JP2005322879A - Substrate for semiconductor device, semiconductor module and electric vehicle - Google Patents
Substrate for semiconductor device, semiconductor module and electric vehicle Download PDFInfo
- Publication number
- JP2005322879A JP2005322879A JP2004360075A JP2004360075A JP2005322879A JP 2005322879 A JP2005322879 A JP 2005322879A JP 2004360075 A JP2004360075 A JP 2004360075A JP 2004360075 A JP2004360075 A JP 2004360075A JP 2005322879 A JP2005322879 A JP 2005322879A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor element
- substrate
- insulating
- liquid
- insulating resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Structure Of Printed Boards (AREA)
Abstract
Description
この発明は、半導体素子を搭載するための基板、特に冷却機能を有する半導体素子用基板に関する。 The present invention relates to a substrate for mounting a semiconductor element, and more particularly to a semiconductor element substrate having a cooling function.
なお、この明細書において、「アルミニウム」の語はアルミニウムおよびその合金の両者を含む意味で用いられ、「銅」の語は銅およびその合金の両者を含む意味で用いられる。 In this specification, the term “aluminum” is used to include both aluminum and its alloys, and the term “copper” is used to include both copper and its alloys.
半導体素子、例えば電力用半導体素子は通電により発熱し、近年の高容量化に伴って発熱量が増加する傾向にある。発熱は半導体素子の信頼性や寿命に大きく影響するため、基板に半導体素子を取り付けたモジュールに放熱部を設け、半導体素子およびその近傍の温度上昇を抑制しなければならない。一方、半導体モジュールを搭載する各種電子製品の小型軽量化傾向により、半導体モジュールは小型化が望まれている。 Semiconductor elements, such as power semiconductor elements, generate heat when energized, and the amount of generated heat tends to increase with the recent increase in capacity. Since heat generation greatly affects the reliability and life of the semiconductor element, it is necessary to provide a heat dissipating part in the module in which the semiconductor element is attached to the substrate to suppress the temperature rise in the semiconductor element and its vicinity. On the other hand, downsizing of semiconductor modules has been desired due to the trend toward reduction in size and weight of various electronic products equipped with semiconductor modules.
図10に、半導体素子用基板(51)上に半導体素子(52)を搭載した半導体モジュール(50)と、この半導体モジュール(50)に装着した放熱デバイス(60)の一例を示す。 FIG. 10 shows an example of a semiconductor module (50) in which a semiconductor element (52) is mounted on a semiconductor element substrate (51) and a heat dissipation device (60) mounted in the semiconductor module (50).
前記半導体モジュール(50)において、半導体素子用基板(51)は銅またはアルミニウムからなる金属板(53)上に絶縁層(54)が積層され、さらに銅箔またはアルミニウム箔からなる通電層(55)が積層され、これらが一体化されてなる。そして、半導体素子(52)は前記基板(51)の通電層(55)上にハンダ(56)を用いて取り付けられている。また、前記金属板(53)側には、伝熱性グリース(57)を介して図外のボルトにより放熱デバイス(60)が取り付けられている。なお、図示例では放熱デバイス(60)として櫛歯状のフィンが立設されたヒートシンクが用いられている。 In the semiconductor module (50), the semiconductor element substrate (51) is formed by laminating an insulating layer (54) on a metal plate (53) made of copper or aluminum, and further a conductive layer (55) made of copper foil or aluminum foil. Are laminated and integrated. The semiconductor element (52) is attached to the conductive layer (55) of the substrate (51) using solder (56). Further, a heat radiating device (60) is attached to the metal plate (53) side by a bolt (not shown) via a heat transfer grease (57). In the illustrated example, a heat sink in which comb-like fins are erected is used as the heat dissipation device (60).
また、半導体素子用基板と各種放熱デバイスとを一体に接合することにより、冷却機能を備えた半導体素子用基板も提案されている(特許文献1、2参照)。
A semiconductor element substrate having a cooling function has also been proposed by integrally bonding a semiconductor element substrate and various heat dissipation devices (see
特許文献1に記載された半導体素子用基板は、セラミック絶縁性基板の表面に金属層を接合し、熱処理によりこの金属層と放熱板とを金属接合して一体化させたものである。
The semiconductor element substrate described in
特許文献2に記載された半導体素子用基板は、セラミックまたは樹脂からなる絶縁性基板と放熱部材とをろう材や接着剤による接着層を介して接合一体化させたものである。
しかしながら、図10に示した構造では、半導体モジュール(50)および放熱デバイス(60)の取付面の平坦度や表面粗度によっては伝熱性グリース(57)部分で大きな熱抵抗が生じ、放熱性能を低下させることがある。十分な放熱性能を得られなければ、増大傾向にある発熱量に対応するために放熱デバイスの放熱面積を拡大しなければならず、半導体モジュールの小型化にも反する。また、組立工程数が多くなるという問題点もあった。 However, in the structure shown in FIG. 10, depending on the flatness and surface roughness of the mounting surface of the semiconductor module (50) and the heat dissipation device (60), a large thermal resistance is generated in the heat transfer grease (57), and the heat dissipation performance is improved. May decrease. If sufficient heat dissipation performance cannot be obtained, the heat dissipation area of the heat dissipation device must be expanded to cope with the increasing amount of heat generation, which is contrary to the miniaturization of the semiconductor module. There is also a problem that the number of assembly steps increases.
特許文献1に記載された半導体素子用基板では、図10のような金属板(53)がなく構造が簡略化されているものの、セラミック絶縁性基板と金属製の放熱板と接合するための金属層が必要である。また、放熱板と接合する前に、予めセラミック絶縁性基板に金属層をろう付けしておく必要がある。このため、構造と製造工程のさらなる簡略化が求められている。
In the semiconductor element substrate described in
特許文献2に記載された半導体素子用基板においても、図10のような金属板(53)がなく構造が簡略化されているものの、絶縁性基板と放熱部材を接合する接着層が必要である。しかも、接着層として接着剤を用いると熱伝導率が低下するために放熱能力が低下するという問題点がある。
The semiconductor element substrate described in
本発明は、上述した背景技術に鑑み、優れた冷却能力を有するとともに簡略化された構造の半導体素子用基板を提供し、さらに該半導体素子用基板を用いた半導体モジュール、該半導体モジュールを搭載した電気車両の提供を目的とする。 In view of the background art described above, the present invention provides a substrate for a semiconductor element having a simplified structure with excellent cooling capability, and further mounting a semiconductor module using the semiconductor element substrate and the semiconductor module The purpose is to provide electric vehicles.
前記目的を達成するために、本発明の半導体素子用基板は下記〔1〕〜〔11〕に記載の構成を有する。 In order to achieve the above object, a substrate for a semiconductor device of the present invention has the configurations described in [1] to [11] below.
〔1〕 半導体素子を搭載するための基板であって、絶縁層の一面側に半導体素子を取り付ける通電層が形成され、他面側に放熱デバイスが直接接合されてなることを特徴とする半導体素子用基板。 [1] A semiconductor element on which a semiconductor element is mounted, wherein a current-carrying layer for attaching the semiconductor element is formed on one side of the insulating layer, and a heat dissipation device is directly joined on the other side. Substrate.
〔2〕 前記放熱デバイスは、冷却液が流通する複数の微細通路を備えた液冷式冷却板である〔1〕に記載の半導体素子用基板。 [2] The semiconductor element substrate according to [1], wherein the heat dissipation device is a liquid-cooled cooling plate having a plurality of fine passages through which a coolant flows.
〔3〕 前記液冷式冷却板は、
冷却液が流通する微細通路を有する少なくとも1個の扁平状の多孔チューブと、互いに離間した2個のヘッダ部形成用凹部と該両ヘッダ部形成用凹部間に形成され且つ前記チューブを収容するチューブ収容用凹部とが設けられたケース本体と、前記ケース本体に重合される蓋板とを備え、
前記チューブ収容用凹部内に前記多孔チューブが前記両ヘッダ部形成用凹部を連通する態様にして収容され、前記ケース本体に前記蓋板が重合された状態で、前記多孔チューブが前記ケース本体と前記蓋板との間に挟まれるとともに、前記両ヘッダ部形成用凹部の開口部が前記蓋板で閉塞されて2個のヘッダ部が形成され、前記ケース本体と前記多孔チューブと前記蓋板とが、前記ヘッダ部内を流通する冷却液の漏出を阻止する状態に接合一体化されてなる、〔2〕に記載の半導体素子用基板。
[3] The liquid cooling type cooling plate is
At least one flat porous tube having a fine passage through which a cooling liquid flows, two header portion forming recesses spaced apart from each other, and a tube that is formed between both header portion forming recesses and accommodates the tube A case main body provided with a housing recess, and a cover plate that is superposed on the case main body,
The porous tube is accommodated in the tube accommodating recess so as to communicate with both the header portion forming recesses, and in the state where the cover plate is superposed on the case body, the porous tube is connected to the case body and the case body. While sandwiched between the lid plates, the opening portions of the header portion forming recesses are closed by the lid plate to form two header portions, and the case body, the porous tube, and the lid plate are The semiconductor element substrate according to [2], wherein the semiconductor element substrate is integrally joined so as to prevent leakage of a coolant flowing through the header portion.
〔4〕 前記液冷式冷却板において、冷却液流入管と連結される第1連結口部材が前記2個のヘッダ部のうち一方のヘッダ部に連通接続されるとともに、冷却液流出管と連結される第2連結口部材が他方のヘッダ部に連通接続されている〔3〕に記載の半導体素子用基板。 [4] In the liquid cooling type cooling plate, a first connection port member connected to the cooling liquid inflow pipe is connected to one of the two header parts and connected to the cooling liquid outflow pipe. The semiconductor element substrate according to [3], wherein the second connection port member to be communicated is connected to the other header portion.
〔5〕 前記液冷式冷却板の微細通路の相当直径は、0.05〜1.7mmの範囲に設定されている〔2〕〜〔4〕のいずれか1項に記載の半導体素子用基板。 [5] The semiconductor element substrate according to any one of [2] to [4], wherein an equivalent diameter of the fine passage of the liquid cooling type cooling plate is set in a range of 0.05 to 1.7 mm. .
〔6〕 前記絶縁層は、絶縁性樹脂からなる〔1〕〜〔5〕のいずれか1項に記載の半導体素子用基板。 [6] The semiconductor element substrate according to any one of [1] to [5], wherein the insulating layer is made of an insulating resin.
〔7〕 前記絶縁層は、絶縁性樹脂に熱伝導性フィラーを配合した絶縁性樹脂組成物からなる〔1〕〜〔5〕のいずれか1項に記載の半導体素子用基板。 [7] The semiconductor element substrate according to any one of [1] to [5], wherein the insulating layer is made of an insulating resin composition in which a heat conductive filler is blended with an insulating resin.
〔8〕 前記絶縁層は、絶縁性布帛に絶縁性樹脂、または絶縁性樹脂に熱伝導性フィラーを配合した絶縁性樹脂組成物を含浸させてなる複合材である〔1〕〜〔5〕のいずれか1項に記載の半導体素子用基板。 [8] The insulating layer is a composite material obtained by impregnating an insulating fabric with an insulating resin, or an insulating resin composition in which an insulating resin is mixed with a heat conductive filler. The substrate for a semiconductor element according to any one of the above.
〔9〕 前記絶縁性樹脂は、エポキシ樹脂またはポリイミド樹脂のうちの少なくとも一つである〔6〕〜〔8〕のいずれか1項に記載の半導体素子用基板。 [9] The semiconductor element substrate according to any one of [6] to [8], wherein the insulating resin is at least one of an epoxy resin and a polyimide resin.
〔10〕 前記熱伝導性フィラーは、SiO2、Al2O3、BeO、MgO、Si3N4、BNのうちの少なくとも一つである〔7〕または〔8〕に記載の半導体素子用基板。
[10] the thermally conductive filler, SiO 2, Al 2 O 3 , BeO, MgO, Si 3
〔11〕 前記絶縁性樹脂組成物において、熱伝導性フィラーの含有量は40〜90容量%である〔7〕、〔8〕、〔10〕のいずれか1項に記載の半導体素子用基板。 [11] The semiconductor element substrate according to any one of [7], [8], and [10], wherein the content of the heat conductive filler in the insulating resin composition is 40 to 90% by volume.
本発明の半導体モジュールは、下記〔12〕に記載の構成を有する。 The semiconductor module of the present invention has the configuration described in [12] below.
〔12〕 〔1〕〜〔11〕のいずれか1項に記載された半導体素子用基板の通電層に半導体素子が取り付けられてなることを特徴とする半導体モジュール。 [12] A semiconductor module comprising a semiconductor element attached to a conductive layer of the semiconductor element substrate according to any one of [1] to [11].
本発明の電気車両は、下記〔13〕〔14〕に記載の構成を有する。 The electric vehicle of the present invention has a configuration described in [13] and [14] below.
〔13〕 〔12〕に記載された半導体モジュールが搭載されていることを特徴とする電気車両。 [13] An electric vehicle on which the semiconductor module described in [12] is mounted.
〔14〕 ラジエータを搭載し、このラジエータにより冷却された冷却液が前記液冷式冷却板に流入するとともに、前記液冷式冷却板から流出した冷却液が前記ラジエータにより冷却されるものとなされている〔13〕に記載の電気車両。 [14] A radiator is mounted, and the cooling liquid cooled by the radiator flows into the liquid cooling type cooling plate, and the cooling liquid flowing out from the liquid cooling type cooling plate is cooled by the radiator. The electric vehicle according to [13].
〔1〕の発明にかかる半導体素子用基板は、絶縁層が放熱デバイスに直接接合されているので熱抵抗が小さく優れた冷却能力を有する。また、構造が簡略であるため、製作工程が簡単である。 The substrate for a semiconductor element according to the invention of [1] has an excellent cooling ability with a small thermal resistance because the insulating layer is directly bonded to the heat dissipation device. Moreover, since the structure is simple, the manufacturing process is simple.
〔2〕の発明にかかる半導体素子用基板によれば、特に優れた冷却能力が得られる。 According to the semiconductor element substrate according to the invention [2], a particularly excellent cooling capacity can be obtained.
〔3〕の発明にかかる半導体素子用基板によれば、さらに優れた冷却能力が得られ、かつ強度にも優れている。 According to the semiconductor element substrate according to the invention [3], a further excellent cooling capacity is obtained and the strength is also excellent.
〔4〕の発明にかかる半導体素子用基板によれば、冷却液流入管および流出管との連結作業を容易に行える。 According to the semiconductor element substrate according to the invention [4], it is possible to easily connect the coolant inflow pipe and the outflow pipe.
〔5〕の発明にかかる半導体素子用基板は、特に優れた冷却能力が得られる。 The semiconductor element substrate according to the invention of [5] has a particularly excellent cooling capacity.
〔6〕の発明にかかる半導体素子用基板によれば、絶縁層と放熱デバイスとの密着性が高いために優れた冷却能力が得られる。またセラミック絶縁層よりも割れにくいことで大面積の基板製作が可能である。 According to the semiconductor element substrate according to the invention [6], an excellent cooling ability can be obtained because the adhesion between the insulating layer and the heat dissipation device is high. Moreover, it is possible to manufacture a large area substrate because it is harder to break than the ceramic insulating layer.
〔7〕の発明にかかる半導体素子用基板によれば、絶縁層と放熱デバイスとの密着性が高いことに加えて、熱伝導性フィラーにより絶縁層の熱伝導性の向上により、優れた冷却能力が得られる。 According to the semiconductor element substrate according to the invention [7], in addition to the high adhesion between the insulating layer and the heat dissipation device, the thermal conductivity of the insulating layer is improved by the heat conductive filler, thereby providing an excellent cooling capacity. Is obtained.
〔8〕の発明にかかる半導体素子用基板によれば、絶縁層の強度が高く、かつ径時的な寸法変化、そり、ねじれが抑制される。 According to the semiconductor element substrate according to the invention [8], the strength of the insulating layer is high, and dimensional change, warpage, and twisting with time are suppressed.
〔9〕の発明にかかる半導体素子用基板によれば、耐熱性に優れ熱膨張による変形が抑制された絶縁層が形成される。 According to the semiconductor element substrate according to the invention of [9], the insulating layer having excellent heat resistance and suppressed deformation due to thermal expansion is formed.
〔10〕の発明にかかる半導体素子用基板によれば、特に熱伝導性の高い絶縁層を形成できる。 According to the semiconductor element substrate according to the invention [10], an insulating layer having particularly high thermal conductivity can be formed.
〔11〕の発明にかかる半導体素子用基板によれば、特に熱伝導性の高い絶縁層を形成できる。 According to the semiconductor element substrate according to the invention of [11], an insulating layer having particularly high thermal conductivity can be formed.
〔12〕の発明にかかる半導体モジュールによれば、半導体素子が確実に冷却され、その動作について長期に亘って高い信頼性を確保できる。 According to the semiconductor module according to the invention of [12], the semiconductor element is reliably cooled, and high reliability can be secured over a long period of time in its operation.
〔13〕の発明にかかる電気車両によれば、、電気車両用半導体素子が確実に冷却される。 According to the electric vehicle of the invention [13], the semiconductor element for an electric vehicle is reliably cooled.
〔14〕の発明にかかる電気車両によれば、冷却液が冷却板をラジエータとを循環し、半導体素子の冷却を容易に行える。 According to the electric vehicle of the invention [14], the coolant circulates the cooling plate through the radiator, and the semiconductor element can be easily cooled.
図1に、本発明の一実施形態にかかる半導体素子用基板(1A)、およびこの半導体素子用基板(1A)上に半導体素子(2)を搭載した半導体モジュール(S1)の構造を模式的に示す。 FIG. 1 schematically shows the structure of a semiconductor element substrate (1A) according to an embodiment of the present invention and a semiconductor module (S1) in which a semiconductor element (2) is mounted on the semiconductor element substrate (1A). Show.
半導体素子用基板(1A)は、絶縁層(3)の一面側に通電層(4)が形成され、他面側に放熱デバイス(5)が接着層を介することなく直接接合され、これらが一体化された基板である。そして、半導体モジュール(S1)は、前記半導体素子用基板(1A)の通電層(4)上にハンダ(6)等により半導体素子(2)が取り付けられたものである。なお、半導体素子(2)の取付は半田に限定されず、ろうやペーストなど周知の取付方法を任意に採用できる。 The semiconductor element substrate (1A) has an energization layer (4) formed on one side of the insulating layer (3), and the heat dissipation device (5) is directly bonded to the other side without an adhesive layer. This is a substrate that has been converted into a substrate. In the semiconductor module (S1), the semiconductor element (2) is attached to the conductive layer (4) of the semiconductor element substrate (1A) by solder (6) or the like. The attachment of the semiconductor element (2) is not limited to solder, and a known attachment method such as brazing or paste can be arbitrarily adopted.
前記通電層(4)は、導電性材料による層であり、例えば銅箔やアルミニウム箔が用いられる。 The conductive layer (4) is a layer made of a conductive material, and for example, copper foil or aluminum foil is used.
絶縁層(3)は、放熱デバイス(5)に直接接合可能な絶縁材料で構成される。具体的には、絶縁性樹脂、前記絶縁性樹脂に熱伝導性フィラーを配合した絶縁性樹脂組成物、絶縁性布帛に前記絶縁性樹脂または絶縁性樹脂組成物を含浸させてなる複合材の3種を推奨できる。これらの樹脂ベースの絶縁層は、セラミックに比べて割れにくく、大面積の基板の製作が可能である。
The insulating layer (3) is made of an insulating material that can be directly bonded to the heat dissipation device (5). Specifically, an insulating resin, an insulating resin composition obtained by blending the insulating resin with a heat conductive filler, and a composite material obtained by impregnating an insulating fabric with the insulating resin or the insulating
前記絶縁性樹脂としては、耐熱性が優れて熱膨張率が小さく、金属製の放熱デバイスに密着して接着性の優れているものが好ましい。これらの条件を満たす樹脂として、エポキシ樹脂またはポリイミド樹脂を推奨できる。さらに、エポキシ樹脂は、特に銅材との接着性が良く、吸湿性が少なく、かつ安価である点でも推奨できる。ポリイミド樹脂は、耐薬品性が優れるとともに厚さ方向の熱膨張率が小さい点でも推奨できる。 As the insulating resin, those having excellent heat resistance and a low coefficient of thermal expansion, being in close contact with a metal heat dissipation device and having excellent adhesiveness are preferable. An epoxy resin or a polyimide resin can be recommended as a resin that satisfies these conditions. Furthermore, the epoxy resin is particularly recommended because it has good adhesion to a copper material, has low hygroscopicity, and is inexpensive. Polyimide resin can be recommended because of its excellent chemical resistance and low thermal expansion coefficient in the thickness direction.
また、前記絶縁性樹脂に熱伝導性フィラーを配合した絶縁性樹脂組成物を用いることによって、絶縁層の熱伝導性を高め、ひいては放熱性能を高めることができる。熱伝導性フィラーは絶縁体であって高熱伝導率を有するものが好ましく、金属酸化物または金属窒化物が好ましく、具体的にはSiO2、Al2O3、BeO、MgO、Si3N4、BNを例示できる。これらの熱伝導性フィラーは単独で使用しても任意の複数種を併用しても良い。熱伝導性フィラーは、樹脂組成物中の含有量が多くなるほど絶縁層(3)の熱伝導率が高くなり、40〜90容量%が好ましい。40容量%未満では熱伝導率向上効果が乏しく、90容量%を超えると放熱デバイスとの密着性が低下して放熱性能が低下する。特に好ましい含有量は60〜80容量%である。また、熱伝導性フィラーの粒径は10〜40μmが好ましい。 Further, by using an insulating resin composition in which a heat conductive filler is blended with the insulating resin, the heat conductivity of the insulating layer can be increased, and the heat dissipation performance can be improved. The thermally conductive filler is preferably an insulator having a high thermal conductivity, preferably a metal oxide or a metal nitride, specifically, SiO 2 , Al 2 O 3 , BeO, MgO, Si 3 N 4 , BN can be exemplified. These thermally conductive fillers may be used alone or in combination of any plural kinds. The heat conductive filler has a higher thermal conductivity of the insulating layer (3) as the content in the resin composition increases, and is preferably 40 to 90% by volume. If it is less than 40% by volume, the effect of improving the thermal conductivity is poor. A particularly preferred content is 60 to 80% by volume. The particle size of the heat conductive filler is preferably 10 to 40 μm.
また、前記絶縁層(3)として、上述した絶縁性樹脂または絶縁性樹脂組成物を絶縁性布帛に含浸させてなる複合材を用いることも好ましい。絶縁性布帛は絶縁層(3)に強度を付与するとともに、半導体素子(2)が発生する熱による径時的な寸法変化、そり、ねじれなどを防止する効果がある。絶縁性布帛は、ガラス等の無機繊維による不織布または織布を推奨できる。無機繊維布は、紙や合成繊維布よりも寸法変化、そり、ねじれが小さいためである。このような絶縁性布帛に絶縁性樹脂または絶縁性樹脂組成物を含浸させるのであるが、絶縁層(3)の厚さ方向の全体に布帛が存在している必要はなく、絶縁性樹脂または絶縁性樹脂組成物の一部が布帛に含浸し、樹脂が布帛に積層された状態であっても良い。なお、絶縁性布帛は絶縁層(3)の熱伝導や放熱を妨げるため、可及的に薄いことが好ましい。 Further, it is also preferable to use a composite material obtained by impregnating an insulating fabric with the above-described insulating resin or insulating resin composition as the insulating layer (3). The insulating fabric has an effect of imparting strength to the insulating layer (3) and preventing dimensional change, warpage, twisting, and the like due to heat generated by the semiconductor element (2). As the insulating fabric, a nonwoven fabric or a woven fabric made of inorganic fibers such as glass can be recommended. This is because the inorganic fiber cloth has less dimensional change, warpage, and twist than paper and synthetic fiber cloth. Such an insulating cloth is impregnated with an insulating resin or an insulating resin composition, but the cloth does not have to exist in the entire thickness direction of the insulating layer (3). A state in which a part of the functional resin composition is impregnated into the fabric and the resin is laminated on the fabric may be used. The insulating fabric is preferably as thin as possible because it prevents heat conduction and heat dissipation of the insulating layer (3).
絶縁層(3)の厚さは、上記の3種類のいずれの場合も0.01〜0.5mmが好ましい。 The thickness of the insulating layer (3) is preferably 0.01 to 0.5 mm in any of the above three types.
放熱デバイス(5)は、絶縁層(3)に直接接合可能であれば種類を問わず用いることができる。放熱用平板、図10に例示した櫛歯状のヒートシンク、各種ヒートチューブ等空冷、液冷を問わず用いることができる。また、絶縁層(3)と放熱デバイス(5)とを直接接合した構造によって、基板としての強度が確保される。即ち、図9の半導体用基板(51)から金属板(53)を除去したことによる強度低下は、放熱デバイス(5)の接合によって十分に補填される。 The heat dissipation device (5) can be used regardless of the type as long as it can be directly bonded to the insulating layer (3). The heat radiation flat plate, the comb-like heat sink exemplified in FIG. 10, various heat tubes, etc. can be used regardless of air cooling or liquid cooling. Moreover, the strength as a substrate is ensured by the structure in which the insulating layer (3) and the heat dissipation device (5) are directly joined. That is, the strength reduction due to the removal of the metal plate (53) from the semiconductor substrate (51) in FIG. 9 is sufficiently compensated by the joining of the heat dissipation device (5).
図1に例示した放熱デバイスは、扁平状の多孔チューブ(7)によるアルミニウム製液冷式冷却板(5)である。このような液冷式冷却板(5)は、薄型で放熱性能が優れているため半導体素子用基板(1A)に組み込む放熱デバイスとして適している。 The heat dissipation device illustrated in FIG. 1 is an aluminum liquid-cooled cooling plate (5) made of a flat porous tube (7). Such a liquid-cooled cooling plate (5) is suitable as a heat dissipation device incorporated in the semiconductor element substrate (1A) because it is thin and has excellent heat dissipation performance.
前記多孔チューブ(7)は、該チューブ(7)を貫通する断面四角形の貫通孔からなる複数個の微細通路(7a)を有している。前記多孔チューブ(7)は、例えば押出や圧延等によって製作されるものであり、このような押出チューブや圧延チューブは熱交換器に一般的に用いられているものである。そして、微細通路(7a)の開口両端に、図外のヘッダ部、冷却液の流入出管への連結口を取り付けることによって液冷式冷却板に製作される。 The perforated tube (7) has a plurality of fine passages (7a) each having a through-hole having a square cross section that penetrates the tube (7). The porous tube (7) is manufactured by, for example, extrusion or rolling, and such an extruded tube or a rolled tube is generally used for a heat exchanger. Then, a liquid cooling type cooling plate is manufactured by attaching a header part (not shown) and a connection port to the inflow / outflow pipe of the cooling liquid at both ends of the opening of the fine passage (7a).
なお、本発明における微細通路(7a)の横断面形状は、略円形状、略楕円形状、略星形状、多角形状等であっても良い。また、前記複数個の微細通路(7a)は相互に独立した孔からなるものに限定されず、複数個の微細通路が相互に連通していても良い。 The cross-sectional shape of the fine passage (7a) in the present invention may be a substantially circular shape, a substantially elliptical shape, a substantially star shape, a polygonal shape, or the like. Further, the plurality of fine passages (7a) are not limited to those made of mutually independent holes, and the plurality of fine passages may communicate with each other.
図2に、前記液例式冷却板(5)において、冷却液を流入させるためのポンプの動力が一定の場合における、微細通路(7a)の相当直径と熱抵抗との関係を示す図(グラフ)を示す。なお、微細通路(7a)の断面積A、濡れ周長さpのときの相当直径deは、de=4A/pで算出される。また一般に、熱抵抗の絶対値は冷却板(5)のサイズにより変化するが、相当直径に対する熱抵抗の変化傾向は冷却板(5)のサイズに依らず、同図と同様となる。
FIG. 2 is a graph showing the relationship between the equivalent diameter of the fine passage (7a) and the thermal resistance when the power of the pump for allowing the coolant to flow is constant in the liquid cooling plate (5) (graph) ). Note that the equivalent diameter de when the cross-sectional area A and the wet perimeter length p of the
同図に示すように、多孔チューブ(7)の微細通路(7a)の相当直径が0.05〜1.7mmの範囲に設定されている場合には、熱抵抗が小さくなり、よって高い冷却能力を発揮し得るものとなる。さらに、この相当直径が0.1〜1.05mmの範囲に設定されている場合には熱抵抗がさらに小さくなり、相当直径が0.15〜0.7mmの範囲に設定されている場合にはなお一層熱抵抗が小さくなり、高い冷却能力を発揮し得るものとなる。したがって、平均相当直径は、0.05〜1.7mmの範囲に設定されていることが望ましく、さらに0.1〜1.05mmの範囲に設定されていることが望ましく、なおさらに0.15〜0.7mmの範囲に設定されていることが望ましい。 As shown in the figure, when the equivalent diameter of the fine passage (7a) of the perforated tube (7) is set in the range of 0.05 to 1.7 mm, the thermal resistance becomes small, and thus the high cooling capacity. It will be able to demonstrate. Furthermore, when the equivalent diameter is set in the range of 0.1 to 1.05 mm, the thermal resistance is further reduced, and in the case where the equivalent diameter is set in the range of 0.15 to 0.7 mm. Furthermore, the thermal resistance is further reduced, and a high cooling capacity can be exhibited. Therefore, the average equivalent diameter is preferably set in the range of 0.05 to 1.7 mm, more preferably in the range of 0.1 to 1.05 mm, and still more preferably in the range of 0.15 to 0.15 mm. It is desirable to set in the range of 0.7 mm.
上述した通電層(4)、絶縁層(3)および放熱デバイス(5)の接合は、ホットプレス等の周知の方法により適宜行う。 The above-mentioned joining of the energization layer (4), the insulating layer (3) and the heat dissipation device (5) is appropriately performed by a known method such as hot pressing.
例えば、絶縁層(3)の絶縁性樹脂として熱硬化性樹脂を用いた場合を例に挙げて説明すると、通電層(4)、絶縁層(3)、放熱デバイス(5)を重ね合わせ、上下をステンレス鋼板で挟み、さらにクッション材を介して押圧し、加熱する。このホットプレスにより、絶縁層(3)が硬化するとともに放熱デバイス(5)と通電層(4)に接合され、これらが一体化される。 For example, the case where a thermosetting resin is used as the insulating resin of the insulating layer (3) will be described as an example.The conductive layer (4), the insulating layer (3), and the heat dissipation device (5) are stacked and Is sandwiched between stainless steel plates, further pressed through a cushioning material, and heated. By this hot pressing, the insulating layer (3) is cured and joined to the heat dissipation device (5) and the energization layer (4), and these are integrated.
また、図9に示すように、絶縁層(3)の一部に通電層(4)を接合する場合は、位置合わせシート(60)および当て板(61)を用いて接合を行う。即ち、位置合わせシート(60)に通電層(4)を張り付け、通電層(4)に対応する位置に孔をあけた当て板(61)を介して絶縁層(3)上に配置し、放熱デバイス(5)に重ねる。これらをステンレス鋼板(62)で挟み、さらにクッション材(63)を介して押圧して加熱する。これにより、絶縁層(3)の所定位置に通電層(4)が接合される。 また、絶縁層(3)として絶縁性樹脂組成物または絶縁性布帛を使用した複合材を用いる場合は、予め所定組成の組成物または複合材を用意しておき、上述と同じくホットプレスにより接合一体化を行う。 Also, as shown in FIG. 9, when the energization layer (4) is joined to a part of the insulating layer (3), the joining is performed using the alignment sheet (60) and the contact plate (61). That is, the conductive layer (4) is attached to the alignment sheet (60) and disposed on the insulating layer (3) through the contact plate (61) having a hole in the position corresponding to the conductive layer (4) to dissipate heat. Overlay on device (5). These are sandwiched between stainless steel plates (62), and further pressed through a cushion material (63) to be heated. As a result, the energization layer (4) is bonded to a predetermined position of the insulating layer (3). In addition, when using a composite material using an insulating resin composition or an insulating fabric as the insulating layer (3), a composition or composite material having a predetermined composition is prepared in advance, and is integrally joined by hot pressing as described above. To do.
前記液冷式冷却板は、図1のように多孔チューブ(7)が露出した状態で直接絶縁層(3)に接合する他、ケース内に一または複数の多孔チューブを装填したものを用いることができる。 As the liquid cooling type cooling plate, as shown in FIG. 1, in addition to directly joining the insulating layer (3) with the porous tube (7) exposed, a case in which one or a plurality of porous tubes are loaded in the case is used. Can do.
図3に示す半導体素子用基板(1B)においては、ケース内に多孔チューブを装填した液冷式冷却板(8)が用いられ、該液冷式冷却板(8)の一面側の複数箇所に絶縁層(3)と通電層(4)が積層されている。 In the semiconductor element substrate (1B) shown in FIG. 3, a liquid cooling type cooling plate (8) in which a porous tube is loaded in a case is used, and the liquid cooling type cooling plate (8) is provided at a plurality of locations on one surface side. An insulating layer (3) and a conductive layer (4) are laminated.
前記液冷式冷却板(8)は、図4に示すように、ケース本体(10)と、蓋板(30)と、冷却液が流通する複数の微細通路(21)を有する複数個の扁平状の多孔チューブ(20)と、第1連結口部材(18a)と、第2連結口部材(18b)とを備えている。これらの冷却板材料として、熱伝導率の高いアルミニウムまたは銅を推奨できる。 As shown in FIG. 4, the liquid cooling type cooling plate (8) includes a plurality of flats having a case body (10), a cover plate (30), and a plurality of fine passages (21) through which the cooling liquid flows. A perforated tube (20), a first connection port member (18a), and a second connection port member (18b). As these cooling plate materials, aluminum or copper having a high thermal conductivity can be recommended.
図4に示すように、ケース本体(10)は平面形状が四角形に形成され、上面側中央部における左右両側部には、互いに平行に離間した2個のヘッダ形成用凹部(11a)(11b)が設けられており、さらに該両ヘッダ形成用凹部(11a)(11b)間には、多孔チューブ(20)を収容するチューブ収容用凹部(12)が設けられている。各ヘッダ部形成用凹部(11a)(11b)の横断面形状は略四角形である。チューブ収容用凹部(12)の深さは多孔チューブ(20)の厚さと略同寸に設定され、各ヘッダ部形成用凹部(11a)(11b)の深さはチューブ収容用凹部(12)の深さよりも深く設定されている。また、前記ケース本体(10)の側面には、一方のヘッダ部形成用凹部(11a)の一端部に連通した第1連結口部材用挿通孔(13a)と、他方のヘッダ部形成用凹部(11b)の一端部に連通した第2連結口部材用挿通孔(13b)とがそれぞれ設けられている。 As shown in FIG. 4, the case body (10) has a square shape in plan view, and two header-forming recesses (11a) (11b) spaced in parallel to each other on the left and right sides of the central portion on the upper surface side. Further, a tube housing recess (12) for housing the porous tube (20) is provided between the header forming recesses (11a) and (11b). Each of the header portion forming recesses (11a) and (11b) has a substantially square cross-sectional shape. The depth of the tube receiving recess (12) is set to be approximately the same as the thickness of the porous tube (20), and the depth of each header forming recess (11a) (11b) is the depth of the tube receiving recess (12). It is set deeper than the depth. The side surface of the case body (10) has a first connecting port member insertion hole (13a) communicating with one end of one header portion forming recess (11a) and the other header portion forming recess ( A second connecting port member insertion hole (13b) communicating with one end of 11b) is provided.
蓋板(30)の裏面の形状および大きさは、ケース本体(10)の平面形状および大きさと同じに設定されている。したがって、蓋板(30)は、ケース本体(10)に重合された状態において、ケース本体(10)の表面に設けられた両ヘッダ形成用凹部(11a)(11b)の開口部とチューブ収容用凹部(12)の開口部とを閉塞し得るものとなされている。そして、蓋板(30)の表面には図3に示すように絶縁層(3)および通電層(4)が取り付けられる。すなわち、本実施形態の液冷式冷却板(8)では、蓋板(30)の表面が冷却面(8A)として作用する。蓋板(30)の冷却面(8A)は平坦状に形成されている。また、蓋板(30)の裏面も同様に平坦状に形成されている。 The shape and size of the back surface of the lid plate (30) are set to be the same as the planar shape and size of the case body (10). Therefore, the cover plate (30) is in the state of being superposed on the case body (10), and the openings of the header forming recesses (11a) (11b) provided on the surface of the case body (10) and the tube housing The opening of the recess (12) can be closed. Then, an insulating layer (3) and a conductive layer (4) are attached to the surface of the lid plate (30) as shown in FIG. That is, in the liquid cooling type cooling plate (8) of the present embodiment, the surface of the lid plate (30) acts as a cooling surface (8A). The cooling surface (8A) of the lid plate (30) is formed flat. Similarly, the back surface of the lid plate (30) is formed flat.
前記ケース本体(10)の内面および上端面にはろう材が被覆されている。同じく、前記蓋板(30)の少なくとも裏面、前記多孔チューブ(20)の外周面および両連結口部材(18a)(18b)の外周面にも、それぞれろう材が被覆されている。 An inner surface and an upper end surface of the case body (10) are covered with a brazing material. Similarly, at least the back surface of the lid plate (30), the outer peripheral surface of the perforated tube (20), and the outer peripheral surfaces of the connecting port members (18a) (18b) are also coated with a brazing material.
各多孔チューブ(20)は複数個の微細通路(21)を有している。各微細通路(21)はチューブ(20)を貫通した、横断面形状が四角形の微細な貫通孔からなる。前記多孔チューブ(20)の製造方法、微細通路(21)の好ましい横断面形状、および高い冷却能力を発揮するための好ましい相当直径は、上述した多孔チューブ(7)およびその微細通路(7a)に準じる。 Each perforated tube (20) has a plurality of fine passages (21). Each fine passage (21) is formed of a fine through hole penetrating the tube (20) and having a square cross-sectional shape. The manufacturing method of the porous tube (20), the preferred cross-sectional shape of the fine passage (21), and the preferred equivalent diameter for exerting a high cooling capacity are the above-mentioned porous tube (7) and the fine passage (7a). Follow.
第1連結口部材(18a)および第2連結口部材(18b)は、図7に示すように短管状に形成されており、一端部に連結口を有している。そして図8に示すように、第1連結口部材(18a)は冷却液流入管(19a)と液密状態に連結され、第2連結口部材(18b)は冷却液流出管(19b)と液密状態に連結される。 The first connecting port member (18a) and the second connecting port member (18b) are formed in a short tube shape as shown in FIG. 7, and have a connecting port at one end. As shown in FIG. 8, the first connecting port member (18a) is connected to the coolant inlet pipe (19a) in a liquid-tight state, and the second connecting port member (18b) is connected to the coolant outlet pipe (19b) and the liquid. It is connected in a dense state.
次に、前記冷却板(8)の構成を、その製造方法に基づいて以下に説明する。 Next, the configuration of the cooling plate (8) will be described below based on the manufacturing method.
まず、図4〜7に示すように、ケース本体(10)のチューブ収容用凹部(12)内に、相互に横一列に並べられた複数個の多孔チューブ(20)を、両ヘッダ部形成用凹部(11a)(11b)を連通する態様にして収容する。このとき、必要に応じて、ケース本体(10)のチューブ収容用凹部(12)の底面と多孔チューブ(20)との間にろう材を介在させても良い。 First, as shown in FIGS. 4 to 7, a plurality of perforated tubes (20) arranged in a horizontal row in the tube housing recess (12) of the case body (10) are used to form both header portions. The recesses (11a) and (11b) are accommodated in a communicating manner. At this time, if necessary, a brazing material may be interposed between the bottom surface of the tube housing recess (12) of the case body (10) and the porous tube (20).
次いで、このケース本体(10)の上面に蓋板(30)を多孔チューブ(20)全体を覆うように重合させる。こうして蓋板(30)を重合することにより、多孔チューブ(20)がケース本体(10)と蓋板(30)との間に挟まれるとともに、ケース本体(10)の両ヘッダ部形成用凹部(11a)(11b)のケース本体(10)上面側の開口部が蓋板(30)によって閉塞され、図7に示すように、ケース本体(10)の内部に2個のヘッダ部(14a)(14b)が形成される。なお、この蓋板(30)の重合工程において、必要に応じて、ケース本体(10)と蓋板(30)との間や、多孔チューブ(20)と蓋板(30)との間に、ろう材を介在させても良い。 Next, the lid plate (30) is superposed on the upper surface of the case body (10) so as to cover the entire porous tube (20). By superposing the lid plate (30) in this way, the porous tube (20) is sandwiched between the case body (10) and the lid plate (30), and both header portion forming recesses of the case body (10) ( The opening on the upper surface side of the case body (10) of 11a) and (11b) is closed by the lid plate (30), and as shown in FIG. 7, two header parts (14a) ( 14b) is formed. In the polymerization process of the lid plate (30), if necessary, between the case body (10) and the lid plate (30), between the porous tube (20) and the lid plate (30), A brazing material may be interposed.
また、蓋板(30)の重合工程の前に、または蓋板(30)の重合工程と同時に、あるいは蓋板(30)の重合工程の後で、第1および第2連結口部材(18a)(18b)をそれぞれ対応する挿通孔(13a)(13b)に挿通し、第1連結口部材(18a)を一方のヘッダ部形成用凹部(11a)に連通接続するとともに、第2連結口部材(18b)を他方のヘッダ部形成用凹部(11b)に連通接続する。 Further, the first and second connecting port members (18a) may be formed before the cover plate (30) polymerization step, simultaneously with the cover plate (30) polymerization step, or after the cover plate (30) polymerization step. (18b) is inserted into the corresponding insertion holes (13a) and (13b), and the first connection port member (18a) is connected to one of the header portion forming recesses (11a) and the second connection port member ( 18b) is communicatively connected to the other header forming recess (11b).
次いで、こうして組み立てられた冷却板の組立体をろう付用の炉内に導入し、炉内ろう付によってケース本体(10)と多孔チューブ(20)と蓋板(30)と第1連結口部材(18a)と第2連結口部材(18b)とを一括して相互に接合一体化する。この接合工程では、ケース本体(10)と蓋板(30)とは、各ヘッダ部(14a)(14b)内に収容される冷却液(C)の漏出を阻止する状態、即ち液密状態に相互に接合一体化される。さらに、第1連結口部材(18a)および第2連結口部材(18b)はそれぞれ液密状態に対応する挿通孔(13a)(13b)に接合される。なお、図5において、(47)はろう材のフィレットである。 Subsequently, the assembly of the cooling plate thus assembled is introduced into a brazing furnace, and the case main body (10), the perforated tube (20), the lid plate (30), and the first connection port member are brazed in the furnace. (18a) and the second connecting port member (18b) are joined and integrated together. In this joining process, the case main body (10) and the cover plate (30) are in a state that prevents leakage of the coolant (C) contained in the header portions (14a) and (14b), that is, in a liquid-tight state. They are joined and integrated with each other. Further, the first connection port member (18a) and the second connection port member (18b) are joined to the insertion holes (13a) and (13b) corresponding to the liquid-tight state, respectively. In FIG. 5, (47) is a filler fillet.
以上の工程を経て、図3に示した液冷式冷却板(8)が製作される。そして、上述した半導体素子用基板(1A)と同様に、この液冷式冷却板(8)の冷却面(8A)に絶縁層(3)および通電層(4)を設けることにより、半導体素子用基板(1B)が製作される。さらにこの半導体素子用基板(1B)の通電層(4)に半導体素子(2)を取り付けることにより、半導体モジュール(S2、図示省略)が製作される。 The liquid cooling type cooling plate (8) shown in FIG. 3 is manufactured through the above steps. Then, similarly to the semiconductor element substrate (1A) described above, an insulating layer (3) and a current-carrying layer (4) are provided on the cooling surface (8A) of the liquid-cooled cooling plate (8). A substrate (1B) is manufactured. Further, a semiconductor module (S2, not shown) is manufactured by attaching the semiconductor element (2) to the energization layer (4) of the semiconductor element substrate (1B).
前記液冷式冷却板(8)は、多孔チューブ(20)がケース本体(10)の所定凹部(12)内に収容されているので、組立物のろう付加熱によって冷却面(8A)の平坦度が低下したり、多孔チューブ(21)が変形したりするのを防止することができる。そのため、冷却面(8A)の平坦度を高く保持することができ、ひいては絶縁層(3)との密着性を高めて半導体素子(2)を効率良く冷却することができる。また、微細通路(21)を所定形状および大きさに保持することができ、高い冷却能力を発揮できる。さらに、多孔チューブ(20)がケース本体(10)および蓋板(30)内に収容され、さらにろう付一体化されているため、高い機械的強度を有している。また、ケース本体(10)とチューブ(20)と蓋板(30)との相互間の隙間にフレットが充填されているために、熱伝導性が良好であり、優れた冷却能力を得ることができる。 In the liquid cooling type cooling plate (8), since the perforated tube (20) is accommodated in the predetermined recess (12) of the case body (10), the cooling surface (8A) is flattened by the brazing heat of the assembly. It is possible to prevent the degree from decreasing and the porous tube (21) from being deformed. Therefore, the flatness of the cooling surface (8A) can be kept high, and as a result, the adhesion with the insulating layer (3) can be improved and the semiconductor element (2) can be efficiently cooled. Further, the fine passage (21) can be held in a predetermined shape and size, and high cooling capacity can be exhibited. Furthermore, since the perforated tube (20) is accommodated in the case main body (10) and the cover plate (30) and further integrated by brazing, it has high mechanical strength. In addition, since the fret is filled in the gaps between the case body (10), the tube (20), and the lid plate (30), the thermal conductivity is good and an excellent cooling capacity can be obtained. it can.
さらに、前記液冷式冷却板(8)は、冷却液流入管(19a)と連結される第1連結口部材(18a)と、冷却液流出管(19b)と連結される第2連結口部材(18b)とを備えているので、冷却液流入管(19a)および冷却液流出管(19b)の液冷式冷却板(8)との連結作業を容易に行うことができる。 Further, the liquid cooling type cooling plate (8) includes a first connection port member (18a) connected to the coolant inlet pipe (19a) and a second connection port member connected to the coolant outlet pipe (19b). (18b), it is possible to easily connect the coolant inlet pipe (19a) and the coolant outlet pipe (19b) to the liquid cooling type cooling plate (8).
本発明にかかる半導体素子用基板は、絶縁層と放熱デバイスが一体に接合されているため、放熱デバイスを別工程で取り付ける必要がなく、製作工程が簡略化される。その上、絶縁層と放熱デバイスとが直接接合されているため、熱抵抗が小さく優れた冷却性能を有する。 Since the insulating layer and the heat dissipation device are integrally joined to the semiconductor element substrate according to the present invention, it is not necessary to attach the heat dissipation device in a separate process, and the manufacturing process is simplified. In addition, since the insulating layer and the heat dissipation device are directly joined, the thermal resistance is small and the cooling performance is excellent.
本発明の半導体素子用基板(1A)(1B)および半導体モジュール(S1)(S2)は、電気車両、コンピュータ等の電子製品に搭載され、半導体素子を確実に冷却し、その動作について長期に亘って高い信頼性を確保することができる。また、冷却によって半導体素子寿命の延命効果も得ることができる。なお、半導体モジュールとして、IGBTモジュール、インバータ、コンバータ、半導体制御素子、ダイオード、コンデンサ、コイル、発光部品、半導体デバイス、マルチチップモジュール、スピーカ、CRT、ハードディスクドライブ、DVDドライブ、プリンタ部品(例:サーマルヘッド)、あるいはこれらに搭載されるモジュール等を例示できる。また、「電気車両」の語は、ハイブリッド車両を含み、車両として、自動車、自動二輪車、鉄道車両等を例示できる。 The semiconductor element substrate (1A) (1B) and the semiconductor module (S1) (S2) of the present invention are mounted on an electronic product such as an electric vehicle or a computer to reliably cool the semiconductor element and to operate it for a long time. High reliability. Moreover, the life extension effect of a semiconductor element lifetime can also be acquired by cooling. As semiconductor modules, IGBT modules, inverters, converters, semiconductor control elements, diodes, capacitors, coils, light emitting components, semiconductor devices, multichip modules, speakers, CRTs, hard disk drives, DVD drives, printer components (example: thermal head) ), Or modules mounted on them. The term “electric vehicle” includes a hybrid vehicle, and examples of the vehicle include an automobile, a motorcycle, and a railway vehicle.
前記半導体モジュールの使用例として、図8に前記半導体モジュール(S2)を搭載した電気自動車(40)について説明する。 As an example of use of the semiconductor module, an electric vehicle (40) equipped with the semiconductor module (S2) will be described with reference to FIG.
前記電気自動車(40)には冷却液を冷却する既設のラジエータ(41)が搭載されている。このラジエータ(41)は、電気自動車(40)のフロント部に配置されている。なお、(44)はラジエータ用ファン、(45)は車輪である。 The electric vehicle (40) is equipped with an existing radiator (41) for cooling the coolant. The radiator (41) is disposed at the front portion of the electric vehicle (40). Note that (44) is a radiator fan, and (45) is a wheel.
前記半導体モジュール(S2)の液冷式冷却板(8)の第1連結口部材(18a)には冷却液流入管(19a)が液密状態に連結されており、また液冷式冷却板(8)の第2連結口部材(18b)には冷却液流出管(19b)が液密状態に連結されている。冷却液流入管(19a)にはラジエータ(41)により冷却された冷却液が流通する。冷却液流出管(19b)には液冷式冷却板(8)から排出された冷却液が流通し、その後、該冷却液がラジエータ(41)へ供給される。 A cooling liquid inflow pipe (19a) is connected to the first connection port member (18a) of the liquid cooling type cooling plate (8) of the semiconductor module (S2) in a liquid-tight state, and the liquid cooling type cooling plate ( The coolant outlet pipe (19b) is connected to the second connecting port member (18b) of 8) in a liquid-tight state. The coolant cooled by the radiator (41) flows through the coolant inlet pipe (19a). The cooling liquid discharged from the liquid cooling type cooling plate (8) flows through the cooling liquid outflow pipe (19b), and then the cooling liquid is supplied to the radiator (41).
前記電気自動車(40)において、ラジエータ(41)により冷却された冷却液は、リザーブタンク(レシーバタンク)(42)を介してポンプ(43)によって冷却液流入管(19a)を通って液冷式冷却板(8)へ送られる。そして図6に示すように、冷却液(C)が、液冷式冷却板(8)の第1連結口部材(18a)から第1ヘッダ部(14a)内に流入し、多数に分岐して他孔チューブ(20)の各微細通路(21)を流通する。この流通時に冷却液(C)が半導体素子(2)の熱を奪って該半導体素子(2)を冷却する。その後、この冷却液(C)が第2ヘッダ部(14b)に流入し該第2ヘッダ部(14a)において合流し、第2連結口部材(18b)から流出する。流出した冷却液(C)は、冷却液流出管(19b)を通ってラジエータ(41)へ供給されて、再度ラジエータ(41)により冷却される。 In the electric vehicle (40), the coolant cooled by the radiator (41) is liquid-cooled through the coolant inlet pipe (19a) by the pump (43) through the reserve tank (receiver tank) (42). Sent to the cooling plate (8). Then, as shown in FIG. 6, the coolant (C) flows into the first header part (14a) from the first connection port member (18a) of the liquid cooling type cooling plate (8), and branches into a large number. It flows through each fine passage (21) of the other hole tube (20). During this distribution, the cooling liquid (C) takes heat of the semiconductor element (2) and cools the semiconductor element (2). Thereafter, the coolant (C) flows into the second header portion (14b), joins at the second header portion (14a), and flows out from the second connection port member (18b). The coolant (C) that has flowed out is supplied to the radiator (41) through the coolant discharge pipe (19b), and is cooled again by the radiator (41).
以上のように、前記電気自動車(40)において、冷却液(C)はラジエータ(41)と液冷式冷却板(8)とを循環し、長期に亘って半導体素子(2)を確実に冷却して高い信頼性を確保することができる。また、電気自動車等の電気車両には水冷機構が備わっているため、本発明の液冷式冷却板を組み込んだ半導体モジュールの適用が容易である。 As described above, in the electric vehicle (40), the coolant (C) circulates through the radiator (41) and the liquid-cooled cooling plate (8) to reliably cool the semiconductor element (2) over a long period of time. Thus, high reliability can be ensured. Moreover, since an electric vehicle such as an electric vehicle has a water cooling mechanism, it is easy to apply a semiconductor module incorporating the liquid cooling type cooling plate of the present invention.
図3〜7に示す半導体素子用基板(1B)および半導体モジュール(S2)を製作した。表1に示す実施例1〜11の半導体素子用基板(1B)において、通電層(4)および液冷式冷却板(8)を共通とし、絶縁層(3)の構成を表1に示すものに種々変えた。 A semiconductor element substrate (1B) and a semiconductor module (S2) shown in FIGS. In the semiconductor element substrates (1B) of Examples 1 to 11 shown in Table 1, the current-carrying layer (4) and the liquid-cooled cooling plate (8) are shared, and the configuration of the insulating layer (3) is shown in Table 1. Variously changed.
前記通電層(4)として、厚さ70μmの銅箔を用いた。 As the conductive layer (4), a copper foil having a thickness of 70 μm was used.
前記液冷式冷却板(8)は、上述したように、複数のアルミニウム製多孔チューブ(20)を、アルミニウム製ケース本体(10)およびアルミニウム製蓋板(30)内に収容してろう付するとともに、第1連結口部材(18a)および第2連結口部材(18b)をろう付したものである。さらに詳述すると、状多孔チューブ(20)は、微細通路(21)が19個形成された高さ1.7mm×幅16mmの押出チューブであり、微細通路(21)の相当直径が0.7mm、外周壁の肉厚が0.3mm、隣接する微細通路(21)(21)間の仕切の肉厚が0.2mmに形成されている。本実施例では、このような多孔チューブ(20)を12本並べて使用した。また、前記ケース本体(10)の平面寸法は100mm×200mmの長方形であり、高さが20mm、側面壁の肉厚が2mm、チューブ収容用凹部(12)形成部分の肉厚が2mmに形成されている。また、前記蓋板(30)は厚さ3mmの平板で形成されている。なお、図示の都合上、図中の多孔チューブおよび微細通路の数は本実施例とは一致していない。 As described above, the liquid-cooled cooling plate (8) brazes a plurality of aluminum porous tubes (20) in an aluminum case body (10) and an aluminum lid plate (30). In addition, the first connecting port member (18a) and the second connecting port member (18b) are brazed. More specifically, the perforated tube (20) is an extruded tube having a height of 1.7 mm and a width of 16 mm in which 19 fine passages (21) are formed, and the equivalent diameter of the fine passage (21) is 0.7 mm. The wall thickness of the outer peripheral wall is 0.3 mm, and the wall thickness of the partition between the adjacent fine passages (21) and (21) is 0.2 mm. In this example, 12 such porous tubes (20) were used side by side. The case body (10) has a rectangular size of 100 mm × 200 mm, a height of 20 mm, a side wall thickness of 2 mm, and a tube receiving recess (12) forming portion of a thickness of 2 mm. ing. The lid plate (30) is a flat plate having a thickness of 3 mm. For the convenience of illustration, the numbers of perforated tubes and fine passages in the figure do not match those of this embodiment.
絶縁層(3)は、実施例1、2は絶縁性樹脂のみで形成し、実施例3〜6は絶縁性樹脂に熱伝導性フィラーを配合した樹脂組成物で形成した。また、実施例7〜11は、絶縁性布帛としてガラス繊維不織布を用い、このガラス繊維不織布に絶縁性樹脂または絶縁性樹脂組成物を含浸させた複合材で形成した。各実施例で使用した絶縁性樹脂、熱伝導性フィラーの種類および含有量、絶縁性布帛の厚さ、形成した各絶縁層の厚さを表1に示す。また、これらの熱伝導率を示す。 Insulating layer (3) was formed of Examples 1 and 2 using only an insulating resin, and Examples 3 to 6 were formed of a resin composition in which a thermally conductive filler was blended into an insulating resin. In Examples 7 to 11, a glass fiber nonwoven fabric was used as the insulating fabric, and the glass fiber nonwoven fabric was formed of a composite material impregnated with an insulating resin or an insulating resin composition. Table 1 shows the insulating resin used in each example, the type and content of the thermally conductive filler, the thickness of the insulating fabric, and the thickness of each insulating layer formed. Moreover, these heat conductivity is shown.
そして、上述した通電層(4)、絶縁層(3)および液冷式冷却板(8)を、上述したホットプレス法に基づき、3.92MPa(40kgf/cm2)、170℃で2時間熱プレスし、接合一体化して半導体素子用基板(1B)を製作した。 Then, the current-carrying layer (4), insulating layer (3) and liquid-cooled cooling plate (8) described above are heated at 3.92 MPa (40 kgf / cm 2 ) at 170 ° C. for 2 hours based on the hot-pressing method described above. The substrate for semiconductor element (1B) was manufactured by pressing and bonding.
以上のようにして作製した各半導体素子用基板(1B)における熱抵抗値を表1に示す。 Table 1 shows the thermal resistance value of each semiconductor element substrate (1B) produced as described above.
さらに、前記半導体素子用基板(1B)に半導体素子(2)を半田付けし、半導体モジュール(S2)を製作した。 Further, the semiconductor element (2) was soldered to the semiconductor element substrate (1B) to produce a semiconductor module (S2).
前記絶縁層(3)の径時的なそりについて、JIS C6481に基づいて最大そり量D1および最大そり部分の試料片L1を測定し、そり率W1(%)=D1/L1×100を求めた。そして、そり率W1により下記の基準で評価した。
◎:1%未満
○:1〜2%
×:2%を超える
また、比較例として、通電層としての上記銅箔を厚さ3mmのセラミック製絶縁層に接合し、該セラミック絶縁層を接着剤を用いて液冷式冷却板(8)に接合することにより、半導体素子用基板を製作した。比較例の熱伝導率および熱抵抗を表1に併せて示す。
Regarding the time-dependent warpage of the insulating layer (3), the maximum warpage amount D1 and the sample piece L1 of the maximum warpage portion were measured based on JIS C6481, and the warpage rate W1 (%) = D1 / L1 × 100 was obtained. . And it evaluated by the following reference | standard by the curvature rate W1.
◎: Less than 1% ○: 1-2%
×: More than 2% Further, as a comparative example, the copper foil as the current-carrying layer was joined to a ceramic insulating layer having a thickness of 3 mm, and the ceramic insulating layer was bonded to a liquid-cooled cooling plate (8). A substrate for a semiconductor element was manufactured by bonding to the substrate. Table 1 shows the thermal conductivity and thermal resistance of the comparative example.
表1の結果より、各実施例の半導体素子用基板は優れた冷却能力を発揮しうることを確認できた。また、絶縁層として熱伝導性フィラーを配合した絶縁性樹脂組成物を用いることにより、熱伝導率を高めて冷却能力を向上しうることを確認した。また、絶縁性布帛を用いることにより、長期に亘って使用しても絶縁層の寸法変化等を抑制しうることを確認した。 From the result of Table 1, it has confirmed that the board | substrate for semiconductor elements of each Example can exhibit the outstanding cooling capability. Moreover, it was confirmed that by using an insulating resin composition containing a thermally conductive filler as an insulating layer, the thermal conductivity can be increased and the cooling capacity can be improved. In addition, it was confirmed that the use of the insulating fabric can suppress the dimensional change of the insulating layer even when used for a long period of time.
本発明にかかる半導体素子用基板は、電気自動車用半導体素子やコンピュータ用半導体素子をはじめ、様々な発熱体を搭載して冷却するための基板として利用可能である。 The substrate for a semiconductor device according to the present invention can be used as a substrate for cooling by mounting various heating elements including a semiconductor device for an electric vehicle and a semiconductor device for a computer.
1A,1B…半導体素子用基板
S1,S2…半導体モジュール
2…半導体素子
3…絶縁層
4…通電層
5…放熱デバイス
7…多孔チューブ(液冷式冷却板、放熱デバイス)
20…多孔チューブ
7a,21…微細通路
8…液冷式冷却板(放熱デバイス)
10…ケース本体
11a、11b…ヘッダ部形成用凹部
12…チューブ収容用凹部
14a、14b…ヘッダ部
18a…第1連結口部材
18b…第2連結口部材
30…蓋板
40…電気自動車(電気車両)
C…冷却液
1A, 1B ... Semiconductor device substrate
S1, S2 ... Semiconductor module
2 ... Semiconductor element
3… Insulating layer
4… Conducting layer
5… Heat dissipation device
7 ... Perforated tube (liquid cooling type cooling plate, heat dissipation device)
20 Perforated tube
7a, 21 ... Fine passage
8 ... Liquid-cooled cooling plate (heat dissipation device)
10 ... Case body
11a, 11b ... Header forming recess
12 ... Recess for tube accommodation
14a, 14b ... Header
18a ... 1st connection port member
18b ... Second connecting port member
30 ... Lid plate
40… Electric car (electric vehicle)
C ... Coolant
Claims (14)
冷却液が流通する微細通路を有する少なくとも1個の扁平状の多孔チューブと、互いに離間した2個のヘッダ部形成用凹部と該両ヘッダ部形成用凹部間に形成され且つ前記チューブを収容するチューブ収容用凹部とが設けられたケース本体と、前記ケース本体に重合される蓋板とを備え、
前記チューブ収容用凹部内に前記多孔チューブが前記両ヘッダ部形成用凹部を連通する態様にして収容され、前記ケース本体に前記蓋板が重合された状態で、前記多孔チューブが前記ケース本体と前記蓋板との間に挟まれるとともに、前記両ヘッダ部形成用凹部の開口部が前記蓋板で閉塞されて2個のヘッダ部が形成され、前記ケース本体と前記多孔チューブと前記蓋板とが、前記ヘッダ部内を流通する冷却液の漏出を阻止する状態に接合一体化されてなる、請求項2に記載の半導体素子用基板。 The liquid cooling plate is
At least one flat porous tube having a fine passage through which a cooling liquid flows, two header portion forming recesses spaced apart from each other, and a tube that is formed between both header portion forming recesses and accommodates the tube A case main body provided with a housing recess, and a cover plate that is superposed on the case main body,
The porous tube is accommodated in the tube accommodating recess so as to communicate with both the header portion forming recesses, and the cover tube is superposed on the case body. While sandwiched between the lid plates, the opening portions of the header portion forming recesses are closed by the lid plate to form two header portions, and the case body, the porous tube, and the lid plate are The semiconductor element substrate according to claim 2, wherein the substrate is joined and integrated in a state of preventing leakage of a coolant flowing through the header portion.
A radiator is mounted, and the coolant cooled by the radiator flows into the liquid-cooled cooling plate, and the coolant flowing out from the liquid-cooled cooling plate is cooled by the radiator. 13. The electric vehicle according to 13.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004360075A JP4382651B2 (en) | 2004-04-06 | 2004-12-13 | Semiconductor device substrate, semiconductor module, and electric vehicle |
DE112005000748T DE112005000748T5 (en) | 2004-04-06 | 2005-04-06 | Semiconductor element mounting substrate, semiconductor module and electric vehicle |
PCT/JP2005/007114 WO2005098943A1 (en) | 2004-04-06 | 2005-04-06 | Semiconductor element mounting substrate, semiconductor module, and electric vehicle |
US11/547,851 US20080239671A1 (en) | 2004-04-06 | 2005-04-06 | Semiconductor Element Mounting Substrate, Semiconductor Module, And Electric Vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004112205 | 2004-04-06 | ||
JP2004360075A JP4382651B2 (en) | 2004-04-06 | 2004-12-13 | Semiconductor device substrate, semiconductor module, and electric vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005322879A true JP2005322879A (en) | 2005-11-17 |
JP4382651B2 JP4382651B2 (en) | 2009-12-16 |
Family
ID=35469896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004360075A Expired - Fee Related JP4382651B2 (en) | 2004-04-06 | 2004-12-13 | Semiconductor device substrate, semiconductor module, and electric vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4382651B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007173504A (en) * | 2005-12-22 | 2007-07-05 | Toyota Central Res & Dev Lab Inc | Module for mounting semiconductor device, and semiconductor apparatus with semiconductor device mounted thereon |
JP2007273755A (en) * | 2006-03-31 | 2007-10-18 | Mitsubishi Materials Corp | Heat sink as well as power module member, and power module |
JP2008205371A (en) * | 2007-02-22 | 2008-09-04 | Mitsubishi Materials Corp | Liquid-cooled type cooler and unit for mounting power element |
JP2009206191A (en) * | 2008-02-26 | 2009-09-10 | Sumitomo Electric Ind Ltd | Power module |
JP2012119475A (en) * | 2010-11-30 | 2012-06-21 | Toyoda Iron Works Co Ltd | Cooling device for electronic component and manufacturing method of the same |
JP2012199421A (en) * | 2011-03-22 | 2012-10-18 | Mitsubishi Electric Corp | Plate type cooler and manufacturing method of the same |
CN113327904A (en) * | 2021-04-29 | 2021-08-31 | 中国电子科技集团公司第二十九研究所 | Double-sided efficient heat dissipation airtight packaging structure and preparation method thereof |
-
2004
- 2004-12-13 JP JP2004360075A patent/JP4382651B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007173504A (en) * | 2005-12-22 | 2007-07-05 | Toyota Central Res & Dev Lab Inc | Module for mounting semiconductor device, and semiconductor apparatus with semiconductor device mounted thereon |
JP2007273755A (en) * | 2006-03-31 | 2007-10-18 | Mitsubishi Materials Corp | Heat sink as well as power module member, and power module |
JP4626555B2 (en) * | 2006-03-31 | 2011-02-09 | 三菱マテリアル株式会社 | Heat sink, power module member and power module |
JP2008205371A (en) * | 2007-02-22 | 2008-09-04 | Mitsubishi Materials Corp | Liquid-cooled type cooler and unit for mounting power element |
JP2009206191A (en) * | 2008-02-26 | 2009-09-10 | Sumitomo Electric Ind Ltd | Power module |
JP2012119475A (en) * | 2010-11-30 | 2012-06-21 | Toyoda Iron Works Co Ltd | Cooling device for electronic component and manufacturing method of the same |
US9163886B2 (en) | 2010-11-30 | 2015-10-20 | Toyoda Iron Works Co., Ltd. | Method for manufacturing a cooling device for electronic component |
JP2012199421A (en) * | 2011-03-22 | 2012-10-18 | Mitsubishi Electric Corp | Plate type cooler and manufacturing method of the same |
CN113327904A (en) * | 2021-04-29 | 2021-08-31 | 中国电子科技集团公司第二十九研究所 | Double-sided efficient heat dissipation airtight packaging structure and preparation method thereof |
CN113327904B (en) * | 2021-04-29 | 2023-06-02 | 中国电子科技集团公司第二十九研究所 | Double-sided efficient heat-dissipation airtight packaging structure and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4382651B2 (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080239671A1 (en) | Semiconductor Element Mounting Substrate, Semiconductor Module, And Electric Vehicle | |
JP4638258B2 (en) | LED substrate and light source | |
JP4967988B2 (en) | Semiconductor cooling device | |
JP4819389B2 (en) | Backlight unit and liquid crystal display device | |
US20070045801A1 (en) | Circuit board | |
JP4617209B2 (en) | Heat dissipation device | |
US7806168B2 (en) | Optimal spreader system, device and method for fluid cooled micro-scaled heat exchange | |
JP5007296B2 (en) | Power module base | |
US8299606B2 (en) | Semiconductor device includes a ceramic substrate and heat sink | |
KR101188150B1 (en) | Cooling device | |
JP2005274120A (en) | Liquid cooled type cooling plate | |
JP6409690B2 (en) | Cooling module | |
JP5876654B2 (en) | Method for manufacturing liquid-cooled integrated substrate | |
US20050258550A1 (en) | Circuit board and semiconductor device using the same | |
JP2009295878A (en) | Heat exchange device | |
EP2654079A2 (en) | Heat dissipation device and method for manufacturing the same | |
JP4382651B2 (en) | Semiconductor device substrate, semiconductor module, and electric vehicle | |
JP2007017497A (en) | Backlight unit and liquid crystal display device | |
JP5969235B2 (en) | Aluminum clad material for heat exchanger and manufacturing method thereof | |
JP6738193B2 (en) | Heat transfer structure, insulating laminated material, insulating circuit board and power module base | |
US20240321684A1 (en) | Ceramic substrate and manufacturing method thereof | |
JP2019201026A (en) | Heat receiving jacket, liquid cooling system, and manufacturing method for heat receiving jacket | |
CN112368894A (en) | Diode laser assembly and method of manufacturing a diode laser assembly | |
JP2007073904A (en) | Circuit board | |
JP2010062491A (en) | Semiconductor device and composite semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090616 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090917 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |