Nothing Special   »   [go: up one dir, main page]

JP2006170541A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006170541A
JP2006170541A JP2004364689A JP2004364689A JP2006170541A JP 2006170541 A JP2006170541 A JP 2006170541A JP 2004364689 A JP2004364689 A JP 2004364689A JP 2004364689 A JP2004364689 A JP 2004364689A JP 2006170541 A JP2006170541 A JP 2006170541A
Authority
JP
Japan
Prior art keywords
pipe
valve
outdoor heat
port
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004364689A
Other languages
Japanese (ja)
Inventor
Michiyoshi Kusaka
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2004364689A priority Critical patent/JP2006170541A/en
Priority to KR1020050031840A priority patent/KR100589913B1/en
Publication of JP2006170541A publication Critical patent/JP2006170541A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple constitution capable of realizing cooling/heating mixed operation, and efficiently operating an outdoor unit with high efficiency in accordance with the difference between cooling capacity and heating capacity in an air conditioner comprising a plurality of indoor units. <P>SOLUTION: In this air conditioner 1, the plurality of indoor units 6 are connected with the outdoor unit 2. The outdoor unit 2 comprises a first outdoor heat exchanger 21 and a second outdoor heat exchanger 26, a second opening and closing valve 20 is mounted in a first pipe 18 connecting the first outdoor heat exchanger 21 and a four-way valve 13, and a second bypass pipe 23 is connected between the second opening and closing valve 20 and the first outdoor heat exchanger 21. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の室内機を備え、冷暖混在運転が可能な空気調和装置に関する。   The present invention relates to an air conditioner including a plurality of indoor units and capable of mixed cooling and heating operations.

複数の室内機が1つの室外機に並列に接続された空気調和機としては、圧縮機に対して、容量の異なる2つの室外熱交換器を並列に配置し、これら室外熱交換器を通流する冷媒の流れを3方弁、及び電磁弁で切り替え、運転状態となる室外熱交換器を選択すると共に、室外送風機の風量を段階的に切り替えて能力制御を行うものがある(例えば、特許文献1参照)。また、切換弁の数を削減した空気調和機としては、四方弁の第1のポートに圧縮機の吐出側の配管を接続し、第2のポートに2つの室外熱交換器を並列に接続し、第3のポートに室外機に接続される高圧ガス配管を接続し、第4のポートに冷媒を圧縮機に回収する配管を接続したものがある(例えば、特許文献2参照)。複数の室内機が全体として冷房運転を主体とするとき(冷房主体運転時)には、第1のポートと第2のポートとを接続させ、第3のポートと第4のポートとを接続させる。複数の室内機が全体として暖房運転を主体とするとき(暖房主体運転時)には、第1のポートと第3のポートとを接続させ、第2のポートと第4のポートとを接続させる。このような空気調和機では、切換弁の数を減少させることでコストの低減や、装置サイズの抑制を図ることができる。
特開平9−60994号公報 特開2004−332961号公報
As an air conditioner in which a plurality of indoor units are connected in parallel to one outdoor unit, two outdoor heat exchangers having different capacities are arranged in parallel to the compressor, and these outdoor heat exchangers are passed through. The refrigerant flow to be switched is switched by a three-way valve and a solenoid valve, and an outdoor heat exchanger that is in an operating state is selected, and the capacity control is performed by switching the air volume of the outdoor blower step by step (for example, Patent Documents) 1). Moreover, as an air conditioner with a reduced number of switching valves, the piping on the discharge side of the compressor is connected to the first port of the four-way valve, and two outdoor heat exchangers are connected in parallel to the second port. A high-pressure gas pipe connected to the outdoor unit is connected to the third port, and a pipe for collecting the refrigerant to the compressor is connected to the fourth port (for example, see Patent Document 2). When the plurality of indoor units mainly perform cooling operation (cooling-main operation), the first port and the second port are connected, and the third port and the fourth port are connected. . When a plurality of indoor units are mainly in heating operation (during heating-main operation), the first port and the third port are connected, and the second port and the fourth port are connected. . In such an air conditioner, the cost can be reduced and the size of the apparatus can be suppressed by reducing the number of switching valves.
Japanese Patent Laid-Open No. 9-60994 JP 2004-329661 A

しかしながら、特許文献1に開示されている空気調和機では、流路を切り替える切換弁が室外熱交換器ごとに必要であり、このような切換弁は、三方弁や、四方弁のように高価で、大型の弁であるので、装置が高コスト化、大型化するという問題があった。また、2つの室外熱交換器として容量の異なるものを使用すると、同一容量の一般的なマルチタイプの空気調和機に比べて異なる設計が必要になり、コストアップの原因となっていた。
特許文献2に開示されている空気調和機では、冷暖混在運転を行う際に、冷房運転する室外機の出力と、暖房運転する室外機との出力との差に応じて効率良く室外機を運転させることが望まれていた。
この発明は、このような事情に鑑みてなされたものであり、その目的とするところは、室内機を複数備える空気調和機において、冷暖混在運転を実現するための簡単な構成を提供すると共に、冷房能力と暖房能力の差に応じて、効率良く室外機を運転させることである。
However, the air conditioner disclosed in Patent Document 1 requires a switching valve for switching the flow path for each outdoor heat exchanger, and such a switching valve is expensive like a three-way valve or a four-way valve. Since the valve is a large valve, there is a problem that the device is expensive and large. Further, when two outdoor heat exchangers having different capacities are used, a different design is required as compared with a general multi-type air conditioner having the same capacity, which causes an increase in cost.
In the air conditioner disclosed in Patent Document 2, when performing the cooling and heating mixed operation, the outdoor unit is efficiently operated according to the difference between the output of the outdoor unit that performs the cooling operation and the output of the outdoor unit that performs the heating operation. It was hoped that.
The present invention has been made in view of such circumstances, and an object thereof is to provide a simple configuration for realizing a cooling and heating mixed operation in an air conditioner including a plurality of indoor units, The outdoor unit is operated efficiently in accordance with the difference between the cooling capacity and the heating capacity.

上記の課題を解決する本発明の請求項1に係る発明は、圧縮機、四方弁、第1室外熱交換器、第2室外熱交換器及び膨張弁を備えた室外機と、室内熱交換機、及び膨張弁を備えた複数の室内機と、前記室内機と前記室外機とを冷暖切換装置を介して接続する高圧ガス配管、低圧ガス配管、及び液配管とを有し、前記四方弁において、その第1のポートには前記圧縮機が接続され、第2のポートには前記第1、第2室外熱交換器が並列に接続された後に前記膨張弁を介して前記液配管が接続され、第3のポートには前記高圧ガス配管が接続され、第4のポートには前記低圧ガス配管に接続され、前記第2のポートと前記第1、第2室外熱交換器との間には第1バイパス配管が接続され、この第1バイパス配管は第1開閉弁が設けられると共に、前記高圧ガス配管に接続されており、前記第1バイパスの接続点と前記第1室外熱交換器との間には第2バイパス配管が接続され、この第2バイパス配管は前記第3のポートと前記高圧ガス配管の前記第1バイパス配管の接続点よりも前記第3のポート寄りに設けられた逆止弁との間に接続されており、複数の前記室内機が全体として冷房を主体として運転する時には前記第1、第2のポート同士と、前記第3、第4のポート同士がそれぞれ接続される一方で、暖房を主体として運転する時には、前記第1、第3のポート同士と、前記第2、第4のポート同士がそれぞれ接続されることを特徴とする空気調和機とした。
この空気調和機では、冷房主体運転時には、第2室外熱交換器を凝縮器として運転させて液冷媒を生成し、この液冷媒から、室内機側の蒸発能力と凝縮能力との差に相当する液冷媒を室内機に供給し、残りを第1室外熱交換器に供給してガス冷媒に変換し、第2バイパス配管を通って圧縮機に吸入させる。また、暖房主体運転時には、ガス冷媒の一部を第2バイパスを通して第1室外熱交換器に供給し、ここで生成される液冷媒を、室内機から第2室外熱交換器に供給される液冷媒と合流させる。
An invention according to claim 1 of the present invention that solves the above problems includes an outdoor unit including a compressor, a four-way valve, a first outdoor heat exchanger, a second outdoor heat exchanger, and an expansion valve, an indoor heat exchanger, And a plurality of indoor units provided with expansion valves, and a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe that connect the indoor unit and the outdoor unit via a cooling / heating switching device, The compressor is connected to the first port, and the liquid piping is connected to the second port via the expansion valve after the first and second outdoor heat exchangers are connected in parallel. The high-pressure gas pipe is connected to the third port, the fourth port is connected to the low-pressure gas pipe, and the second port and the first and second outdoor heat exchangers are connected to each other. 1 bypass pipe is connected, and this first bypass pipe is provided with a first on-off valve, The second bypass pipe is connected between the connection point of the first bypass and the first outdoor heat exchanger, and the second bypass pipe is connected to the third port. The high-pressure gas pipe is connected between a check valve provided closer to the third port than the connection point of the first bypass pipe, and the plurality of indoor units are operated mainly by cooling. While the first and second ports and the third and fourth ports are connected to each other, when operating mainly on heating, the first and third ports, and the The air conditioner is characterized in that the second and fourth ports are connected to each other.
In this air conditioner, during the cooling main operation, the second outdoor heat exchanger is operated as a condenser to generate liquid refrigerant, which corresponds to the difference between the evaporation capacity and the condensation capacity on the indoor unit side from this liquid refrigerant. Liquid refrigerant is supplied to the indoor unit, and the remainder is supplied to the first outdoor heat exchanger to be converted into gas refrigerant, which is then sucked into the compressor through the second bypass pipe. Further, during heating-main operation, a part of the gas refrigerant is supplied to the first outdoor heat exchanger through the second bypass, and the liquid refrigerant generated here is supplied to the second outdoor heat exchanger from the indoor unit. Merge with refrigerant.

請求項2に係る発明は、請求項1に記載の空気調和機において、前記第2のポートから前記第1室外熱交換器に接続される配管において、前記第1バイパス配管の接続点から前記第2バイパス配管の接続点の間に第2開閉弁を設けると共に、前記第2バイパス配管に第3開閉弁を設けたことを特徴とする。
この空気調和機では、冷房主体運転時、又は暖房主体運転時には、第1バイパス配管の接続点から第2バイパス配管の接続点の間の第2開閉弁を閉じて、第2バイパス配管の第3開閉弁を開き、各室外熱交換器に冷媒を順番に通流させる。また、冷房運転時や、暖房運転時には、第1バイパス配管の接続点から第2バイパス配管の接続点の間の第2開閉弁を開いて、第2バイパス配管の第3開閉弁を閉じ、両室外熱交換器のそれぞれに同じ向きで冷媒を通流させる。
The invention according to claim 2 is the air conditioner according to claim 1, wherein in the pipe connected from the second port to the first outdoor heat exchanger, the first bypass pipe is connected to the first bypass pipe. A second on-off valve is provided between the connection points of the two bypass pipes, and a third on-off valve is provided on the second bypass pipe.
In this air conditioner, during the cooling main operation or the heating main operation, the second on-off valve between the connection point of the first bypass pipe and the connection point of the second bypass pipe is closed, and the third bypass pipe is connected. Open the on-off valve and allow the refrigerant to flow through each outdoor heat exchanger in turn. During cooling operation or heating operation, the second on-off valve between the connection point of the first bypass pipe and the connection point of the second bypass pipe is opened, and the third on-off valve of the second bypass pipe is closed. Let the refrigerant flow in the same direction to each of the outdoor heat exchangers.

請求項3に係る発明は、請求項1又は請求項2に記載の空気調和機において、前記膨張弁は、前記第1室外熱交換器に直接に接続され、冷媒の流量を調整可能な第1流量制御弁と、前記第2室外熱交換器に直接に接続され、冷媒の流量を調整可能な第2流量制御弁とであることを特徴とする
空気調和機では、例えば、冷房主体運転時には、第2室外熱交換器側の第2流量制御弁で流量制御を行う。室内機に供給する液冷媒を多くするときには、第2流量制御弁の開度を小さくする。
The invention according to claim 3 is the air conditioner according to claim 1 or claim 2, wherein the expansion valve is directly connected to the first outdoor heat exchanger, and the flow rate of the refrigerant is adjustable. In the air conditioner, which is a flow rate control valve and a second flow rate control valve that is directly connected to the second outdoor heat exchanger and capable of adjusting the flow rate of the refrigerant, The flow rate is controlled by the second flow rate control valve on the second outdoor heat exchanger side. When increasing the amount of liquid refrigerant supplied to the indoor unit, the opening of the second flow control valve is reduced.

請求項4に係る発明は、請求項2に記載の空気調和機において、冷房を主体として運転する時に、冷房運転をする前記室内機と、暖房運転をする前記室内機との運転容量差が所定の容量以下の場合に、前記第1、第3開閉弁を開き、前記第2開閉弁を閉じることを特徴とする。
この空気調和機では、圧縮機から吐出されるガス冷媒は、第2開閉弁が閉じているので、第1室外熱交換器には直接に流入せずに、第1バイパスと、第2室外熱交換器とに分流する。第2室外熱交換器で熱交換により形成された液冷媒は、一部が室内機に供給され、残りが第1室外熱交換器を通って、第2バイパス配管から圧縮機に回収される。このように第2室外熱交換器を凝縮器、第1室外熱交換器を蒸発器として運転させることで、室外機側の運転容量を、室内機側の運転容量差に合わせて減少させる。
According to a fourth aspect of the present invention, in the air conditioner according to the second aspect, when operating mainly with cooling, a difference in operating capacity between the indoor unit that performs cooling operation and the indoor unit that performs heating operation is predetermined. The first and third on-off valves are opened and the second on-off valve is closed when the capacity is equal to or less than the above capacity.
In this air conditioner, the gas refrigerant discharged from the compressor is not directly flown into the first outdoor heat exchanger because the second on-off valve is closed, so that the first bypass and the second outdoor heat are not directly flown into the first outdoor heat exchanger. Split to the exchanger. Part of the liquid refrigerant formed by heat exchange in the second outdoor heat exchanger is supplied to the indoor unit, and the rest passes through the first outdoor heat exchanger and is recovered from the second bypass pipe to the compressor. In this way, by operating the second outdoor heat exchanger as a condenser and the first outdoor heat exchanger as an evaporator, the operating capacity on the outdoor unit side is reduced according to the operating capacity difference on the indoor unit side.

請求項5に係る発明は、請求項2に記載の空気調和機において、暖房を主体として運転する時に、冷房運転をする前記室内機と、暖房運転をする前記室内機との運転容量差が所定の容量以下の場合に、前記第1、第2開閉弁を閉じ、前記第3開閉弁を開くことを特徴とする。
この空気調和機では、圧縮機から吐出されるガス冷媒が高圧ガス配管と、第2バイパスとに分流する。第2バイパス配管を通るガス冷媒は、第2開閉弁が閉じているので、第1室外熱交換器に流入する。第1室外熱交換器で熱交換によって形成された液冷媒は、室内機から回収される液冷媒と合流して第2室外熱交換器に流入し、ガス冷媒となる。このガス冷媒は、第1開閉弁が閉じていることから第1バイパス配管には流れずに、四方弁から圧縮機に回収される。このように第1室外熱交換器を凝縮器、第2室外熱交換器を蒸発器として運転させることで、室外機側の運転容量を、室内機側の運転容量差に合わせて減少させる。
According to a fifth aspect of the present invention, in the air conditioner of the second aspect, when operating mainly with heating, a difference in operating capacity between the indoor unit that performs cooling operation and the indoor unit that performs heating operation is predetermined. The first and second on-off valves are closed and the third on-off valve is opened when the capacity is equal to or less than the above capacity.
In this air conditioner, the gas refrigerant discharged from the compressor is divided into a high-pressure gas pipe and a second bypass. The gas refrigerant passing through the second bypass pipe flows into the first outdoor heat exchanger because the second on-off valve is closed. The liquid refrigerant formed by heat exchange in the first outdoor heat exchanger merges with the liquid refrigerant recovered from the indoor unit, flows into the second outdoor heat exchanger, and becomes a gas refrigerant. The gas refrigerant is recovered from the four-way valve to the compressor without flowing through the first bypass pipe because the first on-off valve is closed. In this way, by operating the first outdoor heat exchanger as a condenser and the second outdoor heat exchanger as an evaporator, the operating capacity on the outdoor unit side is reduced according to the operating capacity difference on the indoor unit side.

本発明によれば、複数の室内機が冷暖混在運転し、かつ室内機側の蒸発能力と凝縮能力との差が所定の容量以下となるときに、2つの室外熱交換器の一方を凝縮器、他方を蒸発器として運転させることで互いの能力を一部相殺させ、室外機全体としての凝縮能力、又は蒸発能力を小さくして、室内機側の能力差とバランスさせるようにしたので、各室内機の運転状況に応じて、効率良く運転させることができる。また、流路調整手段を開閉弁とすると、装置構成が簡略化し、装置の小型化、及び低コスト化が図れる。   According to the present invention, when a plurality of indoor units are mixed in a cooling and heating operation and the difference between the evaporation capacity and the condensation capacity on the indoor unit side is equal to or less than a predetermined capacity, one of the two outdoor heat exchangers is connected to the condenser. Since the other is operated as an evaporator, each other's ability is partially offset, and the condensation capacity of the outdoor unit as a whole, or the evaporation ability is reduced to balance with the capacity difference on the indoor unit side. It can be operated efficiently according to the operation status of the indoor unit. Further, when the flow path adjusting means is an on-off valve, the device configuration can be simplified, and the size and cost of the device can be reduced.

発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1に示すように、この実施形態に係る空気調和装置1は、室外機2を1つ有し、この室外機2に高圧ガス配管3、液配管4、低圧ガス配管5、及び冷暖切換機35を介して複数の室内機6が並列に接続され、室内機群7が形成されている。
The best mode for carrying out the invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the air conditioner 1 according to this embodiment has one outdoor unit 2, and the outdoor unit 2 includes a high-pressure gas pipe 3, a liquid pipe 4, a low-pressure gas pipe 5, and a cooling / heating switching machine. A plurality of indoor units 6 are connected in parallel via 35 to form an indoor unit group 7.

室外機2は、圧縮機10を有し、圧縮機10の吐出配管11は、オイルセパレータ12を介して、四方弁13の第1のポート13Aが接続されている。四方弁13は、不図示の制御装置の切り替え制御によって流路を切り替え可能になっており、図1では第1のポート13Aと、第2のポート13Bとが接続し、第3のポート13Cと第4のポート13Dとが接続しているが、第1のポート13Aと、第3のポート13Cとを接続し、第2のポート13Bと第4のポート13Dとを接続させることもできる。
四方弁13の第2のポート13Bには、配管14が接続されており、この配管14の途中には、第1バイパス配管15が接続されており、この第1バイパス配管15は、順番に、電磁弁からなる第1開閉弁16と、逆止弁17とが設けられた後に、高圧ガス配管3に接続されている。逆止弁17は、高圧ガス配管3側からのガス冷媒の逆流を防止するように設定されている。なお、高圧ガス配管3は、四方弁13の第3のポート13Cと、各室外機6との間に配設されている配管である。
The outdoor unit 2 includes a compressor 10, and a discharge pipe 11 of the compressor 10 is connected to a first port 13 </ b> A of a four-way valve 13 through an oil separator 12. The four-way valve 13 can switch the flow path by switching control of a control device (not shown). In FIG. 1, the first port 13A and the second port 13B are connected, and the third port 13C Although the fourth port 13D is connected, it is also possible to connect the first port 13A and the third port 13C and connect the second port 13B and the fourth port 13D.
A pipe 14 is connected to the second port 13B of the four-way valve 13, and a first bypass pipe 15 is connected in the middle of the pipe 14, and the first bypass pipe 15 is in turn, A first on-off valve 16 made of an electromagnetic valve and a check valve 17 are provided and then connected to the high-pressure gas pipe 3. The check valve 17 is set so as to prevent the backflow of the gas refrigerant from the high-pressure gas pipe 3 side. The high-pressure gas pipe 3 is a pipe disposed between the third port 13C of the four-way valve 13 and each outdoor unit 6.

さらに、配管14には、第1の配管18と、第2の配管19とが接続されており、第1の配管18中には、流路切換手段として機能する第2開閉弁20と、第1室外熱交換器21と、流量制御弁としての第1膨張弁22とが直列に配設されている。第2開閉弁と、第1室外熱交換器21との間には、第2バイパス配管23が接続されており、この第2バイパス配管23には、流路切換手段である第3開閉弁24が配設された後に、高圧ガス配管3の四方弁13側に接続されている。なお、各開閉弁20,24には、全閉可能な電磁弁を用いることができる。また、高圧ガス配管3には、第1バイパス配管15の接続点と第2バイパス配管23の接続点との間に、逆止弁25が配設されている。この逆止弁25は、室内機6側からのガス冷媒の逆流を防止するように設定されている。   Furthermore, a first pipe 18 and a second pipe 19 are connected to the pipe 14, and in the first pipe 18, a second on-off valve 20 that functions as a flow path switching means, The 1 outdoor heat exchanger 21 and the 1st expansion valve 22 as a flow control valve are arrange | positioned in series. A second bypass pipe 23 is connected between the second on-off valve and the first outdoor heat exchanger 21, and the second on-off pipe 23 is a third on-off valve 24 serving as a flow path switching unit. Is disposed on the four-way valve 13 side of the high-pressure gas pipe 3. In addition, each on-off valve 20 and 24 can use the electromagnetic valve which can be fully closed. Further, a check valve 25 is disposed in the high-pressure gas pipe 3 between the connection point of the first bypass pipe 15 and the connection point of the second bypass pipe 23. This check valve 25 is set so as to prevent the backflow of the gas refrigerant from the indoor unit 6 side.

また、第2の配管19には、第2室外熱交換器26と、流量調整弁である第2膨張弁27とが直列に配設された後に、第1の配管18と合流している。合流後の配管28は、レシーバタンク29を介して液配管4に接続されている。
さらに、四方弁13の第4のポート13Dには、配管30が接続されており、この配管30は、低圧ガス配管5と合流した後に、アキュームレータ31を介して圧縮機10の吸入配管32に接続されている。
The second pipe 19 is joined with the first pipe 18 after a second outdoor heat exchanger 26 and a second expansion valve 27 that is a flow rate adjusting valve are arranged in series. The joined pipe 28 is connected to the liquid pipe 4 via the receiver tank 29.
Further, a pipe 30 is connected to the fourth port 13D of the four-way valve 13, and this pipe 30 joins the low-pressure gas pipe 5 and then connects to the suction pipe 32 of the compressor 10 via the accumulator 31. Has been.

ここで、室外機2から室内機群7に向かって延設される高圧ガス配管3、液配管4、及び低圧ガス配管5は、冷暖切換機35内で分岐した後に各室内機6に接続されている。高圧ガス配管3の分岐配管3Aには、開閉弁36が設けられている。低圧ガス配管5の分岐配管5Aには、開閉弁37が設けられている。これら分岐配管3Aと、分岐配管5Aとは、一本ずつ合流し、室内機6の室内熱交換器38の一端側に接続されている。液配管4の分岐配管4Aには、室内機6内で膨張弁39が設けられており、室内熱交換機38の他端側に接続されている。   Here, the high-pressure gas pipe 3, the liquid pipe 4, and the low-pressure gas pipe 5 extending from the outdoor unit 2 toward the indoor unit group 7 are connected to the indoor units 6 after branching in the cooling / heating switching machine 35. ing. The branch pipe 3 </ b> A of the high-pressure gas pipe 3 is provided with an on / off valve 36. An open / close valve 37 is provided in the branch pipe 5 </ b> A of the low-pressure gas pipe 5. These branch pipes 3 </ b> A and branch pipes 5 </ b> A join one by one and are connected to one end side of the indoor heat exchanger 38 of the indoor unit 6. The branch pipe 4 </ b> A of the liquid pipe 4 is provided with an expansion valve 39 in the indoor unit 6 and is connected to the other end side of the indoor heat exchanger 38.

次に、この実施の形態の作用について説明する。なお、この空気調和装置1では、複数の室内機6の全てが冷房となる冷房運転と、全てが暖房となる暖房運転と、室内機6ごとに冷房運転と暖房運転とが混在する冷暖混在運転とを実施することができる。冷暖混在運転の場合には、主に冷房主体運転、又は暖房主体運転を実施することができる。冷房主体運転とは、冷房運転が支配的、つまり室内機群7の蒸発能力の合計値の方が凝縮能力の合計値よりも大きくなる運転である。暖房主体運転とは、暖房運転が支配的、つまり室内機群7の凝縮能力の合計値の方が蒸発能力の合計値よりも大きくなる運転である。   Next, the operation of this embodiment will be described. In the air conditioner 1, a cooling operation in which all of the plurality of indoor units 6 are cooled, a heating operation in which all of the indoor units 6 are heated, and a cooling / heating mixed operation in which the cooling operation and the heating operation are mixed for each indoor unit 6. And can be implemented. In the case of the cooling and heating mixed operation, the cooling main operation or the heating main operation can be mainly performed. The cooling main operation is an operation in which the cooling operation is dominant, that is, the total value of the evaporation capacity of the indoor unit group 7 is larger than the total value of the condensation capacity. The heating main operation is an operation in which the heating operation is dominant, that is, the total value of the condensation capacity of the indoor unit group 7 is larger than the total value of the evaporation capacity.

まず、冷房運転時には、四方弁13を第1のポート13Aと第2のポート13Bとが接続するように切り換え、第1、第3開閉弁16,24を閉じ、第2開閉弁20を開く。さらに、各膨張弁22,27を所定の同じ開度に設定する。冷暖切換機35では、開閉弁36を全て閉じ、開閉弁37を全て開く。圧縮機10から吐出される高圧のガス冷媒は、2つの室外熱交換機21,26のそれぞれを通り、高圧の液冷媒となり、各膨張弁22,27で減圧された後に、レシーバタンク29を経て液配管4を通り、冷房運転している各室内機6において膨張弁39でさらに減圧された後に室内熱交換機38を通って低圧のガス冷媒となり、このときに吸収する蒸発熱で室内を冷房する。ガス冷媒は、分岐配管5Aを通って低圧ガス配管5から圧縮機10に回収される。   First, during the cooling operation, the four-way valve 13 is switched so that the first port 13A and the second port 13B are connected, the first and third on-off valves 16 and 24 are closed, and the second on-off valve 20 is opened. Further, the expansion valves 22 and 27 are set to the same predetermined opening. In the cooling / heating switching machine 35, all the on-off valves 36 are closed and all the on-off valves 37 are opened. The high-pressure gas refrigerant discharged from the compressor 10 passes through each of the two outdoor heat exchangers 21 and 26 and becomes high-pressure liquid refrigerant. After being depressurized by the expansion valves 22 and 27, the liquid refrigerant passes through the receiver tank 29. In each indoor unit 6 that is in the cooling operation through the pipe 4, the pressure is further reduced by the expansion valve 39, and then the low-pressure gas refrigerant passes through the indoor heat exchanger 38, and the interior is cooled by the evaporation heat absorbed at this time. The gas refrigerant is recovered from the low-pressure gas pipe 5 to the compressor 10 through the branch pipe 5A.

暖房運転時には、四方弁13を第1のポート13Aと第3のポート13Cとが接続するように切り換え、第1、第3開閉弁16,24を閉じ、第2開閉弁20を開く。さらに、各膨張弁22,27を所定の同じ開度に設定する。冷暖切換機35では、開閉弁36を開き、開閉弁37を閉じる。圧縮機10から吐出される高圧のガス冷媒は、高圧ガス配管3から、分岐配管3Aを通って、暖房運転している各室内機6の室内熱交換機38において液冷媒となり、このときに凝縮熱を放出して室内を暖房する。液冷媒は、膨張弁39で減圧された後に、分岐配管4Aから液配管4を通ってレシーバタンク29に流入する。ここから第1の配管18、及び第2の配管19のそれぞれに分流し、各膨張弁22,27でさらに減圧された後に各室外熱交換器21,26で低圧のガス冷媒に変換され、四方弁13に第2のポート13Bから入り、第3のポート13Dから出て、配管20を通って、圧縮機10に回収される。   During the heating operation, the four-way valve 13 is switched so that the first port 13A and the third port 13C are connected, the first and third on-off valves 16 and 24 are closed, and the second on-off valve 20 is opened. Further, the expansion valves 22 and 27 are set to the same predetermined opening. In the cooling / heating switching machine 35, the on-off valve 36 is opened and the on-off valve 37 is closed. The high-pressure gas refrigerant discharged from the compressor 10 passes from the high-pressure gas pipe 3 through the branch pipe 3A and becomes a liquid refrigerant in the indoor heat exchanger 38 of each indoor unit 6 that is performing heating operation. To heat the room. The liquid refrigerant is decompressed by the expansion valve 39 and then flows from the branch pipe 4 </ b> A through the liquid pipe 4 into the receiver tank 29. From here, the flow is divided into the first pipe 18 and the second pipe 19, and further decompressed by the expansion valves 22 and 27, and then converted into a low-pressure gas refrigerant by the outdoor heat exchangers 21 and 26. The valve 13 enters from the second port 13B, exits from the third port 13D, passes through the pipe 20, and is recovered by the compressor 10.

さらに、冷房主体運転時の作用について、図2に示す具体例を参照して説明する。なお、図2には、各室内機6を区別するために室内機ごとに6Aから6Dの符号を付してある。また、室内機6Cが蒸発能力1.0HP(英馬力)で冷房運転し、室内機6Dが凝縮能力0.7HPで暖房運転する場合が図示されている。
冷暖切換機35では、室内機6C側の開閉弁37と、室内機6D側の開閉弁36とが開き、他の開閉弁36,37は全て閉じる。室内機6Cでは、液配管4の分岐配管4Aから液冷媒が供給され、熱交換によって室内を冷房し、低圧のガス冷媒を分岐配管5Aを通して低圧ガス配管5に排出する。室内機6Dでは、高圧ガス配管3からガス冷媒が供給され、熱交換によって室内を暖房し、液冷媒を分岐配管4Aを通して液配管4に排出する。この結果、室内機6Cで1.0HP相当の液冷媒を消費するのに対して、室内機6Dで0.7HP相当の液冷媒を生成するので、両者の能力差である0.3HP相当の液冷媒が不足する。この液冷媒の不足分を室外機2から供給すれば良いが、通常、第1、第2室外熱交換器21,26の容量は、大きく設計されており、例えば、それぞれ3HPに相当する。このような場合には、いずれの室外熱交換器21,26の能力も過大であり、例えば、いずれかの室外熱交換器21,26を0.3HPの凝縮器として運転すると、熱バランスが崩れて、運転効率が下がってしまう。
Further, the operation during the cooling main operation will be described with reference to a specific example shown in FIG. In FIG. 2, in order to distinguish each indoor unit 6, reference numerals 6A to 6D are assigned to the indoor units. Further, the case where the indoor unit 6C performs a cooling operation with an evaporation capacity of 1.0 HP (Hybrid horsepower) and the indoor unit 6D performs a heating operation with a condensation capacity of 0.7 HP is illustrated.
In the cooling / heating switching machine 35, the opening / closing valve 37 on the indoor unit 6C side and the opening / closing valve 36 on the indoor unit 6D side are opened, and the other opening / closing valves 36, 37 are all closed. In the indoor unit 6C, the liquid refrigerant is supplied from the branch pipe 4A of the liquid pipe 4, the room is cooled by heat exchange, and the low-pressure gas refrigerant is discharged to the low-pressure gas pipe 5 through the branch pipe 5A. In the indoor unit 6D, the gas refrigerant is supplied from the high-pressure gas pipe 3, the room is heated by heat exchange, and the liquid refrigerant is discharged to the liquid pipe 4 through the branch pipe 4A. As a result, liquid refrigerant equivalent to 1.0 HP is consumed in the indoor unit 6C, whereas liquid refrigerant equivalent to 0.7 HP is generated in the indoor unit 6D. Therefore, a liquid equivalent to 0.3 HP, which is a difference in capacity between the two, is generated. Insufficient refrigerant. Although the shortage of the liquid refrigerant may be supplied from the outdoor unit 2, the capacities of the first and second outdoor heat exchangers 21 and 26 are normally designed to be large, and each corresponds to, for example, 3 HP. In such a case, the capacity of any of the outdoor heat exchangers 21 and 26 is excessive. For example, when any of the outdoor heat exchangers 21 and 26 is operated as a 0.3 HP condenser, the heat balance is lost. As a result, the operating efficiency is lowered.

このため、室外機2は、四方弁13を第1のポート13Aと第2のポート13Bとが接続するように切り換える。さらに、第1開閉弁16を開き、第2開閉弁20を閉じ、第3開閉弁24を開く。圧縮機10からの高圧のガス冷媒は、第1バイパス配管15と、第2の配管19とに分流し、それぞれ高圧ガス配管3と、第2室外熱交換器26とに供給される。第2室外熱交換器26で生成された高圧の液冷媒は、液配管4と、第1室外熱交換器21とに分流し、第1室外熱交換器21では低圧のガス冷媒が生成される。そして、このガス冷媒を第2バイパス配管23から四方弁13、配管30を経て圧縮機10に回収する。この際に、第2膨張弁27を全開にし、第1膨張弁22で減圧、及び流量制御を行い、第2室外熱交換器26を凝縮能力3.0HPで運転させる一方で、第1室外熱交換器21を蒸発能力2.7HPで運転させる。その結果、両室外熱交換器21,26の能力差0.3HPに相当する液冷媒が余る状態、つまり室外機2全体としての凝縮能力が0.3HPになり、室外機3から供給される液冷媒によって、前記した室内機6C,6D側の液冷媒の不足分が充足される。なお、圧縮機10から吐出される高圧のガス冷媒は、第1バイパス配管15を通って、高圧ガス配管3から室外機6Dに供給されるが、高圧ガス配管の四方弁13側には、逆止弁25が設けられているので、第1バイパス配管15を流れる高圧のガス冷媒と、第2バイパス配管23を流れる低圧のガス冷媒とが混合されることはない。また、このような冷房主体運転においては、圧縮機10、高圧ガス配管3、各室内機6C,6D、液配管4、低圧ガス配管5を循環する経路が第1冷媒循環回路となり、両室外熱交換器21,26を通る経路が第2冷媒循環回路となる。   Therefore, the outdoor unit 2 switches the four-way valve 13 so that the first port 13A and the second port 13B are connected. Further, the first on-off valve 16 is opened, the second on-off valve 20 is closed, and the third on-off valve 24 is opened. The high-pressure gas refrigerant from the compressor 10 is divided into the first bypass pipe 15 and the second pipe 19 and supplied to the high-pressure gas pipe 3 and the second outdoor heat exchanger 26, respectively. The high-pressure liquid refrigerant generated by the second outdoor heat exchanger 26 is divided into the liquid pipe 4 and the first outdoor heat exchanger 21, and the first outdoor heat exchanger 21 generates low-pressure gas refrigerant. . Then, the gas refrigerant is recovered from the second bypass pipe 23 to the compressor 10 through the four-way valve 13 and the pipe 30. At this time, the second expansion valve 27 is fully opened, the first expansion valve 22 is depressurized and the flow rate is controlled, and the second outdoor heat exchanger 26 is operated with a condensation capacity of 3.0 HP. The exchanger 21 is operated with an evaporation capacity of 2.7 HP. As a result, the liquid refrigerant corresponding to the capacity difference of 0.3 HP between the outdoor heat exchangers 21 and 26 remains, that is, the condensation capacity of the outdoor unit 2 as a whole becomes 0.3 HP, and the liquid supplied from the outdoor unit 3 The shortage of liquid refrigerant on the indoor units 6C and 6D side described above is satisfied by the refrigerant. The high-pressure gas refrigerant discharged from the compressor 10 passes through the first bypass pipe 15 and is supplied from the high-pressure gas pipe 3 to the outdoor unit 6D. Since the stop valve 25 is provided, the high-pressure gas refrigerant flowing through the first bypass pipe 15 and the low-pressure gas refrigerant flowing through the second bypass pipe 23 are not mixed. In such cooling-main operation, the path circulating through the compressor 10, the high-pressure gas pipe 3, the indoor units 6C and 6D, the liquid pipe 4, and the low-pressure gas pipe 5 serves as the first refrigerant circulation circuit, and both outdoor heat The path passing through the exchangers 21 and 26 is the second refrigerant circulation circuit.

さらに、暖房主体運転時の作用について、図3に示す具体例を参照して説明する。なお、図3には、室内機6Aが蒸発能力0.7HPで冷房運転し、室内機6Bが凝縮能力1.0HPで暖房運転する場合が図示されている。
冷暖切換機35では、室内機6A側の開閉弁37と、室内機6B側の開閉弁36とが開き、他の開閉弁36,37は全て閉じる。室内機6Aでは、液配管4の分岐配管4Aから液冷媒が供給され、熱交換によって室内を冷房し、低圧のガス冷媒を分岐配管5Aを通して低圧ガス配管5に排出する。室内機6Bでは、高圧ガス配管3からガス冷媒が供給され、熱交換によって室内を暖房し、液冷媒を分岐配管4Aを通して液配管4に排出する。この結果、室内機6Aで0.7HP相当の液冷媒を消費するのに対して、室内機6Bで1.0HP相当の液冷媒を生成するので、両者の能力差である0.3HP相当の液冷媒が過剰になる。この液冷媒の過剰分を室外機2で回収すれば良いが、前記と同様に、例えば、いずれかの室外熱交換器21,26を0.3HPの蒸発器として運転させると、熱バランスが崩れて、運転効率が下がってしまう。
Furthermore, the effect | action at the time of heating main operation | movement is demonstrated with reference to the specific example shown in FIG. FIG. 3 shows a case where the indoor unit 6A performs a cooling operation with an evaporation capacity of 0.7 HP, and the indoor unit 6B performs a heating operation with a condensation capacity of 1.0 HP.
In the cooling / heating switching machine 35, the open / close valve 37 on the indoor unit 6A side and the open / close valve 36 on the indoor unit 6B side are opened, and the other open / close valves 36 and 37 are all closed. In the indoor unit 6A, the liquid refrigerant is supplied from the branch pipe 4A of the liquid pipe 4, the room is cooled by heat exchange, and the low-pressure gas refrigerant is discharged to the low-pressure gas pipe 5 through the branch pipe 5A. In the indoor unit 6B, the gas refrigerant is supplied from the high-pressure gas pipe 3, the room is heated by heat exchange, and the liquid refrigerant is discharged to the liquid pipe 4 through the branch pipe 4A. As a result, liquid refrigerant equivalent to 0.7 HP is consumed in the indoor unit 6A, whereas liquid refrigerant equivalent to 1.0 HP is generated in the indoor unit 6B. Therefore, a liquid equivalent to 0.3 HP, which is a difference in capacity between the two, is generated. The refrigerant becomes excessive. The excess of the liquid refrigerant may be recovered by the outdoor unit 2. However, as described above, for example, if one of the outdoor heat exchangers 21 and 26 is operated as a 0.3 HP evaporator, the heat balance is lost. As a result, the operating efficiency is lowered.

このため、室外機2は、四方弁13を第1のポート13Aと第3のポート13Cとが接続するように切り換える。さらに、第1の開閉弁16、及び第2開閉弁20を閉じ、第3開閉弁24を開いて、圧縮機10からの高圧のガス冷媒を、高圧ガス配管3と、第2バイパス配管23とに分流させる。第2バイパス配管23を通流するガス冷媒は、第1室外熱交換器21で液冷媒となる。この液冷媒は、液配管4から回収される液冷媒と合流して、第2室外熱交換器26に供給され、低圧のガス冷媒となり、配管14、四方弁13、及び配管30を通って、圧縮機10に回収される。この際に、第1膨張弁22を全開にし、第2膨張弁27で減圧、及び流量制御を行い、第1室外熱交換器を凝縮能力2.7HPで運転させる一方で、第2室外熱交換器26を蒸発能力3.0HPで運転させると、室外機2のトータルとしての蒸発能力が0.3HPとなり、室内機6A,6Bで生じる液冷媒の過剰分を蒸発させることが可能になる。なお、このような暖房主体運転においては、圧縮機10、高圧ガス配管3、各室内機6A,6B、液配管4、低圧ガス配管5を循環する経路が第1冷媒循環回路となり、両室外熱交換器21,26を通る経路が第2冷媒循環回路となる。   For this reason, the outdoor unit 2 switches the four-way valve 13 so that the first port 13A and the third port 13C are connected. Further, the first on-off valve 16 and the second on-off valve 20 are closed, the third on-off valve 24 is opened, and the high-pressure gas refrigerant from the compressor 10 is supplied to the high-pressure gas pipe 3 and the second bypass pipe 23. To divert. The gas refrigerant flowing through the second bypass pipe 23 becomes a liquid refrigerant in the first outdoor heat exchanger 21. This liquid refrigerant merges with the liquid refrigerant recovered from the liquid pipe 4, is supplied to the second outdoor heat exchanger 26, becomes a low-pressure gas refrigerant, passes through the pipe 14, the four-way valve 13, and the pipe 30. It is recovered by the compressor 10. At this time, the first expansion valve 22 is fully opened, the second expansion valve 27 is depressurized and the flow rate is controlled, and the first outdoor heat exchanger is operated with a condensation capacity of 2.7 HP, while the second outdoor heat exchange is performed. When the chamber 26 is operated at an evaporation capacity of 3.0 HP, the total evaporation capacity of the outdoor unit 2 becomes 0.3 HP, and it becomes possible to evaporate excess liquid refrigerant generated in the indoor units 6A and 6B. In such a heating-main operation, a path that circulates the compressor 10, the high-pressure gas pipe 3, the indoor units 6A and 6B, the liquid pipe 4, and the low-pressure gas pipe 5 serves as a first refrigerant circulation circuit, and both outdoor heat The path passing through the exchangers 21 and 26 is the second refrigerant circulation circuit.

この実施の形態では、冷房運転時、又は暖房運転時に、並列に接続される第1、第2室外交換機21,26を有し、四方弁13で冷媒の流通方向を切り換えるように構成し、さらに第2バイパス配管23で第3のポート13Cと第1室外熱交換器21とを接続可能にし、圧縮機10からのガス冷媒を両室外熱交換器21,26に順番に通流させるようにした。したがって、両室外熱交換器21,26の一方を凝縮器とし、他方を蒸発器として用いることが可能になり、両室外熱交換器21,26の能力の一部を相殺させ、トータルとしての熱交換能力を小さくすることができる。これによって、冷暖混在運転時に、室内機6側の蒸発能力(冷房能力)と凝縮能力(暖房能力)の差が所定容量以下の場合でも、室内機6側と室外機2側とのバランスを保つことができる。この際に、第1室外熱交換器21と四方弁13の第2のポート13Bとの間に第2開閉弁20を設け、第2バイパス配管23に第3開閉弁24を設けたので、弁の開閉動作だけで流路を切り換えることができる。また、各室外熱交換器21,26ごとに第1、第2膨張弁22,27を設けたので、冷媒の圧力制御に加えて、各室外熱交換器21,26に供給される冷媒の量を制御することが可能になり、熱交換器の能力制御を容易に行うことができる。また、1つの四方弁13と、3つの開閉弁16,20,24によって、冷房運転と、暖房運転と、冷房主体運転と、暖房主体運転とを切り換えて実施することが可能であり、装置を小型化、かつ低コスト化することができる。   In this embodiment, it has the 1st, 2nd outdoor exchangers 21 and 26 connected in parallel at the time of cooling operation or heating operation, and it is constituted so that the circulation direction of the refrigerant may be switched by the four-way valve 13, The third port 13C and the first outdoor heat exchanger 21 can be connected by the second bypass pipe 23, and the gas refrigerant from the compressor 10 is sequentially passed through the outdoor heat exchangers 21 and 26. . Therefore, one of the outdoor heat exchangers 21 and 26 can be used as a condenser, and the other can be used as an evaporator, so that a part of the capacity of the outdoor heat exchangers 21 and 26 can be offset and the total heat The exchange capacity can be reduced. As a result, during the cooling and heating mixed operation, the balance between the indoor unit 6 side and the outdoor unit 2 side is maintained even when the difference between the evaporation capacity (cooling capacity) and the condensation capacity (heating capacity) on the indoor unit 6 side is equal to or less than a predetermined capacity. be able to. At this time, the second on-off valve 20 is provided between the first outdoor heat exchanger 21 and the second port 13B of the four-way valve 13, and the third on-off valve 24 is provided in the second bypass pipe 23. The flow path can be switched only by the opening / closing operation. Further, since the first and second expansion valves 22 and 27 are provided for each of the outdoor heat exchangers 21 and 26, in addition to the refrigerant pressure control, the amount of refrigerant supplied to the outdoor heat exchangers 21 and 26 It is possible to control the capacity of the heat exchanger. In addition, it is possible to switch between the cooling operation, the heating operation, the cooling main operation, and the heating main operation by one four-way valve 13 and three on-off valves 16, 20, and 24. Miniaturization and cost reduction can be achieved.

なお、本発明は前記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で応用することができる。
例えば、逆止弁17を設けずに、第1開閉弁16のみを設けても良い。
また、第1開閉弁16の代わりに、流量調整弁としての膨張弁を設け、各膨張弁22,27の代わりに、配管28中に膨張弁を1つ設けても同様の作用、及び効果が得られる。流路切換手段は、第1の配管18と第2バイパス配管23との接続点に設けられた三方弁にすることもできる。
The present invention is not limited to the above-described embodiment, and can be applied without departing from the spirit of the present invention.
For example, only the first on-off valve 16 may be provided without providing the check valve 17.
The same operation and effect can be obtained by providing an expansion valve as a flow rate adjusting valve instead of the first on-off valve 16 and providing one expansion valve in the pipe 28 instead of the expansion valves 22 and 27. can get. The flow path switching means may be a three-way valve provided at a connection point between the first pipe 18 and the second bypass pipe 23.

本発明の実施の形態に係る空気調和機のシステム構成を示す図である。It is a figure which shows the system configuration | structure of the air conditioner which concerns on embodiment of this invention. 冷房主体運転時の冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant at the time of cooling main operation. 暖房主体運転時の冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant at the time of heating main operation.

符号の説明Explanation of symbols

1 空気調和機
2 室外機
3 高圧ガス配管
4 液配管
5 低圧ガス配管
6、6A、6B、6C、6D 室内機
10 圧縮機
13 四方弁(切換弁)
13A 第1のポート
13B 第2のポート
13C 第3のポート
13D 第4のポート
14 配管
15 第1バイパス配管
20 第2開閉弁
21 第1室外熱交換器
22 第1膨張弁
23 第2バイパス配管
24 第3開閉弁
26 第2室外熱交換器
27 第2膨張弁

DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 High pressure gas piping 4 Liquid piping 5 Low pressure gas piping 6, 6A, 6B, 6C, 6D Indoor unit 10 Compressor 13 Four-way valve (switching valve)
13A 1st port 13B 2nd port 13C 3rd port 13D 4th port 14 Piping 15 1st bypass piping 20 2nd on-off valve 21 1st outdoor heat exchanger 22 1st expansion valve 23 2nd bypass piping 24 3rd on-off valve 26 2nd outdoor heat exchanger 27 2nd expansion valve

Claims (5)

圧縮機、四方弁、第1室外熱交換器、第2室外熱交換器及び膨張弁を備えた室外機と、室内熱交換機、及び膨張弁を備えた複数の室内機と、前記室内機と前記室外機とを冷暖切換装置を介して接続する高圧ガス配管、低圧ガス配管、及び液配管とを有し、
前記四方弁において、その第1のポートには前記圧縮機が接続され、第2のポートには前記第1、第2室外熱交換器が並列に接続された後に前記膨張弁を介して前記液配管が接続され、第3のポートには前記高圧ガス配管が接続され、第4のポートには前記低圧ガス配管に接続され、前記第2のポートと前記第1、第2室外熱交換器との間には第1バイパス配管が接続され、この第1バイパス配管は第1開閉弁が設けられると共に、前記高圧ガス配管に接続されており、前記第1バイパスの接続点と前記第1室外熱交換器との間には第2バイパス配管が接続され、この第2バイパス配管は前記第3のポートと前記高圧ガス配管の前記第1バイパス配管の接続点よりも前記第3のポート寄りに設けられた逆止弁との間に接続されており、複数の前記室内機が全体として冷房を主体として運転する時には前記第1、第2のポート同士と、前記第3、第4のポート同士がそれぞれ接続される一方で、暖房を主体として運転する時には、前記第1、第3のポート同士と、前記第2、第4のポート同士がそれぞれ接続されることを特徴とする空気調和機。
A compressor, a four-way valve, a first outdoor heat exchanger, a second outdoor heat exchanger, an outdoor unit provided with an expansion valve, an indoor heat exchanger, a plurality of indoor units provided with an expansion valve, the indoor unit and the A high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe that connect the outdoor unit via a cooling / heating switching device;
In the four-way valve, the first port is connected to the compressor, and the second port is connected to the first and second outdoor heat exchangers in parallel, and then the liquid is passed through the expansion valve. A pipe, a third port connected to the high-pressure gas pipe, a fourth port connected to the low-pressure gas pipe, the second port, the first and second outdoor heat exchangers, A first bypass pipe is connected between the first bypass pipe and the first on-off valve. The first bypass pipe is connected to the high-pressure gas pipe. The first bypass connection point and the first outdoor heat are connected to the first bypass pipe. A second bypass pipe is connected to the exchanger, and the second bypass pipe is provided closer to the third port than a connection point between the third port and the first bypass pipe of the high-pressure gas pipe. Connected to a non-return valve When the indoor unit is operated mainly as a cooling unit as a whole, the first and second ports are connected to each other, and the third and fourth ports are connected to each other. An air conditioner characterized in that the first and third ports are connected to the second and fourth ports, respectively.
前記第2のポートから前記第1室外熱交換器に接続される配管において、前記第1バイパス配管の接続点から前記第2バイパス配管の接続点の間に第2開閉弁を設けると共に、前記第2バイパス配管に第3開閉弁を設けたことを特徴とする請求項1に記載の空気調和機。   In a pipe connected from the second port to the first outdoor heat exchanger, a second on-off valve is provided between a connection point of the first bypass pipe and a connection point of the second bypass pipe, and the first The air conditioner according to claim 1, wherein a third on-off valve is provided in the 2-bypass pipe. 前記膨張弁は、前記第1室外熱交換器に直接に接続され、冷媒の流量を調整可能な第1流量制御弁と、前記第2室外熱交換器に直接に接続され、冷媒の流量を調整可能な第2流量制御弁とであることを特徴とする請求項1又は請求項2に記載の空気調和機。   The expansion valve is directly connected to the first outdoor heat exchanger and is directly connected to the first flow control valve capable of adjusting the flow rate of the refrigerant and the second outdoor heat exchanger, and adjusts the flow rate of the refrigerant. The air conditioner according to claim 1 or 2, wherein the air conditioner is a possible second flow control valve. 冷房を主体として運転する時に、冷房運転をする前記室内機と、暖房運転をする前記室内機との運転容量差が所定の容量以下の場合に、前記第1、第3開閉弁を開き、前記第2開閉弁を閉じることを特徴とする請求項2に記載の空気調和機。   When operating mainly with cooling, when the operating capacity difference between the indoor unit that performs cooling operation and the indoor unit that performs heating operation is equal to or less than a predetermined capacity, the first and third on-off valves are opened, The air conditioner according to claim 2, wherein the second on-off valve is closed. 暖房を主体として運転する時に、冷房運転をする前記室内機と、暖房運転をする前記室内機との運転容量差が所定の容量以下の場合に、前記第1、第2開閉弁を閉じ、前記第3開閉弁を開くことを特徴とする請求項2に記載の空気調和機。


When an operation capacity difference between the indoor unit performing the cooling operation and the indoor unit performing the heating operation is equal to or less than a predetermined capacity when operating mainly with heating, the first and second on-off valves are closed, The air conditioner according to claim 2, wherein the third on-off valve is opened.


JP2004364689A 2004-12-16 2004-12-16 Air conditioner Pending JP2006170541A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004364689A JP2006170541A (en) 2004-12-16 2004-12-16 Air conditioner
KR1020050031840A KR100589913B1 (en) 2004-12-16 2005-04-18 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364689A JP2006170541A (en) 2004-12-16 2004-12-16 Air conditioner

Publications (1)

Publication Number Publication Date
JP2006170541A true JP2006170541A (en) 2006-06-29

Family

ID=36671489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364689A Pending JP2006170541A (en) 2004-12-16 2004-12-16 Air conditioner

Country Status (2)

Country Link
JP (1) JP2006170541A (en)
KR (1) KR100589913B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156493A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Heating/cooling simultaneous operation type air conditioner
CN103759455A (en) * 2014-01-27 2014-04-30 青岛海信日立空调系统有限公司 Heat recovery variable-frequency multi-split heat pump system and control method thereof
CN104329825A (en) * 2013-07-22 2015-02-04 广东美的暖通设备有限公司 Three-pipe air conditioning system and control method thereof
CN106801920A (en) * 2017-02-17 2017-06-06 海信科龙电器股份有限公司 Heat exchange circulating system, control method thereof and air conditioner
CN109237645A (en) * 2018-11-07 2019-01-18 珠海格力电器股份有限公司 Air conditioning system and control method thereof
WO2019196311A1 (en) * 2018-04-09 2019-10-17 格力电器(武汉)有限公司 Air conditioning system and method for controlling air conditioning system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877986B1 (en) * 2011-10-27 2018-07-12 엘지전자 주식회사 Air conditioner
KR102078278B1 (en) * 2013-01-07 2020-02-17 엘지전자 주식회사 Air condtioner
KR101624529B1 (en) * 2015-03-10 2016-06-07 엘지전자 주식회사 Multi-air conditioner for heating and cooling operations at the same time
CN108151350B (en) * 2017-12-20 2020-05-08 广东美的暖通设备有限公司 Three-control multi-split system and control method thereof
CN109405102B (en) * 2018-10-08 2024-01-16 珠海格力电器股份有限公司 Air Conditioning System

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156493A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Heating/cooling simultaneous operation type air conditioner
CN104329825A (en) * 2013-07-22 2015-02-04 广东美的暖通设备有限公司 Three-pipe air conditioning system and control method thereof
CN103759455A (en) * 2014-01-27 2014-04-30 青岛海信日立空调系统有限公司 Heat recovery variable-frequency multi-split heat pump system and control method thereof
EP3101369A4 (en) * 2014-01-27 2017-08-09 Qingdao Hisense Hitachi Air-Conditioning Systems Co. Ltd. Heat recovery variable-frequency multi-split heat pump system and control method thereof
US10132530B2 (en) 2014-01-27 2018-11-20 Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Heat recovery variable-frequency multi-split heat pump system and control method thereof
EP3441697A1 (en) * 2014-01-27 2019-02-13 Qingdao Hisense Hitachi Air-Conditioning Systems Co. Ltd. Heat recovery variable-frequency multi-split heat pump system and control method thereof
CN106801920A (en) * 2017-02-17 2017-06-06 海信科龙电器股份有限公司 Heat exchange circulating system, control method thereof and air conditioner
WO2019196311A1 (en) * 2018-04-09 2019-10-17 格力电器(武汉)有限公司 Air conditioning system and method for controlling air conditioning system
EP3779327A4 (en) * 2018-04-09 2021-05-19 Gree Electric Appliances (Wuhan) Co., Ltd. Air conditioning system and method for controlling air conditioning system
CN109237645A (en) * 2018-11-07 2019-01-18 珠海格力电器股份有限公司 Air conditioning system and control method thereof
CN109237645B (en) * 2018-11-07 2024-04-23 珠海格力电器股份有限公司 Air conditioning system and control method thereof

Also Published As

Publication number Publication date
KR100589913B1 (en) 2006-06-19

Similar Documents

Publication Publication Date Title
JP4079184B1 (en) Refrigeration unit heat source unit and refrigeration unit
JP2008128498A (en) Multi-type air conditioner
JP6880204B2 (en) Air conditioner
JP2008170063A (en) Multiple type air conditioner
JP4303032B2 (en) Air conditioner
JP2004333107A (en) Air conditioner and outdoor unit used for it
JP2006170541A (en) Air conditioner
JP2010048506A (en) Multi-air conditioner
KR20070071213A (en) Air conditioner
JP4553761B2 (en) Air conditioner
JP3984250B2 (en) Multi-room air conditioner
KR100621881B1 (en) Air conditioner
WO2021065678A1 (en) Air conditioner
JP4629083B2 (en) Air conditioner
JP4037863B2 (en) Air conditioner
JP2008309362A (en) Air conditioner
JP2006125716A (en) Air conditioner
JP3655523B2 (en) Multi-type air conditioner
JP2010127504A (en) Air conditioning device
JP5525906B2 (en) Refrigeration cycle equipment
WO2012127834A1 (en) Refrigeration cycle device
JP4391261B2 (en) Air conditioner
JP2010190541A (en) Air conditioning device
JP2008249228A (en) Air conditioner
JP2018128167A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023