Nothing Special   »   [go: up one dir, main page]

JP2005306782A - New method for synthesizing l-carnosine - Google Patents

New method for synthesizing l-carnosine Download PDF

Info

Publication number
JP2005306782A
JP2005306782A JP2004126272A JP2004126272A JP2005306782A JP 2005306782 A JP2005306782 A JP 2005306782A JP 2004126272 A JP2004126272 A JP 2004126272A JP 2004126272 A JP2004126272 A JP 2004126272A JP 2005306782 A JP2005306782 A JP 2005306782A
Authority
JP
Japan
Prior art keywords
acid
histidine
carnosine
chloride
alanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004126272A
Other languages
Japanese (ja)
Inventor
Choju Yamaoka
長寿 山岡
Hiroshi Egawa
広 江川
Shigekazu Takenaka
繁和 竹中
Hiroki Moriwaki
浩樹 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamari Chemicals Ltd
Original Assignee
Hamari Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamari Chemicals Ltd filed Critical Hamari Chemicals Ltd
Priority to JP2004126272A priority Critical patent/JP2005306782A/en
Publication of JP2005306782A publication Critical patent/JP2005306782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing L-carnosine, by which L-histidine is acylated with unprotected β-alanine chloride to give high-purity L-carnosine in a high yield. <P>SOLUTION: The method for synthesizing L-carnosine by acylation of L-histidine comprises using an acid salt of unprotected β-alanine chloride as an acylation reagent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、L−カルノシン、すなわちβ−アラニル−L−ヒスチジンの新規合成法に関する。   The present invention relates to a novel synthesis method of L-carnosine, that is, β-alanyl-L-histidine.

L−カルノシンイは筋肉中に発見される天然ジペプチドであって、筋ATPアーゼの活性化作用、抗酸化作用を有し、またその亜鉛との錯体は抗潰瘍剤として市販されている。最近では健康食品サプリメントとして欧米において広まっている。   L-carnosine is a natural dipeptide found in muscles, and has an activation and antioxidant effect on muscle ATPase, and its complex with zinc is commercially available as an anti-ulcer agent. Recently, it has spread in Europe and America as a health food supplement.

一般にジペプチドの合成法は、アミノ基を保護したN末端アミノ酸の反応性誘導体、例えば酸クロライドでC末端アミノ酸のアミノ基をアシル化し、アミノ基を脱保護することよりなる。これまで報告されているL−カルノシンの合成法の大部分はこの方法に従っており、β−アラニンの保護基としてフタルイミド、ベンシルオキシカルボニルなどが、また反応性誘導体として酸クロライドのほか、酸アジド、スクシンイミジル、エトキシカルボニルなどが用いられている。β−アラニンはキラル炭素原子を持たないため、β−ニトロもしくはヨードプロピオン酸の反応性誘導体でL−ヒスチジンをアシル化し、還元またはアンモニアとの反応によってL−カルノシンとする方法が報告されている。またβ−アラニンのラクタムまたはチオラクタムをL−ヒスチジンのアシル化剤とする方法も報告されている。最近L−ヒスチジンをシアン酢酸エステルでアシル化し、生成するN−シアノアセチル−L−ヒスチジンを接触還元してL−カルノシンを合成する方法が開示された。さらにL−ヒスチジンを遊離塩基の状態でアシル化すると副生成物が多く生成し、L−カルノシンの収率が低くなるため、メチルエステルなどのエステルとし、アシル化後L−カルノシンエステルを加水分解する方法も報告されている。   In general, a method for synthesizing a dipeptide comprises acylating the amino group of the C-terminal amino acid with a reactive derivative of the amino terminal-protected N-terminal amino acid, for example, acid chloride, and deprotecting the amino group. Most of the methods for synthesizing L-carnosine reported so far follow this method, and phthalimide, benzyloxycarbonyl and the like are used as protecting groups for β-alanine, and acid chloride, acid azide, Succinimidyl, ethoxycarbonyl and the like are used. Since β-alanine does not have a chiral carbon atom, a method has been reported in which L-histidine is acylated with a reactive derivative of β-nitro or iodopropionic acid to give L-carnosine by reduction or reaction with ammonia. In addition, a method of using β-alanine lactam or thiolactam as an acylating agent for L-histidine has also been reported. Recently, a method for synthesizing L-carnosine by acylating L-histidine with cyanate acetate and catalytically reducing the resulting N-cyanoacetyl-L-histidine was disclosed. Further, when acylating L-histidine in the state of free base, a large amount of by-products are formed and the yield of L-carnosine is lowered. A method has also been reported.

従来技術のL−カルノシン合成方法は、β−アラニンのアミノ基の保護および脱保護、後でアミノ基へ変換し得る基を有する前駆体を使用する場合はアミノ基への変換、シアノ基の還元などの付加工程を必要とし、工程が長くかつ収率も満足ではなかった。   Prior art L-carnosine synthesis methods include the protection and deprotection of the amino group of β-alanine, conversion to an amino group if a precursor having a group that can be subsequently converted to an amino group, reduction of the cyano group Such an additional process was required, and the process was long and the yield was not satisfactory.

〔参考文献〕
Baumann,L.et al.,J.Biol.Chem.,35,263(1918);
Barger,G.et al.,Biochem.,12,402(1918);
Losse,G.et al.,Ber.,94,2768(1961);
Turner,R.A.,J.Am.Chem.Soc.,75,2388(1953);
Shfferd,R.H.et al.,J.Biol.Chem.,108,733(1935);
Kroll,H.et al.,J.Am.Chem.Soc.,75,2511(1953);
Rinder Knecht,H.et al.,J.Org.Chem.29,1968(1964);
RU2030422;
Tetrahedron Lett.,29,5859−5862(1988);
J.Org.Chem.,48,392−393(1983);
WO2001/064638(特表2004−509834).
[References]
Baumann, L.M. et al. , J .; Biol. Chem. , 35, 263 (1918);
Barger, G .; et al. Biochem. , 12, 402 (1918);
Losse, G.M. et al. Ber. , 94, 2768 (1961);
Turner, R.A. A. , J .; Am. Chem. Soc. , 75, 2388 (1953);
Shferd, R.A. H. et al. , J .; Biol. Chem. , 108, 733 (1935);
Kroll, H .; et al. , J .; Am. Chem. Soc. 75, 2511 (1953);
Rinder Knecht, H.C. et al. , J .; Org. Chem. 29, 1968 (1964);
RU2030222;
Tetrahedron Lett. , 29, 5859-5862 (1988);
J. et al. Org. Chem. 48, 392-393 (1983);
WO2001 / 064638 (Special table 2004-509834).

本発明者らは、無保護でβ−アラニンの酸クロライドとL−ヒスチジンを反応させてL−カルノシンを合成する方法を考え、アシル化試薬としてβ−アラニンクロライドの酸塩を使用することによってこれが可能であることを発見した。無保護のβ−アラニンを酸クロライドの形に活性化すると、アミノ基の求核性による分子間での自己縮合が考えられるが、求核性を抑制するため無保護のβ−アラニンクロライドを酸塩の形でアミノ基を4級化することにより副反応を抑えることができた。   The present inventors conceived a method of synthesizing L-carnosine by reacting an acid chloride of β-alanine and L-histidine without protection, and this was achieved by using an acid salt of β-alanine chloride as an acylating reagent. I found it possible. When unprotected β-alanine is activated in the form of acid chloride, self-condensation between molecules due to nucleophilicity of the amino group can be considered, but in order to suppress nucleophilicity, unprotected β-alanine chloride is converted into acid chloride. Side reactions could be suppressed by quaternizing the amino group in the form of a salt.

そこで本発明は、L−ヒスチジンのアシル化によるL−カルノシンの合成法において、アシル化試薬として無保護のβ−アラニンクロライド酸塩を使用することを特徴とするL−カルノシンの合成方法を提供する。   Accordingly, the present invention provides a method for synthesizing L-carnosine, which comprises using unprotected β-alanine chloride as an acylating reagent in a method for synthesizing L-carnosine by acylation of L-histidine. .

好ましい具体例では、L−ヒスチジンも酸塩の形でアシル化反応に使用される。これにより副生成物の生成およびラセミ化を抑制することができる。代りにL−ヒスチジンの溶液へ酸を加えてもよい。   In a preferred embodiment, L-histidine is also used in the acylation reaction in the form of an acid salt. Thereby, the production | generation and racemization of a by-product can be suppressed. Alternatively, acid may be added to the L-histidine solution.

塩を形成する酸は、塩酸、酢酸、メタンスルホン酸、トリフロロ酢酸、p−トルエンスルホン酸などであるが、特に塩酸およびp−トルエンスルホン酸が好ましい。アシル化反応は、L−ヒスチジンの溶液へ粉末または固体の前記アシル化試薬を攪拌下に添加し、L−ヒスチジンの大部分が消費されるまで攪拌を継続することにより行われる。この際アシル化試薬を過剰、例えば少なくとも理論の1.5倍添加し、室温以下、例えば0℃の温度で行うのが好ましい。反応終了後、例えば反応液を水で希釈し、イオン交換樹脂処理によって不純分を除去した後、メタノール、エタノールのようなアルコールまたは含水アルコールを加えて結晶化することによって化学的および光学的純度の高いL−カルノシンを高収率で得ることができる。   The acid that forms the salt is hydrochloric acid, acetic acid, methanesulfonic acid, trifluoroacetic acid, p-toluenesulfonic acid, etc., with hydrochloric acid and p-toluenesulfonic acid being particularly preferred. The acylation reaction is carried out by adding the powdered or solid acylating reagent to a solution of L-histidine under stirring and continuing stirring until most of the L-histidine is consumed. In this case, it is preferable to add an acylating reagent in excess, for example, at least 1.5 times the theory, and to carry out the reaction at a temperature below room temperature, for example, 0 ° C. After completion of the reaction, for example, the reaction solution is diluted with water, impurities are removed by ion-exchange resin treatment, and then an alcohol such as methanol or ethanol or a water-containing alcohol is added to crystallize to thereby improve the chemical and optical purity. High L-carnosine can be obtained in high yield.

ここに記載した本発明によれば、アミノ基の保護および脱保護、その他の付加工程なしで、β−アラニンとL−ヒスチジンとから高い純度のL−カルノシンを短かい工程で高収率で合成することが可能になる。   According to the present invention described here, high-purity L-carnosine is synthesized in high yield from β-alanine and L-histidine in a short process without the protection and deprotection of amino groups and other addition steps. It becomes possible to do.

好ましい実施態様Preferred embodiment

本発明は、無保護β−アラニンクロライド(3−アミノプロピオン酸クロライド)の酸付加塩をL−ヒスチジンのアシル化試薬として使用する。このアシル化試薬はあらかじめ生成したβ−アラニンの酸付加塩に塩化チオニルを反応させて製造することができる。アシル化反応は、L−ヒスチジンの溶液に固体もしくは粉末状の前記アシル化試薬を添加し、攪拌することによって行われる。この際できるだけ多くのL−ヒスチジンがアシル化されるように、アシル化試薬を少なくとも1.5倍、特に2.0倍過剰に添加するのが好ましい。   In the present invention, an acid addition salt of unprotected β-alanine chloride (3-aminopropionic acid chloride) is used as an acylating reagent for L-histidine. This acylating reagent can be produced by reacting an acid addition salt of β-alanine produced in advance with thionyl chloride. The acylation reaction is performed by adding the solid or powdery acylating reagent to a solution of L-histidine and stirring. At this time, it is preferable to add the acylating reagent at least 1.5 times, particularly 2.0 times in excess so that as much L-histidine as possible is acylated.

L−ヒスチジンもやはり酸塩の形で反応させることが好ましく、これにより副生成物の量を減らすことができる。代って酸をL−ヒスチジンの溶液に加えても良い。   L-histidine is also preferably reacted in the form of an acid salt, whereby the amount of by-products can be reduced. Alternatively, an acid may be added to the L-histidine solution.

好ましい反応溶媒は、水、酢酸、ジメチルホルムアミド、ジメチルアセタミド、N−メチル−2−ピロリドンなどであるが、L−ヒスチジンの酸塩の代りにこれら溶媒に酸を加えても良い。例えば1N塩酸、リン酸緩衝液(pH2.8)、トリフルオロ酢酸/ジメチルホルムアミド混液、メタンスルホン酸/ジメチルホルムアミド混液、メタンスルホン酸/ジメチルアセタミド混液、メタンスルホン酸/N−メチル−2−ピロリドン混液等である。   Preferred reaction solvents are water, acetic acid, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and the like, but an acid may be added to these solvents instead of the acid salt of L-histidine. For example, 1N hydrochloric acid, phosphate buffer (pH 2.8), trifluoroacetic acid / dimethylformamide mixed solution, methanesulfonic acid / dimethylformamide mixed solution, methanesulfonic acid / dimethylacetamide mixed solution, methanesulfonic acid / N-methyl-2- Pyrrolidone mixed solution.

酸クロライドとアミンとの反応には生成する塩化水素を結合する塩基を使用するのが一般的であるが、本発明のアシル化反応では酸結合塩基の使用を省くことができる。もし使用するならば、3級アミン、例えばトリエチルアミン、N−メチルモルホリン、N,N−ジメチルアニリンを使用することができる。   In the reaction between an acid chloride and an amine, a base that binds the generated hydrogen chloride is generally used, but in the acylation reaction of the present invention, the use of an acid-bonded base can be omitted. If used, tertiary amines such as triethylamine, N-methylmorpholine, N, N-dimethylaniline can be used.

β−アラニンクロライドまたはL−ヒスチジンと塩を形成する酸には多数の無機および有機酸が含まれるが、実用上塩酸、酢酸、メタンスルホン酸、トリフルオロ酢酸、およびp−トルエンスルホン酸が好ましい。塩酸塩およびp−トルエンスルホン酸が最も好ましい。アシル化試薬およびL−ヒスチジンと塩を形成する酸と溶媒の最も好ましい組合わせは、β−アラニンクロラドのp−トルエンスルホン酸塩とL−ヒスチジンのp−トルエンスルホン酸塩をジメチルアセトアミドに溶解にして縮合させる方法である。無保護の反応では生成物の一部がラセミ化し、光学純度が低下する傾向があり、またはβ−アラニル−アラニル−ヒスチジンが主であるトリペプチド副生成物を生成する傾向があるが、上の組合わせによりラセミ化および副生成物の生成を最小に抑えるこができる。   The acid that forms salts with β-alanine chloride or L-histidine includes a number of inorganic and organic acids, but in practice, hydrochloric acid, acetic acid, methanesulfonic acid, trifluoroacetic acid, and p-toluenesulfonic acid are preferred. Most preferred are hydrochloride and p-toluenesulfonic acid. The most preferred combination of acid and solvent that forms a salt with the acylating reagent and L-histidine is the dissolution of β-alanine chlorad p-toluenesulfonate and L-histidine p-toluenesulfonate in dimethylacetamide. This is a method of condensing. Unprotected reactions tend to racemize part of the product and reduce optical purity, or to produce tripeptide by-products that are predominantly β-alanyl-alanyl-histidine. The combination can minimize racemization and by-product formation.

好ましい反応温度は室温以下、最も好ましくは−10℃〜0℃である。反応を不活性ガス、例えばアルゴン雰囲気中で実施することも好ましい。反応時間はL−ヒスチジンの少なくとも大部分、例えば90%以上が反応に消費される時間である。これには例えば反応温度0℃附近の場合、少なくとも6時間を要するであろう。   The preferred reaction temperature is room temperature or lower, most preferably -10 ° C to 0 ° C. It is also preferred to carry out the reaction in an inert gas such as an argon atmosphere. The reaction time is a time during which at least a major part of L-histidine, for example, 90% or more is consumed in the reaction. This would take at least 6 hours, for example, near a reaction temperature of 0 ° C.

反応終了後、常法に従って反応液からL−カルノシンを回収することができる。例えば反応液を水で希釈し、強酸性イオン交換樹脂に吸着後、アンモニア水で溶出させ、溶出液を濃縮して弱酸性イオン交換樹脂に通液し、濃縮後エタノールを加えてL−カルノシンを結晶化する。   After completion of the reaction, L-carnosine can be recovered from the reaction solution according to a conventional method. For example, the reaction solution is diluted with water, adsorbed on a strongly acidic ion exchange resin, and then eluted with ammonia water. The eluate is concentrated and passed through a weakly acidic ion exchange resin. After concentration, ethanol is added to add L-carnosine. Crystallize.

以下実施例によって本発明を例証する。実施例中に使用した略号の意味は次のとおりである。
β−Ala:β−アラニン
β−AlaCl:β−アラニンクロライド
Ac:アセチル
AcOH:酢酸
CAS:L−カルノシン
DMA:ジメチルアセタミド
His:L−ヒスチジン
MsOH:メタンスルホン酸
NMP:N−メチル−2−ピロリドン
p−TsOH:p−トルエンスルホン酸
The following examples illustrate the invention. The meanings of the abbreviations used in the examples are as follows.
β-Ala: β-alanine β-AlaCl: β-alanine chloride Ac: acetyl AcOH: acetic acid CAS: L-carnosine DMA: dimethylacetamide His: L-histidine MsOH: methanesulfonic acid NMP: N-methyl-2- Pyrrolidone p-TsOH: p-toluenesulfonic acid

〔参考例1〕β−AlaCl・HClの合成
β−Ala50g(0.56mol)をトルエン490gと水2.8gの混液に懸濁させ、激しく攪拌しながら塩化水素ガスを8時間かけて吹き込み、β−Ala・HClを生成させる。その後反応液に室温で塩化チオニル245ml(3.37mol)を滴下し、1時間攪拌する。その後内温を50℃に上げ、38時間激しく攪拌する。反応後反応液をすばやく濾過し、得られた結晶をトルエン200mlで洗浄し、洗浄した結晶をトルエン200mlに懸濁させ、エバポレーターで濃縮し、褐色パウダー状のβ−AlaCl・HCl 73.36g(90.8%)を得た。IR(ヌジョール):1794cm-1(C=0)
Reference Example 1 Synthesis of β-AlaCl · HCl 50 g (0.56 mol) of β-Ala was suspended in a mixture of 490 g of toluene and 2.8 g of water, and hydrogen chloride gas was blown in over 8 hours while stirring vigorously. -Generate Ala.HCl. Thereafter, 245 ml (3.37 mol) of thionyl chloride is added dropwise to the reaction solution at room temperature, followed by stirring for 1 hour. Thereafter, the internal temperature is raised to 50 ° C. and the mixture is vigorously stirred for 38 hours. After the reaction, the reaction solution was quickly filtered, and the obtained crystals were washed with 200 ml of toluene. The washed crystals were suspended in 200 ml of toluene, concentrated by an evaporator, and 73.36 g (90 of brown powdery β-AlaCl · HCl (90 8%). IR (Nujol): 1794 cm −1 (C = 0)

〔参考例2〕β−AlaCl・p−TsOHの合成
β−Ala50g(0.56mol)を水100mlに溶かし、これにp−TsOH・H2 O 106.8g(0.56mol)を加え、室温で30分攪拌する。その後溶媒を留去し、トルエン100mlを加え、再び溶媒を留去すると定量的にβ−Ala・p−TsOHが得られる。次いでこれに室温でトルエン中チオニルクロライド245ml(3.37mol)を滴下し、1時間攪拌する。その後温度を50℃に上げ、38時間激しく攪拌し、溶媒を減圧留去し、トルエンを加え、再び溶媒を留去し、パウダー状のβ−AlaCl・p−TsOH 155.9g(99.3%)を得た。IR(ヌジョール):1790cm-1(C=0)
[Reference Example 2] Synthesis of β-AlaCl · p-TsOH 50 g (0.56 mol) of β-Ala was dissolved in 100 ml of water, and 106.8 g (0.56 mol) of p-TsOH · H 2 O was added thereto at room temperature. Stir for 30 minutes. Thereafter, the solvent is distilled off, 100 ml of toluene is added, and when the solvent is distilled off again, β-Ala · p-TsOH is quantitatively obtained. Next, 245 ml (3.37 mol) of thionyl chloride in toluene is added dropwise thereto at room temperature, and the mixture is stirred for 1 hour. Thereafter, the temperature was raised to 50 ° C., and the mixture was vigorously stirred for 38 hours. The solvent was distilled off under reduced pressure, toluene was added, the solvent was distilled off again, and 155.9 g (99.3% of powdery β-AlaCl · p-TsOH) was obtained. ) IR (Nujol): 1790 cm -1 (C = 0)

〔参考例3〕His・2p−TsOHの合成
His 155.15g(1.0mol)を水250mlに溶かし、室温でp−TsOH・H2 O 380.42g(2.0mol)を加えて30分攪拌する。その後反応液を濃縮し、トルエン200ml×2を加えて濃縮すると、His・2p−TsOH 495.2g(98.9%)が得られる。IR(KBr):1730cm-1(C=0),1629cm-1(aromatic)
[Reference Example 3] Synthesis of His · 2p-TsOH 155.15 g (1.0 mol) of His was dissolved in 250 ml of water, and 380.42 g (2.0 mol) of p-TsOH · H 2 O was added at room temperature, followed by stirring for 30 minutes. To do. Thereafter, the reaction solution is concentrated, and 200 ml × 2 of toluene is added and concentrated to obtain 495.2 g (98.9%) of His · 2p-TsOH. IR (KBr): 1730 cm −1 (C = 0), 1629 cm −1 (aromatic)

〔実施例1〕β−AlaCl・HClの使用
His 0.5gをAcOH 10mlまたは20mlに溶かし、室温でβ−AlaCl・HCl 2当量を加えて30分間攪拌する。反応液中の未反応His,生成したCASおよび副生したAcHisをそれぞれ定量し、出発Hisに対する%を算出した。
[Example 1] Use of β-AlaCl · HCl 0.5 g of His is dissolved in 10 ml or 20 ml of AcOH, and 2 equivalents of β-AlaCl · HCl is added at room temperature and stirred for 30 minutes. Unreacted His, produced CAS and by-produced AcHis were quantified in the reaction solution, respectively, and the percentage relative to the starting His was calculated.

AcOH 反応時間 HIS CAS AcHis
10ml 30min 30.5% 68.0% 1.6%
20ml 30min 34.6% 64.7% 0.7%
AcOH reaction time HIS CAS AcHis
10ml 30min 30.5% 68.0% 1.6%
20ml 30min 34.6% 64.7% 0.7%

〔実施例2〕β−AlaCl・HClの使用
His 0.78gを下表の溶媒に溶かして10mlとし、これにアルゴン雰囲気下、5℃でβ−AlaCl・HCl 2当量を添加し、室温で4時間まで攪拌する。反応時間2時間後および4時間後、反応液の未反応His,CASおよび副生したAla−Ala−Hisを定量し、出発Hisに対する%を算出した。またエタノールで析出させた粗CASについて光学純度(%ee)を測定した。
[Example 2] Use of β-AlaCl · HCl Dissolve 0.78 g of His in a solvent shown in the following table to 10 ml, add 2 equivalents of β-AlaCl · HCl at 5 ° C under an argon atmosphere, and add 4 equivalent at room temperature. Stir until time. After 2 hours and 4 hours of reaction time, unreacted His, CAS and by-produced Ala-Ala-His in the reaction solution were quantified, and the percentage relative to the starting His was calculated. Further, the optical purity (% ee) of the crude CAS precipitated with ethanol was measured.

実験No. 溶媒 時間 His CAS %ee 副生成物
h % %
───── ───── ─── ───── ───── ───── ─────
1 1.0M 2 4.1 80.2 91.2 9.7
MsOH/DMA 4 1.4 79.4 86.6 11.8
───────────────────────────────────────
2 2.0M 2 7.0 79.7 86.3 7.7
MsOH/DMA 4 2.2 79.7 81.6 9.7
───────────────────────────────────────
3 2.0M 2 11.0 75.2 92.6 11.3
MsOH/DMA 4 4.2 78.5 85.8 11.3
───────────────────────────────────────
Experiment No. Solvent Time His CAS% ee By-product
h%%
───── ───── ─── ───── ───── ───── ─────
1 1.0M 2 4.1 80.2 91.2 9.7
MsOH / DMA 4 1.4 79.4 86.6 11.8
───────────────────────────────────────
2 2.0M 2 7.0 79.7 86.3 7.7
MsOH / DMA 4 2.2 79.7 81.6 9.7
───────────────────────────────────────
3 2.0M 2 11.0 75.2 92.6 11.3
MsOH / DMA 4 4.2 78.5 85.8 11.3
───────────────────────────────────────

〔実施例3〕β−AlaCl・pTsOHおよびHis・2pTsOHの使用
His・2pTsOH 100g(0.2mol)をDMA 400mlに溶解し、アルゴン雰囲気下−10℃でβ−AlaCl・pTsOH 112g(0.4mol)を1時間かけて添加し、0℃まで徐々に昇温し、攪拌する。反応終了後水を加えて残存するβ−AlaClを加水分解する。その後反応液を水で希釈し、強酸性イオン交換樹脂(SK−1B)に吸着後、2Nアンモニア水で溶出させ、溶出液を濃縮し、弱酸性イオン交換樹脂(WK−11)に通液して濃縮し、80%エタノールを加えて結晶化させ、乾燥してCAS29.3g(64.7%)を得た。
化学純度99.2%(ULTRON VX−ODS,Shinwa Chemical Industries,Ltd.使用),光学純度99.3%ee(SUMICHIRAL OA−5000,住友化学工業(株)使用)
1 H−NMR(D2 O,200MHz):δ2.62−2.69(2H,m,COCH2 );2.69(1H,dd,C 2 CHCOOH);2.98(1H,dd,C 2 CHCOOH);3.23(2H,t,NCH2 );4.49(1H,dd,CCOOH);6.96(1H,d,NHC);7.71(1H,d,NCH)
IR(KBr):1647cm-1,1585cm-1
Example 3 Use of β-AlaCl · pTsOH and His · 2pTsOH 100 g (0.2 mol) of His · 2pTsOH was dissolved in 400 ml of DMA and 112 g (0.4 mol) of β-AlaCl · pTsOH at −10 ° C. in an argon atmosphere. Is added over 1 hour, and the temperature is gradually raised to 0 ° C. and stirred. After completion of the reaction, water is added to hydrolyze the remaining β-AlaCl. Thereafter, the reaction solution is diluted with water, adsorbed on the strong acid ion exchange resin (SK-1B), and then eluted with 2N ammonia water. The eluate is concentrated and passed through the weak acid ion exchange resin (WK-11). The mixture was concentrated, crystallized by adding 80% ethanol, and dried to obtain 29.3 g (64.7%) of CAS.
Chemical purity 99.2% (using ULTRON VX-ODS, Shinwa Chemical Industries, Ltd.), optical purity 99.3% ee (using SUMICHIRAL OA-5000, Sumitomo Chemical Co., Ltd.)
1 H-NMR (D 2 O, 200 MHz): δ 2.62-2.69 (2H, m, COCH 2 ); 2.69 (1H, dd, C H 2 CHCOOH); 2.98 (1H, dd, C H 2 CHCOOH); 3.23 (2H, t, NCH 2 ); 4.49 (1H, dd, C H COOH); 6.96 (1H, d, NHC H ); 7.71 (1H, d) , NCH)
IR (KBr): 1647 cm −1 , 1585 cm −1

Claims (10)

L−ヒスチジンのアシル化によるL−カルノシンの合成法において、アシル化試薬として無保護のβ−アラニンクロライドの酸塩を使用することを特徴とするカルノシンの合成方法。   A method for synthesizing carnosine, wherein an unprotected β-alanine chloride acid salt is used as an acylating reagent in a method for synthesizing L-carnosine by acylation of L-histidine. β−アラニンクロライドと塩を形成する酸は、塩酸、酢酸、メタンスルホン酸、トリフロロ酢酸、またはp−トルエンスルホン酸から選ばれる請求項1の方法。   The method according to claim 1, wherein the acid forming a salt with β-alanine chloride is selected from hydrochloric acid, acetic acid, methanesulfonic acid, trifluoroacetic acid, or p-toluenesulfonic acid. 前記アシル化試薬は、L−ヒスチジンに対し少なくとも理論の1.5倍使用される請求項1または2の方法。   The method of claim 1 or 2, wherein the acylating reagent is used at least 1.5 times the theory for L-histidine. 前記アシル化試薬は、L−ヒスチジンの酸塩の溶液または酸を含むL−ヒスチジンの溶液へ固体もしくは粉末として添加される請求項1ないし3のいずれかの方法。   4. The method according to claim 1, wherein the acylating reagent is added as a solid or a powder to a solution of an acid salt of L-histidine or a solution of L-histidine containing an acid. 前記酸は、塩酸、酢酸、メタンスルホン酸、トリフロロ酢酸、またはp−トルエンスルホン酸から選ばれる請求項4の方法。   The method of claim 4, wherein the acid is selected from hydrochloric acid, acetic acid, methanesulfonic acid, trifluoroacetic acid, or p-toluenesulfonic acid. アシル化反応は、室温以下の温度で実施される請求項1ないし5のいずれかの方法。   The method according to any one of claims 1 to 5, wherein the acylation reaction is carried out at a temperature below room temperature. 極性溶媒中のL−ヒスチジン・p−トルエンスルホン酸塩溶液へ、過剰のβ−アラニンクロライド・p−トルエンスルホン酸塩を固体状で添加し、L−ヒスチジンをアシル化することを特徴とするL−カルノシンの合成方法。   An excess of β-alanine chloride / p-toluenesulfonate is added as a solid to a solution of L-histidine / p-toluenesulfonate in a polar solvent to acylate L-histidine. -Carnosine synthesis method. 前記極性溶媒はジメチルアセタミドである請求項7の方法。   8. The method of claim 7, wherein the polar solvent is dimethylacetamide. アシル化反応は、不活性ガス雰囲気中−10℃〜0℃の温度で行われる請求項7または8の方法。   The method according to claim 7 or 8, wherein the acylation reaction is performed at a temperature of -10 ° C to 0 ° C in an inert gas atmosphere. β−アラニルクロライド・p−トルエンスルホン酸塩は、L−ヒスチジンに対し少なくとも理論の1.5倍添加される請求項7ないし9のいずれかの方法。   The method according to any one of claims 7 to 9, wherein β-alanyl chloride · p-toluenesulfonate is added at least 1.5 times the theory to L-histidine.
JP2004126272A 2004-04-22 2004-04-22 New method for synthesizing l-carnosine Pending JP2005306782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126272A JP2005306782A (en) 2004-04-22 2004-04-22 New method for synthesizing l-carnosine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126272A JP2005306782A (en) 2004-04-22 2004-04-22 New method for synthesizing l-carnosine

Publications (1)

Publication Number Publication Date
JP2005306782A true JP2005306782A (en) 2005-11-04

Family

ID=35435942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126272A Pending JP2005306782A (en) 2004-04-22 2004-04-22 New method for synthesizing l-carnosine

Country Status (1)

Country Link
JP (1) JP2005306782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106699668A (en) * 2017-02-12 2017-05-24 江苏诚信药业有限公司 Process system and method for preparing carnosine
CN111196837A (en) * 2018-11-20 2020-05-26 皕达生物科技(上海)有限公司 Preparation method of polaprezinc and polaprezinc preparation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2030422C1 (en) * 1990-04-27 1995-03-10 Фармацевтическое акционерное общество "Феррейн" Method of synthesis of carnosine
WO2002000659A2 (en) * 2000-06-23 2002-01-03 Neotherapeutics, Inc. Methods of synthesis for 9-substituted hypoxanthine derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2030422C1 (en) * 1990-04-27 1995-03-10 Фармацевтическое акционерное общество "Феррейн" Method of synthesis of carnosine
WO2002000659A2 (en) * 2000-06-23 2002-01-03 Neotherapeutics, Inc. Methods of synthesis for 9-substituted hypoxanthine derivatives

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106699668A (en) * 2017-02-12 2017-05-24 江苏诚信药业有限公司 Process system and method for preparing carnosine
CN111196837A (en) * 2018-11-20 2020-05-26 皕达生物科技(上海)有限公司 Preparation method of polaprezinc and polaprezinc preparation
CN111196837B (en) * 2018-11-20 2023-07-28 皕达生物科技(上海)有限公司 Preparation method of polyprenone and polyprenone preparation

Similar Documents

Publication Publication Date Title
US7531673B2 (en) Preparation of amino acid amides
JPH0196194A (en) Production of glutamine derivative
CA2756893C (en) Improved method for preparing dipeptidyl peptidase-iv inhibitor and intermediate
JP3273578B2 (en) Method for producing salt of ornithine with acidic amino acids or keto acids
US20050065345A1 (en) Method for producing pipecolamide derivative
TWI281920B (en) Cephalosporin intermediates
JP2005306782A (en) New method for synthesizing l-carnosine
KR102589305B1 (en) Improved manufacturing method of sitagliptin phosphate salt
US9790170B2 (en) Method for preparing lacosamide
JP2018090551A (en) L-carnosine derivative or salt thereof, and process for producing l-carnosine or salt thereof
Morozova et al. Tetrachlorosilane–Sodium Azide System in the Synthesis of Tetrazole-Containing D, L-Tryptophane Derivatives.
CA2153551A1 (en) Aspartyldipeptide derivatives and sweetener
WO2003014081A1 (en) Process for producing optically active azetidine-2-carboxylic acid
WO2024092892A1 (en) Edoxaban intermediate and preparation method therefor
JP2019167317A (en) Method for producing l-carnosine derivative and l-carnosine
JP4532801B2 (en) Method for preparing (-)-(1S, 4R) N protected 4-amino-2-cyclopentene-1-carboxylic acid ester
JP2004203822A (en) Novel intermediate for manufacturing theanine
US8178722B2 (en) Method for producing theanine
CN111247127B (en) Process for the production of intermediate compounds for the synthesis of medicaments
US10723691B2 (en) Process for preparing salicyloyl-L-carnitine hydrochloride
JP2000026383A (en) Production of theanine
WO1998035934A1 (en) η-OXO-HOMOPHENYLALANINE DERIVATIVES AND PROCESS FOR PRODUCING HOMOPHENYLALANINE DERIVATIVES BY REDUCING THE SAME
WO2019098551A1 (en) Method for preparing intermediate compound for synthesizing pharmaceutical
JP3656002B2 (en) Process for producing and purifying optically active amide carboxylic acid
JP2013095735A (en) Method for eliminating phenoxy carbonyl group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222