Nothing Special   »   [go: up one dir, main page]

JP2006158155A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2006158155A
JP2006158155A JP2004348598A JP2004348598A JP2006158155A JP 2006158155 A JP2006158155 A JP 2006158155A JP 2004348598 A JP2004348598 A JP 2004348598A JP 2004348598 A JP2004348598 A JP 2004348598A JP 2006158155 A JP2006158155 A JP 2006158155A
Authority
JP
Japan
Prior art keywords
power
waveform
voltage
power conversion
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348598A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumoto
康 松本
Jiro Toyosaki
次郎 豊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004348598A priority Critical patent/JP2006158155A/en
Publication of JP2006158155A publication Critical patent/JP2006158155A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter which promptly detects an electric power failure without superposing a DC component on an AC current, and increasing distortion of the ac current. <P>SOLUTION: The power converter includes a power converting circuit 1 connected to AC power supply 7 through a reactor 4, and its control means 100 includes an electric power failure detecting means 20 which detects the electric power failure from the abnormal frequency of a voltage at the AC current side of the power converting circuit 1. The control means 100 includes a DC voltage adjusting means 11 to distinguish power running and regeneration running, a reference sine waveform generating means 14 which generates a sine waveform using a phase of the voltage at the AC current side of the power converting circuit 1, and a references AC waveform generating means 13 which generates an AC waveform with a change ratio near 0°of the sine waveform made sharp. Moreover, the control means includes a switching means 15 to switch outputs of the generating means 13, 14 according to an operating mode, a multiplication means 16 to generate the voltage command value of the power converting circuit 1 using the outputs of the generating means 13, 14, an AC current adjusting means 17, a subtraction means 18, and a pulse-width modulation means 19. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、交流電源に接続され、交流電力を直流電力に変換して負荷に供給する電力変換装置に関し、詳しくは、交流電源の停電を検知するための交流側電圧の制御方法に特徴を有する電力変換装置に関するものである。   The present invention relates to a power conversion device that is connected to an AC power source, converts AC power to DC power and supplies the load to a load, and more specifically, has a feature in a method for controlling an AC side voltage for detecting a power failure of the AC power source. The present invention relates to a power conversion device.

図6は、この種の電力変換装置の従来技術を示す構成図である。
図6に示す電力変換装置は、半導体スイッチング素子のオン・オフにより交流/直流変換を行う電力変換回路1と、その直流側に接続された平滑コンデンサ2と、電力変換回路1の交流側に接続されたリアクトル3と、交流電源7の電圧を検出する交流電圧検出器4と、交流電流を検出する交流電流検出器5と、平滑コンデンサ2の両端電圧を検出する直流電圧検出器6と、電力変換回路1を制御するための制御手段400とを備えている。なお、8は直流電力が供給される負荷を示す。
FIG. 6 is a configuration diagram showing a conventional technique of this type of power conversion device.
The power conversion device shown in FIG. 6 is connected to the power conversion circuit 1 that performs AC / DC conversion by turning on and off the semiconductor switching element, the smoothing capacitor 2 connected to the DC side, and the AC side of the power conversion circuit 1. Reactor 3, AC voltage detector 4 that detects the voltage of AC power supply 7, AC current detector 5 that detects AC current, DC voltage detector 6 that detects the voltage across smoothing capacitor 2, and power And a control unit 400 for controlling the conversion circuit 1. Reference numeral 8 denotes a load to which DC power is supplied.

また、上記制御手段400は、直流電圧調節手段11と、基準位相生成手段12と、基準正弦波形発生手段14と、乗算手段30と、交流電流調節手段17と、減算手段18と、パルス幅変調手段19と、停電検知手段20とを備えている。   The control unit 400 includes a DC voltage adjusting unit 11, a reference phase generating unit 12, a reference sine waveform generating unit 14, a multiplying unit 30, an AC current adjusting unit 17, a subtracting unit 18, and a pulse width modulation. Means 19 and power failure detection means 20 are provided.

制御手段400の動作は、以下の通りである。
まず、直流電圧調節手段11には、直流電圧指令値v と直流電圧検出器6により検出した直流電圧検出値vとが入力されており、検出値vを指令値v に一致させるための比例積分制御演算処理によって交流電流振幅指令値I を算出する。
基準位相生成手段12は、交流電圧検出器4により検出した交流電圧検出値vを入力とし、その基準位相θを生成して出力する。
基準正弦波形発生手段14は、基準位相生成手段12から出力される基準位相θを入力とし、交流電圧検出値vと同周期かつ同位相の基準正弦波sinθを出力する。
乗算手段30は、直流電圧調節手段11から出力される交流電流振幅指令値I と、基準正弦波形発生手段14から出力される基準正弦波sinθとを乗じることにより、交流電流指令値i を算出する。
The operation of the control means 400 is as follows.
First, a DC voltage command value v d * and a DC voltage detection value v d detected by the DC voltage detector 6 are input to the DC voltage adjusting means 11, and the detected value v d is used as the command value v d * . The AC current amplitude command value I s * is calculated by proportional integral control calculation processing for matching.
Reference phase generator 12 receives the AC voltage detected value v s detected by the AC voltage detector 4, generates and outputs the reference phase theta.
Reference sine wave generating means 14, the reference phase θ outputted from the reference phase generating means 12 as input, and outputs a reference sine wave sinθ of the AC voltage detected value v s with the same period and the same phase.
Multiplying means 30, an AC current amplitude command value I s * outputted from the DC voltage control means 11, by multiplying the reference sine wave sinθ output from the reference sinusoidal wave generating unit 14, the AC current command value i s * Is calculated.

交流電流調節手段17は、交流電流検出器5により検出した交流電流検出値iを交流電流指令値i に一致させるための比例制御演算処理を行い、電圧操作量v を算出する。
減算手段18は、交流電圧検出値vから電圧操作量v を減じることにより、電力変換器電圧指令値v を算出する。
パルス幅変調手段19は、電力変換器電圧指令値v に応じて、電力変換回路1内部の半導体スイッチング素子のオン・オフ信号を生成し、このオン・オフ信号を電力変換回路1に伝えている。
一方、停電検知手段20は、交流電圧検出値vを入力とし、交流電源7の電圧振幅の異常、周期数の異常により停電を検知して、パルス幅変調手段19に運転停止指令を出力する。
AC current adjusting unit 17 performs a proportional control calculation process for matching an alternating current detection value i s detected by the AC current detector 5 to the AC current command value i s *, calculates the voltage manipulated variable v a * .
Subtraction means 18, by subtracting the voltage manipulated variable v a * from the AC voltage detected value v s, and calculates a power converter voltage command value v c *.
The pulse width modulation unit 19 generates an on / off signal of the semiconductor switching element in the power conversion circuit 1 in accordance with the power converter voltage command value v c * , and transmits this on / off signal to the power conversion circuit 1. ing.
Meanwhile, the power failure detection means 20 inputs the AC voltage detected value v s, the abnormal voltage amplitude of the AC power supply 7, and detects an abnormal power outage periodicity, and outputs the operation stop command to the pulse width modulation means 19 .

以上のように制御手段400を動作させることで、交流側力率1を保ちながら、直流電圧検出値vを直流電圧指令値v に一致させる制御が実行される。 By operating the control means 400 as described above, the control for making the DC voltage detected value v d coincide with the DC voltage command value v d * while the AC side power factor 1 is maintained is executed.

さて、上記の制御手段400では、交流電圧検出値vから電圧操作量v を減算する処理により、電力変換器電圧指令値v を算出している。そのため、本装置側から交流電源7側に電力を回生しているときに停電が発生した場合、本装置は電源給電時と同じ交流電圧を誘起することになる。このとき、本装置の回生電力と全く同じ電力を消費する負荷が交流電源側にあって需給電力のバランスが保たれている場合には、交流電圧検出値vの電圧値や周波数に変化が起きないこととなり、前記停電検知手段20が停電を検知できずに電力変換回路1が運転を継続して交流電圧を誘起し続けるという問題があった。 Now, the above-described control unit 400, the processing of subtracting the voltage manipulated variable v a * from the AC voltage detected value v s, and calculates the power converter voltage command value v c *. Therefore, when a power failure occurs while power is being regenerated from the apparatus side to the AC power supply 7 side, the apparatus induces the same AC voltage as that during power supply. At this time, when the load that consumes power exactly the same as regenerative power of the apparatus is maintained balanced supply and demand electric power In the AC power supply side, a change in the voltage value and frequency of the AC voltage detected value v s There was a problem that the power failure detection means 20 could not detect a power failure and the power conversion circuit 1 continued to operate and induce an alternating voltage.

上記問題を解決する手段として、例えば、後述する特許文献1に記載された従来技術が知られている。図7は、この特許文献1に図1として記載された装置構成と実質的に同一の概要図である。
特許文献1に記載された従来技術では、図7の制御手段500において、基準正弦波形発生手段14の前段に、周波数検出手段41と、第1,第2の位相関数発生手段42,43と、切替手段44と、加算手段45とを備え、電力変換回路1の力行時と回生時とで交流電流指令値i の周波数を変えている。なお、図7において、図6と同一の構成要素には同一の番号を付してある。
As means for solving the above problem, for example, a conventional technique described in Patent Document 1 described below is known. FIG. 7 is a schematic diagram that is substantially the same as the apparatus configuration described in FIG.
In the prior art described in Patent Document 1, in the control unit 500 of FIG. 7, the frequency detection unit 41, the first and second phase function generation units 42 and 43, before the reference sine waveform generation unit 14, a switching means 44, an adding unit 45, and changing the alternating current command value i s * frequency between regenerative and time of the power conversion circuit 1 powering. In FIG. 7, the same components as those in FIG. 6 are denoted by the same reference numerals.

この従来技術の動作は、以下の通りである。
周波数検出手段41は、交流電圧検出値vの周波数fを検出する。
第1の位相関数発生手段42は、前記周波数fに応じて、図8に示す力行時補正位相Δθを出力し、第2の位相関数発生手段43は、前記周波数fに応じて、図9に示す回生時補正位相Δθを出力する。
切替手段44は、交流電流振幅指令値I が正、すなわち力行時には第1の位相関数発生手段42側を選択して補正位相Δθを出力し、交流電流振幅指令値I が負、すなわち回生時には第2の位相関数発生手段43側を選択して補正位相Δθを出力する。
加算手段45は、基準位相θと、切替手段44の出力である補正位相Δθ(ΔθまたはΔθ)とを加算し、その出力を基準正弦波形発生手段14に出力する。
以後の動作は図6と同様である。
The operation of this prior art is as follows.
Frequency detecting means 41 detects the frequency f of the AC voltage detected value v s.
The first phase function generating means 42 outputs the power running correction phase Δθ p shown in FIG. 8 according to the frequency f, and the second phase function generating means 43 corresponds to FIG. 9 according to the frequency f. The regenerative correction phase Δθ b shown in FIG.
The switching means 44 has a positive AC current amplitude command value I s * , that is, during powering, selects the first phase function generating means 42 side to output a correction phase Δθ p and a negative AC current amplitude command value I s *. That is, at the time of regeneration, the second phase function generating means 43 side is selected and the correction phase Δθ b is output.
The adding means 45 adds the reference phase θ and the correction phase Δθ (Δθ p or Δθ b ) output from the switching means 44 and outputs the output to the reference sine waveform generating means 14.
Subsequent operations are the same as those in FIG.

特許文献1に記載された従来技術では、以上のように制御手段500を動作させることにより、力行モードと回生モードで発生する無効電力に差を生じさせ、これにより停電時に交流電圧検出値vの周波数変動が起きるようにして問題解決を図っている。 In the prior art described in Patent Document 1, by operating the control unit 500 as described above, a difference is generated between the reactive power generated in the power running mode and the regenerative mode, and thereby the AC voltage detection value v s at the time of a power failure. In order to solve this problem, the frequency fluctuations occur.

特開平10−248102号公報(段落[0011]〜[0014]、図1等)Japanese Patent Laid-Open No. 10-248102 (paragraphs [0011] to [0014], FIG. 1 etc.)

しかしながら、特許文献1に記載された従来技術では、交流電流指令値i の周波数が電源電圧の周波数と異なり、図10や図11に示す波形となる。そのため、交流電流に直流分が重畳されてトランスの偏磁等が発生しやすくなり、また、電流歪みが大きくなるという問題があった。
そこで本発明の解決課題は、交流電流に直流分が重畳されたり電流歪みを増大させることなく、停電を速やかに検知できるようにした電力変換装置を提供することにある。
However, in the prior art described in Patent Document 1, the frequency of the alternating current command value i s * is different from the frequency of the power supply voltage, and the waveforms shown in FIGS. 10 and 11 are obtained. For this reason, there is a problem in that a direct current component is superimposed on an alternating current, and thus the transformer is easily demagnetized, and current distortion is increased.
SUMMARY OF THE INVENTION An object of the present invention is to provide a power converter that can quickly detect a power failure without superimposing a direct current component on an alternating current or increasing current distortion.

上記問題を解決するため、請求項1に記載した発明は、交流電源にリアクトルを介して接続され、交流電力を直流電力に変換して負荷に供給する電力変換回路を備え、この電力変換回路の制御手段が、前記電力変換回路の交流側電圧の周波数異常を検出して交流電源の停電を検知する停電検知手段を備えてなる電力変換装置において、
前記制御手段は、
前記電力変換回路の力行運転、回生運転を判別する運転モード判別手段と、
前記電力変換回路の交流側電圧の位相に基づいて正弦波形を発生させる第1の波形発生手段、及び、正弦波形の0°付近の変化率を急峻にした交流波形を発生する第2の波形発生手段と、
前記運転モード判別手段による判別結果に応じて第1,第2の波形発生手段の出力を切り替える切替手段と、
この切替手段を介した第1または第2の波形発生手段の出力を用いて前記電力変換回路の電圧指令値を生成する手段と、を備えたものである。
In order to solve the above problem, the invention described in claim 1 is provided with a power conversion circuit that is connected to an AC power source via a reactor, converts AC power into DC power, and supplies the power to a load. In the power conversion device comprising a power failure detection means for detecting a frequency abnormality of the AC side voltage of the power conversion circuit and detecting a power failure of the AC power source, the control means,
The control means includes
An operation mode discrimination means for discriminating a power running operation and a regenerative operation of the power conversion circuit;
First waveform generating means for generating a sine waveform based on the phase of the AC side voltage of the power conversion circuit, and a second waveform generation for generating an AC waveform with a steep change rate of the sine waveform near 0 ° Means,
Switching means for switching the outputs of the first and second waveform generating means according to the determination result by the operation mode determining means;
Means for generating a voltage command value of the power conversion circuit using the output of the first or second waveform generating means via the switching means.

請求項2に記載した発明は、請求項1において、
前記運転モード判別手段により回生運転と判別した時に、前記切替手段が第2の波形発生手段に切り替えて前記交流波形を出力するものである。
The invention described in claim 2 is the invention according to claim 1,
When the regenerative operation is determined by the operation mode determining means, the switching means switches to the second waveform generating means and outputs the AC waveform.

請求項3に記載した発明は、請求項1または2において、
前記運転モード判別手段により力行運転と判別した時に、前記切替手段が第1の波形発生手段に切り替えて前記正弦波形を出力するものである。
The invention described in claim 3 is the invention according to claim 1 or 2,
When the operation mode determining means determines that the power running operation is performed, the switching means switches to the first waveform generating means and outputs the sine waveform.

請求項4に記載した発明は、請求項2において、
前記切替手段を介して出力される第2の波形発生手段からの前記交流波形により、前記電力変換回路の電流指令値の0°付近の変化率を急峻にし、この電流指令値に基づいて前記電力変換回路の電圧指令値の0°付近の変化率を急峻にするものである。
The invention described in claim 4 is, in claim 2,
The AC waveform from the second waveform generating means output via the switching means makes the rate of change around 0 ° of the current command value of the power conversion circuit steep, and based on this current command value, the power The rate of change around 0 ° of the voltage command value of the conversion circuit is made steep.

請求項1,2,4に記載した発明によれば、交流電流に直流分を重畳させることなく、電力変換回路から交流電源側に電力を回生している際に停電が発生した場合に、電力変換回路の交流電源側に誘起される電圧の周波数を電源健全時の周波数よりも低くして周波数異常状態を作り出し、停電検知手段の動作によって速やかに停電を検知することが可能である。
また、請求項3に記載した発明によれば、交流電源から電力変換回路に電力を供給している際には、交流電流歪みを増大させないようにすることができる。
According to the invention described in claims 1, 2, and 4, when a power failure occurs when power is being regenerated from the power conversion circuit to the AC power source without superimposing a DC component on the AC current, The frequency of the voltage induced on the AC power supply side of the conversion circuit is made lower than the frequency when the power supply is healthy to create an abnormal frequency state, and a power failure can be detected promptly by the operation of the power failure detection means.
According to the third aspect of the present invention, it is possible to prevent the AC current distortion from increasing when power is supplied from the AC power source to the power conversion circuit.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は、本発明の第1実施形態を示す構成図であり、100は電力変換回路1の制御手段である。図1に示す電力変換装置の主回路及び制御手段100において、図6,図7と同一の構成要素には同一の番号を付して説明を省略し、以下では異なる部分を中心に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a block diagram showing a first embodiment of the present invention, and 100 is a control means of the power conversion circuit 1. In the main circuit and control means 100 of the power conversion apparatus shown in FIG. 1, the same components as those in FIGS. 6 and 7 are denoted by the same reference numerals and description thereof will be omitted. Hereinafter, different parts will be mainly described.

すなわち、図1の制御手段100は、交流電圧検出値vの基準位相生成手段12と、この生成手段12からの基準位相θが入力される基準正弦波形発生手段(第1の波形発生手段)14及び基準交流波形発生手段(第2の波形発生手段)13と、これらの発生手段13,14の出力信号を交流電流振幅指令値I に応じて切り替えて出力する切替手段15と、交流電流振幅指令値I と切替手段15の出力とを乗算する乗算手段16とを備え、この乗算手段16から出力される交流電流指令値i が交流電流調節手段17に入力されている。なお、直流電圧調節手段11、乗算手段16、交流電流調節手段17、減算手段18、パルス幅変調手段19、停電検知手段20等の接続構成及び動作は、図6,図7と同様である。 That is, the control unit 100 of FIG. 1, a reference phase generating means 12 of the AC voltage detected value v s, a reference sine wave generating means (first waveform generating means) for the reference phase θ is input from the generation unit 12 14 and reference AC waveform generating means (second waveform generating means) 13, switching means 15 for switching and outputting the output signals of these generating means 13 and 14 in accordance with the AC current amplitude command value I s * , and AC and a multiplication means 16 for multiplying the output of the current amplitude command I s * a switching unit 15, the AC current command value i s * is input to the AC current regulating means 17 which is output from the multiplying means 16 . The connection configurations and operations of the DC voltage adjusting means 11, the multiplying means 16, the AC current adjusting means 17, the subtracting means 18, the pulse width modulating means 19, the power failure detecting means 20, and the like are the same as those shown in FIGS.

上記構成において、第1の波形発生手段としての基準正弦波形発生手段14は、従来と同様に交流電圧検出値vと同周期かつ同位相の基準正弦波sinθを出力する。
一方、第2の波形発生手段としての基準交流波形発生手段13は、交流電圧検出値vの基準位相θに応じて、図2に示すように0°付近の傾きを急峻にした正弦波状の基準交流波形を出力する。なお、この基準交流波形の正負期間は等しいものとする。
切替手段15は、交流電流振幅指令値I の正負に応じて、交流電流振幅指令値I が正、すなわち力行モードでは基準正弦波形発生手段14側を選択し、前記基準正弦波sinθを出力する。また、交流電流振幅指令値I が負、すなわち回生モードでは基準交流波形発生手段13側を選択し、前述した図2の基準交流波形を出力する。
なお、直流電圧調節手段11及び切替手段15は、請求項における運転モード判別手段を構成している。
In the above structure, the reference sine wave generator 14 as a first waveform generating means outputs a reference sine wave sinθ conventional as well as AC voltage detected value v s with the same period and the same phase.
On the other hand, the reference AC waveform generating means 13 as a second waveform generating means, in response to the reference phase θ of the AC voltage detected value v s, sinusoidal that steep slope near 0 ° as shown in FIG. 2 Outputs the reference AC waveform. It is assumed that the positive and negative periods of this reference AC waveform are equal.
Switching means 15, in response to positive and negative alternating current amplitude command value I s *, an AC current amplitude command value I s * is positive, i.e., selects the reference sine wave generator 14 side in the power running mode, the reference sine wave sinθ Is output. Further, the alternating current amplitude command value I s * is negative, i.e. selects the reference AC waveform generating means 13 side in the regenerative mode, outputs a reference AC waveform in FIG. 2 described above.
The DC voltage adjusting means 11 and the switching means 15 constitute an operation mode determining means in the claims.

ここで、停電時の交流電圧検出値vは、電力変換回路1の出力によって誘起される。電力変換回路1の出力電圧の0°付近での傾きを急峻にすると、誘起される電圧の0°付近の傾きは、リアクトル3の作用によって出力電圧よりも緩やかになる。その結果、図3に示すように、停電発生時における交流電圧検出値v(誘起電圧)の周波数は、電源電圧健全時(給電時)の周波数よりも低くなり、交流電圧検出値vの周波数異常状態を作り出すことができる。 Here, the AC voltage detected value v s of the power failure is induced by the output of the power conversion circuit 1. When the slope of the output voltage of the power conversion circuit 1 near 0 ° is made steep, the slope of the induced voltage near 0 ° becomes gentler than the output voltage due to the action of the reactor 3. As a result, as shown in FIG. 3, the frequency of the AC voltage detection value v s (induced voltage) at the time of the power failure is lower than the frequency when the power supply voltage is healthy (power supply), and the AC voltage detection value v s An abnormal frequency state can be created.

第1実施形態では、電力変換回路1の直流側から交流電源7側への電力回生時に、基準交流波形発生手段13による基準交流波形を切替手段15を介して乗算手段16に出力し、この基準交流波形に従って交流電流指令値i の0°付近での傾きを急峻にすることで、出力電圧の0°付近での傾きを急峻にさせている。
よって、従来のように交流電流に直流分を重畳させることなく、また、交流電流の歪みを0°付近のごく一部に抑えながら、回生時に停電が発生した場合にも停電検知手段20により停電を速やかに検知することができ、停止指令をパルス幅変調手段19に送って電力変換回路1の運転を停止させることができる。
In the first embodiment, during power regeneration from the DC side of the power conversion circuit 1 to the AC power supply 7 side, the reference AC waveform generated by the reference AC waveform generating unit 13 is output to the multiplying unit 16 via the switching unit 15, and this reference By making the slope of the alternating current command value i s * near 0 ° steep according to the alternating current waveform, the slope of the output voltage near 0 ° is made steep.
Therefore, even if a power failure occurs during regeneration without superimposing a direct current component on the alternating current as in the prior art and suppressing the distortion of the alternating current to a very small portion near 0 °, the power failure detection means 20 also causes a power failure. Can be detected quickly, and a stop command can be sent to the pulse width modulation means 19 to stop the operation of the power conversion circuit 1.

次に、図4は本発明の第2実施形態を示す構成図である。
この実施形態が第1実施形態と相違する点は、制御手段200において、交流電圧検出値vの振幅を演算する交流電圧振幅演算手段21を設け、この演算手段21から出力される振幅値Vを乗算手段22により切替手段15の出力に乗算して減算手段18に入力した点にある。
Next, FIG. 4 is a block diagram showing a second embodiment of the present invention.
This embodiment differs from the first embodiment, the control unit 200, the AC voltage amplitude calculating means 21 for calculating the amplitude of the AC voltage detected value v s provided, the amplitude value V outputted from the computing means 21 The multiplication means 22 multiplies the output of the switching means 15 by s and inputs it to the subtraction means 18.

この実施形態では、電力変換器電圧指令値v を算出するために、切替手段15の出力である力行時の基準正弦波形または回生時の基準交流波形と振幅値Vとの乗算結果から電圧操作量v を減じるようにしたものであり、その他の構成、動作は第1実施形態と同様である。
本実施形態においては、力行モード、回生モードに応じた交流電圧指令値を乗算手段22により生成し、この指令値から電圧操作量v を減じて電力変換器電圧指令値v を算出することができる。
In this embodiment, in order to calculate the power converter voltage command value v c * , the multiplication result of the reference sine waveform at the time of power running or the reference AC waveform at the time of regeneration and the amplitude value V s that is the output of the switching means 15. The voltage manipulated variable v a * is reduced, and other configurations and operations are the same as those in the first embodiment.
In the present embodiment, the power running mode, an AC voltage command value corresponding to the regenerative mode generated by multiplying means 22, calculates a power converter voltage command value v c * by subtracting the voltage manipulated variable v a * from the command value can do.

図5は、本発明の第3実施形態を示す構成図である。
この実施形態が第2実施形態と相違する点は、制御手段300において、図4の振幅値Vの代わりに基準交流電圧振幅値Vを用いている点であり、その他の構成、動作は第2実施形態と同様である。
本実施形態によれば、図4における交流電圧振幅演算手段21が不要になり、制御手段300の構成を簡略化できる利点がある。
FIG. 5 is a block diagram showing a third embodiment of the present invention.
This embodiment is different from the second embodiment in that the control means 300 uses the reference AC voltage amplitude value V 0 instead of the amplitude value V s in FIG. This is the same as in the second embodiment.
According to the present embodiment, the AC voltage amplitude calculation means 21 in FIG. 4 is not required, and there is an advantage that the configuration of the control means 300 can be simplified.

本発明の第1実施形態を示す構成図である。It is a block diagram which shows 1st Embodiment of this invention. 第1実施形態における基準交流波形発生手段の出力波形を示す図である。It is a figure which shows the output waveform of the reference | standard alternating current waveform generation means in 1st Embodiment. 第1実施形態における停電時の交流電圧波形を示す図である。It is a figure which shows the alternating voltage waveform at the time of the power failure in 1st Embodiment. 本発明の第2実施形態を示す構成図である。It is a block diagram which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す構成図である。It is a block diagram which shows 3rd Embodiment of this invention. 従来技術を示す電力変換装置の構成図である。It is a block diagram of the power converter device which shows a prior art. 特許文献1に記載された従来技術の構成を示す概要図である。It is a schematic diagram which shows the structure of the prior art described in patent document 1. 図7における第1の位相関数発生手段の動作説明図である。It is operation | movement explanatory drawing of the 1st phase function generation | occurrence | production means in FIG. 図7における第2の位相関数発生手段の動作説明図である。It is operation | movement explanatory drawing of the 2nd phase function generation | occurrence | production means in FIG. 特許文献1の従来技術における交流電流指令値の波形図である。It is a wave form diagram of an alternating current command value in the prior art of patent documents 1. 特許文献1の従来技術における交流電流指令値の波形図である。It is a wave form diagram of an alternating current command value in the prior art of patent documents 1.

符号の説明Explanation of symbols

1:電力変換回路
2:平滑コンデンサ
3:リアクトル
4:交流電圧検出器
5:交流電流検出器
6:直流電圧検出器
7:交流電源
8:負荷
11:直流電圧調節手段
12:基準位相生成手段
13:基準交流波形発生手段
14:基準正弦波形発生手段
15:切替手段
16,22:乗算手段
17:交流電流調節手段
18:減算手段
19:パルス幅変調手段
20:停電検知手段
21:交流電圧振幅演算手段
100,200,300:制御手段
1: Power conversion circuit 2: Smoothing capacitor 3: Reactor 4: AC voltage detector 5: AC current detector 6: DC voltage detector 7: AC power supply 8: Load 11: DC voltage adjusting means 12: Reference phase generating means 13 : Reference AC waveform generation means 14: reference sine waveform generation means 15: switching means 16, 22: multiplication means 17: AC current adjustment means 18: subtraction means 19: pulse width modulation means 20: power failure detection means 21: AC voltage amplitude calculation Means 100, 200, 300: Control means

Claims (4)

交流電源にリアクトルを介して接続され、交流電力を直流電力に変換して負荷に供給する電力変換回路を備え、この電力変換回路の制御手段が、前記電力変換回路の交流側電圧の周波数異常を検出して交流電源の停電を検知する停電検知手段を備えてなる電力変換装置において、
前記制御手段は、
前記電力変換回路の力行運転、回生運転を判別する運転モード判別手段と、
前記電力変換回路の交流側電圧の位相に基づいて正弦波形を発生させる第1の波形発生手段、及び、正弦波形の0°付近の変化率を急峻にした交流波形を発生する第2の波形発生手段と、
前記運転モード判別手段による判別結果に応じて第1,第2の波形発生手段の出力を切り替える切替手段と、
この切替手段を介した第1または第2の波形発生手段の出力を用いて前記電力変換回路の電圧指令値を生成する手段と、
を備えたことを特徴とする電力変換装置。
The power conversion circuit is connected to an AC power source via a reactor, converts AC power to DC power and supplies the load to the load, and the control means of the power conversion circuit detects the frequency abnormality of the AC side voltage of the power conversion circuit. In the power conversion device comprising a power failure detection means for detecting and detecting a power failure of the AC power supply,
The control means includes
An operation mode discrimination means for discriminating a power running operation and a regenerative operation of the power conversion circuit;
First waveform generating means for generating a sine waveform based on the phase of the AC side voltage of the power conversion circuit, and a second waveform generation for generating an AC waveform with a steep change rate of the sine waveform near 0 ° Means,
Switching means for switching the outputs of the first and second waveform generating means according to the determination result by the operation mode determining means;
Means for generating a voltage command value of the power conversion circuit using an output of the first or second waveform generating means via the switching means;
A power conversion device comprising:
請求項1に記載した電力変換装置において、
前記運転モード判別手段により回生運転と判別した時に、前記切替手段が第2の波形発生手段に切り替えて前記交流波形を出力することを特徴とする電力変換装置。
In the power converter device according to claim 1,
When the operation mode determination unit determines that the operation is regenerative operation, the switching unit switches to a second waveform generation unit and outputs the AC waveform.
請求項1または請求項2に記載した電力変換装置において、
前記運転モード判別手段により力行運転と判別した時に、前記切替手段が第1の波形発生手段に切り替えて前記正弦波形を出力することを特徴とする電力変換装置。
In the power converter device according to claim 1 or 2,
The power conversion apparatus according to claim 1, wherein when the operation mode determination unit determines that the power running operation is performed, the switching unit switches to the first waveform generation unit and outputs the sine waveform.
請求項2に記載した電力変換装置において、
前記切替手段を介して出力される第2の波形発生手段からの前記交流波形により、前記電力変換回路の電流指令値の0°付近の変化率を急峻にし、この電流指令値に基づいて前記電力変換回路の電圧指令値の0°付近の変化率を急峻にすることを特徴とする電力変換装置。
In the power converter device according to claim 2,
The AC waveform from the second waveform generating means output via the switching means makes the rate of change around 0 ° of the current command value of the power conversion circuit steep, and based on this current command value, the power A power conversion device characterized in that the rate of change around 0 ° of the voltage command value of the conversion circuit is steep.
JP2004348598A 2004-12-01 2004-12-01 Power converter Pending JP2006158155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348598A JP2006158155A (en) 2004-12-01 2004-12-01 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348598A JP2006158155A (en) 2004-12-01 2004-12-01 Power converter

Publications (1)

Publication Number Publication Date
JP2006158155A true JP2006158155A (en) 2006-06-15

Family

ID=36635751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348598A Pending JP2006158155A (en) 2004-12-01 2004-12-01 Power converter

Country Status (1)

Country Link
JP (1) JP2006158155A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052905A1 (en) 2008-11-05 2010-05-14 パナソニック株式会社 Digital conversion device and power conversion device
JP2010115018A (en) * 2008-11-06 2010-05-20 Mitsubishi Electric Corp Controller of ac-powered vehicle
CN103138659A (en) * 2011-11-30 2013-06-05 发那科株式会社 Motor drive apparatus having power failure detection unit for determining presence or absence of power failure
CN106470000A (en) * 2015-08-21 2017-03-01 发那科株式会社 Motor drive
WO2024057633A1 (en) * 2022-09-12 2024-03-21 株式会社日立産機システム Power regeneration converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322554A (en) * 1996-05-29 1997-12-12 Sharp Corp Detection method of single operation of inverter and inverter
JPH10248102A (en) * 1997-03-06 1998-09-14 Toshiba Fa Syst Eng Kk Power failure detector for ac electric car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322554A (en) * 1996-05-29 1997-12-12 Sharp Corp Detection method of single operation of inverter and inverter
JPH10248102A (en) * 1997-03-06 1998-09-14 Toshiba Fa Syst Eng Kk Power failure detector for ac electric car

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052905A1 (en) 2008-11-05 2010-05-14 パナソニック株式会社 Digital conversion device and power conversion device
RU2513913C2 (en) * 2008-11-05 2014-04-20 Панасоник Корпорэйшн Digital converter and energy conversion device
JP2010115018A (en) * 2008-11-06 2010-05-20 Mitsubishi Electric Corp Controller of ac-powered vehicle
CN103138659A (en) * 2011-11-30 2013-06-05 发那科株式会社 Motor drive apparatus having power failure detection unit for determining presence or absence of power failure
JP2013115994A (en) * 2011-11-30 2013-06-10 Fanuc Ltd Motor drive device having power failure determination part for determining presence or absence of power failure
US8664897B2 (en) 2011-11-30 2014-03-04 Fanuc Corporation Motor drive apparatus having power failure detection unit for determining presence or absence of power failure
CN103138659B (en) * 2011-11-30 2014-06-18 发那科株式会社 Motor drive apparatus having power failure detection unit for determining presence or absence of power failure
CN106470000A (en) * 2015-08-21 2017-03-01 发那科株式会社 Motor drive
CN106470000B (en) * 2015-08-21 2019-04-16 发那科株式会社 Motor drive
WO2024057633A1 (en) * 2022-09-12 2024-03-21 株式会社日立産機システム Power regeneration converter

Similar Documents

Publication Publication Date Title
JP3725015B2 (en) Uninterruptible power system
JP2005192314A (en) Power converter
WO2015011781A1 (en) Control device for solar power generation inverter
JP5608809B2 (en) Power converter
JP4711939B2 (en) AC electric vehicle control device
JP4712148B2 (en) Power converter
JP2006158155A (en) Power converter
JP2010161845A (en) Control device of uninterruptible power supply device
JP3835409B2 (en) Control device for power converter
JPH07322626A (en) Pwm converter device
JP2006191743A (en) Three-level pwm power converter
JP2002359976A (en) Sine wave inputting and rectifying apparatus
JP2007336632A (en) Power converter
JP2003189631A (en) Power failure detector of power conversion circuit
JP5115048B2 (en) DC current detection method and apparatus for high frequency power supply device
JP2009142005A (en) System-interconnected inverter controller and control method
JP5559712B2 (en) Harmonic optimization system
KR100685444B1 (en) Parallel control system of single-phase inverter
JP5169060B2 (en) Power failure detection device for power regeneration inverter device
JP4962766B2 (en) AC / AC direct converter controller
JP5253718B2 (en) Amplifier having discharge determination function
KR101936564B1 (en) Apparatus for controlling multilevel inverter
JP4761118B2 (en) Power failure detection device
JPH11252797A (en) Photovoltaic power generation system controller
JP2006136107A (en) Semiconductor power converter and its magnetic asymmetry control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102