JP2005214989A - Qcm sensor device - Google Patents
Qcm sensor device Download PDFInfo
- Publication number
- JP2005214989A JP2005214989A JP2005107096A JP2005107096A JP2005214989A JP 2005214989 A JP2005214989 A JP 2005214989A JP 2005107096 A JP2005107096 A JP 2005107096A JP 2005107096 A JP2005107096 A JP 2005107096A JP 2005214989 A JP2005214989 A JP 2005214989A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- working electrode
- sensor device
- counter electrode
- quartz substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は、水晶振動子の作用電極表面を試料ガスや試料溶液に晒したときの水晶振動子の発振周波数やインピーダンス等の電気的特性の変化から作用電極表面での試料成分の吸脱着を検知・定量するQCM(Quartz Crystal Microbalance)センサデバイスに関する。 The present invention detects adsorption / desorption of sample components on the surface of the working electrode from changes in the electrical characteristics such as the oscillation frequency and impedance of the crystal when the working electrode surface of the quartz crystal is exposed to the sample gas or sample solution. -It relates to a QCM (Quartz Crystal Microbalance) sensor device for quantification.
近年、ATカット水晶振動子を用いてマイクロバランス原理を応用したケミカル及びバイオセンサが注目を集めている。ATカット水晶振動子は、その主共振周波数が振動子の板厚と反比例する。この場合、水晶振動子の電極面に試料成分が成膜したり、あるいは物質の吸着が起きると表面に存在する物質の単位平面積当たりの重量に対応した周波数のシフトが起きる。 In recent years, chemical and biosensors that apply the microbalance principle using AT-cut quartz resonators have attracted attention. The main resonance frequency of the AT cut crystal resonator is inversely proportional to the plate thickness of the resonator. In this case, when a sample component is formed on the electrode surface of the crystal resonator or adsorption of a substance occurs, a frequency shift corresponding to the weight per unit plane area of the substance existing on the surface occurs.
QCMセンサは、上記の周波数シフト現象を応用したもので、ATカット水晶振動子は広い温度範囲において周波数が安定しているため、安定した検出感度が期待でき、条件が揃えば1〜10ngの吸着物質の検出がリアルタイムで可能である。以下に吸着物質量と周波数のシフト量の関係を示す。 The QCM sensor is an application of the frequency shift phenomenon described above. Since the AT-cut quartz resonator has a stable frequency over a wide temperature range, a stable detection sensitivity can be expected. Substance detection is possible in real time. The relationship between the amount of adsorbed material and the amount of frequency shift is shown below.
主共振周波数f0を持つ水晶振動子の、表面に生じる質量変化(電極面の吸脱着量)Δmと、周波数変化量(周波数のシフト量)Δfとの関係は、下記(1)式に示すSauerberyの式により表される。 The relationship between the mass change (electrode surface adsorption / desorption amount) Δm and the frequency change amount (frequency shift amount) Δf of the crystal resonator having the main resonance frequency f 0 is expressed by the following equation (1). It is represented by the Sauerbery equation.
Δf:周波数変化量、f0:水晶振動子の主共振周波数、APIEZO:電気的有効面積(電極面積)、μq:水晶のせん断弾性定数、ρq:水晶の密度、Δm:電極表面に生じる質量変化(電極面の吸脱着量)
ここで、ATカット水晶振動子の共振周波数は、下記の(2)、(3)式で表される。
Δf: frequency change amount, f 0 : main resonance frequency of crystal resonator, A PIEZO : electrical effective area (electrode area), μ q : shear elastic constant of crystal, ρ q : density of crystal, Δm: on electrode surface Resulting mass change (adsorption / desorption amount of electrode surface)
Here, the resonance frequency of the AT cut crystal resonator is expressed by the following equations (2) and (3).
ν:水晶中での音速、tq:水晶の厚さ、
また、Sauerberyの式は、主共振周波数と水晶の厚さの関係を展開して、下記の(4)式のようになる。
ν: speed of sound in crystal, t q : thickness of crystal,
Further, the Sauerbery equation expands the relationship between the main resonance frequency and the crystal thickness, and becomes the following equation (4).
上記の(4)式において、Cfは全体感度である。 In the above equation (4), C f is the overall sensitivity.
なお、これを液中にて使用する際には、周波数変化量Δfは液の粘度と密度にも影響されるため、下記の(5)式のように書き直される。 When this is used in the liquid, the frequency change amount Δf is also affected by the viscosity and density of the liquid, and is rewritten as the following equation (5).
ηL:溶液の粘性率、ρL:溶液の密度、ω0=2πf0
この式中の全体感度Cfは下記の(6)式で表わされる。
η L : Solution viscosity, ρ L : Solution density, ω 0 = 2πf 0
The overall sensitivity C f in this equation is expressed by the following equation (6).
上記の各式から解るように、全体感度Cfを上げるには主共振周波数f0を上げることが重要となる。また、全体感度Cf自身も周波数の関数であるため、実際の周波数変化量Δfは、主共振周波数f0の2乗や3/2乗に依存することになる。 As can be understood from the above equations, it is important to increase the main resonance frequency f 0 in order to increase the overall sensitivity C f . Further, since the overall sensitivity C f itself is a function of frequency, the actual frequency change amount Δf depends on the square or 3/2 of the main resonance frequency f 0 .
従って、センサとして用いる水晶振動子の主共振周波数を高くするほど、高感度のセンサとすることができる。例えば、図5は、15wt%(重量パーセント)のグルコース溶液に浸した水晶振動子の周波数シフト量Δfを主共振周波数f0の変化に対してプロットしたものである。主共振周波数f0が高ければ同じ電極表面での振動ロスで共振周波数のずれが大きく取れることが分る。 Therefore, the higher the main resonance frequency of the crystal resonator used as the sensor, the higher the sensitivity of the sensor. For example, FIG. 5 is a plot of the frequency shift amount Δf of a crystal resonator immersed in a 15 wt% (weight percent) glucose solution against the change in the main resonance frequency f 0 . It can be seen that if the main resonance frequency f 0 is high, the resonance frequency can be largely shifted due to vibration loss on the same electrode surface.
上記のように、ATカット水晶振動子は、厚みすべりのモードを使用しているため、主共振周波数f0はその厚みtqと反比例する。また、水晶振動子は、十分なγ値(水晶振動子の等価回路では並列容量と直列容量の比、通常はATカットで250ぐらいで少ない程よい)を得るためには電極有効面積も周波数に比例して小さくする必要がある。以上の理由で高周波用の水晶振動子は電極面積が小さく、しかも水晶厚の薄いものが要望される。 As described above, since the AT-cut quartz resonator uses the thickness slip mode, the main resonance frequency f 0 is inversely proportional to the thickness t q . In addition, in order to obtain a sufficient γ value (ratio of parallel capacitance to series capacitance in the equivalent circuit of a quartz crystal, usually less than about 250 with AT cut), the effective area of the electrode is proportional to the frequency. It is necessary to make it smaller. For the above reasons, a high-frequency crystal resonator is required to have a small electrode area and a thin crystal thickness.
一方、QCMセンサを実現するには、小型の水晶振動子をそれに機械的な歪みを与えることなく支持でき、なおかつ振動子表面は試料ガスあるいは試料溶液に晒すという条件を満たすため、センサデバイスの収納装置は図6に示すような構成にしている。 On the other hand, in order to realize a QCM sensor, a small crystal resonator can be supported without mechanical distortion, and the surface of the resonator is exposed to a sample gas or a sample solution. The apparatus is configured as shown in FIG.
同図において、絶縁材料製にされる筒形のセンサデバイス収納装置本体1は、その内部には発振回路部2がネジ止めされる。センサデバイス収納装置本体1の上面部には突出して一対の接触子3、4がバネ性を有して設けられ、それらの他端が内部に引き出されて発振回路部2に接続される。
In the figure, a cylindrical sensor device housing apparatus body 1 made of an insulating material has an
センサデバイス収納装置本体1の上面の周辺部にはピン5、6で位置合わせする円板状のスペーサ7を設け、このスペーサ7によって水晶振動子8をセンサデバイス収納装置本体1との間に挟み込み、水晶振動子8の電極を接触子3、4の先端に接触させる。この挟み込みには、水晶振動子8の周辺部両面に位置させたオーリング9、10で緩衝及び気密構造とする。ネジ込み蓋11は、スペーサ7をセンサデバイス収納装置本体1に圧接し、水晶振動子8の上面を試料ガスや試料溶液に晒すための孔を設ける。
A disk-shaped spacer 7 is provided at the periphery of the upper surface of the sensor device storage device body 1 by
センサデバイス収納装置本体1は、下部をネジ込み蓋12で気密性を有して覆い、側部には発振回路部2からの信号線や電源線を通すための管13を設ける。
The sensor device storage device main body 1 has a
上記のようなセンサデバイスの収納装置は、水晶振動子8の作用電極面を試料ガスや試料溶液に晒し、水晶振動子8の作用電極面で試料成分が吸脱着されることによる電気的特性の変化として、例えば、発振回路部2の発振周波数変化をカウンタ14の計数値変化として測定する測定装置に構成される。
The storage device for the sensor device as described above has electrical characteristics due to the working electrode surface of the crystal resonator 8 being exposed to the sample gas or the sample solution, and the sample components being adsorbed and desorbed on the working electrode surface of the crystal resonator 8. As the change, for example, it is configured in a measuring apparatus that measures the change in the oscillation frequency of the
また、溶液系の電気化学的測定では、図7に示すように、センサデバイス収納装置20を電解液を導入する容器21内に浸漬し、該容器21内には電解液の成分を作用電極面に吸脱着させるのに、作用電極の電位を設定するための基準電位を発生する参照電極(基準電極)22及び該作用電極表面に電解液成分を吸脱着させるための対極電極23を設けた測定セル構成とし、これら電極及び水晶振動子の電極(作用電極)にポテンショガルバノスタット(PGS)24を接続したQCM測定システムに構成される。
In the solution-type electrochemical measurement, as shown in FIG. 7, the sensor
さらにまた、作用電極に試料溶液から検知・定量しようとする成分に応じたレセプターを形成しておくことで、例えば、作用電極に「はしか」のウイルスを検知・定量するための「抗はしかウイルス抗体」やインフルエンザの抗体を検知・定量するための「インフルエンザ抗体」を固定化しておくことで、試料の成分中に「はしか」や「インフルエンザ」のウイルスが存在するかを検知さらには定量することができる。
なお、流体の物理的性質や電気化学的性質の測定としては、特許文献1のものが公知となっている。この文献のものは、圧電素子の一方の電極のみをフローセル中の流体と接するように配置して作用電極とし、対極及び参照電極をフローセル中に有する電位設定回路及び電流測定回路に接続して構成されたフローセルタイプのものである。
In addition, the thing of patent document 1 is well-known as a measurement of the physical property and electrochemical property of a fluid. In this document, only one electrode of the piezoelectric element is disposed so as to be in contact with the fluid in the flow cell to be a working electrode, and the counter electrode and the reference electrode are connected to a potential setting circuit and a current measurement circuit included in the flow cell. Flow cell type.
従来のQCMセンサデバイスを使用したQCM測定システムは、センサデバイス収納装置を容器に浸漬し、この容器に参照電極と対極電極を位置させる測定セル構成になる。このため、参照電極及び対極電極とこれら電極の取り付け装置を設けた測定セルは、煩雑であると共に、システム構成の大型化を招く。 A conventional QCM measurement system using a QCM sensor device has a measurement cell configuration in which a sensor device storage device is immersed in a container, and a reference electrode and a counter electrode are positioned in the container. For this reason, the measurement cell provided with the reference electrode and the counter electrode and a device for attaching these electrodes is complicated and causes an increase in the size of the system configuration.
また、参照電極や対極電極の相対位置及びセンサデバイス収納装置の水晶振動子との相対位置が測定の度に変わると、測定精度に影響を及ぼす。このため、これら電極間の相対位置を再現できる電極取り付け構造を必要とし、例えば、X−Y−Z軸方向に電極を移動制御できる電極位置制御機構が必要になる。 In addition, if the relative position of the reference electrode and the counter electrode and the relative position of the sensor device storage device with the crystal resonator change every measurement, the measurement accuracy is affected. For this reason, an electrode mounting structure that can reproduce the relative position between these electrodes is required, and for example, an electrode position control mechanism that can control the movement of the electrodes in the X, Y, and Z axis directions is required.
特に、高周波用の水晶振動子は、その電極面積を小さくした構造になることから、参照電極や対極電極の位置制御には高精度のものが必要になり、高価な電極位置制御機構を必要とする。 In particular, a high-frequency quartz crystal unit has a structure in which the electrode area is reduced. Therefore, a high-accuracy electrode position control mechanism is required for the position control of the reference electrode and the counter electrode, and an expensive electrode position control mechanism is required. To do.
また、従来のQCMセンサデバイスを使用したQCM測定システムは、センサデバイス収納装置を容器に浸漬し、この容器に参照電極と対極電極を位置させる測定セル構成になる。このため、対極電極から作用電極に流れる電流力線は、その電位分布の不均等及びこれによって流れる電流力線の不均等は、作用電極面に析出される試料成分量が電極面位置で偏ったものになり、発振周波数やインピーダンスなどの変動として現れ、結果的に測定精度を高めるのが難しくなる。 A conventional QCM measurement system using a QCM sensor device has a measurement cell configuration in which a sensor device storage device is immersed in a container, and a reference electrode and a counter electrode are positioned in the container. For this reason, the current force lines flowing from the counter electrode to the working electrode are uneven in the potential distribution and the uneven current force lines flowing in this way, the amount of the sample component deposited on the working electrode surface is biased at the electrode surface position. As a result, it appears as fluctuations in oscillation frequency, impedance, etc., and as a result, it is difficult to improve measurement accuracy.
本発明が目的とするところは、コンパクトで低価格の測定セル構成にでき、しかも電極間の相対位置を精度良く規定できるQCMセンサデバイスを提供すると共に、対極電極と作用電極間の電位分布を均等にできるQCMセンサデバイスを提供することにある。 An object of the present invention is to provide a QCM sensor device that can be configured in a compact and low-cost measurement cell configuration and that can accurately define the relative position between electrodes, and that the potential distribution between the counter electrode and the working electrode is uniform. It is to provide a QCM sensor device that can be used.
本発明は、水晶振動子の作用電極表面を試料ガスや試料溶液に晒したときの水晶振動子の電気的特性の変化から前記作用電極表面での試料成分の吸脱着を検知・定量するためのQCMセンサデバイスにおいて、
水晶基板の表裏面に電極を対向させて形成し、前記電極のうち試料ガスや試料溶液に晒される作用電極にギャップを有して対向させることで該作用電極表面に試料成分を吸脱着させるための対極電極を設け、前記作用電極と対極電極の周辺に該作用電極の電位を設定するための基準電位を発生する参照電極を設けたことを特徴としたものである。
The present invention is for detecting and quantifying the adsorption / desorption of a sample component on the surface of the working electrode from a change in the electrical characteristics of the quartz crystal when the working electrode surface of the quartz crystal is exposed to a sample gas or a sample solution. In the QCM sensor device,
In order to adsorb and desorb the sample components on the surface of the working electrode by forming electrodes facing the front and back surfaces of the quartz substrate and facing the working electrode exposed to the sample gas or sample solution with a gap. The counter electrode is provided and a reference electrode for generating a reference potential for setting the potential of the working electrode is provided around the working electrode and the counter electrode.
本発明によれば、水晶基板に対極電極と参照電極を固着して水晶基板と一体的に形成したことにより電極間の相対位置を精度良く規定できるため、比較的小型で、精度の良い測定が可能となると共に、対極電極を作用電極にギャップを有して対向させた立体構造としたため、対極電極と作用電極間の電位分布を均等にして測定精度を高めることができる。 According to the present invention, since the counter electrode and the reference electrode are fixed to the quartz substrate and integrally formed with the quartz substrate, the relative position between the electrodes can be accurately defined. In addition, since the counter electrode has a three-dimensional structure facing the working electrode with a gap, the potential distribution between the counter electrode and the working electrode can be made uniform to increase the measurement accuracy.
図1は本発明の実施形態を示すQCMセンサデバイスの構造図で、水晶基板周辺部のみの側断面図である。 FIG. 1 is a structural view of a QCM sensor device showing an embodiment of the present invention, and is a side sectional view of only a peripheral portion of a quartz substrate.
水晶基板41は、長方形で一様な厚みをもつATカット水晶で構成され、その支持基板としての石英基板42にシリコーン接着剤等で接着されてその支持とリード線引き出しがなされる。
The
水晶基板41は、電極形成部分がエッチングで掘り込まれ、この掘り込み部の中心部で表裏面に対向して円形の作用電極43Aとその裏面電極43Bがスパッタリング法などで形成されると共に、そのリード部が形成される。なお、水晶基板41の掘り込み部の厚みは、前記までの実施形態と同様にされる。参照電極44は、水晶基板41の面で作用電極43Aの近辺に形成される。以上までの構成は、前記までの実施形態のものとほぼ同様の構造になる。
In the
ここで、本実施形態では、対極電極45を作用電極43Aに対向させた立体構造としている。対極電極45は、側面から見て略S字型に曲げられた導電性の金属板にされ、その支持部が水晶基板41面に接着されて支持される共に電極リード部451に接続され、先端部が作用電極43A面とほぼ同じ平面形状で作用電極43Aにギャップを有して対向配置される。
Here, in this embodiment, it is set as the three-dimensional structure which made the
対極電極45の先端部の平面構造は、図2の(a)に示すように作用電極43Aと同等の円形にしたもの、(b)に示すように中央部に孔を設けたもの、(c)に示すように矩形状のもの、(d)に示すように多数の孔を設けたものにされるが、作用電極43Aとの間の電位分布を均等にするには作用電極43Aの平面形状と同等になる同図の(a)、(b)、(d)に示す構造のものがより好ましい。
The planar structure of the tip of the
以上の構造になるQCMセンサデバイスは、QCM測定システムを構成するには、電極43A,44,45の部分が試料溶液等に晒されるよう図7のようなセンサデバイス収納装置に収納され、又は図3に示すように裸のまま容器21内に浸漬され、発振回路2やポテンショガルバノスタット(PGS)24に接続されて発振周波数の変化等が測定される。
The QCM sensor device having the above structure is housed in a sensor device housing device as shown in FIG. 7 so that the
したがって、本実施形態のQCMセンサデバイスは、作用電極43Aと対極電極45の間の電位分布をほぼ均等にすることができ、作用電極43A面での吸脱着量がその電極面位置で均等化され、測定精度を高めることができる。
Therefore, the QCM sensor device of this embodiment can make the potential distribution between the working electrode 43A and the
図4は、本発明の他の実施形態を示すQCMセンサデバイス構造である。同図が図1と異なる部分は、対極電極46を石英基板(又は水晶基板)47に形成し、この石英基板47の一端をスペーサ48により挟んで水晶基板41面に接着した点にある。
FIG. 4 is a QCM sensor device structure showing another embodiment of the present invention. 1 differs from FIG. 1 in that a
この構造によれば、図1の場合と同様に、対極電極46を作用電極43Aにギャップを有して対向配置させることができるのに加えて、対極電極46の支持が確実になるし、デバイス製作上は作用電極を形成する水晶基板と対極電極を設けた石英基板を別途にして製作及び製品管理が容易になる。
According to this structure, as in the case of FIG. 1, the
なお、図4の構造で、石英基板47はスペーサ48を挟んで支持基板42へ接着する構造、さらには参照電極44を石英基板47面に設けた構造として同等の作用効果を得ることができる。
In the structure of FIG. 4, the
以上の各実施形態で示したQCMセンサデバイスは、石英などの支持基板に水晶基板を設けており、その構造上、QCMセンサデバイスを直接に試料ガスや試料溶液に浸漬しても、作用電極側のみが試料溶液や試料ガスなどに晒されることから、コンパクトな収納装置を用いて測定を行うことができる。収納装置を用いた測定システムでは、測定に使用する試料ガスや試料溶液が従来のものと比較して少量で済む効果もある。 The QCM sensor device shown in each of the above embodiments is provided with a quartz substrate on a support substrate such as quartz. Due to its structure, even if the QCM sensor device is directly immersed in a sample gas or sample solution, the working electrode side Since only the sample solution or the sample gas is exposed, the measurement can be performed using a compact storage device. In the measurement system using the storage device, there is an effect that a small amount of sample gas or sample solution is required for measurement compared to the conventional one.
また、対極電極を作用電極にギャップを有して対向させた立体構造としたため、対極電極と作用電極間の電位分布を均等にして測定精度を高めることができる。 In addition, since the counter electrode has a three-dimensional structure facing the working electrode with a gap, the potential distribution between the counter electrode and the working electrode can be made uniform to improve the measurement accuracy.
41…水晶基板
42、47…石英基板(支持基板)
43A…作用電極
43B…裏面電極
44…参照電極
45、46…対極電極
48…スペーサ
41 ...
43A ... Working
Claims (1)
水晶基板の表裏面に電極を対向させて形成し、前記電極のうち試料ガスや試料溶液に晒される作用電極にギャップを有して対向させることで該作用電極表面に試料成分を吸脱着させるための対極電極を設け、前記作用電極と対極電極の周辺に該作用電極の電位を設定するための基準電位を発生する参照電極を設けたことを特徴とするQCMセンサデバイス。
In a QCM sensor device for detecting and quantifying the adsorption / desorption of a sample component on the surface of the working electrode from a change in the electrical characteristics of the quartz crystal when the working electrode surface of the quartz crystal is exposed to a sample gas or a sample solution ,
In order to adsorb and desorb the sample components on the surface of the working electrode by forming electrodes facing the front and back surfaces of the quartz substrate and facing the working electrode exposed to the sample gas or sample solution with a gap. And a reference electrode for generating a reference potential for setting the potential of the working electrode around the working electrode and the counter electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005107096A JP2005214989A (en) | 2005-04-04 | 2005-04-04 | Qcm sensor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005107096A JP2005214989A (en) | 2005-04-04 | 2005-04-04 | Qcm sensor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05674599A Division JP3717696B2 (en) | 1999-03-04 | 1999-03-04 | QCM sensor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005214989A true JP2005214989A (en) | 2005-08-11 |
Family
ID=34909791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005107096A Pending JP2005214989A (en) | 2005-04-04 | 2005-04-04 | Qcm sensor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005214989A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007057289A (en) * | 2005-08-23 | 2007-03-08 | Seiko Instruments Inc | Microsensor for analysis |
CN107290392A (en) * | 2017-07-31 | 2017-10-24 | 成都信息工程大学 | A kind of QCM humidity sensors of high stability low humidity detection and preparation method thereof |
-
2005
- 2005-04-04 JP JP2005107096A patent/JP2005214989A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007057289A (en) * | 2005-08-23 | 2007-03-08 | Seiko Instruments Inc | Microsensor for analysis |
JP4616123B2 (en) * | 2005-08-23 | 2011-01-19 | セイコーインスツル株式会社 | Microsensor for analysis |
CN107290392A (en) * | 2017-07-31 | 2017-10-24 | 成都信息工程大学 | A kind of QCM humidity sensors of high stability low humidity detection and preparation method thereof |
CN107290392B (en) * | 2017-07-31 | 2023-07-18 | 成都信息工程大学 | QCM humidity sensor for high-stability low-humidity detection and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3717696B2 (en) | QCM sensor device | |
US6544478B1 (en) | QCM sensor | |
US7148611B1 (en) | Multiple function bulk acoustic wave liquid property sensor | |
EP0775295B1 (en) | A piezoelectric crystal microbalance device | |
CN109374729B (en) | Acoustic micro-mass sensor and detection method | |
TW200523546A (en) | Biosensor utilizing a resonator having a functionalized surface | |
JP4222513B2 (en) | Mass measuring apparatus and method | |
JP2000338022A (en) | Multi-channel qcm sensor device and multi-channel qcm measuring system | |
JP4083621B2 (en) | Analysis method using vibrator | |
JP3933340B2 (en) | Multi-channel QCM sensor device | |
CN104198320A (en) | Handheld fast reaction iron content monitor | |
JP2005214989A (en) | Qcm sensor device | |
US7331232B2 (en) | Measurement method and biosensor apparatus using resonator | |
JP2011215024A (en) | Quartz crystal microbalance gas sensor and gas measuring method | |
JP2005274578A (en) | Qcm (quartz crystal microbalance) sensor device | |
US9074981B2 (en) | Sensor arrangement for measuring properties of fluids | |
JP2009031233A (en) | Multi-channel qcm sensor | |
JP5791333B2 (en) | Jig for forming sensitive film and method for forming sensitive film | |
JP4811106B2 (en) | QCM sensor device | |
JP4210205B2 (en) | Cell, biosensor device including the same, and measurement method | |
Sankaranarayanan et al. | Computational design of quartz crystal nanobalance for uniform sensitivity distribution | |
JP2005201912A (en) | Qcm sensor device | |
Dultsev et al. | QCM operating in threshold mode as a gas sensor | |
JP2004150879A (en) | Cell for biosensor | |
TWI422819B (en) | Sensing electrode assembly of pseudo lateral field excited acoustic wave, sensing element and sensing device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Effective date: 20050608 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20060120 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A02 | Decision of refusal |
Effective date: 20070814 Free format text: JAPANESE INTERMEDIATE CODE: A02 |