Nothing Special   »   [go: up one dir, main page]

JP2005158957A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2005158957A
JP2005158957A JP2003394451A JP2003394451A JP2005158957A JP 2005158957 A JP2005158957 A JP 2005158957A JP 2003394451 A JP2003394451 A JP 2003394451A JP 2003394451 A JP2003394451 A JP 2003394451A JP 2005158957 A JP2005158957 A JP 2005158957A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
heat dissipation
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003394451A
Other languages
Japanese (ja)
Inventor
Takuma Hashimoto
拓磨 橋本
Masaru Sugimoto
勝 杉本
Ryoji Yokoya
良二 横谷
Koji Nishioka
浩二 西岡
Yutaka Iwabori
裕 岩堀
Shinya Ishizaki
真也 石崎
Satoru Mori
哲 森
Hideyoshi Kimura
秀吉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003394451A priority Critical patent/JP2005158957A/en
Priority to US10/558,360 priority patent/US7495322B2/en
Priority to EP04734943.6A priority patent/EP1627437B1/en
Priority to PCT/JP2004/007535 priority patent/WO2004105142A1/en
Priority to EP11167061.8A priority patent/EP2365539B1/en
Priority to TW93114990A priority patent/TWI253765B/en
Publication of JP2005158957A publication Critical patent/JP2005158957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a life-time and efficiency by improving the heat dissipation of a light emitting element in a light emitting device using an LED. <P>SOLUTION: The light emitting device is constituted by mounting one or a plurality of light emitting element submount structures 3 which are provided with mounting boards 30 having wearing portions 31 and LED chips 33 mounted on the mounting boards 30, on a first substrate 1 for heat dissipation serving as the wiring board. The surface of a side different from the surface facing the substrate 1 for first heat dissipation of the light emitting element submount structure 3 is made to be in contact with or to be joined to a second substrate 2 for heat dissipation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はLED(発光ダイオード)を用いた発光装置に関するものである。   The present invention relates to a light emitting device using an LED (light emitting diode).

近年、窒化ガリウム系化合物半導体によって、青色光あるいは紫外線を放射するLEDチップが開発された。そして、LEDチップを種々の蛍光体と組み合わせることにより、白色を含め、LEDチップの発光色とは異なる色合いの光を出すことができるLED発光装置の開発が試みられている。このLED発光装置には、小型、軽量、省電力といった長所があり、現在、表示用光源、小型電球の代替光源、あるいは液晶パネル用光源等として広く用いられている。しかしながら、現在のLEDは1チップ当たりの明るさが小さいために、照明用光源や液晶パネル用光源などに使用する場合には、配線部を有する実装基板にLEDチップを実装封止してなるLEDパッケージを複数個、プリント配線基板に実装して必要な明るさを得るのが一般的である。また、大きな光出力を得るためには注入電流を大きくする必要がある。なお、特許文献1には、金属平板上に、凹部にLEDチップを収納した金属ブロックを取り付けた構造が開示されている。
特開2002−141558号公報
In recent years, LED chips that emit blue light or ultraviolet light have been developed using gallium nitride-based compound semiconductors. An attempt has been made to develop an LED light-emitting device that can emit light having a color different from the emission color of the LED chip, including white, by combining the LED chip with various phosphors. This LED light emitting device has advantages such as small size, light weight, and power saving, and is currently widely used as a light source for display, an alternative light source for a small light bulb, or a light source for a liquid crystal panel. However, since the current LED has a small brightness per chip, when used for an illumination light source, a liquid crystal panel light source, etc., an LED in which an LED chip is mounted and sealed on a mounting substrate having a wiring portion Generally, a plurality of packages are mounted on a printed wiring board to obtain a necessary brightness. In order to obtain a large light output, it is necessary to increase the injection current. Patent Document 1 discloses a structure in which a metal block in which an LED chip is housed in a recess is attached on a metal flat plate.
JP 2002-141558 A

現在のLEDは、効率が10%程度であるため、入力した電気エネルギーの大部分が熱になる特性を有しており、発熱量は電流を多く流すと増大する。発熱によりLEDの温度が上昇すると、寿命や効率などの特性に悪影響を与えることが知られている。しかしながら、上記のようなプリント配線基板は一般に熱伝導率が低いポリイミド、エポキシなどの樹脂材料を用いて形成されているので、LEDパッケージにおいて発生した熱を効率良く放散させることができないといった問題があった。   Since the current LED has an efficiency of about 10%, it has a characteristic that most of the input electric energy becomes heat, and the calorific value increases when a large amount of current flows. It is known that when the temperature of the LED rises due to heat generation, characteristics such as life and efficiency are adversely affected. However, since the printed wiring board as described above is generally formed using a resin material such as polyimide or epoxy having low thermal conductivity, there is a problem that heat generated in the LED package cannot be efficiently dissipated. It was.

そこで、本出願人は先に特願2003−148050号において、この問題を解決するための構造案を特許出願した。配線部を有する実装基板と、実装基板上に実装されたLEDチップからなる発光素子サブマウント構造体を、金属板上に絶縁層を介して形成された配線パターンからなる配線基板に実装して発光装置と成した。この発光装置において、実装基板上の配線部は配線基板方向に引き出されて配線パターンに電気的に接続されており、金属板の一部が露出されて実装基板に接触されている。金属板の露出した部位と実装基板とを接触させたことにより、放熱性が向上するので、LEDチップにおいて発生した熱を速やかに配線基板側に逃がすことができる。さらに、一回のリフロー工程により、実装基板と配線基板とを接合し、且つ、放熱路の形成も行える構造としたため、従来例に比べて製造工程を簡略化できる効果を有する。   Therefore, the present applicant previously filed a patent application for a structure plan for solving this problem in Japanese Patent Application No. 2003-148050. A light emitting element submount structure composed of a mounting substrate having a wiring portion and an LED chip mounted on the mounting substrate is mounted on a wiring substrate composed of a wiring pattern formed on a metal plate via an insulating layer to emit light. Made with equipment. In this light emitting device, the wiring portion on the mounting board is drawn out in the direction of the wiring board and electrically connected to the wiring pattern, and a part of the metal plate is exposed and is in contact with the mounting board. Since the heat radiation performance is improved by bringing the exposed portion of the metal plate into contact with the mounting substrate, the heat generated in the LED chip can be quickly released to the wiring substrate side. Furthermore, since the mounting substrate and the wiring substrate are joined and the heat radiation path can be formed by a single reflow process, the manufacturing process can be simplified as compared with the conventional example.

しかしながら、上述の発光装置においては、発光素子サブマウント構造体の裏面側の配線基板との接触部以外には放熱の経路が無い。そのため、照明に必要な光出力を得るために、LEDチップに注入する電流をある限度以上に増加させると、発熱によりLEDチップの温度が上昇して、発光装置の寿命や効率などの特性に悪影響を与えるという課題があった。   However, in the above-described light emitting device, there is no heat dissipation path other than the contact portion with the wiring substrate on the back surface side of the light emitting element submount structure. Therefore, if the current injected into the LED chip is increased beyond a certain limit in order to obtain the light output required for illumination, the temperature of the LED chip rises due to heat generation, which adversely affects the characteristics such as the lifetime and efficiency of the light emitting device. There was a problem of giving.

本発明によれば、上記の課題を解決するために、図1及び図2に示すように、配線部31を有する実装基板30と、前記実装基板30上に実装されたLEDチップ33とを備える1個または複数個の発光素子サブマウント構造体3を、配線基板を兼ねる第1の放熱用基板1に搭載してなる発光装置であって、前記発光素子サブマウント構造体3の第1の放熱用基板1に面する側とは異なる側の面を、第2の放熱用基板2に接触または接合したことを特徴とするものである。   According to the present invention, in order to solve the above-mentioned problem, as shown in FIGS. 1 and 2, a mounting substrate 30 having a wiring portion 31 and an LED chip 33 mounted on the mounting substrate 30 are provided. A light-emitting device in which one or a plurality of light-emitting element submount structures 3 are mounted on a first heat dissipation substrate 1 that also serves as a wiring board, wherein the first heat dissipation of the light-emitting element submount structure 3 is performed. The surface on the side different from the side facing the working substrate 1 is contacted or joined to the second heat dissipating substrate 2.

請求項1の発明によれば、発光素子サブマウント構造体からの放熱の経路が増加するので、発光素子サブマウント構造体の放熱性が向上し、LEDチップの温度が低下する効果がある。
請求項2の発明によれば、熱伝達部を介して高温側の放熱用基板から低温側の放熱用基板へ熱が散逸するので、放熱用基板上の温度分布が均一化する。その結果、個々のLEDチップの温度が均一化するとともに、全体としてさらにチップ温度が低下する効果がある。
請求項3の発明によれば、LED実装部近傍の放熱用基板に設けられた開口部の側壁面に、光反射部の機能を設けたことにより、実装基板自体にそのような反射部を設ける必要がなくなるので、発光装置をよりコンパクトにできる効果がある。また、放熱用基板を光反射率に優れる金属板とすれば、さらに光取り出し率を向上できる効果がある。
According to the first aspect of the present invention, since the heat dissipation path from the light emitting element submount structure is increased, the heat dissipation of the light emitting element submount structure is improved, and the temperature of the LED chip is reduced.
According to the second aspect of the present invention, heat is dissipated from the high-temperature side heat dissipation substrate to the low-temperature side heat dissipation substrate via the heat transfer section, so that the temperature distribution on the heat dissipation substrate is made uniform. As a result, the temperature of each LED chip is made uniform, and the chip temperature is further lowered as a whole.
According to the invention of claim 3, by providing the function of the light reflecting portion on the side wall surface of the opening provided in the heat dissipation substrate in the vicinity of the LED mounting portion, such a reflecting portion is provided on the mounting substrate itself. Since it is not necessary, the light emitting device can be made more compact. Further, if the heat dissipation substrate is made of a metal plate having excellent light reflectivity, the light extraction rate can be further improved.

請求項4の発明によれば、発光素子サブマウント構造体を、熱伝導性に優れる導電性ブロックで構成したことにより、LEDチップから実装基板に伝達された熱が、速やかに第1、第2の放熱用基板方向へ拡散する。このことにより、発光素子サブマウント構造体の放熱性が向上し、LEDチップの温度がさらに低下する効果がある。
請求項5又は6の発明によれば、実装基板の内部に実装基板本体よりも高熱伝導の放熱部材を含むことにより、LEDチップから実装基板に伝達された熱が、速やかに第1、第2の放熱用基板方向へ拡散する。このことにより、発光素子サブマウント構造体の放熱性が向上し、LEDチップの温度がさらに低下する効果がある。
請求項7の発明によれば、隣り合う発光素子サブマウント構造体同士の距離を最大限に離すことができる。従って、発光素子サブマウントの温度を低下させることができ、LEDチップの温度がさらに低下する効果がある。
According to the invention of claim 4, since the light-emitting element submount structure is composed of the conductive block having excellent thermal conductivity, the heat transferred from the LED chip to the mounting substrate is promptly first and second. Diffuses toward the heat dissipation substrate. Thereby, the heat dissipation of the light emitting element submount structure is improved, and the temperature of the LED chip is further reduced.
According to the invention of claim 5 or 6, the heat transferred from the LED chip to the mounting substrate is promptly first and second by including the heat dissipating member having higher heat conductivity than the mounting substrate body inside the mounting substrate. Diffuses toward the heat dissipation substrate. Thereby, the heat dissipation of the light emitting element submount structure is improved, and the temperature of the LED chip is further reduced.
According to the seventh aspect of the present invention, the distance between adjacent light emitting element submount structures can be maximized. Therefore, the temperature of the light emitting element submount can be lowered, and the temperature of the LED chip is further lowered.

図1に本発明の発光装置の好ましい実施の形態の概略構造を示す。図1は断面図であり、紙面の上方が光放射方向となっている。図1の発光装置に用いる発光素子サブマウント構造体3の構造を図2に示す。発光素子サブマウント構造体3は、配線部31を有する実装基板30と、前記実装基板30上に実装されたLEDチップ33とを備える。実装基板30は凹部形状を有し、凹部35内および実装基板30の上面には配線部31が形成されている。ただし、実装基板30の形状は図示された凹部形状には限定されず、平板形状などであっても良い。実装基板30の凹部35の内底面の配線部31に接合部材34を介してLEDチップ33を実装し、図2の構造全体を発光素子サブマウント構造体3と成す。実装基板30の材料としては例えば窒化アルミを用いるが、これに限るものではない。LEDチップ33には窒化ガリウム系化合物半導体を用いるが、これに限るものではない。   FIG. 1 shows a schematic structure of a preferred embodiment of the light emitting device of the present invention. FIG. 1 is a cross-sectional view, and the upper part of the drawing is the light emission direction. The structure of the light emitting element submount structure 3 used in the light emitting device of FIG. 1 is shown in FIG. The light emitting element submount structure 3 includes a mounting substrate 30 having a wiring portion 31 and an LED chip 33 mounted on the mounting substrate 30. The mounting substrate 30 has a concave shape, and wiring portions 31 are formed in the concave portion 35 and on the upper surface of the mounting substrate 30. However, the shape of the mounting substrate 30 is not limited to the illustrated concave shape, and may be a flat plate shape or the like. The LED chip 33 is mounted on the wiring portion 31 on the inner bottom surface of the recess 35 of the mounting substrate 30 via the bonding member 34, and the entire structure of FIG. 2 is formed as the light emitting element submount structure 3. For example, aluminum nitride is used as the material of the mounting substrate 30, but is not limited thereto. The LED chip 33 uses a gallium nitride compound semiconductor, but is not limited thereto.

図1の発光装置は、図2に示す発光素子サブマウント構造体3を1個または複数個、第1の放熱用基板1と第2の放熱用基板2の間に挟み込んだものである。   The light-emitting device of FIG. 1 is obtained by sandwiching one or a plurality of light-emitting element submount structures 3 shown in FIG. 2 between a first heat dissipation substrate 1 and a second heat dissipation substrate 2.

第1の放熱用基板1には、金属配線基板を使用している。つまり、金属板11と、前記金属板11上に形成された絶縁層12と、さらに前記絶縁層12上に形成された配線パターン13とからなる金属配線基板を使用している。実装基板30の配線部31の正負各々の端部は実装基板30の上面に形成した配線用ランド部32であり、この配線用ランド部32と第1の放熱用基板1上の配線パターン13とが半田15で接合される。第1の放熱用基板1のLEDチップ33に対向する部分は開口部10となっている。前記開口部10内には、LEDチップ33が放射する光の少なくとも山部の波長を吸収して、異なる波長の光に変換する蛍光体などを含む波長変換部材を設置しても良い。   A metal wiring board is used for the first heat dissipation board 1. That is, the metal wiring board which consists of the metal plate 11, the insulating layer 12 formed on the said metal plate 11, and the wiring pattern 13 further formed on the said insulating layer 12 is used. The positive and negative ends of the wiring portion 31 of the mounting substrate 30 are wiring land portions 32 formed on the upper surface of the mounting substrate 30. The wiring land portion 32 and the wiring pattern 13 on the first heat dissipation substrate 1 Are joined by solder 15. A portion of the first heat dissipation substrate 1 facing the LED chip 33 is an opening 10. In the opening 10, a wavelength conversion member including a phosphor that absorbs at least the wavelength of the peak of the light emitted from the LED chip 33 and converts it into light having a different wavelength may be installed.

第2の放熱用基板2には、金属板を使用している。実装基板30の下面(裏面)には、半田接合用の(電気的には孤立した)ランド部36を形成している。第2の放熱用基板2と実装基板30下面のランド部36とを半田25にて接合している。第2の放熱用基板2における第1の放熱用基板1に対向する面側に、第2の放熱用基板2と連結する熱伝達部24を形成した。また、熱伝達部24は、第2の放熱用基板2に接触しているか、より好ましくは半田を用いて接合されている。熱伝達部24は独立した部材として、第1の放熱用基板1、第2の放熱用基板2の各々と半田等で接合させてもよいし、第1の放熱用基板1、第2の放熱用基板2のいずれかの一部であっても良い。さらに、熱伝達部24を発光素子サブマウント構造体3の側面に接触または半田などを用いて接合しても良い。   A metal plate is used for the second heat dissipation substrate 2. On the lower surface (back surface) of the mounting substrate 30, a land portion 36 for solder bonding (electrically isolated) is formed. The second heat dissipation substrate 2 and the land portion 36 on the lower surface of the mounting substrate 30 are joined by solder 25. A heat transfer portion 24 connected to the second heat dissipation substrate 2 was formed on the surface side of the second heat dissipation substrate 2 facing the first heat dissipation substrate 1. Further, the heat transfer section 24 is in contact with the second heat dissipation substrate 2 or more preferably joined using solder. The heat transfer section 24 may be joined as an independent member to each of the first heat dissipation substrate 1 and the second heat dissipation substrate 2 with solder or the like, or the first heat dissipation substrate 1 and the second heat dissipation substrate 2. Any one of the substrates 2 may be used. Further, the heat transfer section 24 may be bonded to the side surface of the light emitting element submount structure 3 by using contact or solder.

図1の構造によれば、実装基板30内を拡散した熱が、第1の放熱用基板1に加え、第2の放熱用基板2を通じても散逸できるので、LEDチップ33の温度を従来例に比べてさらに低下できる。また、実装基板30自身に熱伝導率に優れる窒化アルミのようなセラミック材料を用いることで、さらに放熱性が向上し、チップ温度が低下する効果がある。   According to the structure of FIG. 1, the heat diffused in the mounting substrate 30 can be dissipated through the second heat dissipation substrate 2 in addition to the first heat dissipation substrate 1, so that the temperature of the LED chip 33 is set to the conventional example. It can be further reduced as compared. Further, by using a ceramic material such as aluminum nitride having excellent thermal conductivity for the mounting substrate 30 itself, there is an effect that heat dissipation is further improved and chip temperature is lowered.

なお、放熱用基板1,2の発光素子サブマウント構造体3への設置の仕方は限定されない。図1の構造では、発光素子サブマウント構造体3の上下に、2枚の放熱性基板1,2を設置したが、これに限定されるものではない。   The method of installing the heat dissipation substrates 1 and 2 on the light emitting element submount structure 3 is not limited. In the structure of FIG. 1, the two heat dissipating substrates 1 and 2 are disposed above and below the light emitting element submount structure 3, but the present invention is not limited to this.

実装基板として、例えばMID基板を用いれば、配線部の引き回しに対する制限は殆ど無いので、本発光装置が設置される器具内空間の条件に応じて放熱用基板の設置の仕方も、例えば発光素子サブマウント構造体の2側面、あるいは裏面と側面というように、適宜選択可能である。このことは、以下に述べる各実施例においても同様である。   If, for example, an MID substrate is used as the mounting substrate, there is almost no restriction on the routing of the wiring portion. Therefore, the method of installing the heat dissipation substrate can be set according to the conditions of the space in the appliance in which the light emitting device is installed, for example, The two side surfaces of the mounting structure or the back surface and the side surface can be selected as appropriate. The same applies to each embodiment described below.

また、放熱用基板の枚数も特に2枚に限定するものでなく、図1の構造例では、さらに発光素子サブマウント構造体の2側面に、第3、第4の放熱用基板を設置することが可能であり、このことによりさらに放熱性が向上し、チップ温度を低下できる効果がある。   Further, the number of heat dissipation substrates is not particularly limited to two, and in the structure example of FIG. 1, third and fourth heat dissipation substrates are further installed on two side surfaces of the light emitting element submount structure. This can further improve the heat dissipation and reduce the chip temperature.

なお、以下の各実施例において、図1及び図2に示した基本構造例と同様の機能を有する部位には同一の符号を付して重複する説明を省略する。   In the following embodiments, portions having the same functions as those of the basic structure example shown in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description is omitted.

図3に実施例1の概略構造を示す。図3は断面図であり、紙面の上方が光放射方向となっている。図3の発光装置を図3の紙面の右側から見た断面図を図4に示す。また、図3の発光装置に用いる発光素子サブマウント構造体3と、第1の放熱用基板1の構造をそれぞれ図4と図5に示す。   FIG. 3 shows a schematic structure of the first embodiment. FIG. 3 is a cross-sectional view, and the upper side of the drawing is the light emission direction. FIG. 4 shows a cross-sectional view of the light emitting device of FIG. 3 as viewed from the right side of the sheet of FIG. 4 and 5 respectively show the structures of the light-emitting element submount structure 3 and the first heat dissipation substrate 1 used in the light-emitting device of FIG.

本実施例の発光装置は、図1及び図2に示した基本構造例と略同様であるので、異なる点を説明する。本実施例では、図6に示すように、第1の放熱用基板1として用いる金属配線基板における実装基板30の上面に接する面で、配線パターン13が形成されていない一部の絶縁層12を除去して金属板11を露出させ、実装基板30の上面に金属板11が接触するようにした。実装基板30の上面には、図5に示すように、溝部37が形成されており、この溝部37内に配線部31につながる配線用ランド部32が形成されている。第1の放熱用基板1における配線パターン13が形成された部位は、実装基板30の上面の溝部37に嵌合する。実装基板30の配線部31につながる配線用ランド部32は、第1の放熱用基板1上の配線パターン13と半田15で接合される。   Since the light emitting device of this embodiment is substantially the same as the basic structure example shown in FIGS. 1 and 2, different points will be described. In this embodiment, as shown in FIG. 6, a part of the insulating layer 12 on which the wiring pattern 13 is not formed is formed on the surface in contact with the upper surface of the mounting substrate 30 in the metal wiring substrate used as the first heat dissipation substrate 1. The metal plate 11 was exposed to be removed, and the metal plate 11 was in contact with the upper surface of the mounting substrate 30. As shown in FIG. 5, a groove portion 37 is formed on the upper surface of the mounting substrate 30, and a wiring land portion 32 connected to the wiring portion 31 is formed in the groove portion 37. The portion of the first heat dissipation substrate 1 where the wiring pattern 13 is formed fits into the groove portion 37 on the upper surface of the mounting substrate 30. The wiring land portion 32 connected to the wiring portion 31 of the mounting substrate 30 is joined to the wiring pattern 13 on the first heat dissipation substrate 1 by the solder 15.

本実施例においても、第1の放熱用基板1のLEDチップ33に対向する部分は開口部10となっている。また、第2の放熱用基板2に、金属配線基板よりも熱伝導率に優れる金属板を用いることで、熱伝導率の高いセラミック材料で形成された実装基板30内を拡散した熱がさらに散逸できるので、LEDチップ33の温度をさらに低下できる。   Also in the present embodiment, the portion facing the LED chip 33 of the first heat dissipation substrate 1 is the opening 10. Further, by using a metal plate having a higher thermal conductivity than the metal wiring substrate for the second heat dissipation substrate 2, the heat diffused in the mounting substrate 30 formed of a ceramic material having a high thermal conductivity is further dissipated. Therefore, the temperature of the LED chip 33 can be further reduced.

また、本実施例のように、放熱用基板の金属板部を発光素子サブマウント構造体に接触または接合する構造とすれば、放熱性が向上し、LEDチップの温度が低下する効果がある上、金属配線基板を放熱用基板に使うことにより、発光素子サブマウント構造体への配線の自由度が増加する効果がある。   In addition, if the metal plate portion of the heat dissipation substrate is in contact with or joined to the light emitting element submount structure as in this embodiment, the heat dissipation is improved and the temperature of the LED chip is reduced. By using the metal wiring board as the heat dissipation board, there is an effect of increasing the degree of freedom of wiring to the light emitting element submount structure.

図7に実施例2の概略構造を示す。図7は断面図であり、紙面の上方が光放射方向となっている。図7の発光装置に用いる発光素子サブマウント構造体3の構造を図8に示す。実装基板30は配線部31が形成されている平板形状の多層基板である。ただし、実装基板30の形状は平板形状に限定されず、凹部を備えた形状などであっても良い。配線部31は、実装基板30の上面からスルーホール31aにより内側の層を経由して、実装基板30の下面の端部へ通じており、実装基板30の下面の端部に、第1の放熱用基板1上の配線パターン13と接合させる配線用ランド部32が形成されている。実装基板30の下面には、第1の放熱用基板1と半田接合させるための(電気的には孤立した)放熱用ランド部36も形成されている。実装基板30の材料としては窒化アルミを用いるが、特にこれに限定されない。実装基板30の上面の配線部31に接合部材34を介してLEDチップ33を実装して発光素子サブマウント構造体3と成す。   FIG. 7 shows a schematic structure of the second embodiment. FIG. 7 is a cross-sectional view, and the upper part of the drawing is the light emission direction. The structure of the light emitting element submount structure 3 used in the light emitting device of FIG. 7 is shown in FIG. The mounting substrate 30 is a flat plate-like multilayer substrate on which wiring portions 31 are formed. However, the shape of the mounting substrate 30 is not limited to a flat plate shape, and may be a shape having a recess. The wiring portion 31 communicates from the upper surface of the mounting substrate 30 to the end portion of the lower surface of the mounting substrate 30 via the inner layer through the through hole 31a. A wiring land portion 32 to be bonded to the wiring pattern 13 on the circuit board 1 is formed. On the lower surface of the mounting substrate 30, a heat dissipation land portion 36 (electrically isolated) for soldering to the first heat dissipation substrate 1 is also formed. Aluminum nitride is used as the material of the mounting substrate 30, but is not particularly limited thereto. The LED chip 33 is mounted on the wiring portion 31 on the upper surface of the mounting substrate 30 via the bonding member 34 to form the light emitting element submount structure 3.

第1の放熱用基板1は、金属板11と、前記金属板11上に形成された絶縁層12と、さらに前記絶縁層12上に形成された配線パターン13とからなる金属配線基板であって、かつ、実装基板30の下面(裏面)に接する面の一部の絶縁層12を除去して金属板11を露出させたものである。第1の放熱用基板1は、露出した金属板11が実装基板30の下面の放熱用ランド部36に半田16で接合される。また、第1の放熱用基板1の配線パターン13の端部のランド部が、実装基板30の端部の配線用ランド部32に半田15で接合される。   The first heat dissipation substrate 1 is a metal wiring board including a metal plate 11, an insulating layer 12 formed on the metal plate 11, and a wiring pattern 13 formed on the insulating layer 12. In addition, the metal plate 11 is exposed by removing a part of the insulating layer 12 on the surface in contact with the lower surface (back surface) of the mounting substrate 30. In the first heat dissipation substrate 1, the exposed metal plate 11 is bonded to the heat dissipation land portion 36 on the lower surface of the mounting substrate 30 with the solder 16. Further, the land portion at the end of the wiring pattern 13 of the first heat dissipation substrate 1 is joined to the wiring land portion 32 at the end of the mounting substrate 30 by the solder 15.

第2の放熱用基板2は金属板であり、本実施例では、実装基板30の上面に接合される。第2の放熱用基板2の金属板の材料としては、銅、アルミなどが良いが、特にこれらの材料に限定されるものではない。本実施例では銅板を用いた。第2の放熱用基板2のLEDチップ33に対向する部分は開口部20となっている。開口部20の側面形状は特にテーパー形状が良いが、テーパー形状に限定するものではない。本実施例では開口部20の形状をテーパー形状とし、その表面にAgを蒸着させ、さらに研磨を施した。実装基板30がセラミック基板の場合、第2の放熱用基板2に接する面をメタライズ(例えばタングステン化)しておき、この放熱用メタライズ部38を半田を用いずに第2の放熱用基板2と直接接合しても良い。   The second heat dissipation substrate 2 is a metal plate, and is bonded to the upper surface of the mounting substrate 30 in this embodiment. The material of the metal plate of the second heat dissipation substrate 2 is preferably copper, aluminum or the like, but is not particularly limited to these materials. In this example, a copper plate was used. A portion of the second heat dissipation substrate 2 facing the LED chip 33 is an opening 20. The side surface shape of the opening 20 is particularly preferably a tapered shape, but is not limited to the tapered shape. In this example, the shape of the opening 20 was tapered, and Ag was vapor-deposited on the surface, followed by polishing. When the mounting substrate 30 is a ceramic substrate, the surface in contact with the second heat dissipation substrate 2 is metallized (for example, tungstenized), and the heat dissipation metallized portion 38 is connected to the second heat dissipation substrate 2 without using solder. You may join directly.

本実施例においても、熱伝導率の高いセラミック材料で形成された実装基板30内を拡散した熱が、熱伝導率に優れる金属板を介して散逸できるので、LEDチップ33の温度をさらに低下できる。また、第1の放熱用基板1の発光素子サブマウント構造体3に対向する両側に配線部13を形成でき、通常、器具への固定が必要な第2の放熱用基板に配線部を持たない構造とできるので、電気絶縁に対する設計の自由度が大きくできる効果がある。   Also in the present embodiment, the heat diffused in the mounting substrate 30 formed of the ceramic material having high thermal conductivity can be dissipated through the metal plate having excellent thermal conductivity, so that the temperature of the LED chip 33 can be further reduced. . Moreover, the wiring part 13 can be formed in the both sides which oppose the light emitting element submount structure 3 of the 1st thermal radiation board | substrate 1, and normally there is no wiring part in the 2nd thermal radiation board | substrate which needs fixing to an instrument. Since it can be structured, there is an effect that the degree of freedom of design for electrical insulation can be increased.

図9及び図10に実施例3の概略構造を示す。図9は発光装置本体、図10は発光素子サブマウント構造体の構造を示している。発光素子サブマウント構造体3の下面側に第1の放熱用基板1である金属配線基板(金属板11、絶縁層12、配線パターン13)が設置される。発光素子サブマウント構造体3の上面には凹部35及び溝部37が形成されており、その底部に配線部31が形成されている。発光素子サブマウント構造体3の第1の放熱用基板1と対向する面(上面)側に、第2の放熱用基板2である金属板が設置されている。第2の放熱用基板2には、発光素子サブマウント構造体3のLEDチップ33が実装されている凹部35の開口と略同サイズの開口部20が設けられている。第2の放熱用基板2は、その開口部20に透明或いはLEDチップ33から出射した光の波長を変換する部材(蛍光体など)を含有させたカバー26が設置できるようになっており、その取り付け治具を兼ねる。発光素子サブマウント構造体3に形成された配線部31は溝部37内にあるため、第2の放熱用基板2とは接触しない。   9 and 10 show a schematic structure of the third embodiment. 9 shows the structure of the light emitting device main body, and FIG. 10 shows the structure of the light emitting element submount structure. A metal wiring board (metal plate 11, insulating layer 12, wiring pattern 13), which is the first heat dissipation substrate 1, is installed on the lower surface side of the light emitting element submount structure 3. A concave portion 35 and a groove portion 37 are formed on the upper surface of the light emitting element submount structure 3, and a wiring portion 31 is formed on the bottom thereof. On the surface (upper surface) side of the light emitting element submount structure 3 facing the first heat dissipation substrate 1, a metal plate as the second heat dissipation substrate 2 is installed. The second heat dissipating substrate 2 is provided with an opening 20 having substantially the same size as the opening of the recess 35 in which the LED chip 33 of the light emitting element submount structure 3 is mounted. The second heat dissipating substrate 2 can be provided with a cover 26 that is transparent or contains a member (phosphor etc.) that converts the wavelength of light emitted from the LED chip 33 in the opening 20. Also serves as a mounting jig. Since the wiring portion 31 formed in the light emitting element submount structure 3 is in the groove portion 37, it does not contact the second heat dissipation substrate 2.

本実施例では、LEDチップ33で生じた熱が発光素子サブマウント構造体3の実装基板30から第2の放熱用基板2に伝熱して、その表面から放熱される。このように、第2の放熱用基板2からの放熱も促進されるため、発光素子サブマウント構造体3の放熱性が向上し、LEDチップ33の温度を低減できる。これにより、寿命が向上し、また、より大きな電流を流すことができるので、発光光束が大きくなる。さらに、第2の放熱用基板2は、蛍光体カバー26の設置治具を兼ねるため、製造コストが低減される。   In this embodiment, the heat generated in the LED chip 33 is transferred from the mounting substrate 30 of the light emitting element submount structure 3 to the second heat dissipation substrate 2 and is radiated from the surface. Thus, since heat dissipation from the second heat dissipation substrate 2 is also promoted, the heat dissipation of the light emitting element submount structure 3 is improved, and the temperature of the LED chip 33 can be reduced. As a result, the lifetime is improved and a larger current can flow, so that the luminous flux is increased. Furthermore, since the second heat dissipation substrate 2 also serves as an installation jig for the phosphor cover 26, the manufacturing cost is reduced.

図11及び図12に実施例4の概略構造を示す。図11は発光装置本体、図12は発光素子サブマウント構造体の構造を示している。発光素子サブマウント構造体3の実装基板30を形成する樹脂(或いはセラミック)ベース部に、熱伝導率の優れた金属(銅、はんだ、金)製のサーマルビア39が複数設置されている。サーマルビア39は発光素子サブマウント構造体3上に形成された配線部31と接触しておらず、電気的には絶縁されている。サーマルビア39の上面は発光素子サブマウント構造体3の上面に露出している。発光素子サブマウント構造体3の上面には凹部35と溝部37が形成されており、その底部に配線部31が形成されている。発光素子サブマウント構造体3の金属配線基板1側と対向する面(上面)側に、第2の放熱用基板2である金属板が設置されている。   11 and 12 show a schematic structure of the fourth embodiment. FIG. 11 shows the structure of the light emitting device body, and FIG. 12 shows the structure of the light emitting element submount structure. A plurality of thermal vias 39 made of a metal (copper, solder, gold) having excellent thermal conductivity are installed in a resin (or ceramic) base portion forming the mounting substrate 30 of the light emitting element submount structure 3. The thermal via 39 is not in contact with the wiring portion 31 formed on the light emitting element submount structure 3 and is electrically insulated. The upper surface of the thermal via 39 is exposed on the upper surface of the light emitting element submount structure 3. A concave portion 35 and a groove portion 37 are formed on the upper surface of the light emitting element submount structure 3, and a wiring portion 31 is formed on the bottom thereof. On the surface (upper surface) side of the light emitting element submount structure 3 facing the metal wiring substrate 1 side, a metal plate as the second heat dissipation substrate 2 is installed.

第2の放熱用基板2には、発光素子サブマウント構造体3のLEDチップ33が実装されている凹部35の開口と略同サイズの開口部20が設けられている。第2の放熱用基板2はサーマルビア39と半田を介して接合されている。第2の放熱用基板2は、その開口部20に透明或いはLEDチップから出射した光の波長を変換する部材(蛍光体など)を含有させたカバー26が設置できるようになっており、その取り付け治具を兼ねる。発光素子サブマウント構造体3に形成された配線部31は溝部37内にあるため、第2の放熱用基板2とは接触しない。サーマルビア39は発光素子サブマウント構造体3の上面から孔を空け、孔の側面に金メッキを施して、はんだを充填することで形成してもよい。   The second heat dissipating substrate 2 is provided with an opening 20 having substantially the same size as the opening of the recess 35 in which the LED chip 33 of the light emitting element submount structure 3 is mounted. The second heat dissipation substrate 2 is bonded to the thermal via 39 via solder. The second heat dissipating substrate 2 can be provided with a cover 26 containing a member (phosphor etc.) for converting the wavelength of light emitted from the LED chip in the opening 20 thereof. Also serves as a jig. Since the wiring portion 31 formed in the light emitting element submount structure 3 is in the groove portion 37, it does not contact the second heat dissipation substrate 2. The thermal via 39 may be formed by making a hole from the upper surface of the light emitting element submount structure 3, applying gold plating to the side surface of the hole, and filling with solder.

サーマルビア39は発光素子サブマウント構造体3の側面よりも、よりLEDチップ33に近い位置に配置されるため、LEDチップ33から生じた熱は発光素子サブマウント構造体3の側面に伝わるよりもサーマルビア39に伝熱し易くなっている。LEDチップ33で生じた熱が発光素子サブマウント構造体3の実装基板30からサーマルビア39に伝わり、さらに第2の放熱用基板2に伝熱してその表面から放熱される。   Since the thermal via 39 is arranged closer to the LED chip 33 than the side surface of the light emitting element submount structure 3, the heat generated from the LED chip 33 is transmitted to the side surface of the light emitting element submount structure 3. Heat is easily transferred to the thermal via 39. Heat generated in the LED chip 33 is transmitted from the mounting substrate 30 of the light emitting element submount structure 3 to the thermal via 39, and further transferred to the second heat dissipation substrate 2 to be dissipated from the surface.

このように、本実施例によれば、第2の放熱用基板からの放熱も促進されるため、発光素子サブマウント構造体の放熱性が向上し、LEDチップの温度を低減できる。これにより、寿命向上が可能となる。また、より大きな電流を流すことができるので、発光光束が大きくなる。さらに、第2の放熱用基板は、蛍光体カバー設置治具を兼ねるため、製造コストが低減される。   Thus, according to the present embodiment, heat radiation from the second heat radiation substrate is also promoted, so that the heat radiation property of the light emitting element submount structure is improved and the temperature of the LED chip can be reduced. Thereby, the lifetime can be improved. In addition, since a larger current can be passed, the luminous flux is increased. Furthermore, since the second heat dissipation substrate also serves as a phosphor cover installation jig, the manufacturing cost is reduced.

図13及び図14に実施例5の概略構造を示す。図13は発光素子サブマウント構造体、図14は発光装置本体の構造を示している。発光素子サブマウント構造体3の下面には金属パネル36aが略全面に設置されている。この金属パネル36aの上面には、実装基板30に埋め込まれたサーマルビア39a〜39fの下面が接触している。金属パネル36aの下面は、第2の放熱用基板2である金属板に略全面にわたり半田25で接合されている。したがって、各サーマルビア39a〜39fは第2の放熱用基板2に熱的に密に結合して設置されている。尚、各サーマルビア39a〜39fの下面は第2の放熱用基板2を貫通してその外面と略同一面上になっていても良い。実装基板30の四隅に埋め込まれたサーマルビア39a〜39dの上面は配線部31と接触しない部分において、発光素子サブマウント構造体3の上面から露出しており、第1の放熱用基板1の金属板11に接触している。発光素子サブマウント構造体3の凹部35に形成された配線部31は、発光素子サブマウント構造体3の実装基板30の上面まで配設されて配線用パッド部32につながっている。   13 and 14 show a schematic structure of the fifth embodiment. FIG. 13 shows the structure of the light-emitting element submount, and FIG. 14 shows the structure of the light-emitting device body. On the lower surface of the light emitting element submount structure 3, a metal panel 36 a is installed on the substantially entire surface. The lower surfaces of the thermal vias 39a to 39f embedded in the mounting substrate 30 are in contact with the upper surface of the metal panel 36a. The lower surface of the metal panel 36a is joined to the metal plate which is the second heat dissipation substrate 2 by the solder 25 over almost the entire surface. Accordingly, the thermal vias 39a to 39f are installed in thermal and tight coupling with the second heat dissipation substrate 2. In addition, the lower surface of each thermal via 39a-39f may penetrate the 2nd thermal radiation board | substrate 2, and may be on the substantially the same surface as the outer surface. The upper surfaces of the thermal vias 39a to 39d embedded in the four corners of the mounting substrate 30 are exposed from the upper surface of the light emitting element submount structure 3 in a portion not in contact with the wiring portion 31, and the metal of the first heat dissipation substrate 1 is exposed. It is in contact with the plate 11. The wiring part 31 formed in the recess 35 of the light emitting element submount structure 3 is arranged up to the upper surface of the mounting substrate 30 of the light emitting element submount structure 3 and is connected to the wiring pad part 32.

第1の放熱用基板1である金属配線基板は、金属板11と絶縁層12と配線パターン13を備え、配線パターン13を有する面が発光素子サブマウント構造体3の上面に対向するように設置されている。配線パターン13は、発光素子サブマウント構造体3の配線部31につながる配線用パッド部32と半田15を介して接合されている。発光素子サブマウント構造体3の上面から露出したサーマルビア39a〜39dの上面は金属配線基板の金属面11に半田16を介して接合されている。金属配線基板の金属板11は、(蛍光体)カバー26の取り付け治具を兼ねる。   The metal wiring board that is the first heat dissipation substrate 1 includes a metal plate 11, an insulating layer 12, and a wiring pattern 13, and is installed so that the surface having the wiring pattern 13 faces the upper surface of the light emitting element submount structure 3. Has been. The wiring pattern 13 is bonded to the wiring pad portion 32 connected to the wiring portion 31 of the light emitting element submount structure 3 via the solder 15. The upper surfaces of the thermal vias 39a to 39d exposed from the upper surface of the light emitting element submount structure 3 are joined to the metal surface 11 of the metal wiring board via the solder 16. The metal plate 11 of the metal wiring board also serves as an attachment jig for the (phosphor) cover 26.

本実施例では、第2の放熱用基板2と発光素子サブマウント構造体3とは、より大きな面積で接合されており、主要な放熱経路での伝熱がより促進される。また、一般にLEDを照明装置或いは表示装置として使用する場合、発光素子サブマウント構造体の下面側に位置する基板は、絶縁処理を施した上で装置本体に固定される。本実施例の構造では、第2の放熱用基板2がこれに相当し、これはLEDチップとは電気的に絶縁されているため、装置本体への固定に絶縁処理を施す必要がない。このため、照明(表示)装置本体への設置で絶縁処理を施す必要がないので、製造コストを低減できる。また、第2の放熱用基板と装置本体との熱抵抗も小さくすることができ、より放熱性を高めることができる。   In the present embodiment, the second heat dissipation substrate 2 and the light emitting element submount structure 3 are joined in a larger area, and heat transfer in the main heat dissipation path is further promoted. In general, when an LED is used as a lighting device or a display device, the substrate positioned on the lower surface side of the light emitting element submount structure is fixed to the device main body after being subjected to insulation treatment. In the structure of the present embodiment, the second heat dissipation substrate 2 corresponds to this, which is electrically insulated from the LED chip, so that it is not necessary to perform insulation treatment for fixing to the apparatus main body. For this reason, since it is not necessary to insulate by installation in a lighting (display) apparatus main body, manufacturing cost can be reduced. In addition, the thermal resistance between the second heat dissipation substrate and the apparatus main body can be reduced, and the heat dissipation can be further improved.

図15に実施例6の概略構造を示す。発光素子サブマウント構造体3の実装基板30a内に熱伝導率の高い金属箔(放熱用配線)31aが複数層状に設置されている。設置方向は図に示したように水平である必要はないが、実装基板30内にバランスよく配置されるのが良い。金属箔は発光素子サブマウント構造体3の外部に露出しない。発光素子サブマウント構造体3の下面は金属板36bとなっており、絶縁層30bを介して配線部31が設けられている。発光素子サブマウント構造体3の下面付近は側面方向に突出しており、突出部の上面に配線用パッド部32が配設されている。発光素子サブマウント構造体3の中央の凹部35の側面にメッキ等による金属層31bが設けられており、これが、金属箔(放熱用配線)31a及び配線部31を接合させている。   FIG. 15 shows a schematic structure of the sixth embodiment. In the mounting substrate 30a of the light emitting element submount structure 3, a metal foil (heat radiation wiring) 31a having a high thermal conductivity is disposed in a plurality of layers. The installation direction does not have to be horizontal as shown in the figure, but it is preferable that the installation direction is arranged in a balanced manner in the mounting substrate 30. The metal foil is not exposed to the outside of the light emitting element submount structure 3. The lower surface of the light emitting element submount structure 3 is a metal plate 36b, and a wiring portion 31 is provided via an insulating layer 30b. The vicinity of the lower surface of the light emitting element submount structure 3 protrudes in the side surface direction, and a wiring pad portion 32 is disposed on the upper surface of the protruding portion. A metal layer 31b made of plating or the like is provided on the side surface of the concave portion 35 at the center of the light emitting element submount structure 3, and the metal foil (heat radiation wiring) 31a and the wiring portion 31 are joined to each other.

第1の放熱用基板1である金属配線基板の一部は金属板11が露出しており、その部分に発光素子サブマウント構造体3の金属板36bが半田16を介して接合される。発光素子サブマウント構造体3の下方の突出部の配線用パッド部32はワイヤボンディングによって、第1の放熱用基板2の配線パターン13に接続される。尚、配線方法は限定されない。図示された例では、配線用パッド部32にワイヤ32aの一端をボンディングし、ワイヤ32aの他端を半田15により配線パターン13に接続している。   The metal plate 11 is exposed at a part of the metal wiring board that is the first heat dissipation substrate 1, and the metal plate 36 b of the light emitting element submount structure 3 is joined to the part through the solder 16. The wiring pad portion 32 of the protruding portion below the light emitting element submount structure 3 is connected to the wiring pattern 13 of the first heat dissipation substrate 2 by wire bonding. The wiring method is not limited. In the illustrated example, one end of a wire 32 a is bonded to the wiring pad portion 32, and the other end of the wire 32 a is connected to the wiring pattern 13 by solder 15.

LEDチップ33のp側電極とn側電極に連なる金属箔31a及び発光素子サブマウント構造体3の凹部35の側面のメッキによる金属層31bは各々独立しており、p側とn側で接触しない。発光素子サブマウント構造体3における、配線部31及び放熱用配線(金属箔)31aの形成方法としては、図15(c)に示すように、あらかじめ形状を制御して形成したセラミック箔上に金属箔31aのパターンを形成し、それを金属板36b上に多層に積層して焼成してもよい。   The metal foil 31a connected to the p-side electrode and the n-side electrode of the LED chip 33 and the metal layer 31b formed by plating on the side surface of the recess 35 of the light-emitting element submount structure 3 are independent from each other and do not contact on the p-side and the n-side. . As a method for forming the wiring portion 31 and the heat radiation wiring (metal foil) 31a in the light-emitting element submount structure 3, as shown in FIG. 15C, the metal is formed on the ceramic foil formed by controlling the shape in advance. A pattern of the foil 31a may be formed, stacked on the metal plate 36b in multiple layers, and fired.

本実施例においても、LEDチップから生じた熱は放熱用配線を通して、発光素子サブマウント構造体の全体に伝熱するため、発光素子サブマウント構造体の外郭表面からの放熱が促進される。発光素子サブマウント構造体の下面に対向する位置の第1の放熱用基板上に配線パターンが無いので、発光素子サブマウント構造体と金属配線基板との接合面積が大きく取れ、金属配線基板への伝熱が促進されて、この経路における放熱性が増す。   Also in the present embodiment, the heat generated from the LED chip is transferred to the entire light emitting element submount structure through the heat dissipation wiring, so that heat dissipation from the outer surface of the light emitting element submount structure is promoted. Since there is no wiring pattern on the first heat dissipation substrate at a position facing the lower surface of the light emitting element submount structure, a large bonding area between the light emitting element submount structure and the metal wiring board can be obtained. Heat transfer is promoted and heat dissipation in this path is increased.

本実施例によれば、第1の放熱用基板への放熱が促進され、かつ発光素子サブマウント構造体表面からの放熱性も向上するため、LEDチップの温度を低減できる。これにより、寿命向上が可能となる。また、より大きな電流を流すことができるので、発光光束が大きくなる。   According to the present embodiment, heat dissipation to the first heat dissipation substrate is promoted and heat dissipation from the surface of the light emitting element submount structure is improved, so that the temperature of the LED chip can be reduced. Thereby, the lifetime can be improved. In addition, since a larger current can be passed, the luminous flux is increased.

図16に実施例7の概略構造を示す。本実施例では、発光素子サブマウント構造体3として、実施例6の構造を用いており、発光素子サブマウント構造体3の上面に設置した放熱用基板2が蛍光体26及び光制御用レンズ27の固定用フレームを兼ねる。サーマルビア39が放熱用配線(金属箔)31aを貫通して設置されている。サーマルビア39の上面は発光素子サブマウント構造体3の上面に露出していない。発光素子サブマウント構造体3の上面には金メッキが施されており、レンズ固定用フレーム2が半田を介して接合されている。なお、図16(b)に示すように、上部の放熱用基板2は蛍光体カバー26の取り付け治具を兼ねるだけで、光制御用レンズ27は別部材としても良い。40は電子部品である。   FIG. 16 shows a schematic structure of the seventh embodiment. In the present example, the structure of Example 6 is used as the light emitting element submount structure 3, and the heat dissipation substrate 2 installed on the upper surface of the light emitting element submount structure 3 includes the phosphor 26 and the light control lens 27. Also serves as a fixed frame. A thermal via 39 is provided through the heat radiation wiring (metal foil) 31a. The upper surface of the thermal via 39 is not exposed on the upper surface of the light emitting element submount structure 3. The upper surface of the light emitting element submount structure 3 is gold-plated, and the lens fixing frame 2 is joined via solder. As shown in FIG. 16B, the upper heat-dissipating substrate 2 may also serve as an attachment jig for the phosphor cover 26, and the light control lens 27 may be a separate member. Reference numeral 40 denotes an electronic component.

なお、サーマルビアは発光素子サブマウント構造体の上面に露出させても良い。この場合、金属配線基板が発光素子サブマウント構造体の上面に配設され、サーマルビアが各電極となって、第1の放熱用基板である金属配線基板に接合される。   The thermal via may be exposed on the upper surface of the light emitting element submount structure. In this case, the metal wiring board is disposed on the upper surface of the light emitting element submount structure, and the thermal vias serve as the respective electrodes and are bonded to the metal wiring board as the first heat dissipation board.

いずれの構造においても、サーマルビアを介して発光素子サブマウント構造体への伝熱がより均一化するとともに、サブマウント構造体の上方に設けた放熱用基板へも伝熱が促進される。尚、発光素子サブマウント構造体の上面に放熱用の金属板を設けても同様の効果を示すが、サーマルビアを設置する方がより放熱効果を促進できる。本実施例によれば、放熱用配線パターンとサーマルビアにより、さらに放熱が促進される効果がある。   In any structure, heat transfer to the light emitting element submount structure is made more uniform through the thermal vias, and heat transfer is also promoted to the heat dissipation substrate provided above the submount structure. In addition, although the same effect is shown even if it provides the metal plate for thermal radiation on the upper surface of a light emitting element submount structure, the direction of installing a thermal via can promote the thermal radiation effect more. According to the present embodiment, there is an effect that heat radiation is further promoted by the heat radiation wiring pattern and the thermal via.

図17及び図18に実施例8の概略構造を示す。発光素子サブマウント構造体3として、図17に示すように、実装基板30が絶縁部材300を間に挟む2つの導電体ブロック301,302から成り、LEDチップ33のp側電極、n側電極が、前記2つの導電体ブロック301,302の各々に接続されたものを用いる。   17 and 18 show a schematic structure of the eighth embodiment. As the light-emitting element submount structure 3, as shown in FIG. 17, the mounting substrate 30 is composed of two conductor blocks 301 and 302 that sandwich the insulating member 300, and the p-side electrode and the n-side electrode of the LED chip 33 are The one connected to each of the two conductor blocks 301 and 302 is used.

図18に示すように、第1、第2の放熱用基板1,2を平行に配置し、発光素子サブマウント構造体3を2枚の放熱用基板1,2の間に配置する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合させる。また、第2、第3の放熱用基板2,4を平行に配置し、発光素子サブマウント構造体3を2枚の放熱用基板2,4の間に配置する。発光素子サブマウント構造体3と放熱用基板2,4は接触または接合させる。   As shown in FIG. 18, the first and second heat dissipating substrates 1 and 2 are arranged in parallel, and the light emitting element submount structure 3 is arranged between the two heat dissipating substrates 1 and 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are contacted or joined. Further, the second and third heat radiation substrates 2 and 4 are arranged in parallel, and the light emitting element submount structure 3 is arranged between the two heat radiation substrates 2 and 4. The light-emitting element submount structure 3 and the heat dissipation substrates 2 and 4 are contacted or joined.

発光素子サブマウント構造体3は、図18に示すように、千鳥格子状に配置する。つまり、両面に発光素子サブマウント構造体3を接続する放熱用基板2において、片面の発光素子サブマウント構造体3との接触面の直背面には、他面の発光素子サブマウント構造体3を配置しない。放熱用基板の枚数、素材、発光素子サブマウントの配置間隔は図示されたものに限定されない。   The light emitting element submount structures 3 are arranged in a staggered pattern as shown in FIG. That is, in the heat dissipation substrate 2 that connects the light emitting element submount structure 3 on both sides, the light emitting element submount structure 3 on the other surface is disposed on the back side of the contact surface with the light emitting element submount structure 3 on one side. Do not place. The number of the heat dissipating substrates, the material, and the arrangement interval of the light emitting element submounts are not limited to those illustrated.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、発光素子サブマウント構造体を千鳥格子状に配置することによって、放熱性が向上する。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. In addition, heat dissipation is improved by arranging the light emitting element submount structures in a staggered pattern.

図19に実施例9の概略構造を示す。発光素子サブマウント構造体3と放熱用基板1,2を交互に配置する。放熱用基板1,2の一端に発光素子サブマウント構造体3のp極側、他の一端にn極側を接続する。電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔は限定されない。   FIG. 19 shows a schematic structure of the ninth embodiment. The light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 are alternately arranged. The p-pole side of the light-emitting element submount structure 3 is connected to one end of the heat dissipation substrates 1 and 2 and the n-pole side is connected to the other end. An assembly including the light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 that are electrically connected in series is formed. The number of the heat dissipation substrates, the material, and the arrangement interval of the light emitting element submount structures are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、集合体を構成するLEDに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. In addition, since a uniform current flows through the LEDs constituting the assembly, there is little variation in light output between individual LED chips.

図20に実施例10の概略構造を示す。一定間隔で配置したリードフレーム5を樹脂材料6で固定することにより、放熱用基板1,2を構成する。当該放熱用基板1,2のリードフレーム面を対向させ、発光素子サブマウント構造体3をリードフレーム5に接合し、電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔、リードフレームの材質、厚さ、樹脂材料の材質は限定されない。   FIG. 20 shows a schematic structure of Example 10. The heat dissipating substrates 1 and 2 are configured by fixing the lead frames 5 arranged at regular intervals with the resin material 6. The light-emitting element submount structure 3 and the heat-dissipating substrate 1 are electrically connected in series by connecting the light-emitting element submount structure 3 to the lead frame 5 with the lead frame surfaces of the heat-dissipating substrates 1 and 2 facing each other. 2 constitutes an aggregate. The number of heat dissipation substrates, the material, the arrangement interval of the light emitting element submount structures, the material and thickness of the lead frame, and the material of the resin material are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。集合体を構成するLEDに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Since a uniform current flows through the LEDs constituting the assembly, there is little variation in light output between individual LED chips.

図21に実施例11の概略構造を示す。一定間隔で配置したリードフレーム5を樹脂材料6で固定することにより、放熱用基板1,2を構成する。当該放熱用基板1,2のリードフレーム面を対向させ、発光素子サブマウント構造体3をリードフレーム5に接合する。電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。さらに放熱用基板1,2のリードフレーム5の反対面に金属板11,21を接合する。このように、第1、第2の放熱用基板の少なくとも1つは、サブマウント構造体に面する側に金属製のリードフレームを用いた基板とすることで、リードフレームを介して発光素子サブマウント構造体からの放熱性が向上する。また、リードフレームは加工性が良いので、個々の発光素子サブマウント構造体への配線の自由度が増加する。放熱用基板の枚数、素材、発光素子サブマウントの配置間隔、リードフレームの材質、厚さ、樹脂材料の材質、金属板の材質、形状は限定されない。   FIG. 21 shows a schematic structure of Example 11. The heat dissipating substrates 1 and 2 are configured by fixing the lead frames 5 arranged at regular intervals with the resin material 6. The light emitting element submount structure 3 is joined to the lead frame 5 with the lead frame surfaces of the heat dissipation substrates 1 and 2 facing each other. An assembly including the light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 that are electrically connected in series is formed. Further, metal plates 11 and 21 are joined to the opposite surfaces of the heat dissipation substrates 1 and 2 to the lead frame 5. In this way, at least one of the first and second heat dissipation substrates is a substrate using a metal lead frame on the side facing the submount structure, so that the light emitting element sub-layer is interposed via the lead frame. Heat dissipation from the mount structure is improved. In addition, since the lead frame has good workability, the degree of freedom of wiring to each light emitting element submount structure increases. The number of heat-dissipating substrates, the material, the arrangement interval of the light emitting element submounts, the material and thickness of the lead frame, the material of the resin material, the material and the shape of the metal plate are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。集合体を構成するLEDに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。外郭面に金属板を接合することにより、放熱性の更なる向上が可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Since a uniform current flows through the LEDs constituting the assembly, there is little variation in light output between individual LED chips. By joining the metal plate to the outer surface, the heat dissipation can be further improved.

図22に実施例12の概略構造を示す。金属板11上に絶縁層12を介して配線パターン13を形成してなる放熱用基板1を設ける。また、金属板21上に絶縁層22を介して配線パターン23を形成してなる放熱用基板2を設ける。配線パターン13,23を対向させ、平行に配置し、当該基板1,2間に発光素子サブマウント構造体3を配置する。配線パターン13,23と発光素子サブマウント構造体3は、接触または接合している。電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。放熱用基板1,2の枚数、素材、発光素子サブマウント構造体の配置間隔は限定されない。   FIG. 22 shows a schematic structure of Example 12. A heat radiating substrate 1 formed by forming a wiring pattern 13 on an insulating layer 12 on a metal plate 11 is provided. Further, a heat dissipation substrate 2 formed by forming a wiring pattern 23 on an insulating layer 22 on a metal plate 21 is provided. The wiring patterns 13 and 23 are opposed to each other and arranged in parallel, and the light emitting element submount structure 3 is arranged between the substrates 1 and 2. The wiring patterns 13 and 23 and the light emitting element submount structure 3 are in contact with or bonded to each other. An assembly including the light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 that are electrically connected in series is formed. The number of the heat dissipating substrates 1 and 2, the material, and the arrangement interval of the light emitting element submount structures are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、集合体を構成するLEDチップに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。さらに、放熱用基板の絶縁部材を薄膜化できるため、金属板への放熱効果が向上する。また、任意のパターン構成により、発光素子以外の電子部品の配置も可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. In addition, since a uniform current flows through the LED chips constituting the assembly, there is little variation in light output between the individual LED chips. Furthermore, since the insulating member of the heat dissipation substrate can be made thin, the heat dissipation effect to the metal plate is improved. In addition, it is possible to arrange electronic components other than the light emitting elements by using an arbitrary pattern configuration.

図23に実施例13の概略構造を示す。樹脂材料6を中心に構成される放熱用基板1,2を平行に配置する。対向する放熱用基板1,2間を接続するリードフレーム5を構成する。電気的に直列接続となる発光素子サブマウント構造体3と放熱用基板1,2からなる集合体を構成する。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔、リードフレームの材質、厚さ、樹脂材料の材質は限定されない。   FIG. 23 shows a schematic structure of Example 13. The heat dissipating substrates 1 and 2 configured around the resin material 6 are arranged in parallel. A lead frame 5 for connecting the opposing heat dissipating substrates 1 and 2 is configured. An assembly including the light emitting element submount structure 3 and the heat dissipation substrates 1 and 2 that are electrically connected in series is formed. The number of heat dissipation substrates, the material, the arrangement interval of the light emitting element submount structures, the material and thickness of the lead frame, and the material of the resin material are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、集合体を構成するLEDに均一の電流が流れるため、個々のLEDチップ間の光出力のばらつきが少ない。さらに、放熱用基板に接続される発光素子サブマウント構造体の極性がp極もしくはn極に統一されるため、実装性が向上する。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. In addition, since a uniform current flows through the LEDs constituting the assembly, there is little variation in light output between individual LED chips. Furthermore, since the polarity of the light emitting element submount structure connected to the heat dissipation substrate is unified to the p-pole or the n-pole, the mountability is improved.

図24に実施例14の概略構造を示す。同心円状に配置された金属製の放熱用基板1,2を設ける。発光素子サブマウント構造体3を2枚の放熱用基板1,2の間に配置する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合する。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔は限定されない。   FIG. 24 shows a schematic structure of Example 14. Metal heat dissipating substrates 1 and 2 are provided concentrically. The light emitting element submount structure 3 is disposed between the two heat dissipating substrates 1 and 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are in contact with or bonded to each other. The number of the heat dissipation substrates, the material, and the arrangement interval of the light emitting element submount structures are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、円形状の器具装置に好適な光出力が可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Moreover, the light output suitable for a circular instrument apparatus is attained.

図25に実施例15の概略構造を示す。同心円状に配置された多角形状の金属製の放熱用基板1,2を設ける。発光素子サブマウント構造体3を2枚の放熱用基板1,2の間に配置する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合させる。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔、多角形の角数(六角形、八角形、…等)は限定されない。   FIG. 25 shows a schematic structure of Example 15. Polygonal metal heat dissipating substrates 1 and 2 are provided concentrically. The light emitting element submount structure 3 is disposed between the two heat dissipating substrates 1 and 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are contacted or joined. The number of heat dissipation substrates, the material, the arrangement interval of the light emitting element submount structures, and the number of polygonal corners (hexagons, octagons, etc.) are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、比較的半径の小さい円形状において、発光素子サブマウント構造体と放熱用基板の接合性を向上させることができる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Further, in a circular shape having a relatively small radius, the bonding property between the light emitting element submount structure and the heat dissipation substrate can be improved.

図26に実施例16の概略構造を示す。円形状の放熱用基板1,2を平行に配置する。発光素子サブマウント構造体3を2枚の放熱用基板1,2の間に配置する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合させる。発光素子サブマウント構造体3の底部に接する極性毎に放熱用基板1,2に接続した。なお、同図(b)に示すように、金属製リング状部材7を設けてもよい。放熱用基板の枚数、素材、発光素子サブマウント構造体の配置間隔は限定されない。   FIG. 26 shows a schematic structure of Example 16. Circular heat dissipation substrates 1 and 2 are arranged in parallel. The light emitting element submount structure 3 is disposed between the two heat dissipating substrates 1 and 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are contacted or joined. Each of the polarities in contact with the bottom of the light emitting element submount structure 3 was connected to the heat dissipation substrates 1 and 2. In addition, as shown to the same figure (b), you may provide metal ring-shaped members 7. FIG. The number of the heat dissipation substrates, the material, and the arrangement interval of the light emitting element submount structures are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱できる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。また、指向性の強いLEDを用いて、全方位への光放射が可能となる。さらに、金属製リング状部材を用いた場合は更なる放熱性向上が可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Further, light emission in all directions can be performed using a highly directional LED. Furthermore, when a metal ring-shaped member is used, it is possible to further improve heat dissipation.

図27に実施例17の概略構造を示す。柔軟性を有する導電性材料からなる放熱用基板1,2を少なくとも2枚有する。複数の発光素子サブマウント構造体3のp極側を一枚の放熱用基板1に、n極側を他の放熱用基板2に接続する。発光素子サブマウント構造体3と放熱用基板1,2は接触または接合させる。放熱基板の枚数、素材、発光素子サブマウントの配置間隔は限定されない。   FIG. 27 shows a schematic structure of Example 17. At least two heat dissipating substrates 1 and 2 made of a flexible conductive material are provided. The p-pole side of the plurality of light-emitting element submount structures 3 is connected to one heat dissipation substrate 1, and the n-pole side is connected to another heat dissipation substrate 2. The light emitting element submount structure 3 and the heat dissipating substrates 1 and 2 are contacted or joined. The number of heat dissipation substrates, the material, and the arrangement interval of the light emitting element submounts are not limited.

本実施例によれば、発光素子サブマウント構造体の発熱を2つの放熱用基板に対して効率的に伝熱することができる。また、放熱用基板が電気接続を兼ねることにより高密度実装が可能となる。従来例に比して、LEDチップの温度上昇を抑制しつつ注入電流を増加することができ、光出力の増大が可能となる。さらに、柔軟性を有した構造であるため、ユーザーの必要に応じた形状の発光体の実現が可能となる。   According to the present embodiment, the heat generated by the light emitting element submount structure can be efficiently transferred to the two heat dissipation substrates. Further, high-density mounting is possible because the heat dissipation substrate also serves as electrical connection. Compared to the conventional example, the injection current can be increased while suppressing the temperature rise of the LED chip, and the light output can be increased. Furthermore, since the structure has flexibility, it is possible to realize a light emitter having a shape according to the needs of the user.

本発明の発光装置は、表示装置や照明装置の光源として利用することができる。   The light emitting device of the present invention can be used as a light source of a display device or a lighting device.

本発明の発光装置の好ましい実施の形態を示す断面図である。It is sectional drawing which shows preferable embodiment of the light-emitting device of this invention. 図1の発光装置に用いる発光素子サブマウント構造体を示す図であり、(a)は正面図、(b)はそのA−A’線断面図である。It is a figure which shows the light emitting element submount structure used for the light-emitting device of FIG. 1, (a) is a front view, (b) is the A-A 'sectional view taken on the line. 本発明の実施例1の断面図である。It is sectional drawing of Example 1 of this invention. 図3の構造を紙面右側から見たときの断面図である。It is sectional drawing when the structure of FIG. 3 is seen from the paper right side. 図3の発光装置に用いる発光素子サブマウント構造体を示す図であり、(a)は正面図、(b)は右側面図である。It is a figure which shows the light emitting element submount structure used for the light-emitting device of FIG. 3, (a) is a front view, (b) is a right view. 図3の発光装置に用いる第1の放熱用基板を示す図であり、(a)は正面図、(b)は右側面図である。It is a figure which shows the 1st board | substrate for thermal radiation used for the light-emitting device of FIG. 3, (a) is a front view, (b) is a right view. 本発明の実施例2の断面図である。It is sectional drawing of Example 2 of this invention. 図7の発光装置に用いる発光素子サブマウント構造体を示す図であり、(a)は正面図、(b)はそのA−A’線断面図である。8A and 8B are views showing a light-emitting element submount structure used in the light-emitting device of FIG. 7, wherein FIG. 8A is a front view and FIG. 本発明の実施例3の断面図である。It is sectional drawing of Example 3 of this invention. 図9の発光装置に用いる発光素子サブマウント構造体を示す図であり、(a)は正面図、(b)はそのA−A’線断面図である。It is a figure which shows the light emitting element submount structure used for the light-emitting device of FIG. 9, (a) is a front view, (b) is the A-A 'sectional view taken on the line. 本発明の実施例4の断面図である。It is sectional drawing of Example 4 of this invention. 図11の発光装置に用いる発光素子サブマウント構造体を示す図であり、(a)は正面図、(b)はそのA−A’線断面図である。It is a figure which shows the light emitting element submount structure used for the light-emitting device of FIG. 11, (a) is a front view, (b) is the A-A 'line sectional drawing. 本発明の実施例5の発光装置に用いる発光素子サブマウント構造体を示す図であり、(a)は正面図、(b)はそのA−A’線断面図である。It is a figure which shows the light emitting element submount structure used for the light-emitting device of Example 5 of this invention, (a) is a front view, (b) is the sectional view on the A-A 'line. 図13の発光素子サブマウント構造体を用いた発光装置の断面図であり、(a)は図13(a)のA−A’線についての断面図、(b)は図13(a)のB−B’線についての断面図である。It is sectional drawing of the light-emitting device using the light emitting element submount structure of FIG. 13, (a) is sectional drawing about the AA 'line of Fig.13 (a), (b) is FIG.13 (a). It is sectional drawing about a BB 'line. 本発明の実施例6の発光装置に用いる発光素子サブマウント構造体を示す図であり、(a)は断面図、(b)は金属配線基板に実装した状態の断面図、(c)は多層の放熱用配線の製造方法を説明するための断面図である。It is a figure which shows the light emitting element submount structure used for the light-emitting device of Example 6 of this invention, (a) is sectional drawing, (b) is sectional drawing of the state mounted in the metal wiring board, (c) is a multilayer It is sectional drawing for demonstrating the manufacturing method of the heat radiation wiring. 本発明の実施例7の発光装置を示す図であり、(a)は放熱用基板に光制御用レンズを設けた場合の断面図、(b)は光制御用レンズを放熱用基板とは別に設けた場合の断面図である。It is a figure which shows the light-emitting device of Example 7 of this invention, (a) is sectional drawing at the time of providing the lens for light control in the board | substrate for heat radiation, (b) is separate from the board | substrate for heat radiation for the light control lens. It is sectional drawing at the time of providing. 本発明の実施例8の発光装置に用いる発光素子サブマウント構造体の断面図である。It is sectional drawing of the light emitting element submount structure used for the light-emitting device of Example 8 of this invention. 本発明の実施例8の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 8 of this invention. 本発明の実施例9の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 9 of this invention. 本発明の実施例10の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 10 of this invention. 本発明の実施例11の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 11 of this invention. 本発明の実施例12の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 12 of this invention. 本発明の実施例13の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 13 of this invention. 本発明の実施例14の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 14 of this invention. 本発明の実施例15の発光装置の断面図である。It is sectional drawing of the light-emitting device of Example 15 of this invention. 本発明の実施例16の発光装置を示す図であり、(a)は正面図、(b)は断面図である。It is a figure which shows the light-emitting device of Example 16 of this invention, (a) is a front view, (b) is sectional drawing. 本発明の実施例17の発光装置の製造工程を示す図であり、(a)は半製品の断面図、(b)は完成品の断面図である。It is a figure which shows the manufacturing process of the light-emitting device of Example 17 of this invention, (a) is sectional drawing of a semi-finished product, (b) is sectional drawing of a finished product.

符号の説明Explanation of symbols

1 第1の放熱用基板
10 開口部
11 金属板
12 絶縁層
13 配線パターン
15 半田(配線用)
2 第2の放熱用基板
24 熱伝達部
25 半田(放熱用)
3 発光素子サブマウント構造体
30 実装基板
31 配線部
32 配線用ランド部
33 LEDチップ
34 接合部材
35 凹部
36 放熱用ランド部
DESCRIPTION OF SYMBOLS 1 1st board | substrate for heat radiation 10 Opening part 11 Metal plate 12 Insulating layer 13 Wiring pattern 15 Solder (for wiring)
2 Second heat dissipation substrate 24 Heat transfer portion 25 Solder (for heat dissipation)
DESCRIPTION OF SYMBOLS 3 Light emitting element submount structure 30 Mounting board 31 Wiring part 32 Wiring land part 33 LED chip 34 Joining member 35 Concave part 36 Radiation land part

Claims (7)

配線部を有する実装基板と、前記実装基板上に実装されたLEDチップとを備える1個または複数個の発光素子サブマウント構造体を、配線基板を兼ねる第1の放熱用基板に搭載してなる発光装置であって、前記発光素子サブマウント構造体の第1の放熱用基板に面する側とは異なる側の面を、第2の放熱用基板に接触または接合したことを特徴とする発光装置。 One or a plurality of light emitting element submount structures each including a mounting substrate having a wiring portion and an LED chip mounted on the mounting substrate are mounted on a first heat dissipation substrate that also serves as the wiring substrate. A light-emitting device, wherein a surface of the light-emitting element submount structure that is different from the side facing the first heat-dissipating substrate is in contact with or bonded to the second heat-dissipating substrate. . 前記第1の放熱用基板と前記第2の放熱用基板とは、発光素子サブマウント構造体とは異なる1個または複数個の熱伝達部を介して熱的に接触していることを特徴とする請求項1記載の発光装置。 The first heat dissipation substrate and the second heat dissipation substrate are in thermal contact with each other via one or a plurality of heat transfer portions different from the light emitting element submount structure. The light-emitting device according to claim 1. 前記第1、第2の放熱用基板の少なくとも1つは発光素子サブマウント構造体の上面に配置されると共に、LEDチップの光を透過するための開口部が形成されており、前記開口部の側壁面が光反射部を兼ねることを特徴とする請求項1記載の発光装置。 At least one of the first and second heat dissipation substrates is disposed on an upper surface of the light emitting element submount structure, and an opening for transmitting light of the LED chip is formed. 2. The light emitting device according to claim 1, wherein the side wall surface also serves as a light reflecting portion. 前記発光素子サブマウント構造体における前記実装基板は、絶縁部材を間に挟む2つの導電体ブロックから成り、LEDチップのp側電極、n側電極が、前記2つの導電体ブロックの各々に接続されていることを特徴とする請求項1記載の発光装置 The mounting substrate in the light emitting element submount structure is composed of two conductor blocks sandwiching an insulating member therebetween, and the p-side electrode and the n-side electrode of the LED chip are connected to each of the two conductor blocks. The light emitting device according to claim 1, wherein 前記発光素子サブマウント構造体における前記実装基板の内部に、実装基板本体よりも高熱伝導の放熱部材を含むことを特徴とする請求項1記載の発光装置。 The light-emitting device according to claim 1, wherein a heat dissipation member having higher thermal conductivity than the mounting substrate body is included inside the mounting substrate in the light-emitting element submount structure. 前記放熱部材は、第1の放熱用基板又は/及び第2の放熱用基板に接触していることを特徴とする請求項5記載の発光装置。 6. The light emitting device according to claim 5, wherein the heat radiating member is in contact with the first heat radiating substrate and / or the second heat radiating substrate. 複数個の発光素子サブマウント構造体から成り、一部の発光素子サブマウント構造体を挟みこむ、少なくとも第3の放熱用基板が設けられ、前記第1、第2の放熱用基板に挟みこまれた発光素子サブマウント構造体と、第2、第3の放熱用基板に挟みこまれた発光素子サブマウント構造体とが、千鳥格子状に互い違いに配列されていることを特徴とする請求項1記載の発光装置。 A plurality of light emitting element submount structures are provided, and at least a third heat radiating substrate is provided to sandwich a part of the light emitting element submount structures, and is sandwiched between the first and second heat radiating substrates. The light emitting element submount structures and the light emitting element submount structures sandwiched between the second and third heat dissipating substrates are alternately arranged in a staggered pattern. The light emitting device according to 1.
JP2003394451A 2003-05-26 2003-11-25 Light emitting device Pending JP2005158957A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003394451A JP2005158957A (en) 2003-11-25 2003-11-25 Light emitting device
US10/558,360 US7495322B2 (en) 2003-05-26 2004-05-26 Light-emitting device
EP04734943.6A EP1627437B1 (en) 2003-05-26 2004-05-26 Light-emitting device
PCT/JP2004/007535 WO2004105142A1 (en) 2003-05-26 2004-05-26 Light-emitting device
EP11167061.8A EP2365539B1 (en) 2003-05-26 2004-05-26 Light-emitting device
TW93114990A TWI253765B (en) 2003-05-26 2004-05-26 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394451A JP2005158957A (en) 2003-11-25 2003-11-25 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007310622A Division JP4862808B2 (en) 2007-11-30 2007-11-30 Light emitting device

Publications (1)

Publication Number Publication Date
JP2005158957A true JP2005158957A (en) 2005-06-16

Family

ID=34720514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394451A Pending JP2005158957A (en) 2003-05-26 2003-11-25 Light emitting device

Country Status (1)

Country Link
JP (1) JP2005158957A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351895A (en) * 2005-06-17 2006-12-28 Koito Mfg Co Ltd Light-emitting device and optical source using the same
JP2007123905A (en) * 2005-10-27 2007-05-17 Lg Innotek Co Ltd Light emitting diode element, its manufacturing method, and its anchoring structure
JP2007134722A (en) * 2005-11-10 2007-05-31 Samsung Electronics Co Ltd High luminance light-emitting diode and liquid crystal display device using the same
JP2007150228A (en) * 2005-11-02 2007-06-14 Trion:Kk Light-emitting diode packaging substrate
JP2007311760A (en) * 2006-04-20 2007-11-29 Kokubu Denki Co Ltd Led module
JP2008053621A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Led package
JP2008053619A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Led package
JP2008186850A (en) * 2007-01-26 2008-08-14 Stanley Electric Co Ltd Light-emitting apparatus and color conversion filter
WO2008105428A1 (en) * 2007-02-27 2008-09-04 Kyocera Corporation Light-emitting device
JP2009065127A (en) * 2007-08-10 2009-03-26 Panasonic Electric Works Co Ltd Package and semiconductor device
JP2009130205A (en) * 2007-11-26 2009-06-11 Toyoda Gosei Co Ltd Light-emitting device, substrate device, and method of manufacturing light-emitting device
JP2010021268A (en) * 2008-07-09 2010-01-28 Ushio Inc Light emitting device
JP2010021202A (en) * 2008-07-08 2010-01-28 Ushio Inc Light emitting device
JP2010027645A (en) * 2008-07-15 2010-02-04 Ushio Inc Light emitting device and fabrication process therefor
JP2010541219A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Arrangement structure with optoelectronic components
JP2011119459A (en) * 2009-12-03 2011-06-16 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2011521469A (en) * 2008-05-23 2011-07-21 クリー インコーポレイテッド Semiconductor lighting parts
WO2011105670A1 (en) * 2010-02-26 2011-09-01 Park Jae-Soon Surface-mounted light-emitting unit array, method for repairing same, and light-emitting unit for repairing same
US8044428B2 (en) 2007-08-10 2011-10-25 Panasonic Electric Works SUNX Co., Ltd. Package and semiconductor device for preventing occurrence of false connection
EP2472577A2 (en) 2011-01-04 2012-07-04 Napra Co., Ltd. Substrate for electronic device and electronic device
JP2012156484A (en) * 2011-01-04 2012-08-16 Napura:Kk Light-emitting device
JP2012209537A (en) * 2011-03-16 2012-10-25 Napura:Kk Lighting apparatus, display, and signal light
JP2014140014A (en) * 2012-12-18 2014-07-31 Toyoda Gosei Co Ltd Light emitting device and manufacturing method of the same
KR20150089595A (en) * 2014-01-28 2015-08-05 엘지이노텍 주식회사 Lighting device
KR20160045325A (en) * 2014-10-17 2016-04-27 엘지이노텍 주식회사 A light emitting device package and a light emitting module including the same
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
JP2017523602A (en) * 2014-06-12 2017-08-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, method of manufacturing optoelectronic semiconductor device, and light source including optoelectronic semiconductor device
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
US10374134B2 (en) 2015-05-29 2019-08-06 Nichia Corporation Light emitting device, method of manufacturing covering member, and method of manufacturing light emitting device
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
US11791442B2 (en) 2007-10-31 2023-10-17 Creeled, Inc. Light emitting diode package and method for fabricating same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449247A (en) * 1987-08-19 1989-02-23 Mitsubishi Electric Corp Semiconductor light emitting device
JPH03153372A (en) * 1989-10-26 1991-07-01 Hewlett Packard Co <Hp> Light emitting diode print head
JPH0416027A (en) * 1990-05-10 1992-01-21 Iwatsu Electric Co Ltd Method and system for time division communication in mobile object communication
JPH0416027B2 (en) * 1983-09-28 1992-03-19 Sanyo Denki Kk
JPH0555181U (en) * 1991-11-19 1993-07-23 タキロン株式会社 Dot matrix light emitting display module
JPH08228044A (en) * 1995-02-21 1996-09-03 Nippon Steel Corp Mount structure of semiconductor laser
JPH0955459A (en) * 1995-06-06 1997-02-25 Seiko Epson Corp Semiconductor device
JPH10226107A (en) * 1997-02-18 1998-08-25 Oki Electric Ind Co Ltd Optical print head
JPH10242529A (en) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd Semiconductor device
JP2000106458A (en) * 1998-09-29 2000-04-11 Matsushita Electronics Industry Corp Light emitting device for writing image
JP2000269384A (en) * 1999-03-12 2000-09-29 Nec Corp Micro-wave and milli-wave circuit device and manufacture therefor
JP2002118215A (en) * 2000-10-10 2002-04-19 Toyota Motor Corp Semiconductor device
US6498355B1 (en) * 2001-10-09 2002-12-24 Lumileds Lighting, U.S., Llc High flux LED array
JP2003017658A (en) * 2001-06-28 2003-01-17 Toshiba Corp Power semiconductor device
JP2003037293A (en) * 2001-07-25 2003-02-07 Nichia Chem Ind Ltd Chip component type light-emitting element and manufacturing method therefor
JP2003110148A (en) * 2001-09-28 2003-04-11 Nichia Chem Ind Ltd Semiconductor light-emitting device
JP2003241718A (en) * 2002-02-18 2003-08-29 Mitsubishi Electric Corp Display device
JP2003243718A (en) * 2002-02-14 2003-08-29 Matsushita Electric Works Ltd Light emitting device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416027B2 (en) * 1983-09-28 1992-03-19 Sanyo Denki Kk
JPS6449247A (en) * 1987-08-19 1989-02-23 Mitsubishi Electric Corp Semiconductor light emitting device
JPH03153372A (en) * 1989-10-26 1991-07-01 Hewlett Packard Co <Hp> Light emitting diode print head
JPH0416027A (en) * 1990-05-10 1992-01-21 Iwatsu Electric Co Ltd Method and system for time division communication in mobile object communication
JPH0555181U (en) * 1991-11-19 1993-07-23 タキロン株式会社 Dot matrix light emitting display module
JPH08228044A (en) * 1995-02-21 1996-09-03 Nippon Steel Corp Mount structure of semiconductor laser
JPH0955459A (en) * 1995-06-06 1997-02-25 Seiko Epson Corp Semiconductor device
JPH10226107A (en) * 1997-02-18 1998-08-25 Oki Electric Ind Co Ltd Optical print head
JPH10242529A (en) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd Semiconductor device
JP2000106458A (en) * 1998-09-29 2000-04-11 Matsushita Electronics Industry Corp Light emitting device for writing image
JP2000269384A (en) * 1999-03-12 2000-09-29 Nec Corp Micro-wave and milli-wave circuit device and manufacture therefor
JP2002118215A (en) * 2000-10-10 2002-04-19 Toyota Motor Corp Semiconductor device
JP2003017658A (en) * 2001-06-28 2003-01-17 Toshiba Corp Power semiconductor device
JP2003037293A (en) * 2001-07-25 2003-02-07 Nichia Chem Ind Ltd Chip component type light-emitting element and manufacturing method therefor
JP2003110148A (en) * 2001-09-28 2003-04-11 Nichia Chem Ind Ltd Semiconductor light-emitting device
US6498355B1 (en) * 2001-10-09 2002-12-24 Lumileds Lighting, U.S., Llc High flux LED array
JP2003243718A (en) * 2002-02-14 2003-08-29 Matsushita Electric Works Ltd Light emitting device
JP2003241718A (en) * 2002-02-18 2003-08-29 Mitsubishi Electric Corp Display device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076940B2 (en) 2005-01-10 2015-07-07 Cree, Inc. Solid state lighting component
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
JP2006351895A (en) * 2005-06-17 2006-12-28 Koito Mfg Co Ltd Light-emitting device and optical source using the same
JP2007123905A (en) * 2005-10-27 2007-05-17 Lg Innotek Co Ltd Light emitting diode element, its manufacturing method, and its anchoring structure
US8343784B2 (en) 2005-10-27 2013-01-01 Lg Innotek Co., Ltd. Light emitting diode device, manufacturing method of the light emitting diode device and mounting structure of the light emitting diode device
JP2007150228A (en) * 2005-11-02 2007-06-14 Trion:Kk Light-emitting diode packaging substrate
JP2007134722A (en) * 2005-11-10 2007-05-31 Samsung Electronics Co Ltd High luminance light-emitting diode and liquid crystal display device using the same
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
JP2007311760A (en) * 2006-04-20 2007-11-29 Kokubu Denki Co Ltd Led module
JP2008053621A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Led package
JP2008053619A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Led package
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
JP2008186850A (en) * 2007-01-26 2008-08-14 Stanley Electric Co Ltd Light-emitting apparatus and color conversion filter
JP5100744B2 (en) * 2007-02-27 2012-12-19 京セラ株式会社 Light emitting device
WO2008105428A1 (en) * 2007-02-27 2008-09-04 Kyocera Corporation Light-emitting device
US8044428B2 (en) 2007-08-10 2011-10-25 Panasonic Electric Works SUNX Co., Ltd. Package and semiconductor device for preventing occurrence of false connection
JP2009065127A (en) * 2007-08-10 2009-03-26 Panasonic Electric Works Co Ltd Package and semiconductor device
JP2010541219A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Arrangement structure with optoelectronic components
US11791442B2 (en) 2007-10-31 2023-10-17 Creeled, Inc. Light emitting diode package and method for fabricating same
JP2009130205A (en) * 2007-11-26 2009-06-11 Toyoda Gosei Co Ltd Light-emitting device, substrate device, and method of manufacturing light-emitting device
JP2011521469A (en) * 2008-05-23 2011-07-21 クリー インコーポレイテッド Semiconductor lighting parts
JP2010021202A (en) * 2008-07-08 2010-01-28 Ushio Inc Light emitting device
JP2010021268A (en) * 2008-07-09 2010-01-28 Ushio Inc Light emitting device
JP2010027645A (en) * 2008-07-15 2010-02-04 Ushio Inc Light emitting device and fabrication process therefor
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
US9484329B2 (en) 2008-10-24 2016-11-01 Cree, Inc. Light emitter array layout for color mixing
US8546827B2 (en) 2009-12-03 2013-10-01 Stanley Electric Co., Ltd. Semiconductor light emitting device
JP2011119459A (en) * 2009-12-03 2011-06-16 Stanley Electric Co Ltd Semiconductor light-emitting device
WO2011105670A1 (en) * 2010-02-26 2011-09-01 Park Jae-Soon Surface-mounted light-emitting unit array, method for repairing same, and light-emitting unit for repairing same
EP2472577A2 (en) 2011-01-04 2012-07-04 Napra Co., Ltd. Substrate for electronic device and electronic device
US9704793B2 (en) 2011-01-04 2017-07-11 Napra Co., Ltd. Substrate for electronic device and electronic device
JP2012156484A (en) * 2011-01-04 2012-08-16 Napura:Kk Light-emitting device
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
JP2012209537A (en) * 2011-03-16 2012-10-25 Napura:Kk Lighting apparatus, display, and signal light
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
JP2014140014A (en) * 2012-12-18 2014-07-31 Toyoda Gosei Co Ltd Light emitting device and manufacturing method of the same
KR20150089595A (en) * 2014-01-28 2015-08-05 엘지이노텍 주식회사 Lighting device
KR102288069B1 (en) * 2014-01-28 2021-08-11 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Lighting device
US10505085B2 (en) 2014-06-12 2019-12-10 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device package with conversion layer and method for producing the same
JP2017523602A (en) * 2014-06-12 2017-08-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, method of manufacturing optoelectronic semiconductor device, and light source including optoelectronic semiconductor device
KR102221601B1 (en) 2014-10-17 2021-03-02 엘지이노텍 주식회사 A light emitting device package and a light emitting module including the same
KR20160045325A (en) * 2014-10-17 2016-04-27 엘지이노텍 주식회사 A light emitting device package and a light emitting module including the same
US10825967B2 (en) 2015-05-29 2020-11-03 Nichia Corporation Light emitting device, method of manufacturing covering member, and method of manufacturing light emitting device
US10374134B2 (en) 2015-05-29 2019-08-06 Nichia Corporation Light emitting device, method of manufacturing covering member, and method of manufacturing light emitting device
US11894497B2 (en) 2015-05-29 2024-02-06 Nichia Corporation Light emitting device, method of manufacturing covering member, and method of manufacturing light emitting device

Similar Documents

Publication Publication Date Title
JP2005158957A (en) Light emitting device
JP4360858B2 (en) Surface mount type LED and light emitting device using the same
JP4241658B2 (en) Light emitting diode light source unit and light emitting diode light source formed using the same
US7642704B2 (en) Light-emitting diode with a base
US7192163B2 (en) Light-emitting unit with enhanced thermal dissipation and method for fabricating the same
CN101051665B (en) Light emitting diode package having anodized insulation layer and fabrication method therefor
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
JP5210433B2 (en) LED unit
JP2012532441A (en) Light emitting diode package
JP2005012155A (en) Light emitting device
US20090309106A1 (en) Light-emitting device module with a substrate and methods of forming it
JP2004207367A (en) Light emitting diode and light emitting diode arrangement plate
JP5705323B2 (en) High power LED light source structure with improved heat dissipation characteristics
JP2007096285A (en) Light emitting device mounting substrate, light emitting device accommodating package, light emitting device and lighting device
JP4655735B2 (en) LED unit
KR20100089115A (en) Method of manufacturing light emitting diode unit and light emitting diode unit manufactured by the method
CN109994458B (en) Light emitting device
JP2011159825A (en) Module device for led lighting, and method of manufacturing the same
JP4862808B2 (en) Light emitting device
JP2020150097A (en) Light emitting device, light emitting module and manufacturing method therefor
JP2009021383A (en) Electronic component
JP2010287749A (en) Light emitting body and lighting instrument
JP2008027979A (en) Light-emitting device
KR101949721B1 (en) Light emitting module
TWI546987B (en) Light-emitting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610