD mixed gas including MOCVD, and the like. When installing the concentration sensor consisting of a plurality of pressure gauges, etc. to the thin film deposition process chamber, attach it to a location where the concentration in the thin film deposition process chamber can be inferred, or where there is a correlation between the concentration of the thin film deposition process chamber Is preferred. In addition to the actual concentration obtained by the concentration calculation unit, the flow rate control calculation unit can set the flow rate of each mixed gas in addition to the substrate temperature in the thin film deposition process chamber or the deposition container. When plasma is used, it is preferable to use the plasma generation conditions together.
混合ガスが3成分の場合の濃度測定について示す。図3は、3成分系の混合ガスを原料するガス発生器について、その供給口での濃度を計測する装置の実施例である。ここで、3成分の組成比は独立ではなく、成分Aが決まれば残りの成分B、Cも従属的に決まる系であるとする。さらに、図4のように成分Aの成分濃度により混合ガスの粘性が単調に変化することがわかっている場合には、粘性計測により成分Aの濃度がわかり、他の成分B、Cも一意的に決定することができ、混合ガスの組成がわかる。 Concentration measurement when the mixed gas has three components will be described. FIG. 3 shows an embodiment of an apparatus for measuring the concentration at the supply port of a gas generator that uses a ternary mixed gas as a raw material. Here, it is assumed that the composition ratio of the three components is not independent, and if the component A is determined, the remaining components B and C are also dependently determined. Furthermore, when it is known that the viscosity of the mixed gas monotonously changes depending on the component concentration of the component A as shown in FIG. 4, the concentration of the component A can be determined by measuring the viscosity, and the other components B and C are also unique. It is possible to determine the composition of the mixed gas.
本発明は、混合ガスを利用した薄膜堆積装置に関して、プロセス装置内のガスの成分圧力の比が制御に重要な分野に属し、とくに流量比とガス成分分圧比が異なる場合に有効に適用できる。 INDUSTRIAL APPLICABILITY The present invention relates to a thin film deposition apparatus using a mixed gas and belongs to a field in which the ratio of gas component pressures in a process apparatus is important for control, and can be effectively applied particularly when the flow rate ratio and the gas component partial pressure ratio are different.
1 ガスAのガス供給源
2 ガスA供給配管
3 流量調節器A
4 ガスBのガス供給源
5 ガスB供給配管
6 流量調節器B
7 薄膜堆積プロセス室
8 排気ポンプ
9 基板
10 隔膜圧力計
11 水晶振動式圧力計
12 濃度演算部
13 流量制御装置
1 Gas A gas supply source 2 Gas A supply piping 3 Flow rate regulator A
4 Gas B gas supply source 5 Gas B supply piping 6 Flow controller B
7 Thin Film Deposition Process Chamber 8 Exhaust Pump 9 Substrate 10 Diaphragm Pressure Gauge 11 Quartz Vibrating Pressure Gauge 12 Concentration Calculation Unit 13 Flow Control Device
Claims (18)
圧力だけでなく物性値にも敏感な圧力測定装置と前記物性値に影響を受けない圧力測定装置の両測定値からの混合気体の圧力値を入力して物性値を求め、
前記求めた物性値からあらかじめ取得している組成に対応した物性値のデータベースに基づき組成を求め、
基板上に薄膜を堆積させる薄膜堆積プロセス室に供給する複数のガス供給装置の流量を、各々独立して前記組成により制御することを特徴とする混合ガスによる薄膜作製方法。 Using a gas mixture that undergoes a composition change whose composition is uniquely defined from the viscosity,
Input the pressure value of the mixed gas from both the pressure measurement device sensitive not only to the pressure but also the physical property value and the pressure measurement device not affected by the physical property value to obtain the physical property value,
Obtain a composition based on a database of physical property values corresponding to the composition obtained in advance from the obtained physical property values,
A method for producing a thin film using a mixed gas, wherein the flow rates of a plurality of gas supply devices that supply a thin film deposition process chamber for depositing a thin film on a substrate are each independently controlled by the composition.
流量制御装置により制御される流量調節器を備え、ガス供給源から前記薄膜プロセス室に異なった成分のガスを供給するガス供給系統を各々独立して複数備えたガス供給装置と、
前記薄膜堆積プロセス室内の成分ガスの組成を計測する濃度センサーと、
前記濃度センサーの出力により前記薄膜堆積プロセス室内の前記成分ガスの実際の濃度を演算する濃度演算部とを備え、
前記流量制御装置は、前記濃度演算部からの濃度値を元に流量調節器を制御することを特徴とする混合ガスによる薄膜作製装置。 A thin film deposition process chamber for depositing a thin film on a substrate;
A gas supply device including a flow rate controller controlled by a flow rate control device, and a plurality of gas supply systems each independently supplying gas of different components from a gas supply source to the thin film process chamber;
A concentration sensor for measuring the composition of component gases in the thin film deposition process chamber;
A concentration calculation unit that calculates an actual concentration of the component gas in the thin film deposition process chamber by an output of the concentration sensor;
The flow rate control device controls a flow rate controller based on a concentration value from the concentration calculation unit, and is a thin film production device using a mixed gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005058402A JP2006241516A (en) | 2005-03-03 | 2005-03-03 | Production method for thin film by gaseous mixture and apparatus for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005058402A JP2006241516A (en) | 2005-03-03 | 2005-03-03 | Production method for thin film by gaseous mixture and apparatus for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006241516A true JP2006241516A (en) | 2006-09-14 |
Family
ID=37048214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005058402A Pending JP2006241516A (en) | 2005-03-03 | 2005-03-03 | Production method for thin film by gaseous mixture and apparatus for the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006241516A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008240119A (en) * | 2007-03-28 | 2008-10-09 | Tokyo Electron Ltd | Method for feeding gas, gas feeder, semiconductor fabrication apparatus, and storage medium |
EP2667276A1 (en) * | 2012-05-24 | 2013-11-27 | Air Products And Chemicals, Inc. | Method of, and apparatus for, providing a gas mixture |
CN104303126A (en) * | 2012-05-24 | 2015-01-21 | 气体产品与化学公司 | Method of, and apparatus for, providing gas mixture |
JP2016151433A (en) * | 2015-02-16 | 2016-08-22 | 大陽日酸株式会社 | Gas analysis method, gas analysis device, and helium liquefaction system |
US9441997B2 (en) | 2012-05-24 | 2016-09-13 | Air Products And Chemicals, Inc. | Method of, and apparatus for, measuring the physical properties of two-phase fluids |
US9448090B2 (en) | 2012-05-24 | 2016-09-20 | Air Products And Chemicals, Inc. | Method of, and apparatus for, measuring the mass flow rate of a gas |
US9448094B2 (en) | 2010-11-29 | 2016-09-20 | Air Products And Chemicals, Inc. | Method of and apparatus for measuring the mass flow rate of a gas |
US9459191B2 (en) | 2010-11-29 | 2016-10-04 | Air Products And Chemicals, Inc. | Method of and apparatus for measuring the molecular weight of a gas |
US9804010B2 (en) | 2012-05-24 | 2017-10-31 | Air Products And Chemicals, Inc. | Method of, and apparatus for, regulating the mass flow rate of a gas |
US10151627B2 (en) | 2012-08-10 | 2018-12-11 | Skorpios Technologies, Inc. | Method and system for performing testing of photonic devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0562031U (en) * | 1992-01-23 | 1993-08-13 | 日本電気株式会社 | Vapor phase growth equipment |
JP2004198328A (en) * | 2002-12-20 | 2004-07-15 | National Institute Of Advanced Industrial & Technology | Method and apparatus for measuring composition of multi-component mixed gas |
-
2005
- 2005-03-03 JP JP2005058402A patent/JP2006241516A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0562031U (en) * | 1992-01-23 | 1993-08-13 | 日本電気株式会社 | Vapor phase growth equipment |
JP2004198328A (en) * | 2002-12-20 | 2004-07-15 | National Institute Of Advanced Industrial & Technology | Method and apparatus for measuring composition of multi-component mixed gas |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008240119A (en) * | 2007-03-28 | 2008-10-09 | Tokyo Electron Ltd | Method for feeding gas, gas feeder, semiconductor fabrication apparatus, and storage medium |
WO2008123309A1 (en) * | 2007-03-28 | 2008-10-16 | Tokyo Electron Limited | Gas supply method and gas supply device |
US9459191B2 (en) | 2010-11-29 | 2016-10-04 | Air Products And Chemicals, Inc. | Method of and apparatus for measuring the molecular weight of a gas |
US9448094B2 (en) | 2010-11-29 | 2016-09-20 | Air Products And Chemicals, Inc. | Method of and apparatus for measuring the mass flow rate of a gas |
US9441997B2 (en) | 2012-05-24 | 2016-09-13 | Air Products And Chemicals, Inc. | Method of, and apparatus for, measuring the physical properties of two-phase fluids |
EP2667276A1 (en) * | 2012-05-24 | 2013-11-27 | Air Products And Chemicals, Inc. | Method of, and apparatus for, providing a gas mixture |
JP2015526653A (en) * | 2012-05-24 | 2015-09-10 | エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated | Method and apparatus for providing a gas mixture |
US9870007B2 (en) | 2012-05-24 | 2018-01-16 | Air Products And Chemicals, Inc. | Method of, and apparatus for, providing a gas mixture |
CN104303127A (en) * | 2012-05-24 | 2015-01-21 | 气体产品与化学公司 | Method of, and apparatus for, providing a gas mixture |
US9448090B2 (en) | 2012-05-24 | 2016-09-20 | Air Products And Chemicals, Inc. | Method of, and apparatus for, measuring the mass flow rate of a gas |
WO2013174954A1 (en) * | 2012-05-24 | 2013-11-28 | Air Products And Chemicals, Inc. | Method of, and apparatus for, providing a gas mixture |
CN104303126A (en) * | 2012-05-24 | 2015-01-21 | 气体产品与化学公司 | Method of, and apparatus for, providing gas mixture |
TWI582328B (en) * | 2012-05-24 | 2017-05-11 | 氣體產品及化學品股份公司 | Method of, and apparatus for, providing a gas mixture |
US9690304B2 (en) | 2012-05-24 | 2017-06-27 | Air Products And Chemicals, Inc. | Method of, and apparatus for, providing a gas mixture |
US9804010B2 (en) | 2012-05-24 | 2017-10-31 | Air Products And Chemicals, Inc. | Method of, and apparatus for, regulating the mass flow rate of a gas |
US10151627B2 (en) | 2012-08-10 | 2018-12-11 | Skorpios Technologies, Inc. | Method and system for performing testing of photonic devices |
US10732029B2 (en) | 2012-08-10 | 2020-08-04 | Skorpios Technologies, Inc. | Diagnostic waveguide for optical chip testing |
JP2016151433A (en) * | 2015-02-16 | 2016-08-22 | 大陽日酸株式会社 | Gas analysis method, gas analysis device, and helium liquefaction system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006241516A (en) | Production method for thin film by gaseous mixture and apparatus for the same | |
JP5647083B2 (en) | Raw material vaporization supply device with raw material concentration detection mechanism | |
KR101626619B1 (en) | Material gas concentration control system | |
JP4843671B2 (en) | System for producing a primary standard gas mixture | |
KR100772802B1 (en) | Method for measuring fluid component concentrations and apparatus therefor | |
JP5093685B2 (en) | Equipment for measuring the gas decomposition rate of plasma equipment | |
JP5652960B2 (en) | Raw material vaporizer | |
US5261452A (en) | Critical orifice dilution system and method | |
TW201643382A (en) | MEMS thermal flow sensor with compensation for fluid composition | |
US4936877A (en) | Dopant delivery system for semiconductor manufacture | |
JPH1194603A (en) | Method for monitoring actual flow of gas to vacuum facility, and vacuum processing device | |
JPH06115903A (en) | Water-generation method | |
WO2004066048A1 (en) | Flow control method for clustering fluid and flow control device for clustering fluid | |
JP7131561B2 (en) | Mass flow control system and semiconductor manufacturing equipment and vaporizer including the system | |
JPH01199133A (en) | Gas generation apparatus and method | |
Brewer et al. | EURAMET 1002: International comparability in measurements of trace water vapour. | |
Johansson et al. | Hydrogen adsorbed on palladium during water formation studied with palladium membranes | |
US5526122A (en) | Method for determining the mass flow of gases on the basis of optical absorption and employment of said method | |
KR20140034280A (en) | Compensating concentration uncertainity | |
US20230127693A1 (en) | Binary Gas Purity Analyzer | |
WO2004057309A1 (en) | Method of measuring composition of multicomponent mixture gas and composition measuring apparatus | |
JP3952087B2 (en) | Moisture generation method and moisture generation apparatus | |
CN110823999B (en) | Method for determining, adjusting and using gas components | |
JPH02273535A (en) | Gas flow control device | |
JP2009059483A (en) | Method and apparatus for measuring variation in plasma component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100408 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100420 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20100817 Free format text: JAPANESE INTERMEDIATE CODE: A02 |