JP2005317446A - 電解質およびそれを用いた電池 - Google Patents
電解質およびそれを用いた電池 Download PDFInfo
- Publication number
- JP2005317446A JP2005317446A JP2004136184A JP2004136184A JP2005317446A JP 2005317446 A JP2005317446 A JP 2005317446A JP 2004136184 A JP2004136184 A JP 2004136184A JP 2004136184 A JP2004136184 A JP 2004136184A JP 2005317446 A JP2005317446 A JP 2005317446A
- Authority
- JP
- Japan
- Prior art keywords
- group
- lithium
- negative electrode
- chemical formula
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
【課題】 サイクル特性を向上させることができる電池およびそれに用いられる電解質を提供する。
【解決手段】 正極21と負極22とがセパレータ23を介して巻回された巻回電極体20を備える。セパレータ23には溶媒に電解質塩が溶解された電解液が含浸されている。溶媒にはR31CFX31COOR32で表されるカルボン酸エステルを用いる。電解質塩にはジフルオロ[オキソラト−O,O’]ホウ酸リチウム、テトラフルオロ[オキソラト−O,O’]リン酸リチウムまたはジフルオロビス[オキソラト−O,O’]リン酸リチウムなどの軽金属塩を用いる。これにより負極22における電解質の分解反応を抑制することができ、サイクル特性が改善される。
【選択図】 図1
【解決手段】 正極21と負極22とがセパレータ23を介して巻回された巻回電極体20を備える。セパレータ23には溶媒に電解質塩が溶解された電解液が含浸されている。溶媒にはR31CFX31COOR32で表されるカルボン酸エステルを用いる。電解質塩にはジフルオロ[オキソラト−O,O’]ホウ酸リチウム、テトラフルオロ[オキソラト−O,O’]リン酸リチウムまたはジフルオロビス[オキソラト−O,O’]リン酸リチウムなどの軽金属塩を用いる。これにより負極22における電解質の分解反応を抑制することができ、サイクル特性が改善される。
【選択図】 図1
Description
本発明は、フッ素原子を有するカルボン酸エステルを含む電解質、およびそれを用いた電池に関する。
近年、携帯電話,PDA(Personal Digital Assistant;個人用携帯型情報端末機器)あるいはノート型コンピュータに代表される携帯型電子機器の小型化、軽量化が精力的に進められ、その一環として、それらの駆動電源である電池、特に二次電池のエネルギー密度の向上が強く望まれている。高エネルギー密度を得ることができる二次電池としては、負極に炭素材料などのリチウム(Li)を吸蔵および離脱することが可能な材料を用いたリチウムイオン二次電池が商品化され、市場が拡大している。
また、高エネルギー密度を得ることができる二次電池としては、負極にリチウム金属を用い、負極反応にリチウム金属の析出および溶解反応のみを利用したリチウム金属二次電池がある。リチウム金属二次電池は、リチウム金属の理論電気化学当量が2054mAh/cm3 と大きく、リチウムイオン二次電池で用いられる黒鉛の2.5倍にも相当するので、リチウムイオン二次電池を上回る高いエネルギー密度を得られるものと期待されている。これまでも、多くの研究者等によりリチウム金属二次電池の実用化に関する研究開発がなされている(例えば、非特許文献1参照。)。
更に、最近では負極の容量がリチウムの吸蔵および離脱による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表される二次電池が開発されている(例えば、特許文献1参照。)。これは、負極にリチウムを吸蔵および離脱することが可能な炭素材料を用い、充電の途中においてその炭素材料の表面にリチウムを析出させるようにしたものである。この二次電池によれば、リチウム金属二次電池と同様に高エネルギー密度を達成させることが期待できる。
ところで、これらの二次電池では、サイクル特性などの諸特性を向上させるために、従来より、電解質に種々の添加物を添加することが検討されている(例えば、特許文献2,3参照)。
ジャンポール・ガバノ(Jean-Paul Gabano)編,「リチウム・バッテリーズ(Lithium Batteries )」,ロンドン,ニューヨーク,アカデミック・プレス(Academic Press),1983年 国際公開第01/22519号パンフレット
特開2002−110235号公報
特開平11−86901号公報
ジャンポール・ガバノ(Jean-Paul Gabano)編,「リチウム・バッテリーズ(Lithium Batteries )」,ロンドン,ニューヨーク,アカデミック・プレス(Academic Press),1983年
しかしながら、リチウム金属二次電池、あるいは負極の容量がリチウムの吸蔵および離脱による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表される二次電池では、リチウムイオン二次電池に比べてサイクル特性が低く、その向上が望まれている。また、リチウムイオン二次電池でも、近年の電池寿命の延長の要求に伴い、更なるサイクル特性の向上が求められている。
本発明はかかる問題点に鑑みてなされたもので、その目的は、サイクル特性を向上させることができる電解質およびそれを用いた電池を提供することにある。
本発明による電解質は、化1で表される化合物と、化2で表される軽金属塩とを含むものである。
本発明による電池は、正極および負極と共に電解質を備えたものであって、電解質は、化3で表される化合物と、化4で表される軽金属塩とを含むものである。
本発明の電解質によれば、化1で表される化合物と、化2で表される軽金属塩とを含むようにしたので、高い安定性を得ることができる。
また、本発明の電池によれば、本発明の電解質を用いるようにしたので、負極における電解質の分解反応を抑制することができる。よって、負極における効率が向上し、サイクル特性を向上させることができる。
特に、化2で表される軽金属塩以外の他の軽金属塩も含むようにすれば、より高い効果を得ることができる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
本発明の一実施の形態に係る電解質は、例えば溶媒と、この溶媒に溶解された電解質塩とを含むいわゆる液状の電解液を含有している。
溶媒としては、例えば有機溶媒などの非水溶媒が好ましく、化5で表される化合物が好ましい。例えば、電池に用いた場合、負極における電解質の分解反応を抑制し、サイクル特性を向上させることができ、高い安定性が得られるからである。
化5で表される化合物について具体例を挙げれば、CF3CF2COOCH3、CF3CF2COOC2H5、CF3CHFCOOCH3、CF3CHFCOOC2H5、CH2FCOOCH3、CHF2COOC2H5、CF3COOCH3、CF3COOC2H5、CH3CF2COOCH3、CH3CF2COOC2H5、CHF2COOCH3、CF3CF2CF2COOCH3、CF3CF2CF2CF2COOCH3などがある。
化5で表される化合物は、また、従来より使用されている種々の非水溶媒と混合して用いてもよい。このような非水溶媒について具体例を挙げれば、プロピレンカーボネート,エチレンカーボネート,ジエチルカーボネート,ジメチルカーボネート,エチルメチルカーボネート,ビニレンカーボネートあるいはビニルエチレンカーボネートなどの炭酸エステル、またはγ−ブチロラクトン,スルホラン,2−メチルテトラヒドロフランあるいはジメトキシエタンなどのエーテル類などが挙げられる。これらは単独で使用してもよく、複数種を混合して用いてもよい。特に、酸化安定性の点からは、炭酸エステルが好ましく、中でも、ビニレンカーボネートあるいはビニルエチレンカーボネートなどの不飽和化合物の環状炭酸エステルを含めることが好ましい。サイクル特性および重負荷特性を向上させることができるからである。
電解質塩としては、化6で表される軽金属塩を含むことが好ましい。この化6で表される軽金属塩は、例えば電池に用いた場合、負極の表面に安定な被膜を形成し、溶媒の分解反応を抑制することができるので、電解質の安定性を高めることができるからである。
化6で表される軽金属塩としては、例えば化9で表される化合物が好ましい。
更に具体的には、化12で表されるジフルオロ[オキソラト−O,O’]ホウ酸リチウム,化13で表されるテトラフルオロ[オキソラト−O,O’]リン酸リチウムあるいは化14で表されるジフルオロビス[オキソラト−O,O’]リン酸リチウムがより好ましく挙げられる。B−O結合またはP−O結合を有しているとより高い効果を得ることができ、特に、O−B−O結合またはO−P−O結合を有していれば更に高い効果を得ることができるからである。
また、電解質塩には、化6で表される軽金属塩に加えて、他の軽金属塩のいずれか1種または2種以上を混合して用いることが好ましい。例えば電池において、保存特性などの電池特性を向上させることができると共に、内部抵抗を低減させることができるからである。他の軽金属塩としては、例えば、LiB(C6 H5 )4 、LiCH3 SO3 、LiCF3 SO3 、LiAlCl4 、LiSiF6 、LiCl、LiBr、LiPF6 、LiBF4 、LiClO4 、LiAsF6 、LiN(CF3 SO2 )2 、LiN(C2 F5 SO2 )2 あるいはLiN(C4 F9 SO2)( CF3 SO2 )などの化15で表されるリチウム塩、またはLiC(CF3 SO2 )3 などの化16で表されるリチウム塩が挙げられる。
中でも、LiPF6 、LiBF4 、LiClO4 、LiAsF6 、化15で表されるリチウム塩および化16で表されるリチウム塩のいずれか1種または2種以上を混合して用いるようにすれば、より高い効果を得ることができると共に、高い導電率を得ることができるので好ましく、LiPF6 と、LiBF4 ,LiClO4 ,LiAsF6 ,化15で表されるリチウム塩および化16で表されるリチウム塩からなる群のうちの少なくとも1種とを混合して用いるようにすれば、更に好ましい。
電解質塩の含有量(濃度)は、溶媒に対して、0.3mol/kg以上3.0mol/kg以下の範囲内であることが好ましい。この範囲外ではイオン伝導度の極端な低下により十分な電池特性が得られなくなる虞があるからである。そのうち、化6で表される軽金属塩の含有量は、溶媒に対して0.01mol/kg以上2.0mol/kg以下の範囲内であることが好ましい。この範囲内においてより高い効果を得ることができるからである。
なお、電解質は、これらの溶媒,および電解質塩を含むいわゆる電解液を保持する高分子化合物を含むことによりゲル状とされていてもよい。ゲル状の電解質は、イオン伝導度が室温で1mS/cm以上であるものであればよく、組成および高分子化合物の構造に特に限定はない。電解液(すなわち液状の溶媒および電解質塩)については上述のとおりである。高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレンあるいはポリカーボネートが挙げられる。特に、電気化学的安定性の点からは、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンあるいはポリエチレンオキサイドの構造を持つ高分子化合物を用いることが望ましい。電解液に対する高分子化合物の添加量は、両者の相溶性によっても異なるが、通常、電解液の5質量%〜50質量%に相当する高分子化合物を添加することが好ましい。
この電解質は、例えば、化5で表される化合物を含む溶媒に、化6で表される軽金属塩を溶解させることにより製造することができる。また、ゲル状とする場合には、例えば、この電解液を高分子化合物と希釈溶剤とに混合して乾燥させることにより製造することができる。また、例えば、この電解液を高分子化合物の出発原料であるモノマーと混合し、モノマーを重合させることにより製造することもできる。
この電解質は、例えば次のようにして第1の二次電池に用いられる。
(第1の二次電池)
図1は第1の二次電池の断面構造を表すものである。この二次電池は、負極の容量が、電極反応物質であるリチウムの吸蔵および放出による容量成分により表されるものであり、いわゆるリチウムイオン二次電池である。この二次電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、帯状の正極21と帯状の負極22とがセパレータ23を介して巻回された巻回電極体20を有している。電池缶11は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12,13がそれぞれ配置されている。
図1は第1の二次電池の断面構造を表すものである。この二次電池は、負極の容量が、電極反応物質であるリチウムの吸蔵および放出による容量成分により表されるものであり、いわゆるリチウムイオン二次電池である。この二次電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、帯状の正極21と帯状の負極22とがセパレータ23を介して巻回された巻回電極体20を有している。電池缶11は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12,13がそれぞれ配置されている。
電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、ガスケット17を介してかしめられることにより取り付けられており、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。熱感抵抗素子16は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
巻回電極体20は、例えば、センターピン24を中心に巻回されている。巻回電極体20の正極21にはアルミニウムなどよりなる正極リード25が接続されており、負極22にはニッケルなどよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接され電気的に接続されている。
図2は図1に示した巻回電極体20の一部を拡大して表すものである。正極21は、例えば、対向する一対の面を有する正極集電体21Aの両面に正極活物質層21Bが設けられた構造を有している。なお、図示はしないが、正極集電体21Aの片面のみに正極活物質層21Bを設けるようにしてもよい。正極集電体21Aは、例えば、厚みが5μm〜50μm程度であり、アルミニウム箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。正極活物質層21Bは、例えば、正極活物質として、電極反応物質であるリチウムを吸蔵および放出することが可能な正極材料の1種または2種以上を含んでおり、必要に応じて導電剤および結着剤を含んで構成されている。すなわち、正極21の容量は、電極反応物質であるリチウムを吸蔵および放出による容量成分を含んでいる。また、正極活物質層21Bの厚みは、60μm〜250μmである。なお、正極活物質層21Bの厚みは、正極活物質層21Bが正極集電体21Aの両面に設けられている場合には、その合計の厚みである。
リチウムを吸蔵および放出することが可能な正極材料としては、例えば、エネルギー密度を高くするために、リチウムと遷移金属元素と酸素とを含むリチウム含有化合物を含有することが好ましく、中でも、遷移金属元素として、コバルト(Co),ニッケル,マンガン(Mn)および鉄からなる群のうちの少なくとも1種を含むものを含有すればより好ましい。このようなリチウム含有化合物としては、例えば、LiCoO2 ,LiNi0.5Co0.5O2 ,LiMn2 O4 あるいはLiFePO4 が挙げられる。
なお、このような正極材料は、例えば、リチウムの炭酸塩,硝酸塩,酸化物あるいは水酸化物と、遷移金属の炭酸塩,硝酸塩,酸化物あるいは水酸化物とを所望の組成になるように混合し、粉砕した後、酸素雰囲気中において600℃〜1000℃の範囲内の温度で焼成することにより調製される。
導電剤としては、例えば、黒鉛,カーボンブラックあるいはケッチェンブラックなどの炭素材料が挙げられ、そのうちの1種または2種以上が混合して用いられる。また、炭素材料の他にも、導電性を有する材料であれば金属材料あるいは導電性高分子材料などを用いるようにしてもよい。結着剤としては、例えば、スチレンブタジエン系ゴム,フッ素系ゴムあるいはエチレンプロピレンジエンゴムなどの合成ゴム、またはポリフッ化ビニリデンなどの高分子材料が挙げられ、そのうちの1種または2種以上が混合して用いられる。例えば、図1に示したように正極21および負極22が巻回されている場合には、結着剤として柔軟性に富むスチレンブタジエン系ゴムあるいはフッ素系ゴムなどを用いることが好ましい。
負極22は、例えば、対向する一対の面を有する負極集電体22Aの両面に負極活物質層22Bが設けられた構造を有している。なお、図示はしないが、負極集電体22Aの片面のみに負極活物質層22Bを設けるようにしてもよい。負極集電体22Aは、例えば、良好な電気化学的安定性、電気伝導性および機械的強度を有する銅箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。特に、銅箔は高い電気伝導性を有するので最も好ましい。負極集電体22Aの厚みは、例えば、5μm〜40μm程度であることが好ましい。5μmよりも薄いと機械的強度が低下し、製造工程において負極集電体22Aが断裂しやすく、生産効率が低下してしまうからであり、40μmよりも厚いと電池内における負極集電体22Aの体積比が必要以上に大きくなり、エネルギー密度を高くすることが難しくなるからである。
負極活物質層22Bは、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んで構成されており、必要に応じて正極活物質層21Bと同様の結着剤を含んで構成されている。すなわち、負極22の容量は、電極反応物質であるリチウムを吸蔵および放出による容量成分を含んでいる。負極活物質層22Bの厚みは、例えば、40μm〜250μmである。この厚みは、負極活物質層22Bが負極集電体22Aの両面に設けられている場合には、その合計の厚みである。
なお、この二次電池では、リチウムを吸蔵および放出することが可能な負極材料の充電容量が、正極21の充電容量よりも大きくなっている。すなわち、この二次電池では、充電の途中において負極22にリチウム金属が析出しないようになっている。
リチウムを吸蔵および放出することが可能な負極材料としては、例えば、黒鉛,難黒鉛化性炭素あるいは易黒鉛化性炭素などの炭素材料が挙げられる。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。
黒鉛としては、例えば、真密度が2.10g/cm3 以上のものが好ましく、2.18g/cm3 以上のものであればより好ましい。なお、このような真密度を得るには、(002)面のC軸結晶子厚みが14.0nm以上であることが必要である。また、(002)面の面間隔は0.340nm未満であることが好ましく、0.335nm以上0.337nm以下の範囲内であればより好ましい。
難黒鉛化性炭素としては、(002)面の面間隔が0.37nm以上、真密度が1.70g/cm3 未満であると共に、空気中での示差熱分析(differential thermal analysis ;DTA)において700℃以上に発熱ピークを示さないものが好ましい。
リチウムを吸蔵および放出することが可能な負極材料としては、また、リチウムと合金を形成可能な金属元素の単体,合金あるいは化合物、またはリチウムと合金を形成可能な半金属元素の単体,合金あるいは化合物が挙げられる。これらは高いエネルギー密度を得ることができるので好ましく、特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本明細書において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とからなるものも含める。その組織には固溶体,共晶(共融混合物),金属間化合物あるいはそれらのうち2種以上が共存するものがある。
このような金属元素あるいは半金属元素としては、スズ(Sn),鉛(Pb),アルミニウム,インジウム(In),ケイ素(Si),亜鉛(Zn),アンチモン(Sb),ビスマス(Bi),カドミウム(Cd),マグネシウム(Mg),ホウ素(B),ガリウム(Ga),ゲルマニウム(Ge),ヒ素(As),銀(Ag),ジルコニウム(Zr),イットリウム(Y)またはハフニウム(Hf)が挙げられる。これらの合金あるいは化合物としては、例えば、化学式Mαs1Mβs2Lis3、あるいは化学式Mαs4Mγs5Mδs6で表されるものが挙げられる。これら化学式において、Mαはリチウムと合金を形成可能な金属元素および半金属元素のうちの少なくとも1種を表し、MβはリチウムおよびMα以外の金属元素および半金属元素のうちの少なくとも1種を表し、Mγは非金属元素の少なくとも1種を表し、MδはMα以外の金属元素および半金属元素のうちの少なくとも1種を表す。また、s1、s2、s3、s4、s5およびs6の値はそれぞれs1>0、s2≧0、s3≧0、s4>0、s5>0、s6≧0である。中でも、短周期型周期表における4B族の金属元素あるいは半金属元素の単体、合金または化合物が好ましく、特に好ましいのはケイ素あるいはスズ、またはこれらの合金あるいは化合物である。これらは結晶質のものでもアモルファスのものでもよい。
このような合金あるいは化合物について具体的に例を挙げれば、LiAl,AlSb,CuMgSb,SiB4 ,SiB6 ,Mg2 Si,Mg2 Sn,Ni2 Si,TiSi2 ,MoSi2 ,CoSi2 ,NiSi2 ,CaSi2 ,CrSi2 ,Cu5 Si,FeSi2 ,MnSi2 ,NbSi2 ,TaSi2 ,VSi2 ,WSi2 ,ZnSi2 ,SiC,Si3 N4 ,Si2 N2 O,SiOv (0<v≦2),SnOw (0<w≦2),SnSiO3 ,LiSiOあるいはLiSnOなどがある。
リチウムを吸蔵および放出することが可能な負極材料としては、更に、他の金属化合物あるいは高分子材料が挙げられる。他の金属化合物としては、酸化鉄,酸化ルテニウムあるいは酸化モリブデンなどの酸化物や、あるいはLiN3 などが挙げられ、高分子材料としてはポリアセチレン,ポリアニリンあるいはポリピロールなどが挙げられる。
セパレータ23は、例えば、ポリテトラフルオロエチレン,ポリプロピレンあるいはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミック製の多孔質膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜はショート防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特に、ポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。また、ポリプロピレンも好ましく、他にも化学的安定性を備えた樹脂であればポリエチレンあるいはポリプロピレンと共重合させたり、またはブレンド化することで用いることができる。
セパレータ23には、本実施の形態に係る電解質が含浸されている。これにより、負極22における電解質の分解反応を抑制することができ、サイクル特性などの電池特性を向上させることができるようになっている。なお、電解質塩としては、リチウム塩を用いることが好ましいが、リチウム塩でなくてもよい。充放電に寄与するリチウムイオンは、正極などから供給されれば足りるからである。
この二次電池は、例えば、次のようにして製造することができる。
まず、例えば、リチウムを吸蔵および放出することが可能な正極材料と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の正極合剤スラリーとする。次いで、この正極合剤スラリーを正極集電体21Aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して正極活物質層21Bを形成し、正極21を作製する。
また、例えば、リチウムを吸蔵および放出することが可能な負極材料と、結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーとする。次いで、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して負極活物質層22Bを形成し、負極22を作製する。
続いて、正極集電体21Aに正極リード25を溶接などにより取り付けると共に、負極集電体22Aに負極リード26を溶接などにより取り付ける。そののち、正極21と負極22とをセパレータ23を介して巻回し、正極リード25の先端部を安全弁機構15に溶接すると共に、負極リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12,13で挟み電池缶11の内部に収納する。正極21および負極22を電池缶11の内部に収納したのち、電解質を電池缶11の内部に注入し、セパレータ23に含浸させる。そののち、電池缶11の開口端部に電池蓋14,安全弁機構15および熱感抵抗素子16をガスケット17を介してかしめることにより固定する。これにより、図1に示した二次電池が形成される。
この二次電池では、充電を行うと、正極活物質層21Bからリチウムイオンが離脱し、セパレータ23に含浸された電解質を介して、まず、負極活物質層22Bに含まれるリチウムを吸蔵および放出することが可能な負極材料に吸蔵される。次いで、放電を行うと、負極活物質層22B中のリチウムを吸蔵および放出することが可能な負極材料に吸蔵されたリチウムイオンが離脱し、電解質を介して正極活物質層21Bに吸蔵される。ここでは、電解質が化6で表される軽金属塩を含んでいるので、負極22の表面には安定な被膜が形成され、溶媒の分解反応が抑制される。また、化5で表される化合物を含んでいるので、負極22における電解質の分解反応が抑制される。よって、これらが相乗的に作用することにより、負極22における効率が向上する。
このように本実施の形態では、電解質が化5で表される化合物と化6で表される軽金属塩とを含むようにしたので、負極22における電解質の分解反応を抑制することができる。よって、負極22における効率が向上し、サイクル特性を向上させることができる。
特に、化6で表される軽金属塩以外の他の軽金属塩も含むようにすれば、より高い効果を得ることができる。
(第2の二次電池)
本実施の形態の電解質は、また、次のようにして第2の二次電池に用いられる。
本実施の形態の電解質は、また、次のようにして第2の二次電池に用いられる。
第2の二次電池は、負極の容量が電極反応物質であるリチウムの析出および溶解による容量成分により表される、いわゆるリチウム金属二次電池である。
この二次電池は、負極活物質層の構成が異なることを除き、他は第1の二次電池と同様の構成および効果を有している。よって、ここでは、図1および図2を参照し、同一の符号を用いて説明する。なお、同一部分についての詳細な説明は省略する。
負極活物質層22Bは、充電時に析出したリチウム金属により構成され、組み立て時には存在せず、また、放電時には溶解するものである。すなわち、この二次電池では、負極活物質としてリチウム金属が用いられており、これにより高いエネルギー密度を得ることができるようになっている。
この二次電池は、負極活物質層22Bを充電により形成することを除き、他は上述したリチウムイオン二次電池と同様にして製造することができる。
この二次電池では、充電を行うと、例えば、正極21からリチウムイオンが離脱し、電解質を介して、負極集電体22Aの表面にリチウム金属となって析出し、図2に示したように、負極活物質層22Bを形成する。放電を行うと、例えば、負極活物質層22Bからリチウム金属がリチウムイオンとなって溶出し、電解質を介して正極21に吸蔵される。ここでは、電解質が化6で表される軽金属塩を含んでいるので、負極22の表面には安定な被膜が形成され、負極22において析出したリチウム金属と溶媒との反応が抑制される。また、化5で表される化合物を含んでいるので、負極22における電解質の分解反応が抑制される。よって、これらが相乗的に作用することにより、負極22におけるリチウムの析出・溶解効率が向上する。
このように本実施の形態では、電解質が化5で表される化合物と化6で表される軽金属塩とを含むようにしたので、負極22において析出したリチウム金属による電解質の分解反応を抑制することができる。よって、負極22における効率が向上し、サイクル特性などの電池特性を向上させることができる。また、負極活物質としてリチウム金属を用い、負極22の容量がリチウムの析出および溶解による容量成分により表されるようにしたので、高いエネルギー密度を得ることができる。
特に、化6で表される軽金属塩以外の他の軽金属塩も含むようにすれば、より高い効果を得ることができる。
なお、上記二次電池では、負極活物質層22Bが充電時に形成される場合について説明したが、電池の組み立て時に既に負極活物質層22Bを有するように構成してもよい。この場合、上記リチウムイオン二次電池と同様に、負極集電体22Aに負極活物質層22Bを設けるようにしてもよいが、負極活物質層22Bを集電体としても利用し、負極活物質層22Bを削除してもよい。
(第3の二次電池)
本実施の形態の電解質は、更に、次のようにして第3の二次電池に用いられる。
本実施の形態の電解質は、更に、次のようにして第3の二次電池に用いられる。
第3の二次電池は、負極の容量が電極反応物質であるリチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されるものである。
この二次電池は、負極活物質層の構成が異なることを除き、他は第1の二次電池と同様の構成および効果を有しており、同様にして製造することができる。よって、ここでは、図1および図2を参照し、同一の符号を用いて説明する。なお、同一部分についての詳細な説明は省略する。
負極活物質層22Bは、例えば、リチウムを吸蔵および放出することが可能な負極材料の充電容量を正極21の充電容量よりも小さくすることにより、充電の過程において、開回路電圧(すなわち電池電圧)が過充電電圧よりも低い時点で負極22にリチウム金属が析出し始めるようになっており、負極22の容量は、上述したように、リチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表される。従って、この二次電池では、リチウムを吸蔵および放出することが可能な負極材料とリチウム金属との両方が負極活物質として機能し、リチウムを吸蔵および放出することが可能な負極材料はリチウム金属が析出する際の基材となっている。
なお、本明細書において電極反応物質の吸蔵および放出とは、電極反応物質のイオンがそのイオン性を失うことなく電気化学的に吸蔵および放出されることを言う。これは、吸蔵された電極反応物質が完全なイオン状態で存在する場合のみならず、完全なイオン状態とは言えない状態で存在する場合も含む。これらに該当する場合としては、例えば、黒鉛に対する電極反応物質のイオンの電気化学的なインタカレーション反応による吸蔵が挙げられる。また、金属間化合物を含む合金への電極反応物質の吸蔵、あるいは合金の形成による電極反応物質の吸蔵も挙げることができる。
また、過充電電圧というのは、電池が過充電状態になった時の開回路電圧を指し、例えば、日本蓄電池工業会(電池工業会)の定めた指針の一つである「リチウム二次電池安全性評価基準ガイドライン」(SBA G1101)に記載され定義される「完全充電」された電池の開回路電圧よりも高い電圧を指す。また換言すれば、各電池の公称容量を求める際に用いた充電方法、標準充電方法、もしくは推奨充電方法を用いて充電した後の開回路電圧よりも高い電圧を指す。具体的には、この二次電池では、例えば開回路電圧が4.2Vの時に完全充電となり、開回路電圧が0V以上4.2V以下の範囲内の一部においてリチウムを吸蔵および放出することが可能な負極材料の表面にリチウム金属が析出している。
これにより、この二次電池では、高いエネルギー密度を得ることができると共に、サイクル特性および急速充電特性を向上させることができるようになっている。この二次電池は、負極22にリチウムを吸蔵および放出することが可能な負極材料を用いるという点では従来のリチウムイオン二次電池と同様であり、また、負極22にリチウム金属を析出させるという点では従来のリチウム金属二次電池と同様であるが、リチウムを吸蔵および放出することが可能な負極材料にリチウム金属を析出させるようにしたことにより、次のような利点が生じる。
第1に、従来のリチウム金属二次電池ではリチウム金属を均一に析出させることが難しく、それがサイクル特性を劣化させる原因となっていたが、リチウムを吸蔵および放出することが可能な負極材料は一般的に表面積が大きいので、この二次電池ではリチウム金属を均一に析出させることができることである。第2に、従来のリチウム金属二次電池ではリチウム金属の析出・溶解に伴う体積変化が大きく、それもサイクル特性を劣化させる原因となっていたが、この二次電池ではリチウムを吸蔵および放出することが可能な負極材料の粒子間の隙間にもリチウム金属が析出するので体積変化が少ないことである。第3に、従来のリチウム金属二次電池ではリチウム金属の析出・溶解量が多ければ多いほど上記の問題も大きくなるが、この二次電池ではリチウムを吸蔵および放出することが可能な負極材料によるリチウムの吸蔵および放出も充放電容量に寄与するので、電池容量が大きいわりにはリチウム金属の析出・溶解量が小さいことである。第4に、従来のリチウム金属二次電池では急速充電を行うとリチウム金属がより不均一に析出してしまうのでサイクル特性が更に劣化してしまうが、この二次電池では充電初期においてはリチウムを吸蔵および放出することが可能な負極材料にリチウムが吸蔵されるので急速充電が可能となることである。
これらの利点をより効果的に得るためには、例えば、開回路電圧が過充電電圧になる前の最大電圧時において負極22に析出するリチウム金属の最大析出容量は、リチウムを吸蔵および放出することが可能な負極材料の充電容量能力の0.05倍以上3.0倍以下であることが好ましい。リチウム金属の析出量が多過ぎると従来のリチウム二次電池と同様の問題が生じてしまい、少な過ぎると充放電容量を十分に大きくすることができないからである。また、例えば、リチウムを吸蔵および放出することが可能な負極材料の放電容量能力は、150mAh/g以上であることが好ましい。リチウムの吸蔵および放出する能力が大きいほどリチウム金属の析出量は相対的に少なくなるからである。なお、負極材料の充電容量能力は、例えば、リチウム金属を対極として、この負極材料を負極活物質とした負極について0Vまで定電流・定電圧法で充電した時の電気量から求められる。負極材料の放電容量能力は、例えば、これに引き続き、定電流法で10時間以上かけて2.5Vまで放電した時の電気量から求められる。
この二次電池では、充電を行うと、正極21からリチウムイオンが離脱し、電解質を介して、まず、負極22に含まれるリチウムを吸蔵および放出することが可能な負極材料に吸蔵される。更に充電を続けると、開回路電圧が過充電電圧よりも低い状態において、リチウムを吸蔵および放出することが可能な負極材料の表面にリチウム金属が析出し始める。そののち、充電を終了するまで負極22にはリチウム金属が析出し続ける。次いで、放電を行うと、まず、負極22に析出したリチウム金属がイオンとなって溶出し、電解質を介して、正極21に吸蔵される。更に放電を続けると、負極22中のリチウムを吸蔵および放出することが可能な負極材料に吸蔵されたリチウムイオンが離脱し、電解質を介して正極21に吸蔵される。ここでは、化6で表される軽金属塩を含んでいるので、負極22の表面には安定な被膜が形成され、負極22における溶媒の分解反応が抑制される。また、化5で表される化合物を含んでいるので、負極22における電解質の分解反応が抑制される。よって、これらが相乗的に作用することによりリチウムの析出・溶解効率、およびリチウムイオンを吸蔵および放出する効率が向上する。
このように本実施の形態では、電解質が化5で表される化合物と化6で表される軽金属塩とを含むようにしたので、負極22における電解質の分解反応を抑制することができる。よって、負極22における効率が向上し、サイクル特性を向上させることができる。また、負極22の容量が、電極反応物質であるリチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されるようにしたので、高いエネルギー密度を得ることができる。
特に、化6で表される軽金属塩以外の他の軽金属塩も含むようにすれば、より高い効果を得ることができる。
更に、本発明の具体的な実施例について、図1および図2を参照して詳細に説明する。
(実施例1−1〜1−11)
負極22の容量が、リチウムの吸蔵および放出による容量成分により表される電池を作製した。
負極22の容量が、リチウムの吸蔵および放出による容量成分により表される電池を作製した。
まず、炭酸リチウム(Li2 CO3 )と炭酸コバルト(CoCO3 )とを、Li2 CO3 :CoCO3 =0.5:1(モル比)の割合で混合し、空気中において900℃で5時間焼成して、正極材料としてのリチウム・コバルト複合酸化物(LiCoO2 )を得た。次いで、このリチウム・コバルト複合酸化物91質量部と、導電剤であるグラファイト6質量部と、結着剤であるポリフッ化ビニリデン3質量部とを混合して正極合剤を調製した。続いて、この正極合剤を溶剤であるN−メチル−2−ピロリドンに分散させて正極合剤スラリーとし、厚み20μmの帯状アルミニウム箔よりなる正極集電体21Aの両面に均一に塗布して乾燥させ、ロールプレス機で圧縮成型して正極活物質層21Bを形成し正極21を作製した。そののち、正極集電体21Aの一端にアルミニウム製の正極リード25を取り付けた。
また、負極材料として人造黒鉛粉末を用意し、この人造黒鉛粉末90質量部と、結着剤であるポリフッ化ビニリデン10質量部とを混合して負極合剤を調製した。次いで、この負極合剤を溶剤であるN−メチル−2−ピロリドンに分散させて負極合剤スラリーとしたのち、厚み15μmの帯状銅箔よりなる負極集電体22Aの両面に均一に塗布して乾燥させ、ロールプレス機で圧縮成型して負極活物質層22Bを形成し負極22を作製した。続いて、負極集電体22Aの一端にニッケル製の負極リード26を取り付けた。なお、実施例1−1〜1−11では、負極22の容量がリチウムの吸蔵および放出による容量成分により表されるように、正極21と負極22との面積密度比を設計した。
正極21および負極22をそれぞれ作製したのち、厚み25μmの微孔性ポリプロピレンフィルムよりなるセパレータ23を用意し、負極22,セパレータ23,正極21,セパレータ23の順に積層してこの積層体を渦巻状に多数回巻回し、巻回電極体20を作製した。
巻回電極体20を作製したのち、巻回電極体20を一対の絶縁板12,13で挟み、負極リード26を電池缶11に溶接すると共に、正極リード25を安全弁機構15に溶接して、巻回電極体20をニッケルめっきした鉄製の電池缶11の内部に収納した。そののち、電池缶11の内部に電解液を減圧方式により注入した。
電解液には、エチレンカーボネート21体積%と化5で表される化合物79体積%とを混合した溶媒に、電解質塩として化12で表されるジフルオロ[オキソラト−O,O’]ホウ酸リチウムを電解液に対して1mol/kgとなるように溶解させたものを用いた。その際、実施例1−1〜1−11で用いられる化5で表される化合物の種類を表1に示したように変化させた。
電池缶11の内部に電解液を注入したのち、表面にアスファルトを塗布したガスケット17を介して電池蓋14を電池缶11にかしめることにより、実施例1−1〜1−11について直径14mm、高さ65mmの円筒型二次電池を得た。
実施例1−1〜1−11に対する比較例1−1〜1−6として、エチレンカーボネート21体積%と表1に示した化合物79体積%とを混合した溶媒に、電解質塩としてLiPF6 のみ溶解させた電解液を用いたことを除き、他は実施例1−1〜1−11と同様にして電池を作製した。
得られた実施例1−1〜1−11および比較例1−1〜1−6の二次電池について、600mAの定電流で電池電圧が4.2Vに達するまで定電流充電を行ったのち、4.2Vの定電圧で電流が1mAに達するまで定電圧充電を行い、引き続き、400mAの定電流で電池電圧が3.0Vに達するまで定電流放電を行い、サイクル特性を調べた。サイクル特性としては、初回容量(1サイクル目の容量)に対する200サイクル目の容量維持率(200サイクル目の容量/初回容量)×100(%)を求めた。得られた結果を表1に示す。
表1から分かるように、化5で表される化合物と化12で表される軽金属塩とを用いた実施例1−1〜1−11によれば、化12で表される軽金属塩を用いていない比較例1−1〜1−4あるいは化5で表される化合物および化12で表される軽金属塩を用いてない比較例1−5,1−6よりもサイクル特性が向上した。
すなわち、電解質に化5で表される化合物と化12で表される軽金属塩を用いるようにすれば、負極22の容量が、リチウムの吸蔵および放出による容量成分により表される電池に用いた場合に、サイクル特性を向上させることができることが分かった。
(実施例2−1,2−2)
電解質塩として化13で表されるテトラフルオロ[オキソラト−O,O’]リン酸リチウム、または化14で表されるジフルオロビス[オキソラト−O,O’]リン酸リチウムを用いたことを除き、他は実施例1−11と同様にして実施例2−1,2−2の電池を作製した。
電解質塩として化13で表されるテトラフルオロ[オキソラト−O,O’]リン酸リチウム、または化14で表されるジフルオロビス[オキソラト−O,O’]リン酸リチウムを用いたことを除き、他は実施例1−11と同様にして実施例2−1,2−2の電池を作製した。
得られた実施例2−1,2−2の二次電池について、実施例1−11と同様にして200サイクル目の放電容量維持率を求めた。得られた結果を実施例1−11の結果と共に表2に示す。
表2から分かるように、実施例2−1,2−2によれば、実施例1−11と同様の結果が得られた。すなわち、化5で表される化合物と、他の組成を有する化6で表される軽金属とを用いる場合にも、サイクル特性を向上させることができることが分かった。
(実施例3−1)
電解質塩として化12で表されるジフルオロ[オキソラト−O,O’]ホウ酸リチウムとLiPF6 とを、電解液に対して、表3に示した含有量で含むようにしたことを除き、他は実施例1−11と同様にして二次電池を作成した。
電解質塩として化12で表されるジフルオロ[オキソラト−O,O’]ホウ酸リチウムとLiPF6 とを、電解液に対して、表3に示した含有量で含むようにしたことを除き、他は実施例1−11と同様にして二次電池を作成した。
得られた実施例3−1の二次電池について、実施例1−11と同様にして200サイクル目の放電容量維持率を求めた。得られた結果を実施例1−11の結果と共に表3に示す。
表3から分かるように実施例3−1によれば、化6で表される軽金属塩のみを用いた実施例1−11よりもサイクル特性が向上した。すなわち、電解質塩として化6で表される軽金属塩と他の軽金属塩とを含むようにすれば、より高い効果が得られることが分かった。
(実施例4−1)
負極22の容量が、リチウムの析出および溶解による容量成分により表される電池を作製した。その際、厚み15μmの帯状銅箔よりなる負極集電体22Aに、リチウム金属を貼り付けることにより作製した負極22を用いたことを除き、他は実施例3−1と同様にして電池を作製した。
負極22の容量が、リチウムの析出および溶解による容量成分により表される電池を作製した。その際、厚み15μmの帯状銅箔よりなる負極集電体22Aに、リチウム金属を貼り付けることにより作製した負極22を用いたことを除き、他は実施例3−1と同様にして電池を作製した。
また、実施例4−1に対する比較例4−1として、エチレンカーボネート21体積%とジメチルカーボネート79体積%とを混合した溶媒に、電解質塩としてLiPF6 のみを溶解させた電解液を用いたことを除き、他は、実施例4−1と同様にして電池を作成した。
得られた実施例4−1および比較例4−1の二次電池について、実施例3−1と同様の条件で定電流充電および定電圧放電を行い、サイクル特性を調べた。サイクル特性としては、初回容量に対する100サイクル目の容量維持率(100サイクル目の容量/初回容量)×100を求めた。得られた結果を表4に示す。
また、実施例4−1および比較例4−1の電池について、上述した条件で1サイクル充放電を行ったのち、再度完全充電させたものを解体し、目視および7 Li核磁気共鳴分光法により負極22にリチウム金属およびリチウムイオンが存在しているか否かを調べた。更に、上述した条件で2サイクル充放電を行い、完全放電をさせたものを解体し、同様にして負極22にリチウム金属およびリチウムイオンが存在しているか否かを調べた。
7 Li核磁気共鳴分光法による結果、実施例4−1および比較例4−1の両方の電池で、完全充電状態および完全放電状態において265ppm付近にリチウム金属に帰属されるピークが確認された。一方、リチウムイオンに帰属される44ppm付近のピークは確認されなかった。これらのピーク位置は外部標準塩化リチウムに対する数値である。また、目視によっても、リチウム金属が確認された。すなわち、負極の22の容量は、リチウムの析出および溶解による容量成分により表されることが確認された。
表4から分かるように、化5で表される化合物と化6で表される軽金属塩とを用いた実施例4−1によれば、これらを用いていない比較例4−1よりもサイクル特性が向上した。
すなわち、電解質に化5で表される化合物と化6で表される軽金属塩とを用いるようにすれば、負極容量が、リチウムの析出および溶解による容量成分により表される電池に用いた場合にも、サイクル特性を向上させることができることが分かった。
(実施例5−1)
負極22の容量が、リチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表される電池を作製した。その際、正極21と負極22との面積密度比を、負極22の容量が、リチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されるように設計したことを除き、他は実施例3−1と同様にして電池を作製した。
負極22の容量が、リチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表される電池を作製した。その際、正極21と負極22との面積密度比を、負極22の容量が、リチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されるように設計したことを除き、他は実施例3−1と同様にして電池を作製した。
実施例5−1に対する比較例5−1,5−2として、電解質塩としてLiPF6 またはLiBF4 のみを用いたことを除き、他は実施例5−1と同様にして電池を作製した。更に、比較例5−3,5−4として、エチレンカーボネート21体積%とジメチルカーボネート79体積%とを混合した溶媒に、電解質塩としてLiPF6 またはLiBF4 のみを溶解させた電解液を用いたことを除き、他は実施例5−1と同様にして二次電池を作製した。
得られた実施例5−1および比較例5−1〜5−4の二次電池について、実施例3−1と同様の条件で定電流充電および定電圧放電を行い、サイクル特性を調べた。サイクル特性としては、初回容量に対する100サイクル目の容量維持率(100サイクル目の容量/初回容量)×100を求めた。得られた結果を表5に示す。
また、実施例5−1および比較例5−1〜5−4の電池について、実施例4−1と同様にして負極22にリチウム金属およびリチウムイオンが存在しているか否かを調べた。
7 Li核磁気共鳴分光法による結果、実施5−1および比較例5−1〜5−4の電池では、完全充電状態において265ppm付近にリチウム金属に帰属されるピークが確認され、また、44ppm付近にリチウムイオンに帰属されるピークが確認された。これらのピーク位置は外部標準塩化リチウムに対する数値である。一方、完全放電状態においては、リチウム金属に帰属されるピークが確認されなかった。また、目視によっても、完全充電状態においてのみリチウム金属が確認された。すなわち、負極の22の容量は、リチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表されることが確認された。
表5から分かるように、実施例5−1によれば、化6で表される軽金属塩を用いていない比較例5−1,5−2よりも、また、化5で表される化合物および化6で表される軽金属塩を用いていない比較例5−3,5−4よりも、サイクル特性が向上した。
すなわち、電解質に化5で表される化合物と化6で表される軽金属塩とを用いるようにすれば、負極容量が、リチウムの吸蔵および放出による容量成分と、リチウムの析出および溶解による容量成分とを含み、かつその和により表される電池に用いた場合にも、サイクル特性を向上させることができることが分かった。
なお、上記実施例では、化5で表される化合物及び化6で表される軽金属塩を用いる場合について具体的に例を挙げて説明したが、上述した効果は化5で表される化合物および化6で表される軽金属塩の構造に起因するものと考えられる。よって、化5で表される他の化合物および化6で表される他の軽金属塩を用いても同様の結果を得ることができる。また、上記実施例では、電解液を用いる場合について説明したが、ゲル状の電解質を用いても同様の結果を得ることができる。
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例においては、電極反応物質としてリチウムを用いる場合について説明したが、ナトリウム(Na)あるいはカリウム(K)などの他の1A族元素、またはマグネシウムあるいはカルシウム(Ca)などの2A族元素、またはアルミニウムなどの他の軽金属、またはリチウムあるいはこれらの合金を用いる場合についても、本発明を適用することができ、同様の効果を得ることができる。その際、軽金属を吸蔵および放出することが可能な負極材料、あるいは正極材料などは、その電極反応物質に応じて選択される。
また、上記実施の形態および実施例においては、電解液または固体状の電解質の1種であるゲル状の電解質を用いる場合について説明したが、他の電解質を用いるようにしてもよい。他の電解質としては、例えば、イオン伝導性セラミックス,イオン伝導性ガラスあるいはイオン性結晶などよりなるイオン伝導性無機化合物と電解液とを混合したもの、またはイオン伝導性無機化合物とゲル状の電解質とを混合したものが挙げられる。
更に、上記実施の形態および実施例においては、巻回構造を有する円筒型の二次電池について説明したが、本発明は、巻回構造を有する楕円型あるいは多角形型の二次電池、または正極および負極を折り畳んだりあるいは積み重ねた構造を有する二次電池についても同様に適用することができる。加えて、いわゆるコイン型,ボタン型あるいは角型などの二次電池についても適用することができる。また、二次電池に限らず、一次電池についても適用することができる。
11…電池缶、12,13…絶縁板、14…電池蓋、15…安全弁機構、15A…ディスク板、16…熱感抵抗素子、17…ガスケット、20…巻回電極体、21…正極、21A…正極集電体、21B…正極活物質層、22…負極、22A…負極集電体、22B…負極活物質層、23…セパレータ、24…センターピン、25…正極リード、26…負極リード。
Claims (8)
- 化1で表される化合物と、化2で表される軽金属塩とを含むことを特徴とする電解質。
- 更に、前記軽金属塩以外の他の軽金属塩を含むことを特徴とする請求項1記載の電解質。
- 正極および負極と共に電解質を備えた電池であって、
前記電解質は、化7で表される化合物と、化8で表される軽金属塩とを含むことを特徴とする電池。
- 更に、前記軽金属塩以外の他の軽金属塩を含むことを特徴とする請求項5記載の電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004136184A JP2005317446A (ja) | 2004-04-30 | 2004-04-30 | 電解質およびそれを用いた電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004136184A JP2005317446A (ja) | 2004-04-30 | 2004-04-30 | 電解質およびそれを用いた電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005317446A true JP2005317446A (ja) | 2005-11-10 |
Family
ID=35444625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004136184A Pending JP2005317446A (ja) | 2004-04-30 | 2004-04-30 | 電解質およびそれを用いた電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005317446A (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007258029A (ja) * | 2006-03-24 | 2007-10-04 | Sony Corp | 電池 |
WO2007136046A1 (ja) * | 2006-05-23 | 2007-11-29 | Sony Corporation | 負極およびその製造方法、ならびに電池およびその製造方法 |
JP2007335143A (ja) * | 2006-06-13 | 2007-12-27 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP2008004535A (ja) * | 2006-05-23 | 2008-01-10 | Sony Corp | 負極および電池 |
JP2008010183A (ja) * | 2006-06-27 | 2008-01-17 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP2008282618A (ja) * | 2007-05-09 | 2008-11-20 | Toyota Central R&D Labs Inc | リチウムイオン二次電池 |
US7632608B2 (en) | 2006-06-14 | 2009-12-15 | Sony Corporation | Ionic compound, electrolytic solution, electrochemical device and battery |
CN103151561A (zh) * | 2013-03-05 | 2013-06-12 | 华南师范大学 | 一种电解质锂盐及含有该锂盐的电解液制备方法与应用 |
DE102017223219A1 (de) | 2016-12-26 | 2018-06-28 | Daikin Industries, Ltd. | Elektrolytlösung, elektrochemische Vorrichtung, Lithiumionen-Sekundärbatterie und Modul |
WO2018123259A1 (ja) | 2016-12-26 | 2018-07-05 | ダイキン工業株式会社 | 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール |
JP2018530858A (ja) * | 2015-08-04 | 2018-10-18 | ソルヴェイ(ソシエテ アノニム) | リチウムオキサラトホスフェートを含んでなる非水系電解質組成物 |
WO2019031315A1 (ja) | 2017-08-07 | 2019-02-14 | ダイキン工業株式会社 | 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール |
WO2019111958A1 (ja) | 2017-12-06 | 2019-06-13 | セントラル硝子株式会社 | 非水電解液電池用電解液及びそれを用いた非水電解液電池 |
KR20200094784A (ko) | 2017-12-06 | 2020-08-07 | 샌트랄 글래스 컴퍼니 리미티드 | 비수전해액 전지용 전해액 및 그것을 사용한 비수전해액 전지 |
CN111937215A (zh) * | 2018-03-27 | 2020-11-13 | 大金工业株式会社 | 电解液、电化学器件、锂离子二次电池以及组件 |
US10950896B2 (en) | 2016-12-26 | 2021-03-16 | Toyota Jidosha Kabushiki Kaisha | Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery |
JP2021047987A (ja) * | 2019-09-17 | 2021-03-25 | Tdk株式会社 | リチウム二次電池 |
WO2022270739A1 (ko) * | 2021-06-25 | 2022-12-29 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
-
2004
- 2004-04-30 JP JP2004136184A patent/JP2005317446A/ja active Pending
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007258029A (ja) * | 2006-03-24 | 2007-10-04 | Sony Corp | 電池 |
US8932761B2 (en) | 2006-05-23 | 2015-01-13 | Sony Corporation | Anode and method of manufacturing the same, and battery and method of manufacturing the same |
WO2007136046A1 (ja) * | 2006-05-23 | 2007-11-29 | Sony Corporation | 負極およびその製造方法、ならびに電池およびその製造方法 |
JP2008004535A (ja) * | 2006-05-23 | 2008-01-10 | Sony Corp | 負極および電池 |
US10205163B2 (en) | 2006-05-23 | 2019-02-12 | Murata Manufacturing Co., Ltd. | Battery with anode active material with oxide coating on active particles |
US9431650B2 (en) | 2006-05-23 | 2016-08-30 | Sony Corporation | Method of manufacturing anode active material with oxide coating on active particles |
JP4573053B2 (ja) * | 2006-05-23 | 2010-11-04 | ソニー株式会社 | 負極および電池 |
US9166221B2 (en) | 2006-05-23 | 2015-10-20 | Sony Corporation | Anode and battery with improved charge-discharge efficiency and method manufacturing the same |
JP2007335143A (ja) * | 2006-06-13 | 2007-12-27 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
US7632608B2 (en) | 2006-06-14 | 2009-12-15 | Sony Corporation | Ionic compound, electrolytic solution, electrochemical device and battery |
KR101423632B1 (ko) | 2006-06-14 | 2014-07-25 | 소니 가부시끼가이샤 | 이온성 화합물, 전해액, 전기 화학 디바이스 및 전지 |
JP2008010183A (ja) * | 2006-06-27 | 2008-01-17 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP2008282618A (ja) * | 2007-05-09 | 2008-11-20 | Toyota Central R&D Labs Inc | リチウムイオン二次電池 |
CN103151561A (zh) * | 2013-03-05 | 2013-06-12 | 华南师范大学 | 一种电解质锂盐及含有该锂盐的电解液制备方法与应用 |
JP2018530858A (ja) * | 2015-08-04 | 2018-10-18 | ソルヴェイ(ソシエテ アノニム) | リチウムオキサラトホスフェートを含んでなる非水系電解質組成物 |
US11289738B2 (en) | 2015-08-04 | 2022-03-29 | Solvay Sa | Nonaqueous electrolyte compositions comprising lithium oxalato phosphates |
US10923764B2 (en) | 2016-12-26 | 2021-02-16 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, lithium ion secondary battery, and module |
US10950896B2 (en) | 2016-12-26 | 2021-03-16 | Toyota Jidosha Kabushiki Kaisha | Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery |
KR20180075406A (ko) | 2016-12-26 | 2018-07-04 | 다이킨 고교 가부시키가이샤 | 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지, 및 모듈 |
DE102017223219A1 (de) | 2016-12-26 | 2018-06-28 | Daikin Industries, Ltd. | Elektrolytlösung, elektrochemische Vorrichtung, Lithiumionen-Sekundärbatterie und Modul |
WO2018123259A1 (ja) | 2016-12-26 | 2018-07-05 | ダイキン工業株式会社 | 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール |
US11043698B2 (en) | 2016-12-26 | 2021-06-22 | Daikin Industries, Ltd. | Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module |
KR20190141016A (ko) | 2017-08-07 | 2019-12-20 | 다이킨 고교 가부시키가이샤 | 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지 및 모듈 |
US11611106B2 (en) | 2017-08-07 | 2023-03-21 | Daikin Industries, Ltd. | Electrolytic solution, electrochemical device, lithium ion secondary battery, and module |
WO2019031315A1 (ja) | 2017-08-07 | 2019-02-14 | ダイキン工業株式会社 | 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール |
KR20200094784A (ko) | 2017-12-06 | 2020-08-07 | 샌트랄 글래스 컴퍼니 리미티드 | 비수전해액 전지용 전해액 및 그것을 사용한 비수전해액 전지 |
US11502335B2 (en) | 2017-12-06 | 2022-11-15 | Central Glass Co., Ltd. | Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same |
WO2019111958A1 (ja) | 2017-12-06 | 2019-06-13 | セントラル硝子株式会社 | 非水電解液電池用電解液及びそれを用いた非水電解液電池 |
CN111937215A (zh) * | 2018-03-27 | 2020-11-13 | 大金工业株式会社 | 电解液、电化学器件、锂离子二次电池以及组件 |
CN111937215B (zh) * | 2018-03-27 | 2024-04-19 | 大金工业株式会社 | 电解液、电化学器件、锂离子二次电池以及组件 |
JP2021047987A (ja) * | 2019-09-17 | 2021-03-25 | Tdk株式会社 | リチウム二次電池 |
JP7255434B2 (ja) | 2019-09-17 | 2023-04-11 | Tdk株式会社 | リチウム二次電池 |
WO2022270739A1 (ko) * | 2021-06-25 | 2022-12-29 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4349321B2 (ja) | 電池 | |
US8187752B2 (en) | High energy lithium ion secondary batteries | |
JP2004063432A (ja) | 電池 | |
US20070054191A1 (en) | Non- aqueous electrolyte secondary battery | |
JP2005228565A (ja) | 電解液および電池 | |
JPWO2006088002A1 (ja) | 電解液および電池 | |
JP2005317446A (ja) | 電解質およびそれを用いた電池 | |
KR20060128690A (ko) | 전해액 및 전지 | |
JP2005071678A (ja) | 電池 | |
KR20040079316A (ko) | 전지 | |
JP2005005117A (ja) | 電池 | |
US8927145B2 (en) | Non-aqueous electrolyte battery and positive electrode, and method for manufacturing the same | |
JP2014078535A (ja) | 負極および電池 | |
JP2005347222A (ja) | 電解液および電池 | |
JP4701595B2 (ja) | リチウムイオン二次電池 | |
JP4993159B2 (ja) | 二次電池 | |
JP4013036B2 (ja) | 電池およびその製造方法 | |
JP2005005118A (ja) | 電池 | |
JP2010140765A (ja) | 非水電解質電池 | |
JP2005317403A (ja) | 電解質およびそれを用いた電池 | |
JP4784133B2 (ja) | 二次電池および電池 | |
JP2005339900A (ja) | 電解液および電池 | |
JP2005347221A (ja) | 電池 | |
JP2005222830A (ja) | 電解液および電池 | |
JP2006164867A (ja) | 電池 |