Nothing Special   »   [go: up one dir, main page]

JP2006066620A - Optical amplifying method and optical amplifier - Google Patents

Optical amplifying method and optical amplifier Download PDF

Info

Publication number
JP2006066620A
JP2006066620A JP2004247110A JP2004247110A JP2006066620A JP 2006066620 A JP2006066620 A JP 2006066620A JP 2004247110 A JP2004247110 A JP 2004247110A JP 2004247110 A JP2004247110 A JP 2004247110A JP 2006066620 A JP2006066620 A JP 2006066620A
Authority
JP
Japan
Prior art keywords
optical
fiber
signal lights
wavelength
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004247110A
Other languages
Japanese (ja)
Inventor
Hideaki Hayashi
英明 林
Moriteru Ohara
盛輝 大原
Katsuhiro Ochiai
克弘 落合
Naoki Sugimoto
直樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004247110A priority Critical patent/JP2006066620A/en
Publication of JP2006066620A publication Critical patent/JP2006066620A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical amplifying method that can be applied to optical amplification in a liquid crystal distribution system, such as CATV in the CWDM optical communications system and optical amplification for compensating a loss of a transmission fiber and a network device. <P>SOLUTION: A plurality of signal lights belong to a wavelength band of 1,540 to 1,620 nm with wavelengths, respectively different by Δλ nm or larger (Δλ is 15 or larger). The wavelengths of the signal lights are (1,571-0.5×Δλ) nm to (1,570+0.5×Δλ) nm, and a difference between the maximum wavelength and the minimum wavelength is 40 nm or shorter. The amplifying method is performed, by inputting the signal lights to an optical amplification fiber 1 in the presence of a stimulation light. The optically amplified fiber 1 is a Bi<SB>2</SB>O<SB>3</SB>group glass fiber; the signal lights are amplified in the fiber 1; and the optical amplifying method gives the signal lights to the optically amplified fiber 1, by decreasing the intensity of the signal lights whose wavelengths are (1,571-0.5×Δλ) nm to (1,570+0.5×Δλ) nm, to be lower than the intensity of other signal lights. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

CWDM(Coarse WDM、粗波長分割多重または低密度波長分割多重)光通信方式に好適な光増幅方法および光増幅器に関する。   The present invention relates to an optical amplification method and an optical amplifier suitable for a CWDM (Coarse WDM, coarse wavelength division multiplexing or low density wavelength division multiplexing) optical communication system.

メトロ系およびアクセス系のネットワークコストを低減できる光通信方式としてCWDM光通信方式が注目されている。
CWDM光通信方式(以下、単にCWDMという。)では信号光の波長間隔が20nmと大きいのでたとえば3チャンネル伝送、4チャンネル伝送ではそれぞれ40nm、60nmの波長域を必要とする。
The CWDM optical communication system has attracted attention as an optical communication system that can reduce the network costs of metro and access systems.
In the CWDM optical communication system (hereinafter simply referred to as “CWDM”), the wavelength interval of the signal light is as large as 20 nm, and therefore, for example, 3 channel transmission and 4 channel transmission require 40 nm and 60 nm wavelength regions, respectively.

CWDMは当初光増幅器を使用しないものが一般的だったが、近年は伝送ファイバやネットワークデバイスの損失を補償するために光増幅器を使用するものが一般的である。
光増幅器としてはエルビウムドープ石英光ファイバを用いた光増幅器(EDFA)が広く知られているが平坦な利得特性が得られる波長幅はせいぜい40nmである。したがってEDFAをCWDMにおける3チャンネル以上の信号光の増幅に使用しようとすると、信号光波長の変動(±7nm)を考慮すると1台では平坦な利得特性が得られないおそれがあり2台以上のEDFAを必要とする問題があった。
1543〜1617nmの波長域においてこのような問題を解決する光増幅器としてはエルビウムドープテルライト光ファイバを用いた光増幅器(EDTFA)が知られている(非特許文献1参照)。
In general, CWDM does not use an optical amplifier, but in recent years, an optical amplifier is generally used to compensate for a loss of a transmission fiber or a network device.
As an optical amplifier, an optical amplifier (EDFA) using an erbium-doped silica optical fiber is widely known, but the wavelength width capable of obtaining a flat gain characteristic is 40 nm at most. Therefore, if an EDFA is used to amplify signal light of 3 channels or more in CWDM, there is a possibility that a flat gain characteristic cannot be obtained with one unit in consideration of fluctuations in signal light wavelength (± 7 nm). There was a problem that required.
An optical amplifier (EDTFA) using an erbium-doped tellurite optical fiber is known as an optical amplifier that solves such a problem in the wavelength range of 1543 to 1617 nm (see Non-Patent Document 1).

Tadashi Sakamoto、外2名,Rare−earth−doped fiber amplifier for eight−channel CWDM transmission systems,OFC 2004,Paper ThJ5,米国,2004年2月Tadashi Sakamoto, 2 others, Rare-earth-doped fiber amplifier for eight-channel CWDM transmission systems, OFC 2004, Paper ThJ5, USA, February 2004

前記EDTFAは1543〜1617nmの波長域において利得変動を2dBにできるという優れたものであるが、当該利得変動は各入力信号光の強度が−20dBm(0.01mW)のときに得られたものである。利得は22.5dBであったとされているので、各出力信号光の強度は2.5dBm(1.8mW)であったと推定される。
一方、CWDMにおいてCATVなどの光分配系に使用される光増幅器や前記損失を補償するための光増幅器(ブースターアンプ)には、各出力信号光の強度として10mW以上であることが求められ、前記EDTFAはこのような用途への適用が困難であるという問題があった。
本発明はこのような問題を解決できる光増幅方法および光増幅器の提供を目的とする。
The EDTFA is excellent in that the gain fluctuation can be 2 dB in the wavelength range of 1543 to 1617 nm. The gain fluctuation is obtained when the intensity of each input signal light is −20 dBm (0.01 mW). is there. Since the gain is assumed to be 22.5 dB, the intensity of each output signal light is estimated to be 2.5 dBm (1.8 mW).
On the other hand, an optical amplifier used in an optical distribution system such as CATV in CWDM and an optical amplifier (booster amplifier) for compensating for the loss are required to have an intensity of each output signal light of 10 mW or more, EDTFA has a problem that it is difficult to apply to such applications.
It is an object of the present invention to provide an optical amplification method and an optical amplifier that can solve such problems.

本発明は、1540〜1620nmの波長域に属しΔλを15以上として波長が互いにΔλnm以上異なる複数の信号光であって、その最大波長と最小波長の差が40nm以上であり、波長が(1571−0.5×Δλ)nm〜(1570+0.5×Δλ)nmである信号光を含む複数の信号光を励起光存在下の光増幅ファイバに入力して増幅する方法であって、光増幅ファイバがBi系ガラスファイバであり、波長が(1571−0.5×Δλ)nm〜(1570+0.5×Δλ)nmである信号光の強度を他の信号光の強度のいずれよりも小さくして光増幅ファイバに入力する光増幅方法を提供する。
また、複数個の入力端子、励起光光源、1本の光増幅ファイバおよび出力端子を有する光増幅器であって、少なくとも1個の入力端子と光増幅ファイバとが光減衰器を介して接続されており、光増幅ファイバがBi系ガラスファイバである光増幅器を提供する。
The present invention is a plurality of signal lights belonging to a wavelength range of 1540 to 1620 nm and having a wavelength of Δλ of 15 or more and different from each other by Δλnm or more, and the difference between the maximum wavelength and the minimum wavelength is 40 nm or more, 0.5 × Δλ) nm to (1570 + 0.5 × Δλ) nm A plurality of signal light including signal light is input to an optical amplifying fiber in the presence of pumping light to amplify the optical amplifying fiber, Bi 2 O 3 glass fiber, the intensity of signal light having a wavelength of (1571−0.5 × Δλ) nm to (1570 + 0.5 × Δλ) nm is made smaller than any of the other signal light intensities. An optical amplification method for inputting to an optical amplification fiber is provided.
An optical amplifier having a plurality of input terminals, a pumping light source, one optical amplifying fiber, and an output terminal, wherein at least one input terminal and the optical amplifying fiber are connected via an optical attenuator. And an optical amplifier in which the optical amplification fiber is a Bi 2 O 3 glass fiber.

本発明によれば、光増幅ファイバの長さが3m以下であっても、1540〜1620nmの波長域に属し波長間隔が20nmである2〜4チャンネルの信号光について利得変動が1dB以下または出力された各チャンネルの信号光の出力強度変動が1.3以下となるような光増幅を行うことができ、CWDMの光増幅における前記利得変動または前記出力強度変動を小さくできる。   According to the present invention, even if the length of the optical amplifying fiber is 3 m or less, the gain fluctuation is 1 dB or less or output for 2 to 4 channel signal lights belonging to the wavelength range of 1540 to 1620 nm and having a wavelength interval of 20 nm. Furthermore, optical amplification can be performed so that the output intensity fluctuation of the signal light of each channel is 1.3 or less, and the gain fluctuation or the output intensity fluctuation in the CWDM optical amplification can be reduced.

また、光増幅ファイバに入力される信号光の強度がたとえば1mWまたはそれ以上という大きなものであっても大きな利得が得られ、増幅後の信号光の強度を10mW以上とすることができ、CWDMにおけるブースターアンプや光分配系の光増幅器として使用できる。
また、光フィルタまたは利得等化器の使用を前提とする光増幅器が従来提案されているが、そのようなものにおいては信号光としてはほぼ一定強度のものを想定することになる。しかし、本発明ではそれらの使用を必須とはしていないので信号光の強度が変化しても利得変動または出力強度変動の小さな光増幅を行える。
Further, even when the intensity of the signal light input to the optical amplifying fiber is as large as 1 mW or more, for example, a large gain can be obtained, and the intensity of the amplified signal light can be 10 mW or more. It can be used as a booster amplifier or an optical amplifier for an optical distribution system.
In addition, optical amplifiers based on the use of optical filters or gain equalizers have been proposed in the past, but in such cases, the signal light is assumed to have a substantially constant intensity. However, since the use thereof is not essential in the present invention, optical amplification with small gain fluctuation or output intensity fluctuation can be performed even if the intensity of the signal light changes.

Bi系ガラスファイバは、長さが短くても大きな利得が得られる、または広い増幅帯域を有するという特徴を有し、必須である。
Bi系ガラスファイバのコアはBiを20〜80モル%、SiOを5〜70モル%、Erを0.05〜4モル%含有するガラスであることが典型的である。以下、ガラス中の成分含有量はモル%表示で表す。
The Bi 2 O 3 glass fiber has a feature that a large gain can be obtained even when the length is short, or has a wide amplification band, and is essential.
Bi 2 O 3 based core of glass fiber Bi 2 O 3 20 to 80 mol%, the SiO 2 5 to 70 mol%, the Er 2 O 3 be a glass containing 0.05 to 4 mol% typically Is. Hereinafter, the component content in the glass is expressed in mol%.

Er含有量はBi系ガラスファイバの伝送損失等に応じて決められるべきもので、たとえば伝送損失が0.2dB/mのときには0.10〜0.20%、0.7dB/mのときには0.23〜0.27%とすることが好ましい。 The Er 2 O 3 content should be determined according to the transmission loss and the like of the Bi 2 O 3 glass fiber. For example, when the transmission loss is 0.2 dB / m, 0.10 to 0.20%, 0.7 dB. / M is preferably 0.23 to 0.27%.

Bi系ガラスファイバのコアは、Bi 20〜80%、SiO 5〜70%、Er 0.05〜4%、B 0〜30%、In 0〜20%、Al+Ga 0〜45%、WO 0〜30%、Ta 0〜30%、TeO 0〜30%、Y+La+Gd+Yb 0〜15%、GeO 0〜30%、TiO 0〜30%、SnO 0〜30%、CeO 0〜2%、から本質的になるガラスであることが好ましい。より好ましくは、Biが30〜55%、SiOが25〜45%、Erが0.05〜0.5%、Bが0〜5%、Inが0〜3%、Alが1〜5%、Gaが10〜25%、WOが0〜1%、Taが0〜1%、TeOが0〜1%、Yが0〜1%、Laが0.5〜3%、Gd+Yb 0〜1%、GeO 0〜1%、TiO 0〜1%、SnO 0〜0.5%、CeO 0〜0.5%、である。この好ましいガラスは本発明の目的を損なわない範囲で上記成分以外の成分を含有してもよいが、その場合そのような成分の含有量の合計は10%以下であることが好ましい。なお、たとえば「In 0〜20%」とは、Inは必須ではないが20%まで含有してもよい、の意である。 The core of Bi 2 O 3 glass fiber is Bi 2 O 3 20 to 80%, SiO 2 5 to 70%, Er 2 O 3 0.05 to 4%, B 2 O 3 0 to 30%, In 2 O 3 0~20%, Al 2 O 3 + Ga 2 O 3 0~45%, WO 3 0~30%, Ta 2 O 5 0~30%, TeO 2 0~30%, Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Yb 2 O 3 0-15%, GeO 2 0-30%, TiO 2 0-30%, SnO 2 0-30%, CeO 2 0-2% Is preferred. More preferably, Bi 2 O 3 is 30 to 55%, SiO 2 is 25~45%, Er 2 O 3 is 0.05~0.5%, B 2 O 3 is 0~5%, In 2 O 3 0 to 3%, Al 2 O 3 1 to 5%, Ga 2 O 3 10 to 25%, WO 3 0 to 1%, Ta 2 O 5 0 to 1%, TeO 2 0 to 1 %, Y 2 O 3 is 0 to 1%, La 2 O 3 is 0.5 to 3%, Gd 2 O 3 + Yb 2 O 3 0 to 1%, GeO 2 0 to 1%, TiO 2 0 to 1% SnO 2 0-0.5%, CeO 2 0-0.5%. This preferred glass may contain components other than the above components as long as the object of the present invention is not impaired. In that case, the total content of such components is preferably 10% or less. For example, “In 2 O 3 0-20%” means that In 2 O 3 is not essential but may be contained up to 20%.

Bi系ガラスファイバのコアが前記好ましいガラスである場合、同ガラスファイバのクラッドは、Bi 20〜80%、SiO 5〜70%、B 0〜30%、In 0〜20%、Al+Ga 0〜45%、WO 0〜30%、Ta 0〜30%、TeO 0〜30%、Y+La+Gd+Yb 0〜15%、GeO 0〜30%、TiO 0〜30%、SnO 0〜30%、CeO 0〜2%、から本質的になるガラスであることが好ましい。 When the core of the Bi 2 O 3 glass fiber is the preferred glass, the cladding of the glass fiber is Bi 2 O 3 20 to 80%, SiO 2 5 to 70%, B 2 O 3 0 to 30%, In 2 O 3 0-20%, Al 2 O 3 + Ga 2 O 3 0-45%, WO 3 0-30%, Ta 2 O 5 0-30%, TeO 2 0-30%, Y 2 O 3 + La 2 A glass consisting essentially of O 3 + Gd 2 O 3 + Yb 2 O 3 0-15%, GeO 2 0-30%, TiO 2 0-30%, SnO 2 0-30%, CeO 2 0-2%. Preferably there is.

Bi系ガラスファイバのコアの波長1550nmにおける屈折率(n)は典型的には1.8〜2.2であり、そのクラッドの同屈折率(n)との間には通常次の関係式が成立する。
0.0005≦(n−n)/n≦0.1
Bi系ガラスファイバのコア径、クラッド径はそれぞれ典型的には2〜10μm、100〜200μmである。
The refractive index (n 1 ) at a wavelength of 1550 nm of the core of the Bi 2 O 3 based glass fiber is typically 1.8 to 2.2, and is usually between the same refractive index (n 2 ) of the clad. The following relational expression holds.
0.0005 ≦ (n 1 −n 2 ) / n 1 ≦ 0.1
The core diameter and clad diameter of the Bi 2 O 3 glass fiber are typically 2 to 10 μm and 100 to 200 μm, respectively.

Bi系ガラスファイバに入力される信号光の強度(1チャンネルあたりの強度。以下同じ。)が0.1〜10mWである場合、Bi系ガラスファイバの条長積ピークは350〜700dBであることが好ましい。この範囲外では充分な利得が得られないおそれがある。
Bi系ガラスファイバの長さ(L)は、コアのEr含有量が0.23〜0.27%である場合典型的には1.5〜2.2mである。
When the intensity of the signal light input to the Bi 2 O 3 glass fiber (intensity per channel; the same applies hereinafter) is 0.1 to 10 mW, the long product peak of the Bi 2 O 3 glass fiber is 350 It is preferably ˜700 dB. Outside this range, a sufficient gain may not be obtained.
The length (L) of the Bi 2 O 3 based glass fiber is typically 1.5 to 2.2 m when the Er 2 O 3 content of the core is 0.23 to 0.27%.

Bi系ガラスファイバにはコア中のErを励起するための光(励起光)が入射されるが、その波長は通常1470〜1490nmである。 Although light (excitation light) for exciting Er in the core is incident on the Bi 2 O 3 glass fiber, its wavelength is usually 1470 to 1490 nm.

ΔλはCWDMにおいては20nmが典型的であり、増幅される複数の信号光の波長間隔は通常等間隔の20nmとされる。
本発明の光増幅方法は、CWDMにおいてたとえば波長が1550±7nm、1570±7nm、1590±7nm、1610±7nmである4チャンネルの信号光のうち2、3または4チャンネルの信号光を同時に増幅する場合に好適である。
Δλ is typically 20 nm in CWDM, and the wavelength interval between a plurality of signal lights to be amplified is usually 20 nm at regular intervals.
The optical amplification method of the present invention simultaneously amplifies 2, 3 or 4 channel signal light among 4 channel signal lights having wavelengths of 1550 ± 7 nm, 1570 ± 7 nm, 1590 ± 7 nm, 1610 ± 7 nm in CWDM. It is suitable for the case.

波長が(1571−0.5×Δλ)nm〜(1570+0.5×Δλ)である信号光(以下、低強度信号光という。)の強度は利得変動または出力強度変動が小さくなるように他の信号光の強度よりも小さくして光増幅ファイバに入力されるが、典型的には他の信号光の強度の最小値の50%以下とされる。   The intensity of the signal light having a wavelength of (1571−0.5 × Δλ) nm to (1570 + 0.5 × Δλ) (hereinafter referred to as low-intensity signal light) is different from that of the gain fluctuation or output intensity fluctuation. Although it is smaller than the intensity of the signal light and is input to the optical amplifying fiber, it is typically 50% or less of the minimum value of the intensity of the other signal light.

本発明の光増幅方法が適用される複数の信号光において低強度信号光の強度は他の信号光の強度の最小値の典型的には50%以上であるが、80%以上、より好ましくは90%以上であれば効果がより顕著になる。   In a plurality of signal lights to which the optical amplification method of the present invention is applied, the intensity of low-intensity signal light is typically 50% or more of the minimum value of the intensity of other signal light, but more preferably 80% or more, more preferably If it is 90% or more, the effect becomes more remarkable.

増幅される複数の信号光が、波長が(1551−0.5×Δλ)nm〜(1550+0.5×Δλ)である信号光を含む場合、利得変動または出力強度変動を小さくするためには当該信号光の光増幅ファイバへの入力強度を当該複数の信号光の光増幅ファイバへの入力強度の最大とする、すなわち他の信号光の入力強度のいずれよりも小さくないようにすることが好ましい。   When the plurality of signal lights to be amplified include signal light having a wavelength of (1551−0.5 × Δλ) nm to (1550 + 0.5 × Δλ), in order to reduce gain fluctuation or output intensity fluctuation, It is preferable that the input intensity of the signal light to the optical amplifying fiber is the maximum of the input intensity of the plurality of signal lights to the optical amplifying fiber, that is, not lower than any of the input intensities of the other signal lights.

複数の信号光を同時に増幅したときに得られる各信号光の利得の最大と最小の差、すなわち当該複数の信号光に対する利得変動は、好ましくは1dB以下である。
また、そのときの各信号光の出力強度の最大値を最小値で除した値、すなわち当該複数の信号光に対する出力強度変動は、好ましくは1.3以下、より好ましくは1.26以下、特に好ましくは1.22以下である。
The difference between the maximum and minimum gains of each signal light obtained when a plurality of signal lights are amplified simultaneously, that is, the gain fluctuation with respect to the plurality of signal lights is preferably 1 dB or less.
Further, the value obtained by dividing the maximum value of the output intensity of each signal light by the minimum value, that is, the output intensity fluctuation with respect to the plurality of signal lights is preferably 1.3 or less, more preferably 1.26 or less, particularly Preferably it is 1.22 or less.

本発明の光増幅方法によって1mW以上(典型的には10mW以下)の強度を有する信号光を含む複数の信号光を増幅したとき、当該1mW以上の強度を有する信号光に対する利得は10dB以上であることが好ましい。そのようなものでないとCWDMにおけるブースターアンプとしての光増幅器や光分配系の光増幅器に求められている光増幅を行うことが困難になるおそれがある。   When a plurality of signal lights including signal light having an intensity of 1 mW or more (typically 10 mW or less) are amplified by the optical amplification method of the present invention, the gain for the signal light having an intensity of 1 mW or more is 10 dB or more. It is preferable. Otherwise, it may be difficult to perform optical amplification required for an optical amplifier as a booster amplifier in CWDM or an optical amplifier of an optical distribution system.

増幅された複数の信号光の強度の最小値は10mW以上であることが好ましい。そのようなものでないとCWDMにおけるブースターアンプとしての光増幅器や光分配系の光増幅器に求められている光増幅を行うことが困難になるおそれがある。   It is preferable that the minimum value of the intensity | strength of several amplified signal light is 10 mW or more. Otherwise, it may be difficult to perform optical amplification required for an optical amplifier as a booster amplifier in CWDM or an optical amplifier of an optical distribution system.

本発明の光増幅器は本発明の光増幅方法に好適な光増幅器である。以下、本発明の光増幅器を本発明の増幅方法に適用される場合について説明するがこの場合に限定されない。
図1は本発明の光増幅器の構成の一例を示す概略図である。
4チャンネルの信号光S、S、S、S(図示せず)はそれぞれ入力端子21、22、23、24から入力される。本発明の光増幅方法を行う場合、信号光S、Sのいずれか一方が強度信号光である。
The optical amplifier of the present invention is an optical amplifier suitable for the optical amplification method of the present invention. The case where the optical amplifier of the present invention is applied to the amplification method of the present invention will be described below, but the present invention is not limited to this case.
FIG. 1 is a schematic diagram showing an example of the configuration of an optical amplifier according to the present invention.
Four-channel signal lights S 1 , S 2 , S 3 , S 4 (not shown) are input from input terminals 21, 22, 23, 24, respectively. When performing the optical amplification method of the present invention, one of the signal lights S 2 and S 3 is the intensity signal light.

信号光S、Sは直接に、信号光S、Sはそれぞれ光減衰器31、32によってその強度が減じられた後それぞれ光マルチプレクサ40に至って合波され、複数の信号光Sinとなる。
複数の信号光Sinは、レーザーダイオード(LD)である励起光源61からの励起光と光カプラ51によって合波された後光増幅ファイバ1に入力される。また、LDである励起光源62からの励起光も光カプラ52を経て光増幅ファイバ1に入力される、すなわち双方向励起を行う。
The signal lights S 1 and S 4 are directly reduced, and the signal lights S 2 and S 3 are respectively reduced in intensity by the optical attenuators 31 and 32 and then combined to the optical multiplexer 40 to be combined, and a plurality of signal lights S in It becomes.
The plurality of signal lights S in are combined with the excitation light from the excitation light source 61 that is a laser diode (LD) by the optical coupler 51 and then input to the optical amplification fiber 1. Further, the pumping light from the pumping light source 62 which is an LD is also input to the optical amplifying fiber 1 through the optical coupler 52, that is, bidirectional pumping is performed.

増幅された信号光は光カプラ52を経て、増幅された前記複数の信号光Soutとなって出力端子71に至り出力される。
光増幅ファイバ1はBi系ガラスファイバであり先に本発明の光増幅方法に関して説明したと同様のものである。
The amplified signal light passes through the optical coupler 52 and is output to the output terminal 71 as the plurality of amplified signal lights Sout .
The optical amplifying fiber 1 is a Bi 2 O 3 glass fiber, and is the same as described above with respect to the optical amplifying method of the present invention.

図1は4チャンネルの信号光に対し2台の光減衰器31、32を設けた場合の図であるが、光減衰器はたとえば出力強度変動をより大きくしてもよい場合等には光減衰器31のみ1台としてもよいし、逆に出力強度変動をより小さくしたい場合等には入力端子24と光マルチプレクサの間にも光減衰器を設け計3台としてもよい。   FIG. 1 is a diagram in the case where two optical attenuators 31 and 32 are provided for four-channel signal light. However, the optical attenuator is optically attenuating when the output intensity fluctuation may be increased, for example. Only one unit 31 may be provided, or conversely, when it is desired to reduce the fluctuation in output intensity, an optical attenuator may be provided between the input terminal 24 and the optical multiplexer for a total of three units.

モル%表示でBi 42.7%、SiO 34.1%、Al 3.6%、Ga 17.8%、La 1.4%、CeO 0.2%、Er 0.25%からなるコア用ガラスと、同表示でBi 42.8%、SiO 34.2%、Al 7.1%、Ga 14.3%、La 1.4%、CeO 0.2%からなるクラッド用ガラスとを複合化してプリフォームを作製し、このプリフォームを延伸してコア径が5.1μm、クラッド径が125μmである光ファイバAとした。光ファイバAのnは2.03、nは2.02、伝送損失は0.7dB/mであった。 Bi 2 O 3 42.7%, SiO 2 34.1%, Al 2 O 3 3.6%, Ga 2 O 3 17.8%, La 2 O 3 1.4%, CeO 2 0 in terms of mol%. .2%, Er 2 O 3 0.25% core glass, Bi 2 O 3 42.8%, SiO 2 34.2%, Al 2 O 3 7.1%, Ga 2 O 3 A preform was prepared by compounding with a cladding glass composed of 14.3%, La 2 O 3 1.4%, and CeO 2 0.2%, and the preform was stretched to have a core diameter of 5.1 μm. An optical fiber A having a cladding diameter of 125 μm was obtained. In the optical fiber A, n 1 was 2.03, n 2 was 2.02, and transmission loss was 0.7 dB / m.

長さ1.60mの光ファイバA(条長積ピーク:460dB)を光増幅ファイバ1として図2に示す構成を有する光増幅器Aを作製した。21、22、23、24はいずれも入力端子、31、32はいずれもANDO社製光減衰器AQ3140、41、42、43はいずれもAnritsu社製光カプラMN9604C、51、52はいずれも光カプラ、61、62は励起光源でシステム技研社製LD光源SELAM−130(励起光波長:1480nm)、71は出力端子である。
一方、比較例として減衰器31、32を有さず入力端子22、23がそれぞれ直接光カプラ41、42と接続されている点を除き光増幅器Aと同じ光増幅器Bを作製した。
An optical amplifier A having the configuration shown in FIG. 2 was manufactured using the optical fiber A (length product peak: 460 dB) having a length of 1.60 m as the optical amplification fiber 1. 21, 22, 23, and 24 are all input terminals, 31 and 32 are all ANDO optical attenuators AQ3140, 41, 42, and 43 are Anritsu optical couplers MN9604C, 51, and 52 are all optical couplers , 61 and 62 are excitation light sources, LD light source SELAM-130 (excitation light wavelength: 1480 nm) manufactured by System Engineering Co., Ltd., and 71 is an output terminal.
On the other hand, as a comparative example, the same optical amplifier B as the optical amplifier A was manufactured except that the attenuators 31 and 32 were not provided and the input terminals 22 and 23 were directly connected to the optical couplers 41 and 42, respectively.

まず、本発明の光増幅方法に対する比較例として次のような光増幅を行った(例1B)。
波長がそれぞれ1550nm、1570nm、1590nm、1610nmであり、それぞれ表1のPに示す強度を有する信号光S、S、S、Sを光増幅器Bの入力端子21、22、23、24に入力し、光増幅ファイバ1に入力される各信号光の強度Pがいずれも1mW(0dBm)である複数の信号光Sinとなるようにして各信号光の出力強度Pを測定した。なお、励起光源61、62からの励起光強度はいずれも300Wとした。
First, as a comparative example for the optical amplification method of the present invention, the following optical amplification was performed (Example 1B).
1550nm wavelengths respectively, 1570 nm, 1590 nm, a 1610 nm, the signal light S 1, S 2, S 3 , S 4 input terminals 21, 22, 23 of the optical amplifier B having an intensity respectively shown in the first P i Table, type 24, measuring the output intensity P o of as intensity P f of the signal light becomes a plurality of signal light S in are both 1 mW (0dBm) inputted each signal light in the optical amplifying fiber 1 did. The intensity of excitation light from the excitation light sources 61 and 62 was 300 W.

次に、本発明の光増幅方法により次のような光増幅を行った(例1A)。
光増幅器Bのかわりに光増幅器Aを用い、光減衰器31によって信号光S(波長:1570nm)を6dB減衰し、光減衰器32によって信号光S(波長:1590nm)を1dB減衰した以外は例1Bと同様にして、各信号光の出力強度Pを測定した。
Next, the following optical amplification was performed by the optical amplification method of the present invention (Example 1A).
The optical amplifier A is used in place of the optical amplifier B, the signal light S 2 (wavelength: 1570 nm) is attenuated by 6 dB by the optical attenuator 31, and the signal light S 3 (wavelength: 1590 nm) is attenuated by 1 dB by the optical attenuator 32. Measured the output intensity Po of each signal light in the same manner as in Example 1B.

入力信号光の波長(単位:nm)、入力端子における信号光の強度P(単位:mW)、光増幅ファイバ1に入力された信号光の強度P(単位:mW)、光増幅ファイバ1から出力された信号光の強度P(単位:mW)およびP/Pから算出された利得(単位:dB)を表1に示す。
なお、表1のPの変動の欄にはPの最大値を最小値で除した値、Gの変動の欄にはGの最大から最小を減じた値をそれぞれ示す。
Wavelength (unit: nm) of input signal light, intensity P i (unit: mW) of signal light at the input terminal, intensity P f (unit: mW) of signal light input to the optical amplification fiber 1, optical amplification fiber 1 Table 1 shows the intensity P o (unit: mW) of the signal light output from P and the gain (unit: dB) calculated from P o / P f .
Incidentally, in the column of variation in Table 1 P o indicates a value obtained by dividing the maximum value of P o at the minimum value, the value in the column obtained by subtracting the minimum from the maximum G f of variations in G f respectively.

Figure 2006066620
Figure 2006066620

光増幅器Aにおいて使用した光カプラ41、42、43はいずれも2〜3dBの損失を有するものであるが、光増幅器を図1に示す構成を有するものに変更すると例1Aに比べてさらに良好な増幅特性が得られる。実際、表1に示すデータをもとに計算すると、図1に示す構成を有し光増幅ファイバ1が長さ1.60mの光ファイバAである光増幅器Aを用いて各信号光のPが1.4mWである複数の信号光を増幅すると各信号光のPは表2の例1AのP(単位:mW)に示すようになる(例1A)。 The optical couplers 41, 42, and 43 used in the optical amplifier A all have a loss of 2 to 3 dB. However, if the optical amplifier is changed to the one having the configuration shown in FIG. Amplification characteristics are obtained. In fact, when calculated based on data shown in Table 1, using an optical amplifier A 0 is an optical fiber A of the optical amplification fiber 1 length 1.60m have the configuration shown in Figure 1 of the signal light P When a plurality of signal lights having i of 1.4 mW are amplified, P o of each signal light is as shown in P o (unit: mW) of Example 1A 0 in Table 2 (Example 1A 0 ).

なお、光減衰器31によって信号光Sを5.4dB減衰し、光減衰器32によって信号光Sを0.4dB減衰し、光減衰器としてはサンテック社製OVA−20M(損失は0.6dB以下)、光マルチプレクサとしてはサンテック社製Metro−X(損失は1.6dB以下)を使用するものとした。また、表2のGはP/Pから算出された利得(単位:dB)である。
比較のために光増幅器Aにおいて光減衰器31、32を取り除いたものを光増幅器Bとして、これを用いて例1Aと同様の増幅を行った場合についてもPを計算した(例1B)。
Incidentally, the signal light S 2 by the optical attenuator 31 and 5.4dB attenuation, the signal light S 3 by the optical attenuator 32 and 0.4dB attenuation, the OVA-20M (loss manufactured Suntec Inc. optical attenuator 0. 6 dB or less), and an optical multiplexer, Sun-Tech's Metro-X (loss is 1.6 dB or less) was used. Further, G in Table 2 is a gain (unit: dB) calculated from P o / P i .
For comparison, the optical amplifier A 0 from which the optical attenuators 31 and 32 are removed is used as an optical amplifier B 0 , and Po is also calculated for the case where the same amplification as in Example 1A 0 is performed using this (example) 1B 0 ).

Figure 2006066620
Figure 2006066620

また、光増幅ファイバ1として長さが1.85mの光ファイバA(条長積ピーク:530dB)を使用した以外は光増幅器Bと同じ光増幅器B’を比較例として作製し、例1Bと同様の測定を行った(例2B)。   Further, the same optical amplifier B ′ as the optical amplifier B was prepared as a comparative example except that the optical fiber A (strand product peak: 530 dB) having a length of 1.85 m was used as the optical amplifying fiber 1, and the same as in Example 1B. Was measured (Example 2B).

次に、光増幅ファイバ1として長さが1.85mの光ファイバAを使用し、また、入力端子24と光カプラ42の間に3台目の光減衰器33を設けた以外は光増幅器Aと同じ光増幅器A’を作製し、この光増幅器A’を用いて本発明の光増幅方法により次のような光増幅を行った(例2A)。
例2Bを基準にして、光減衰器31によって信号光S(波長:1570nm)を9dB減衰し、光減衰器32によって信号光S(波長:1590nm)を3.7dB減衰し、光減衰器33によって信号光S(波長:1610nm)を2.7dB減衰した以外は例2Bと同様にして、各信号光の出力強度を測定した。
例2A、2Bの測定結果等を表3に示す。
Next, an optical amplifier A is used except that an optical fiber A having a length of 1.85 m is used as the optical amplifying fiber 1 and a third optical attenuator 33 is provided between the input terminal 24 and the optical coupler 42. The same optical amplifier A ′ was prepared, and the optical amplification as described below was performed using the optical amplifier A ′ by the optical amplification method of the present invention (Example 2A).
Based on Example 2B, the signal attenuator 31 attenuates the signal light S 2 (wavelength: 1570 nm) by 9 dB, and the optical attenuator 32 attenuates the signal light S 3 (wavelength: 1590 nm) by 3.7 dB. The output intensity of each signal light was measured in the same manner as in Example 2B except that the signal light S 4 (wavelength: 1610 nm) was attenuated by 2.7 dB by 33.
Table 3 shows the measurement results of Examples 2A and 2B.

Figure 2006066620
Figure 2006066620

光増幅器A’において使用した光カプラ41、42、43はいずれも2〜3dBの損失を有するものであるが、光増幅器を図1に示す構成を有するものに変更すると例2Aに比べてさらに良好な増幅特性が得られる。実際、表3に示すデータをもとに計算すると、図1に示す構成を有し光増幅ファイバ1が長さ1.85mの光ファイバAである光増幅器A’を用いて各信号光のPが1.4mWである複数の信号光を増幅すると各信号光のPは表4の例2AのP(単位:mW)に示すようになる(例2A)。 The optical couplers 41, 42, and 43 used in the optical amplifier A ′ all have a loss of 2 to 3 dB. However, if the optical amplifier is changed to the one having the configuration shown in FIG. 1, it is even better than Example 2A. Amplification characteristics can be obtained. In fact, when calculated based on data shown in Table 3, using the optical amplifier A 0 'is an optical fiber A of the optical amplification fiber 1 length 1.85m have the configuration shown in Figure 1 of the signal lights P i P o of the amplifying each signal light is more than the signal light is 1.4mW is P o example 2A 0 Table 4 (unit: mW) as shown in (example 2A 0).

なお、光減衰器31によって信号光Sを8.4dB減衰し、光減衰器32によって信号光Sを3.1dB減衰し、光減衰器33によって信号光Sを2.1dB減衰し、光減衰器としてはサンテック社製OVA−20M(損失は0.6dB以下)、光マルチプレクサとしてはサンテック社製Metro−X(損失は1.6dB以下)を使用するものとした。また、表4のGはP/Pから算出された利得(単位:dB)である。
比較のために光増幅器A’において光減衰器31、32、33を取り除いたものを光増幅器B’として、これを用いて例2Aと同様の増幅を行った場合についてもPを計算した(例2B)。
The optical attenuator 31 attenuates the signal light S 2 by 8.4 dB, the optical attenuator 32 attenuates the signal light S 3 by 3.1 dB, the optical attenuator 33 attenuates the signal light S 3 by 2.1 dB, As the optical attenuator, OVA-20M manufactured by Suntech (loss is 0.6 dB or less), and as the optical multiplexer, Metro-X manufactured by Suntech (loss is 1.6 dB or less) is used. G in Table 4 is a gain (unit: dB) calculated from P o / P i .
'The minus the optical attenuator 31, 32, 33 in the optical amplifier B 0' optical amplifier A 0 for comparison as the P o also when subjected to the same amplification as in Example 2A 0 using this Calculated (Example 2B 0 ).

Figure 2006066620
Figure 2006066620

また、光増幅ファイバ1として長さが2.11mの光ファイバA(条長積ピーク:600dB)を使用した以外は光増幅器B’と同じ光増幅器B’’を比較例として作製し、例2Bと同様の測定を行った(例3B)。   An optical amplifier B ″ that is the same as the optical amplifier B ′ except that an optical fiber A (length product peak: 600 dB) having a length of 2.11 m is used as the optical amplifying fiber 1 is produced as a comparative example, and Example 2B The same measurement as in Example 3B was performed.

次に、光増幅ファイバ1として長さが2.11mの光ファイバAを使用した以外は光増幅器A’と同じ光増幅器A’’を作製し、この光増幅器A’’を用いて本発明の光増幅方法により次のような光増幅を行った(例3A)。
光減衰器31によって信号光S(波長:1570nm)を10dB減衰し、光減衰器32によって信号光S(波長:1590nm)を6.5dB減衰し、光減衰器33によって信号光S(波長:1610nm)を4.7dB減衰した以外は例3Bと同様にして各信号光の出力強度を測定した。
例3A、3Bの測定結果等を表5に示す。
Next, an optical amplifier A ″ that is the same as the optical amplifier A ′ is manufactured except that the optical fiber A having a length of 2.11 m is used as the optical amplifying fiber 1, and the optical amplifier A ″ is used to produce the optical amplifier A ″. The following optical amplification was performed by the optical amplification method (Example 3A).
The optical attenuator 31 attenuates the signal light S 2 (wavelength: 1570 nm) by 10 dB, the optical attenuator 32 attenuates the signal light S 3 (wavelength: 1590 nm) by 6.5 dB, and the optical attenuator 33 attenuates the signal light S 4 ( The output intensity of each signal light was measured in the same manner as in Example 3B except that the wavelength was attenuated by 4.7 dB.
Table 5 shows the measurement results of Examples 3A and 3B.

Figure 2006066620
Figure 2006066620

光増幅器A’’において使用した光カプラ41、42、43はいずれも2〜3dBの損失を有するものであるが、光増幅器を図1に示す構成を有するものに変更すると例3Aに比べてさらに良好な増幅特性が得られる。実際、表5に示すデータをもとに計算すると、図1に示す構成を有し光増幅ファイバ1が長さ2.11mの光ファイバAである光増幅器A’’を用いて各信号光のPが1.4mWである複数の信号光を増幅すると各信号光のPは表6の例3AのP(単位:mW)に示すようになる(例3A)。 The optical couplers 41, 42, and 43 used in the optical amplifier A ″ all have a loss of 2 to 3 dB. However, when the optical amplifier is changed to the one having the configuration shown in FIG. Good amplification characteristics can be obtained. In fact, when calculated based on the data shown in Table 5, each signal light is obtained using an optical amplifier A 0 ″ having the configuration shown in FIG. 1 and the optical amplifying fiber 1 being an optical fiber A having a length of 2.11 m. When a plurality of signal lights having P i of 1.4 mW are amplified, P o of each signal light is as shown in P o (unit: mW) of Example 3A 0 in Table 6 (Example 3A 0 ).

なお、光減衰器31によって信号光Sを9.4dB減衰し、光減衰器32によって信号光Sを5.9dB減衰し、光減衰器33によって信号光Sを4.1dB減衰し、光減衰器としてはサンテック社製OVA−20M(損失は0.6dB以下)、光マルチプレクサとしてはサンテック社製Metro−X(損失は1.6dB以下)を使用するものとした。また、表6のGはP/Pから算出された利得(単位:dB)である。
比較のために光増幅器A’’において光減衰器31、32、33を取り除いたものを光増幅器B’’として、これを用いて例3Aと同様の増幅を行った場合についてもPを計算した(例3B)。
The optical attenuator 31 attenuates the signal light S 2 by 9.4 dB, the optical attenuator 32 attenuates the signal light S 3 by 5.9 dB, the optical attenuator 33 attenuates the signal light S 3 by 4.1 dB, As the optical attenuator, OVA-20M manufactured by Suntech (loss is 0.6 dB or less) and Metro-X manufactured by Suntech (loss is 1.6 dB or less) are used as the optical multiplexer. G in Table 6 is a gain (unit: dB) calculated from P o / P i .
For comparison, the optical amplifier A 0 ″ obtained by removing the optical attenuators 31, 32, and 33 is used as the optical amplifier B 0 ″, and this is used to perform amplification similar to Example 3A 0. o was calculated (Example 3B 0 ).

Figure 2006066620
Figure 2006066620

本発明の光増幅器の構成を示す概略図である。It is the schematic which shows the structure of the optical amplifier of this invention. 実施例で用いた本発明の光増幅器の構成を示す概略図である。It is the schematic which shows the structure of the optical amplifier of this invention used in the Example.

符号の説明Explanation of symbols

1:光増幅ファイバ
21、22、23、24:入力端子
31、32:光減衰器
40:光マルチプレクサ
41、42、43、51、52:光カプラ
61、62:励起光源
71:出力端子
in:光増幅ファイバへ入力される複数の信号光
out:増幅された複数の信号光
1: Optical amplification fiber 21, 22, 23, 24: Input terminal 31, 32: Optical attenuator 40: Optical multiplexer 41, 42, 43, 51, 52: Optical coupler 61, 62: Excitation light source 71: Output terminal S in : A plurality of signal lights input to the optical amplifying fiber S out : a plurality of amplified signal lights

Claims (10)

1540〜1620nmの波長域に属しΔλを15以上として波長が互いにΔλnm以上異なる複数の信号光であって、その最大波長と最小波長の差が40nm以上であり、波長が(1571−0.5×Δλ)nm〜(1570+0.5×Δλ)nmである信号光を含む複数の信号光を励起光存在下の光増幅ファイバに入力して増幅する方法であって、光増幅ファイバがBi系ガラスファイバであり、波長が(1571−0.5×Δλ)nm〜(1570+0.5×Δλ)nmである信号光の強度を他の信号光の強度のいずれよりも小さくして光増幅ファイバに入力する光増幅方法。 A plurality of signal lights belonging to a wavelength range of 1540 to 1620 nm and having a wavelength Δλ of 15 or more and different from each other by Δλ nm or more, and a difference between the maximum wavelength and the minimum wavelength is 40 nm or more, and the wavelength is (1571−0.5 × Δλ) nm~ (1570 + 0.5 × Δλ) a plurality of signal light including signal light in nm is a method of amplifying is inputted to the optical amplifying fiber in the presence of the excitation light, the optical amplifying fiber is Bi 2 O 3 An optical amplifying fiber having a wavelength of (1571−0.5 × Δλ) nm to (1570 + 0.5 × Δλ) nm less than any of the other signal lights. Amplifying method to input to. 光増幅ファイバに入力される前記複数の信号光において、波長が(1571−0.5×Δλ)nm〜(1570+0.5×Δλ)nmである信号光の強度が他の信号光の強度の最小値の50%以下である請求項1に記載の光増幅方法。   Among the plurality of signal lights input to the optical amplification fiber, the intensity of the signal light having a wavelength of (1571−0.5 × Δλ) nm to (1570 + 0.5 × Δλ) nm is the minimum of the intensity of the other signal light. The optical amplification method according to claim 1, which is 50% or less of the value. 前記複数の信号光が、波長が(1551−0.5×Δλ)nm〜(1550+0.5×Δλ)nmである信号光を含み、光増幅ファイバに入力される当該複数の信号光において、波長が(1551−0.5×Δλ)nm〜(1550+0.5×Δλ)nmである信号光の強度が他の信号光の強度のいずれよりも小さくない請求項1または2に記載の光増幅方法。   The plurality of signal lights include signal light having a wavelength of (1551−0.5 × Δλ) nm to (1550 + 0.5 × Δλ) nm, and the plurality of signal lights input to the optical amplification fiber have a wavelength 3. The optical amplification method according to claim 1, wherein the intensity of the signal light having a wavelength of (1551−0.5 × Δλ) nm to (1550 + 0.5 × Δλ) nm is not smaller than any of the other signal lights. . 前記複数の信号光が、波長が1550±7nm、1570±7nm、1590±7nm、1610±7nmである信号光からなる請求項1〜3のいずれかに記載の光増幅方法。   The optical amplification method according to claim 1, wherein the plurality of signal lights are signal lights having wavelengths of 1550 ± 7 nm, 1570 ± 7 nm, 1590 ± 7 nm, and 1610 ± 7 nm. 前記複数の信号光に対する利得変動が1dB以下である請求項1〜4のいずれかに記載の光増幅方法。   The optical amplification method according to any one of claims 1 to 4, wherein a gain fluctuation with respect to the plurality of signal lights is 1 dB or less. 前記複数の信号光が1mW以上の強度を有する信号光を含み、当該信号光に対する利得が10dB以上である請求項1〜5のいずれかに記載の光増幅方法。   The optical amplification method according to claim 1, wherein the plurality of signal lights include signal light having an intensity of 1 mW or more, and a gain with respect to the signal light is 10 dB or more. 増幅された前記複数の信号光の強度の最小値が10mW以上である請求項1〜6のいずれかに記載の光増幅方法。   The optical amplification method according to any one of claims 1 to 6, wherein a minimum value of the intensity of the plurality of amplified signal lights is 10 mW or more. Bi系ガラスファイバのコアがBiを20〜80モル%、SiOを5〜70モル%、Erを0.05〜4モル%含有する請求項1〜7のいずれかに記載の光増幅方法。 Bi 2 O 3 based core of glass fiber with Bi 2 O 3 20 to 80 mol%, the SiO 2 5 to 70 mol%, of the preceding claims containing Er 2 O 3 0.05 to 4 mol% The optical amplification method according to any one of the above. 複数個の入力端子、励起光光源、1本の光増幅ファイバおよび出力端子を有する光増幅器であって、少なくとも1個の入力端子と光増幅ファイバとが光減衰器を介して接続されており、光増幅ファイバがBi系ガラスファイバである光増幅器。 An optical amplifier having a plurality of input terminals, a pumping light source, one optical amplification fiber, and an output terminal, wherein at least one input terminal and the optical amplification fiber are connected via an optical attenuator, An optical amplifier in which the optical amplification fiber is a Bi 2 O 3 glass fiber. Bi系ガラスファイバのコアがBiを20〜80モル%、SiOを5〜70モル%、Erを0.05〜4モル%含有する請求項9に記載の光増幅器。
Bi 2 O 3 based core of glass fiber with Bi 2 O 3 20 to 80 mol%, the SiO 2 5 to 70 mol%, of claim 9 containing Er 2 O 3 0.05 to 4 mol% Optical amplifier.
JP2004247110A 2004-08-26 2004-08-26 Optical amplifying method and optical amplifier Pending JP2006066620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247110A JP2006066620A (en) 2004-08-26 2004-08-26 Optical amplifying method and optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247110A JP2006066620A (en) 2004-08-26 2004-08-26 Optical amplifying method and optical amplifier

Publications (1)

Publication Number Publication Date
JP2006066620A true JP2006066620A (en) 2006-03-09

Family

ID=36112823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247110A Pending JP2006066620A (en) 2004-08-26 2004-08-26 Optical amplifying method and optical amplifier

Country Status (1)

Country Link
JP (1) JP2006066620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191369A (en) * 2007-02-05 2008-08-21 Nippon Telegr & Teleph Corp <Ntt> Filter system the high-speed wavelength-swept light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191369A (en) * 2007-02-05 2008-08-21 Nippon Telegr & Teleph Corp <Ntt> Filter system the high-speed wavelength-swept light source
JP4696319B2 (en) * 2007-02-05 2011-06-08 日本電信電話株式会社 Filtered high-speed wavelength swept light source

Similar Documents

Publication Publication Date Title
EP0463771B1 (en) Multi-stage optical fiber amplifier
US6236496B1 (en) Optical fiber amplifier and optical amplification method
US6560009B1 (en) Erbium doped fibers for extended L-band amplification
JPH10209550A (en) Optical waveguide and light amplifier with 1.5mum band using the same
CN112689928A (en) Bismuth-doped optical fiber amplifier
US7170674B2 (en) Fluorescence glass, optical wave guide for optical amplifier and optical amplifier module
JPH11236245A (en) Optical waveguide and 1.5-1.6 micron band light amplifier using the same
JPH10229238A (en) Optical fiber amplifier and optical amplifying method
KR100904292B1 (en) Gain flattening utilizing a two-stage erbium-based amplifier
JP2006066620A (en) Optical amplifying method and optical amplifier
US6865019B2 (en) Amplification optical fiber and fiber optic amplifier including the same
JPH10242556A (en) Er-doped optical fiber amplifier for wavelength multiplex transmission
JP4145684B2 (en) Optical amplification module, optical amplifier, optical communication system, and white light source
Hung et al. Double-pass high-gain low-noise EDFA over Sand C+ L-bands by tunable fundamental-mode leakage loss
Sugimoto Recent progress in Bi-EDF technologies
JP3547007B2 (en) Optical amplifier
US8102596B2 (en) Optical fiber for amplification
JP2005209949A (en) Optical amplifier
JP4568247B2 (en) Optical amplification module and optical amplifier including the same
KR100584717B1 (en) Optical Fiber And Hybrid Optical Amplifier Using The Same
JP3965975B2 (en) Optical amplifier and optical communication system
JP3916796B2 (en) Tellurite glass for optical amplification, optical fiber, optical amplifier and laser apparatus using the glass
JP5193505B2 (en) Optical fiber amplifier
JP2003188445A (en) Optical amplifier and optical amplifier components
JPH1012952A (en) Optical fiber amplifier