JP2005097293A - Organotin silane compound - Google Patents
Organotin silane compound Download PDFInfo
- Publication number
- JP2005097293A JP2005097293A JP2004253003A JP2004253003A JP2005097293A JP 2005097293 A JP2005097293 A JP 2005097293A JP 2004253003 A JP2004253003 A JP 2004253003A JP 2004253003 A JP2004253003 A JP 2004253003A JP 2005097293 A JP2005097293 A JP 2005097293A
- Authority
- JP
- Japan
- Prior art keywords
- carbon atoms
- group
- chlorine
- organotin
- bromine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *[Sn](*)(*)CCC1=CCCC=C1 Chemical compound *[Sn](*)(*)CCC1=CCCC=C1 0.000 description 3
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は有機スズシラン化合物およびその製造方法、シリカゲル担持有機スズ化合物およびその製造方法、ならびに該シリカゲル担持有機スズ化合物を触媒として使用するカルボン酸エステルの製造方法に関する。 The present invention relates to an organotin silane compound and a method for producing the same, a silica gel-supported organotin compound and a method for producing the same, and a method for producing a carboxylic acid ester using the silica gel-supported organotin compound as a catalyst.
特許文献1には、有機スズシラン化合物として多くの化合物を包含する一般式が記載されている。また、これらの有機スズシラン化合物とシリカゲル等の固体支持体に該支持体表面の水酸基との反応生成物である固体支持された有機スズシランと、この支持された有機スズシランがエステル交換反応の触媒として使用できることも記載されている。
本発明は、エステル交換反応用触媒の原料として有用な有機スズシラン化合物およびその有機スズシラン化合物を高収率、高選択率で製造する方法を提供することを目的とする。また、反応液へのスズの溶出が少ない、反応液との分離が容易、再使用可能といった利点を有するエステル交換反応用触媒として利用できるシリカゲル担持有機スズ化合物およびそのシリカゲル担持有機スズ化合物を高収率、高選択率で製造する方法を提供することを目的とする。さらに本発明は、反応液へのスズの溶出が少なく、触媒の分離が容易で、触媒の再使用が可能なエステル交換反応によるカルボン酸エステルの製造方法を提供することを目的とする。 An object of this invention is to provide the organotin silane compound useful as a raw material of the catalyst for transesterification, and the method of manufacturing the organotin silane compound with a high yield and a high selectivity. In addition, high yields of silica gel-supported organotin compounds and silica gel-supported organotin compounds that can be used as catalysts for transesterification reactions, which have the advantages of low elution of tin into the reaction solution, easy separation from the reaction solution, and reusability. It aims at providing the method of manufacturing with high rate and high selectivity. Another object of the present invention is to provide a method for producing a carboxylic acid ester by a transesterification reaction in which the elution of tin into the reaction solution is small, the catalyst can be easily separated, and the catalyst can be reused.
本発明は、式(1)、式(2)、式(3)または式(4)のいずれかで表される有機スズシラン化合物である。 The present invention is an organotin silane compound represented by any one of formula (1), formula (2), formula (3) or formula (4).
本発明の第2は、式(5)で表される有機スズ化合物と、式(6)〜(9)で表されるシランカップリング剤の群から選ばれる少なくとも1種のシランカップリング剤とを反応させる前記式(1)〜(4)記載の有機スズシラン化合物の製造方法である。 The second of the present invention is an organotin compound represented by formula (5) and at least one silane coupling agent selected from the group of silane coupling agents represented by formulas (6) to (9). It is a manufacturing method of the organotin silane compound of said Formula (1)-(4) reaction.
本発明の第3は、前記式(1)〜(4)の有機スズシラン化合物のケイ素(Si)がシリカゲルの表面のケイ素(Si’)と酸素を介して共有結合(Si−O−Si’)を形成しているシリカゲル担持有機スズ化合物である。 According to a third aspect of the present invention, silicon (Si) of the organotin silane compounds of the formulas (1) to (4) is covalently bonded (Si—O—Si ′) through silicon (Si ′) and oxygen on the surface of the silica gel. Is an organotin compound supported on silica gel.
本発明の第4は、前記式(5)で表されるスズ化合物と、前記式(6)〜(9)で表されるシランカップリング剤の群から選ばれる少なくとも1種のシランカップリング剤とを反応させ、得られた前記式(1)〜(4)記載の有機スズシラン化合物とシリカゲルを反応させる本発明第3のシリカゲル担持有機スズ化合物の製造方法である。 4th of this invention is at least 1 sort (s) of silane coupling agent chosen from the group of the tin compound represented by said Formula (5), and the silane coupling agent represented by said Formula (6)-(9). And the obtained organotin silane compound of the formulas (1) to (4) and silica gel are reacted with each other.
本発明の第5は、前記式(1)〜(4)記載の有機スズシラン化合物を水または水及びアルコールを含む混合溶媒と反応させ、生成物をシリカゲルに担持して得られるシリカゲル担持有機スズ化合物である。
本発明の第6はカルボン酸エステルとアルコールのエステル交換反応によりカルボン酸エステルを製造する方法において、触媒として本発明第3のシリカゲル担持有機スズ化合物を用いることを特徴とするカルボン酸エステルの製造方法である。
A fifth aspect of the present invention is a silica gel-supported organotin compound obtained by reacting the organotin silane compound of the above formulas (1) to (4) with water or a mixed solvent containing water and alcohol, and supporting the product on silica gel. It is.
A sixth method of the present invention is a method for producing a carboxylic acid ester by a transesterification reaction between a carboxylic acid ester and an alcohol, wherein the third silica gel-supported organotin compound of the present invention is used as a catalyst. It is.
本発明の有機スズシラン化合物はエステル交換反応用触媒の原料として利用できる。また、本発明の有機スズシラン化合物の製造方法によれば、有機スズシラン化合物を高収率、高選択率で製造することができる。 The organotin silane compound of the present invention can be used as a raw material for a transesterification catalyst. Moreover, according to the manufacturing method of the organotin silane compound of this invention, an organotin silane compound can be manufactured with a high yield and a high selectivity.
本発明のシリカゲル担持有機スズ化合物はエステル交換反応用触媒として利用できる。また、本発明のシリカゲル担持有機スズ化合物の製造方法によれば、シリカゲル担持有機スズ化合物を高収率、高選択率で製造することができる。 The silica gel-supported organotin compound of the present invention can be used as a catalyst for transesterification. Moreover, according to the method for producing a silica gel-supported organotin compound of the present invention, the silica gel-supported organotin compound can be produced with a high yield and a high selectivity.
本発明のカルボン酸エステルの製造方法によれば、反応液へのスズの溶出が少なく、触媒の分離が容易で、触媒の再使用が可能である。 According to the method for producing a carboxylic acid ester of the present invention, the elution of tin into the reaction solution is small, the catalyst can be easily separated, and the catalyst can be reused.
本発明の有機スズシラン化合物は、前記式(1)〜(4)のいずれかで表される化合物である。 The organotin silane compound of the present invention is a compound represented by any one of the formulas (1) to (4).
前記式(1)において、R1は、それぞれ独立に、炭素数1〜10のアルキル基、炭素数5〜10のシクロアルキル基、アリール基、フッ素、塩素、臭素、ヨウ素、または炭素数1〜10のアルコキシ基を表す。R1がアルキル基の場合、その炭素数は1〜5個が好ましいが、R1としてはフッ素、塩素、臭素、ヨウ素、または炭素数1〜10のアルコキシ基の方がより好ましい。R2は、それぞれ独立に、フッ素、塩素、臭素、ヨウ素、または炭素数1〜10のアルコキシ基を表す。反応性の観点から、R2は炭素数1〜5個のアルコキシ基が好ましい。R3は炭素数1〜10のアルキレン基を表す。なかでも、R3はメチレン、エチレンが好ましい。R3はベンゼン環の2〜6位の任意の炭素と結合できる。式(1)で表される好ましい化合物としては、具体的には4−(2−トリブチルスズエチル)ベンジルトリエトキシシラン、3−(2−トリブチルスズエチル)ベンジルトリメトキシシランが挙げられる。 In Formula (1), each R 1 independently represents an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an aryl group, fluorine, chlorine, bromine, iodine, or 1 to 1 carbon atoms. 10 alkoxy groups are represented. When R 1 is an alkyl group, the number of carbon atoms is preferably 1 to 5, but R 1 is more preferably fluorine, chlorine, bromine, iodine, or an alkoxy group having 1 to 10 carbon atoms. R 2 each independently represents fluorine, chlorine, bromine, iodine, or an alkoxy group having 1 to 10 carbon atoms. From the viewpoint of reactivity, R 2 is preferably an alkoxy group having 1 to 5 carbon atoms. R 3 represents an alkylene group having 1 to 10 carbon atoms. Among these, R 3 is preferably methylene or ethylene. R 3 can be bonded to any carbon at the 2-6 positions of the benzene ring. Specific examples of the preferred compound represented by the formula (1) include 4- (2-tributyltin ethyl) benzyltriethoxysilane and 3- (2-tributyltin ethyl) benzyltrimethoxysilane.
前記式(2)において、R1とR2は前記式(1)と同様である。前記式(2)のケイ素はベンゼン環の2〜6位の任意の炭素と結合できる。式(2)で表される好ましい化合物としては、具体的には、4−(2−トリブチルスズエチル)フェニルトリメトキシシラン、4−(2−トリブチルスズエチル)フェニルトリエトキシシラン、3−(2−トリブチルスズエチル)フェニルトリメトキシシランが挙げられる。 In the formula (2), R 1 and R 2 are the same as those in the formula (1). The silicon of the formula (2) can be bonded to any carbon at the 2-6 positions of the benzene ring. Specifically, preferred compounds represented by the formula (2) include 4- (2-tributyltin ethyl) phenyltrimethoxysilane, 4- (2-tributyltinethyl) phenyltriethoxysilane, and 3- (2-tributyltin). Ethyl) phenyltrimethoxysilane.
前記式(3)において、R1とR2は前記式(1)と同様である。R4は炭素数1〜10のアルキレン基を表す。なかでも、R4はエチレン、プロピレンが好ましい。R5は水素またはメチル基を表す。hydrostannation反応においてラジカル開始剤を用いなくてもよいことから、R5は水素が好ましい。式(3)で表される好ましい化合物としては、具体的にはについては、式(3)の全てのR1がブチル基(−C4H9)、全てのR2がメトキシ基(−OCH3)、R4がプロピレン鎖(−C3H6−)、R5がメチル基(−CH3)である化合物、式(3)の全てのR1がブチル基(−C4H9)、全てのR2がメトキシ基(−OCH3)、R4がプロピレン鎖(−C3H6−)、R5が水素(−H)である化合物が挙げられる。 In the formula (3), R 1 and R 2 are the same as those in the formula (1). R 4 represents an alkylene group having 1 to 10 carbon atoms. Of these, R 4 is preferably ethylene or propylene. R 5 represents hydrogen or a methyl group. R 5 is preferably hydrogen because it is not necessary to use a radical initiator in the hydrostannation reaction. As a preferable compound represented by the formula (3), specifically, all of R 1 in the formula (3) are butyl groups (—C 4 H 9 ) and all R 2 are methoxy groups (—OCH). 3 ), a compound in which R 4 is a propylene chain (—C 3 H 6 —), R 5 is a methyl group (—CH 3 ), and all R 1 in formula (3) are butyl groups (—C 4 H 9 ) , R 2 is a methoxy group (—OCH 3 ), R 4 is a propylene chain (—C 3 H 6 —), and R 5 is hydrogen (—H).
前記式(4)において、R1とR2は前記式(1)と同様である。式(4)で表される好ましい化合物としては、具体的には、2−トリブチルスズエチルトリメトキシシラン、2−トリメトキシスズエチルトリメトキシシランが挙げられる。 In the formula (4), R 1 and R 2 are the same as in the formula (1). Specific examples of the preferred compound represented by the formula (4) include 2-tributyltin ethyltrimethoxysilane and 2-trimethoxytin ethyltrimethoxysilane.
前記式(1)〜(4)のいずれかで表される有機スズシラン化合物は、例えば、前記式(5)で表されるスズ化合物と、前記式(6)〜(9)で表されるシランカップリング剤の群から選ばれる少なくとも1種のシランカップリング剤とを反応させることにより製造できる。このような反応としては、例えば、トリアルキルスズハイドライドと前記シランカップリング剤とのhydrostannation反応や、Sn或いはSnCl2に塩酸を添加して、前記シランカップリング剤の炭素−炭素二重結合(C=C)へ付加反応させる方法等が挙げられる。 The organotin silane compound represented by any one of the formulas (1) to (4) includes, for example, a tin compound represented by the formula (5) and a silane represented by the formulas (6) to (9). It can be produced by reacting with at least one silane coupling agent selected from the group of coupling agents. Examples of such a reaction include a hydrostannation reaction between a trialkyltin hydride and the silane coupling agent, or adding hydrochloric acid to Sn or SnCl 2 to form a carbon-carbon double bond (C = C) and the like.
hydrostannation反応の具体例としては、ラジカル発生剤を使用した4−ビニルフェニルトリメトキシシランとトリブチルスズハイドライドとの反応を挙げることができる。ラジカル発生剤としては、例えば2,2’−アゾビスイソブチロニトリルや2,2’−アゾビス(2,4−ジメチルバレロニトリル)等が使用できる。hydrostannation反応では、酸素によるラジカル失活を防ぐために、不活性ガスで反応系中の酸素を置換することが好ましい。不活性ガスとしては、例えば窒素やアルゴン等が挙げられる。反応温度は0〜150℃が好ましく、反応促進と副反応抑制の観点から20〜100℃がより好ましい。反応は無溶媒でも溶媒を添加してもよい。反応溶媒としては、n−ペンタン、n−ヘキサン、n−ヘプタンが好ましい。 Specific examples of the hydrostannation reaction include a reaction between 4-vinylphenyltrimethoxysilane and tributyltin hydride using a radical generator. Examples of radical generators that can be used include 2,2'-azobisisobutyronitrile and 2,2'-azobis (2,4-dimethylvaleronitrile). In the hydrostannation reaction, in order to prevent radical deactivation by oxygen, it is preferable to replace oxygen in the reaction system with an inert gas. Examples of the inert gas include nitrogen and argon. The reaction temperature is preferably 0 to 150 ° C., and more preferably 20 to 100 ° C. from the viewpoint of promoting the reaction and suppressing side reactions. The reaction may be solventless or a solvent may be added. As the reaction solvent, n-pentane, n-hexane and n-heptane are preferable.
前記式(1)〜(4)のいずれかで表される有機スズシラン化合物はそれ自身エステル交換反応について触媒活性を有するが、シリカゲルに担持して固定化したシリカゲル担持有機スズ化合物(担持触媒)も同様に触媒活性を有する。担持触媒は、反応後の触媒分離が容易であるので、繰り返し用いるエステル交換反応用触媒として好ましい。 The organotin silane compound represented by any one of the formulas (1) to (4) itself has a catalytic activity for the transesterification reaction, but a silica gel-supported organotin compound (supported catalyst) supported and immobilized on silica gel is also used. Similarly, it has catalytic activity. The supported catalyst is preferable as a catalyst for transesterification that is repeatedly used because the catalyst can be easily separated after the reaction.
前記有機スズシラン化合物をシリカゲルに担持する方法は特に限定されないが、例えば、有機スズシラン化合物とシリカゲルを溶剤中で加熱する方法等が挙げられる。溶剤としては、例えばトルエン、キシレン、n−ヘキサン、n−ヘプタン、酢酸エチル、2−ブタノン等が挙げられる。加熱温度は0〜200℃が好ましく、反応促進と副反応抑制の観点から20〜150℃がより好ましい。シリカゲルは特に限定されないが、エステル交換反応に使用する際に粉砕されることを抑制するために、比較的強度の高い触媒担体用に製造されたものを使用することが好ましい。
驚くべきことに、前記式(1)〜(4)の有機スズシラン化合物を加水分解・脱水縮合させて、それをシリカゲルに担持して得られるシリカゲル担持有機スズ化合物は、水との反応を経ないで合成した触媒と比較して、エステル交換反応の触媒活性が数倍に増大する。その理由を以下のように推定している。
前記有機スズシラン化合物や前記シランカップリング剤等のシラン化合物は、水と反応させると加水分解してシラノール(Si−OH)化合物となる。シラノール基は不安定で、経時変化により部分的に脱水縮合してシロキサン結合(−O−Si−O−)を作り、オリゴマーになる。そのため、スズ原子同士が互いに近くに存在し、スズ原子間の相互作用もたらすことが活性の増大を引き起こすと推測している。
加水分解反応において、シラン化合物の水溶液濃度は0.1〜2wt%が好ましく、通常室温で30〜60分撹拌すれば加水分解は終了する。また酢酸等を使用して弱酸性領域で加水分解を行えば、加水分解速度は促進される。
前記式(1)〜(4)の有機スズシラン化合物を水と反応させる場合は、直接水を加えても、アルコールなどの水溶性の有機溶剤と水を混合した混合溶媒を加えてもよい。前記有機スズシラン化合物の中には、水溶性でないものも多く存在するが、メタノール、エタノール、プロパノール、イソプロパノール等のアルコールを併用することにより溶解性が増大し、反応が速やかに進行するようになる。中でもエタノール、イソプロパノールがより好ましい。アルコールの比率は水溶液全体に対し10〜70wt%が好ましく、20〜40wt%がより好ましい。反応させる水の比率は有機スズシラン化合物に対し10〜30倍(重量比)が好ましい。
反応させる水のpHは酸性領域(pH≦7)が好ましく、弱酸性領域(pH=3〜5)がより好ましい。水との反応は室温で行ってもよいが、水との反応速度が早くなることから、60℃以上に加熱する方が好ましく70℃以上に加熱する方がより好ましい。水との反応時間は一般的に1〜60時間が好ましく、3〜24時間がより好ましい。
The method of supporting the organotin silane compound on silica gel is not particularly limited, and examples thereof include a method of heating the organotin silane compound and silica gel in a solvent. Examples of the solvent include toluene, xylene, n-hexane, n-heptane, ethyl acetate, 2-butanone and the like. The heating temperature is preferably 0 to 200 ° C, and more preferably 20 to 150 ° C from the viewpoint of promoting the reaction and suppressing side reactions. The silica gel is not particularly limited, but it is preferable to use a silica gel produced for a catalyst carrier having a relatively high strength in order to suppress pulverization when used in the transesterification reaction.
Surprisingly, the silica gel-supported organotin compound obtained by hydrolyzing and dehydrating and condensing the organotin silane compounds of formulas (1) to (4) onto silica gel does not undergo a reaction with water. Compared with the catalyst synthesized in step 1, the catalytic activity of the transesterification reaction is increased several times. The reason is estimated as follows.
Silane compounds such as the organotin silane compound and the silane coupling agent are hydrolyzed to silanol (Si—OH) compounds when reacted with water. Silanol groups are unstable, and partially dehydrated and condensed with time to form siloxane bonds (—O—Si—O—) to become oligomers. For this reason, it is speculated that tin atoms exist close to each other, and the interaction between tin atoms brings about an increase in activity.
In the hydrolysis reaction, the concentration of the aqueous solution of the silane compound is preferably 0.1 to 2 wt%, and the hydrolysis is usually completed by stirring for 30 to 60 minutes at room temperature. If hydrolysis is performed in a weakly acidic region using acetic acid or the like, the hydrolysis rate is accelerated.
When the organotin silane compounds of the above formulas (1) to (4) are reacted with water, water may be added directly, or a mixed solvent obtained by mixing water-soluble organic solvent such as alcohol and water may be added. Although many of the organotin silane compounds are not water-soluble, the use of alcohols such as methanol, ethanol, propanol, and isopropanol increases solubility and allows the reaction to proceed rapidly. Of these, ethanol and isopropanol are more preferable. The ratio of alcohol is preferably 10 to 70 wt%, more preferably 20 to 40 wt%, based on the entire aqueous solution. The ratio of water to be reacted is preferably 10 to 30 times (weight ratio) with respect to the organotin silane compound.
The pH of the water to be reacted is preferably an acidic region (pH ≦ 7), more preferably a weakly acidic region (pH = 3 to 5). Although the reaction with water may be carried out at room temperature, it is preferable to heat to 60 ° C. or higher, and more preferable to heat to 70 ° C. or higher because the reaction rate with water increases. The reaction time with water is generally preferably 1 to 60 hours, more preferably 3 to 24 hours.
このようにして製造されたシリカゲル担持有機スズ化合物において、前記式(1)〜(4)の有機スズシラン化合物のケイ素(Si)はR2の少なくとも1つに代えて、酸素を介してシリカゲルの表面のケイ素(Si’)と共有結合(Si−O−Si’)を形成している。式(10)は、前記式(4)の有機スズシラン化合物のケイ素が酸素を介した2つの共有結合でシリカゲルの表面のケイ素と結合したシリカゲル担持有機スズ化合物を表している。 In the thus prepared silica-supported organotin compound, silica (Si) in the organotin silane compounds of the formulas (1) to (4) is replaced with at least one of R 2 , and the surface of the silica gel via oxygen. The silicon (Si ′) and the covalent bond (Si—O—Si ′) are formed. Formula (10) represents a silica gel-supported organotin compound in which silicon of the organotin silane compound of formula (4) is bonded to silicon on the surface of the silica gel through two covalent bonds via oxygen.
有機スズシラン化合物の合成からシリカゲル担持有機スズ化合物の製造までの一連の操作は、段階毎に別の反応器で行うこともできるが、有機スズシラン化合物のシリカゲル担体への担持収率向上の観点から、1つの反応器で行うことが好ましい。 A series of operations from the synthesis of the organotin silane compound to the production of the silica gel-supported organotin compound can be performed in a separate reactor for each stage, but from the viewpoint of improving the yield of the organotin silane compound on the silica gel carrier, It is preferable to carry out in one reactor.
スズ化合物とシランカップリング剤を反応させて有機スズシラン化合物を合成する反応においては、副反応を抑制するためにR1が炭素数1〜10のアルキル基であるスズ化合物とシランカップリング剤とを反応させることが好ましい。そして、触媒活性を増大させるために、反応後に、アルキル基をハロゲンやアルコキシ基に置換することが好ましく、アルコキシ基に置換することがより好ましい。スズの置換基をアルキル基からハロゲンに置換する方法としては、例えばハロゲン化スズを反応させる方法やハロゲン分子と直接反応させる方法等が挙げられる。有機スズ化合物に水または水及びアルコールを含む混合溶媒と反応させ(工程A)、その後、生成物をシリカゲルに担持して(工程B)シリカゲル担持有機スズ化合物を得る場合は、ハロゲン化スズおよびハロゲン置換有機スズ化合物は、水に不安定であるものが多いため、前記工程Aの後にハロゲン化スズを作用させることが好ましく、取り扱いの容易さの点で、前記工程AおよびBの後に作用させることがより好ましい。スズの置換基をアルキル基からアルコキシ基に置換する方法としては、例えば、ハロゲン化した後にアルカリ金属のアルコキサイドを反応させる方法等が挙げられる。 In a reaction in which a tin compound and a silane coupling agent are reacted to synthesize an organotin silane compound, a tin compound in which R 1 is an alkyl group having 1 to 10 carbon atoms and a silane coupling agent are used in order to suppress side reactions. It is preferable to react. In order to increase the catalytic activity, the alkyl group is preferably substituted with a halogen or an alkoxy group after the reaction, and more preferably substituted with an alkoxy group. Examples of a method for substituting a tin substituent from an alkyl group to a halogen include a method of reacting tin halide and a method of directly reacting with a halogen molecule. When the organotin compound is reacted with water or a mixed solvent containing water and alcohol (Step A), and then the product is supported on silica gel (Step B) to obtain a silica gel-supported organotin compound, tin halide and halogen Since many substituted organotin compounds are unstable to water, it is preferable to act on the tin halide after the step A, and to act after the steps A and B in terms of ease of handling. Is more preferable. Examples of the method for substituting the tin substituent from an alkyl group to an alkoxy group include a method of reacting an alkali metal alkoxide after halogenation.
このようにして製造された本発明のシリカゲル担持有機スズ化合物は、前述したように、カルボン酸エステルとアルコールのエステル交換反応によりカルボン酸エステルを製造する際の触媒として有効である。特に、この触媒は(メタ)アクリル酸エステルとアルコールのエステル交換反応用に好ましい。 As described above, the silica gel-supported organotin compound of the present invention thus produced is effective as a catalyst for producing a carboxylic acid ester by a transesterification reaction between the carboxylic acid ester and an alcohol. In particular, this catalyst is preferred for the transesterification reaction of (meth) acrylic acid ester and alcohol.
エステル交換反応の条件は、反応基質の種類等により適宜選定すればよく、特に限定されないが、原料カルボン酸エステルの仕込み量は原料アルコールに対して0.5〜20倍モルが好ましく、収率と生産性の兼ね合いから1〜10倍モルがより好ましい。触媒であるシリカゲル担持有機スズ化合物の使用量は、原料アルコールの0.1〜100質量%が好ましく、コストと反応性の兼ね合いから0.5〜50質量%が好ましい。反応温度は0〜150℃が好ましく、温度が高い程反応速度が速くなり、低い程副反応が抑制できることから50〜130℃がより好ましい。 The conditions for the transesterification reaction may be appropriately selected depending on the type of the reaction substrate and the like, and are not particularly limited. From the balance of productivity, 1-10 times mole is more preferable. The amount of silica gel-supported organotin compound used as a catalyst is preferably 0.1 to 100% by mass of the raw material alcohol, and preferably 0.5 to 50% by mass in view of cost and reactivity. The reaction temperature is preferably 0 to 150 ° C., and the higher the temperature, the faster the reaction rate, and the lower the temperature, the side reaction can be suppressed.
エステル交換反応の原料カルボン酸エステルが(メタ)アクリル酸エステルのような重合性の化合物の場合、反応の際に重合防止剤を用いることが好ましい。重合防止剤は1種を用いても、2種以上を併用してもよい。重合防止剤としては、例えば、ハイドロキノン、パラメトキシフェノール等のフェノール系化合物、N,N’−ジイソプロピルパラフェニレンジアミン、N,N’−ジ−2−ナフチルパラフェニレンジアミン、N−フェニル−N’−(1,3−ジメチルブチル)パラフェニレンジアミン、フェノチアジン等のアミン系化合物、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル等のN−オキシル系化合物、さらには下記式(11)で例示されるN−オキシル系化合物等が挙げられる。 When the raw material carboxylic acid ester of the transesterification reaction is a polymerizable compound such as (meth) acrylic acid ester, it is preferable to use a polymerization inhibitor during the reaction. The polymerization inhibitor may be used alone or in combination of two or more. Examples of the polymerization inhibitor include phenolic compounds such as hydroquinone and paramethoxyphenol, N, N′-diisopropylparaphenylenediamine, N, N′-di-2-naphthylparaphenylenediamine, and N-phenyl-N′-. Amine compounds such as (1,3-dimethylbutyl) paraphenylenediamine and phenothiazine, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-benzoyloxy-2,2,6 Examples include N-oxyl compounds such as 6-tetramethylpiperidine-N-oxyl, and N-oxyl compounds exemplified by the following formula (11).
エステル交換反応は、蒸留により副生アルコールを留出させ、平衡をずらしながら行うことが好ましい。 The transesterification reaction is preferably carried out by distilling by-product alcohol by distillation and shifting the equilibrium.
エステル交換反応を行う反応装置は、流動床、固定床等の連続装置でも、バッチ装置でもよい。バッチ装置の場合、エステル交換反応後の担持触媒はろ過により製品エステルと容易に分離することができる。バッチ装置で反応を行う場合、反応終了液から触媒をろ別し、回収した触媒を再度エステル交換反応を行ってカルボン酸エステルを製造することができる。また、触媒を充填したカラム(固定床)で反応を行う場合、反応原料を供給し連続的にエステル交換反応を行ってカルボン酸エステルを製造することができる。 The reaction apparatus for performing the transesterification reaction may be a continuous apparatus such as a fluidized bed or a fixed bed, or a batch apparatus. In the case of a batch apparatus, the supported catalyst after the transesterification reaction can be easily separated from the product ester by filtration. When the reaction is carried out in a batch apparatus, the catalyst can be filtered off from the reaction end solution, and the recovered catalyst can be transesterified again to produce a carboxylic acid ester. Further, when the reaction is carried out in a column (fixed bed) packed with a catalyst, a carboxylic acid ester can be produced by supplying a reaction raw material and continuously performing a transesterification reaction.
以下、本発明を実施例によって詳しく説明するが、本発明はこれらに限定されるものではない。実施例における有機スズシラン化合物の純度ならびにエステル交換反応の原料および生成物の定量はガスクロマトグラフィー(以下GCと言う)分析により、シリカゲル担持有機スズ化合物に含まれるのスズ元素の定量はICP発光分析により、シリカゲル担持有機スズ化合物に含まれるの塩素元素の定量はイオンクロマトグラフィー分析により、エステル交換反応の反応終了液中のスズ元素の定量は原子吸光分析により、有機スズシラン化合物の確認は1H−NMR、13C−NMR分析により行った。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these. In the examples, the purity of the organotin silane compound and the raw materials and products of the transesterification reaction were determined by gas chromatography (hereinafter referred to as GC) analysis, and the tin element contained in the silica gel-supported organotin compound was determined by ICP emission analysis. Quantitative determination of elemental chlorine contained in silica gel-supported organotin compound was performed by ion chromatography analysis, determination of tin element in the transesterification reaction completed liquid was performed by atomic absorption analysis, and organotinsilane compound was confirmed by 1 H-NMR. , 13 C-NMR analysis.
原料アルコールの転化率は次式により算出した。
原料アルコールの転化率(%)=B/(A+B)×100
ここで、Aは原料アルコールのモル数、Bは生成エステルのモル数である。
また、純度はGCの面積百分率で算出した。
The conversion rate of the raw alcohol was calculated by the following formula.
Conversion rate of raw alcohol (%) = B / (A + B) × 100
Here, A is the number of moles of the raw material alcohol, and B is the number of moles of the produced ester.
The purity was calculated as an area percentage of GC.
[実施例1] スチレン系シランカップリング剤へのスズの導入反応
4−ビニルフェニルトリメトキシシラン5.39g、トリブチルスズハイドライド7.0g、2,2’−アゾビスイソブチロニトリル0.01gを100ml三ッ口フラスコに入れ、窒素ガスで15分バブリングしたあと、80℃で8時間加熱するとhydrostannationが進行し、純度95.0%の4−(2−トリブチルスズエチル)フェニルトリメトキシシラン12.97gが得られた。
[Example 1] Reaction of introducing tin into styrene-based silane coupling agent 100 ml of 5.39 g of 4-vinylphenyltrimethoxysilane, 7.0 g of tributyltin hydride, 0.01 g of 2,2'-azobisisobutyronitrile After putting into a three-necked flask and bubbling with nitrogen gas for 15 minutes, when heated at 80 ° C. for 8 hours, hydrostannation proceeds, and 12.97 g of 4- (2-tributyltinethyl) phenyltrimethoxysilane having a purity of 95.0% was obtained. Obtained.
[実施例2] メタクリレート系シランカップリング剤へのスズの導入反応
3−メタクリロキシプロピルトリメトキシシラン5.96g、トリブチルスズハイドライド7.0g、2,2’−アゾビスイソブチロニトリル0.01gを100ml三ッ口フラスコに入れ、窒素ガスで15分バブリングしたあと、60℃で10時間加熱するとhydrostannationが進行し、純度86.8%の式(3)の全てのR1がブチル基(−C4H9)、全てのR2がメトキシ基(−OCH3)、R4がプロピレン鎖(−C3H6−)、R5がメチル基(−CH3)である化合物が得られた。
[Example 2] Reaction of introducing tin into a methacrylate silane coupling agent 5.96 g of 3-methacryloxypropyltrimethoxysilane, 7.0 g of tributyltin hydride, 0.01 g of 2,2'-azobisisobutyronitrile. After putting into a 100 ml three-necked flask and bubbling with nitrogen gas for 15 minutes, when heated at 60 ° C. for 10 hours, hydrostannation proceeds, and all R 1 of formula (3) having a purity of 86.8% is a butyl group (—C 4 H 9 ), a compound in which all R 2 are methoxy groups (—OCH 3 ), R 4 is a propylene chain (—C 3 H 6 —), and R 5 is a methyl group (—CH 3 ) was obtained.
[実施例3] アクリレート系シランカップリング剤へのスズの導入反応
3−アクリロキシプロピルトリメトキシシラン5.63g、トリブチルスズハイドライド7.0gを100ml三ッ口フラスコに入れ、60℃で10時間加熱するとhydrostannationが進行し、純度87.2%の式(3)の全てのR1がブチル基(−C4H9)、全てのR2がメトキシ基(−OCH3)、R4がプロピレン鎖(−C3H6−)、R5が水素(−H)である化合物が得られた。
[Example 3] Introduction reaction of tin into acrylate-based silane coupling agent When 3-acryloxypropyltrimethoxysilane (5.63 g) and tributyltin hydride (7.0 g) are placed in a 100 ml three-necked flask and heated at 60 ° C for 10 hours. As the hydrolysis proceeds, all of R 1 in formula (3) having a purity of 87.2% are butyl groups (—C 4 H 9 ), all R 2 are methoxy groups (—OCH 3 ), and R 4 is a propylene chain ( A compound in which —C 3 H 6 —) and R 5 are hydrogen (—H) was obtained.
[実施例4] ビニル系シランカップリング剤へのスズの導入反応
ビニルトリメトキシシラン3.56g、トリブチルスズハイドライド7.0g、2,2’−アゾビスイソブチロニトリル0.01gを100ml三ッ口フラスコに入れ、窒素ガスで15分バブリングしたあと、80℃で30時間加熱すると、hydrostannationが進行し、純度88.5%の2−トリブチルスズエチルトリメトキシシランが得られた。
[Example 4] Reaction of introducing tin into vinyl-based silane coupling agent 3.5 ml of vinyltrimethoxysilane, 7.0 g of tributyltin hydride, and 0.01 ml of 2,2'-azobisisobutyronitrile in 100 ml After putting into a flask and bubbling with nitrogen gas for 15 minutes, when heated at 80 ° C. for 30 hours, hydrostannation progressed, and 2-tributyltin ethyltrimethoxysilane having a purity of 88.5% was obtained.
[実施例5] 四塩化スズを用いた4−(2−トリブチルスズエチル)フェニルトリメトキシシラン(実施例1で得られた有機スズシラン化合物)のスズ上置換基の再分配反応とシランカップリング反応
1000ml四ッ口フラスコに滴下ロートをセットし、窒素置換した後、四ッ口フラスコに実施例1で得られた4−(2−トリブチルスズエチル)フェニルトリメトキシシラン12.97gを入れ、滴下ロートに四塩化スズを9ml入れた。四ッ口フラスコを氷浴に浸し、撹拌しながらゆっくりと四塩化スズを滴下すると、反応液は無色透明から淡黄色濁液に変わった。滴下終了後、70℃で4時間加熱すると、反応液は淡黄色から濃い茶色へ変化した。反応液を室温に戻した後、トルエン400ml、シリカゲル100gを加え、20時間加熱還流を行った。その後、反応液を室温に戻し、吸引ろ過により固形物をろ別した。得られた固形物をトルエンで洗浄し、100℃で一晩真空乾燥させて、白色の固形物107.74gを得た。この固形物(シリカゲル担持型スズ化合物)を元素分析したところ、スズ4.8wt%、塩素1.7wt%であった。
[Example 5] Redistribution reaction and silane coupling reaction of substituents on tin of 4- (2-tributyltinethyl) phenyltrimethoxysilane (organotin silane compound obtained in Example 1) using tin tetrachloride 1000 ml After setting the dropping funnel in the four-necked flask and replacing with nitrogen, 12.97 g of 4- (2-tributyltinethyl) phenyltrimethoxysilane obtained in Example 1 was put in the four-necked flask, and the dropping funnel was filled with four. 9 ml of tin chloride was added. When the four-necked flask was immersed in an ice bath and tin tetrachloride was slowly added dropwise with stirring, the reaction solution changed from colorless and transparent to a pale yellow turbid solution. After completion of the dropwise addition, the reaction solution changed from pale yellow to dark brown when heated at 70 ° C. for 4 hours. After returning the reaction solution to room temperature, 400 ml of toluene and 100 g of silica gel were added, and the mixture was heated to reflux for 20 hours. Then, the reaction liquid was returned to room temperature and the solid substance was separated by suction filtration. The obtained solid was washed with toluene and vacuum dried at 100 ° C. overnight to obtain 107.74 g of a white solid. Elemental analysis of the solid (silica gel-supported tin compound) revealed tin of 4.8 wt% and chlorine of 1.7 wt%.
[実施例6] 実施例5で得られたシリカゲル担持型スズ化合物のSn−Cl結合のSn−OCH3化
1000ml四ッ口フラスコに実施例5で得られたシリカゲル担持型スズ化合物107.74g、メタノール400ml、ナトリウムメトキサイド4.2gを入れ、6時間加熱還流を行った。還流後、反応液を室温に戻し、吸引ろ過により固形物をろ別した。得られた固形物を100℃で一晩真空乾燥させて、白色固形物106.29g得た。この固形物(シリカゲル担持有機スズ化合物)を元素分析したところ、スズ4.3wt%、塩素0.09wt%であった。
[Example 6] Sn-OCH 3 of Sn-Cl bond of silica gel supported tin compound obtained in Example 5 107.74 g of silica gel supported tin compound obtained in Example 5 in a 1000 ml four-necked flask, 400 ml of methanol and 4.2 g of sodium methoxide were added and heated under reflux for 6 hours. After refluxing, the reaction solution was returned to room temperature, and the solid matter was separated by suction filtration. The obtained solid was vacuum-dried at 100 ° C. overnight to obtain 106.29 g of a white solid. Elemental analysis of the solid (silica gel-supported organotin compound) revealed that tin was 4.3 wt% and chlorine was 0.09 wt%.
[実施例7] 四塩化スズを用いた実施例2で得られた有機スズシラン化合物のスズ上置換基の再分配反応とシランカップリング反応
1000ml四ッ口フラスコに滴下ロートをセットし、窒素置換した後、四ッ口フラスコに実施例2で得られた有機スズシラン化合物13.32gを入れ、滴下ロートに四塩化スズを9ml入れた。四ッ口フラスコを氷浴に浸し、撹拌しながらゆっくりと四塩化スズを滴下し、滴下終了後70℃で4時間加熱した。反応液を室温に戻した後、トルエン400ml、シリカゲル100gを加え、20時間加熱還流を行った。その後、反応液を室温に戻し、吸引ろ過により固形物をろ別した。得られた固形物をトルエンで洗浄し、100℃で一晩真空乾燥させて、白色の固形物109.92gを得た。この固形物(シリカゲル担持型スズ化合物)を元素分析したところ、スズ4.2wt%塩素1.4wt%であった。
[Example 7] Redistribution reaction and silane coupling reaction of substituents on tin of organotin silane compound obtained in Example 2 using tin tetrachloride A dropping funnel was set in a 1000 ml four-necked flask and purged with nitrogen. Thereafter, 13.32 g of the organotin silane compound obtained in Example 2 was placed in a four-necked flask, and 9 ml of tin tetrachloride was placed in a dropping funnel. The four-necked flask was immersed in an ice bath, and tin tetrachloride was slowly added dropwise with stirring. After completion of the addition, the mixture was heated at 70 ° C. for 4 hours. After returning the reaction solution to room temperature, 400 ml of toluene and 100 g of silica gel were added, and the mixture was heated to reflux for 20 hours. Then, the reaction liquid was returned to room temperature and the solid substance was separated by suction filtration. The obtained solid was washed with toluene and vacuum dried at 100 ° C. overnight to obtain 109.92 g of a white solid. Elemental analysis of the solid (silica gel-supported tin compound) revealed that it was 4.2 wt% tin and 1.4 wt% chlorine.
[実施例8] 実施例7で得られたシリカゲル担持型スズ化合物のSn−Cl結合のSn−OCH3化
1000ml四ッ口フラスコに実施例7で得られたシリカゲル担持型スズ化合物109.92g、メタノール400ml、ナトリウムメトキサイド4.2gを入れ、6時間加熱還流を行った。還流後、反応液を室温に戻し、吸引ろ過により固形物をろ別した。得られた固形物を100℃で一晩真空乾燥させて、白色固形物109.83g得た。この固形物(シリカゲル担持有機スズ化合物)を元素分析したところ、スズ3.8wt%、塩素0.07wt%であった。
[Example 8] Sn-OCH 3 of Sn-Cl bond of silica gel supported tin compound obtained in Example 7 109.92 g of silica gel supported tin compound obtained in Example 7 in a 1000 ml four-necked flask, 400 ml of methanol and 4.2 g of sodium methoxide were added and heated under reflux for 6 hours. After refluxing, the reaction solution was returned to room temperature, and the solid matter was separated by suction filtration. The obtained solid was vacuum-dried at 100 ° C. overnight to obtain 109.83 g of a white solid. Elemental analysis of the solid (silica gel-supported organotin compound) revealed tin of 3.8 wt% and chlorine of 0.07 wt%.
[実施例9]四塩化スズを用いた2−トリブチルスズエチルトリメトキシシランのスズ上置換基の再分配反応とシランカップリング反応
1000ml四ッ口フラスコに滴下ロートをセットし、窒素置換した後、四ッ口フラスコに実施例4で得られた2−トリブチルスズエチルトリメトキシシラン10.61gを入れ、滴下ロートに四塩化スズを9ml入れた。四ッ口フラスコを氷浴に浸し、撹拌しながらゆっくりと四塩化スズを滴下し、滴下終了後70℃で4時間加熱した。反応液を室温に戻した後、トルエン400ml、シリカゲル100gを加え、20時間加熱還流を行った。その後、反応液を室温に戻し、吸引ろ過により固形物をろ別した。得られた固形物をトルエンで洗浄し、100℃で一晩真空乾燥させて、白色の固形物106.72gを得た。この固形物(シリカゲル担持型スズ化合物)を元素分析したところ、スズ3.7wt%、塩素1.1wt%であった。
[Example 9] Redistribution reaction and silane coupling reaction of substituents on tin of 2-tributyltin ethyltrimethoxysilane using tin tetrachloride A dropping funnel was set in a 1000 ml four-necked flask and purged with nitrogen. 10.61 g of 2-tributyltin ethyltrimethoxysilane obtained in Example 4 was placed in the necked flask, and 9 ml of tin tetrachloride was placed in the dropping funnel. The four-necked flask was immersed in an ice bath, and tin tetrachloride was slowly added dropwise with stirring. After completion of the addition, the mixture was heated at 70 ° C. for 4 hours. After returning the reaction solution to room temperature, 400 ml of toluene and 100 g of silica gel were added, and the mixture was heated to reflux for 20 hours. Then, the reaction liquid was returned to room temperature and the solid substance was separated by suction filtration. The obtained solid was washed with toluene and vacuum dried at 100 ° C. overnight to obtain 106.72 g of a white solid. Elemental analysis of this solid (silica gel-supported tin compound) revealed that it was 3.7 wt% tin and 1.1 wt% chlorine.
[実施例10] 実施例9で得られたシリカゲル担持型スズ化合物のSn−Cl結合のSn−OCH3化
1000ml四ッ口フラスコに実施例9で得られたシリカゲル担持型スズ化合物106.72g、メタノール400ml、ナトリウムメトキサイド4.2gを入れ、6時間加熱還流を行った。還流後、反応液を室温に戻し、吸引ろ過により固形物をろ別した。得られた固形物を100℃で一晩真空乾燥させて、白色固形物106.12g得た。この固形物(シリカゲル担持有機スズ化合物)を元素分析したところ、スズ3.5wt%、塩素0.06wt%であった。
Example 10 Example 9 obtained in silica gel supported tin compound Sn-Cl bonds of Sn-OCH 3 of 1000ml four necked silica supported tin compound obtained in Example 9 in a flask 106.72G, 400 ml of methanol and 4.2 g of sodium methoxide were added and heated under reflux for 6 hours. After refluxing, the reaction solution was returned to room temperature, and the solid matter was separated by suction filtration. The obtained solid was vacuum-dried at 100 ° C. overnight to obtain 106.12 g of a white solid. Elemental analysis of the solid (silica gel-supported organotin compound) revealed 3.5 wt% tin and 0.06 wt% chlorine.
[実施例11] 実施例6で得られたシリカゲル担持有機スズ化合物を用いたエステル交換反応
20段オルダーショウを装着した1000ml四ッ口フラスコにハイドロキノン0.37g、n−ブタノール194g(2.62mol)、メチルメタクリレート(MMA)451g(4.50mol)を入れ、全還流を行って系内の水分を100ppm以下まで脱水させた。系を室温まで冷却した後、実施例6で得られたシリカゲル担持有機スズ化合物(触媒)を100g加え、フラスコを油浴で加熱し、エステル交換反応を開始した。全還流がかかったところを反応時間0とし、副生するメタノールの抜き出しを行いながら反応を進行させた。6時間後、n−ブタノール転化率は99.31%に達し、反応終了とした。反応終了液から吸引ろ過により触媒をろ別したろ液(反応液)中のスズ含有率を分析したところ0.55ppmであった。
ろ別した触媒を用いて、同様の条件で2〜5回目の反応を行った。反応完了までの反応時間とn−ブタノールの転化率、反応終了液へのスズの溶出濃度を表1に示す。
[Example 11] Transesterification reaction using silica-tin-supported organotin compound obtained in Example 6 Hydroquinone 0.37 g, n-butanol 194 g (2.62 mol) in a 1000 ml four-necked flask equipped with a 20-stage Oldershaw, Methyl methacrylate (MMA) 451 g (4.50 mol) was added, and total reflux was performed to dehydrate the water in the system to 100 ppm or less. After cooling the system to room temperature, 100 g of the silica-tin-supported organotin compound (catalyst) obtained in Example 6 was added, and the flask was heated in an oil bath to initiate a transesterification reaction. The place where total reflux was applied was set to reaction time 0, and the reaction was allowed to proceed while extracting methanol as a by-product. After 6 hours, the n-butanol conversion reached 99.31%, and the reaction was completed. It was 0.55 ppm when the tin content rate in the filtrate (reaction liquid) which filtered the catalyst by suction filtration from the reaction completion liquid was analyzed.
Using the catalyst separated by filtration, the second to fifth reactions were carried out under the same conditions. Table 1 shows the reaction time until the completion of the reaction, the conversion rate of n-butanol, and the elution concentration of tin in the reaction end solution.
[実施例12] 実施例8で得られたシリカゲル担持有機スズ化合物を用いたエステル交換反応
20段オルダーショウを装着した1000ml四ッ口フラスコにハイドロキノン0.37g、n−ブタノール194g(2.62mol)、メチルメタクリレート(MMA)451g(4.50mol)を入れ、全還流を行って系内の水分を100ppm以下まで脱水させた。系を室温まで冷却した後、実施例8で得られたシリカゲル担持有機スズ化合物(触媒)を100g加え、フラスコを油浴で加熱し、エステル交換反応を開始した。全還流がかかったところを反応時間0とし、副生するメタノールの抜き出しを行いながら反応を進行させた。10時間後、n−ブタノール転化率は99.17%に達し、反応終了とした。反応終了液から吸引ろ過により触媒をろ別したろ液(反応液)中のスズ含有率を分析したところ440ppmであった。
ろ別した触媒を用いて、同様の条件で2〜5回目の反応を行った。反応完了までの反応時間とn−ブタノールの転化率、反応終了液へのスズの溶出濃度を表2に示す。
Example 12 Transesterification Reaction Using Silica Gel-Supported Organotin Compound Obtained in Example 8 Hydroquinone 0.37 g, n-butanol 194 g (2.62 mol) in a 1000 ml four-necked flask equipped with a 20-stage Oldershaw, Methyl methacrylate (MMA) 451 g (4.50 mol) was added, and total reflux was performed to dehydrate the water in the system to 100 ppm or less. After cooling the system to room temperature, 100 g of the silica-tin-supported organotin compound (catalyst) obtained in Example 8 was added, and the flask was heated in an oil bath to initiate the transesterification reaction. The place where total reflux was applied was set to reaction time 0, and the reaction was allowed to proceed while extracting methanol as a by-product. After 10 hours, the n-butanol conversion reached 99.17%, and the reaction was completed. It was 440 ppm when the tin content rate in the filtrate (reaction liquid) which filtered the catalyst by suction filtration from the reaction completion liquid was analyzed.
Using the catalyst separated by filtration, the second to fifth reactions were carried out under the same conditions. Table 2 shows the reaction time until the completion of the reaction, the conversion rate of n-butanol, and the elution concentration of tin in the reaction end solution.
[実施例13] 実施例10で得られたシリカゲル担持有機スズ化合物を用いたエステル交換反応
20段オルダーショウを装着した1000ml四ッ口フラスコにハイドロキノン0.37g、n−ブタノール194g(2.62mol)、メチルメタクリレート(MMA)451g(4.50mol)を入れ、全還流を行って系内の水分を100ppm以下まで脱水させた。系を室温まで冷却した後、実施例10で得られたシリカゲル担持有機スズ化合物(触媒)を100g加え、フラスコを油浴で加熱し、エステル交換反応を開始した。全還流がかかったところを反応時間0とし、副生するメタノールの抜き出しを行いながら反応を進行させた。2時間後、n−ブタノール転化率は100%に達し、反応終了とした。反応終了液から吸引ろ過により触媒をろ別したろ液(反応液)中のスズ含有率を分析したところ440ppmであった。
ろ別した触媒を用いて、同様の条件で2〜5回目の反応を行った。反応完了までの反応時間とn−ブタノールの転化率、反応終了液へのスズの溶出濃度を表3に示す。
Example 13 Transesterification Reaction Using Silica Gel-Supported Organotin Compound Obtained in Example 10 Hydroquinone 0.37 g, n-butanol 194 g (2.62 mol) in a 1000 ml four-necked flask equipped with a 20-stage Oldershaw, Methyl methacrylate (MMA) 451 g (4.50 mol) was added, and total reflux was performed to dehydrate the water in the system to 100 ppm or less. After cooling the system to room temperature, 100 g of the silica-tin-supported organotin compound (catalyst) obtained in Example 10 was added, and the flask was heated in an oil bath to initiate the transesterification reaction. The place where total reflux was applied was set to reaction time 0, and the reaction was allowed to proceed while extracting methanol as a by-product. After 2 hours, the n-butanol conversion reached 100% and the reaction was completed. It was 440 ppm when the tin content rate in the filtrate (reaction liquid) which filtered the catalyst by suction filtration from the reaction completion liquid was analyzed.
Using the catalyst separated by filtration, the second to fifth reactions were carried out under the same conditions. Table 3 shows the reaction time until the completion of the reaction, the conversion rate of n-butanol, and the elution concentration of tin in the reaction end solution.
[実施例14] 4−(2−トリブチルスズエチル)フェニルトリメトキシシラン(実施例1で得られた有機スズシラン化合物)と水との反応
1000mlナスフラスコに4−(2−トリブチルスズエチル)フェニルトリメトキシシラン12g、イソプロパノール240mlおよび酢酸水溶液(pH=4)120mlを添加し、オイルバス中約80℃で5時間加熱還流した。反応終了液をシリカゲル100g、トルエン400mlの入った1000ml四ッ口フラスコへ投入し、オイルバス(設定温度100℃)中約80℃で2時間加熱を行い、系内のアルコール(メタノール、イソプロパノール)と水をほぼ留出させた後、トルエン400mlを加え、ディーンスターク装置を用いて1時間加熱還流を行った。還流後、反応液を室温に戻し、吸引ろ過により固形物を濾別した。得られた固形物を100℃で一晩真空乾燥させて、白色固形物110.4gを得た。
[Example 14] Reaction of 4- (2-tributyltinethyl) phenyltrimethoxysilane (organotin silane compound obtained in Example 1) with water 4- (2-tributyltinethyl) phenyltrimethoxysilane in a 1000 ml eggplant flask 12 g, 240 ml of isopropanol and 120 ml of aqueous acetic acid (pH = 4) were added, and the mixture was heated to reflux in an oil bath at about 80 ° C. for 5 hours. The reaction-terminated liquid was put into a 1000 ml four-necked flask containing 100 g of silica gel and 400 ml of toluene, heated in an oil bath (set temperature 100 ° C.) at about 80 ° C. for 2 hours, and alcohol (methanol, isopropanol) in the system and After almost distilling off water, 400 ml of toluene was added, and the mixture was heated to reflux for 1 hour using a Dean-Stark apparatus. After refluxing, the reaction solution was returned to room temperature, and the solid matter was separated by suction filtration. The obtained solid was vacuum-dried at 100 ° C. overnight to obtain 110.4 g of a white solid.
1000ml四ッ口フラスコに上記反応で得られたシリカゲル担持有機スズ化合物110.4gとトルエン400mlを入れ、系内の窒素置換を行った後、四塩化スズ12mlを加え、オイルバス温度70℃で4時間加熱を行った。その後反応液を室温に戻し、吸引ろ過により固形物を濾別した。 Into a 1000 ml four-necked flask, 110.4 g of the silica-supported organotin compound obtained in the above reaction and 400 ml of toluene were placed. After nitrogen substitution in the system, 12 ml of tin tetrachloride was added, and an oil bath temperature of 70.degree. Heating was performed for hours. Thereafter, the reaction solution was returned to room temperature, and solid matter was separated by suction filtration.
1000ml四ッ口フラスコに、ナトリウムメトキシド5.6gと上記固形物を入れ、メタノール400mlを加えて3時間加熱還流を行った。反応液を室温に戻し、ろ過して100℃で一晩真空乾燥を行い、白色固形物を112.2g得た。この白色固形物(シリカゲル担持有機スズ化合物)の元素分析を行ったところ、スズ2.7wt%、塩素0.06wt%であった。 In a 1000 ml four-necked flask, 5.6 g of sodium methoxide and the above solid matter were added, 400 ml of methanol was added, and the mixture was heated to reflux for 3 hours. The reaction solution was returned to room temperature, filtered, and vacuum dried at 100 ° C. overnight to obtain 112.2 g of a white solid. Elemental analysis of this white solid (silica gel-supported organotin compound) revealed tin of 2.7 wt% and chlorine of 0.06 wt%.
[実施例15] 2−トリブチルスズエチルトリメトキシシラン(実施例4で得られた有機スズシラン化合物)と水との反応
1000mlナスフラスコに2−トリブチルスズエチルトリメトキシシラン12g、イソプロパノール240mlを加えて撹拌、その後酢酸水溶液(pH=4)120mlを添加し、オイルバス(100℃)で5時間加熱した。反応終了液をシリカゲル100g、トルエン400mlの入った1000ml四ッ口フラスコへ投入、100℃で加熱を行い、系内のアルコール(メタノール、イソプロパノール)と水をほぼ留出させた後、トルエン400mlを加え、ディーンスターク装置を用いて1時間加熱還流を行った。還流後、反応液を室温に戻し、吸引ろ過により固形物を濾別した。得られた固形物を100℃で一晩真空乾燥させて、白色固形物110.4gを得た。
1000ml四ッ口フラスコに上記反応で得られたシリカゲル担持有機スズ化合物110.4gとトルエン400mlを入れ、系内の窒素置換を行った後、四塩化スズ12mlを加え、オイルバス温度70℃で4時間加熱を行った。その後反応液を室温に戻し、吸引ろ過により固形物を濾別した。
1000ml四ッ口フラスコに、ナトリウムメトキシド5.6gと上記固形物を入れ、メタノール400mlを加えて3時間加熱還流を行った。反応液を室温に戻し、ろ過して100℃で一晩真空乾燥を行い、白色固形物を112.2g得た。この白色固形物(シリカゲル担持有機スズ化合物)の元素分析を行ったところ、スズ2.7wt%、塩素0.06wt%であった。
[Example 15] Reaction of 2-tributyltin ethyltrimethoxysilane (organotin silane compound obtained in Example 4) with water Add 12 g of 2-tributyltin ethyltrimethoxysilane and 240 ml of isopropanol to a 1000 ml eggplant flask, and then stir. 120 ml of acetic acid aqueous solution (pH = 4) was added and heated in an oil bath (100 ° C.) for 5 hours. The reaction-terminated liquid was put into a 1000 ml four-necked flask containing 100 g of silica gel and 400 ml of toluene, heated at 100 ° C. to almost distill off alcohol (methanol, isopropanol) and water in the system, and then 400 ml of toluene was added. The mixture was heated to reflux for 1 hour using a Dean-Stark apparatus. After refluxing, the reaction solution was returned to room temperature, and the solid matter was separated by suction filtration. The obtained solid was vacuum-dried at 100 ° C. overnight to obtain 110.4 g of a white solid.
Into a 1000 ml four-necked flask, 110.4 g of the silica-supported organotin compound obtained in the above reaction and 400 ml of toluene were placed. After nitrogen substitution in the system, 12 ml of tin tetrachloride was added, and an oil bath temperature of 70.degree. Heating was performed for hours. Thereafter, the reaction solution was returned to room temperature, and solid matter was separated by suction filtration.
In a 1000 ml four-necked flask, 5.6 g of sodium methoxide and the above solid matter were added, 400 ml of methanol was added, and the mixture was heated to reflux for 3 hours. The reaction solution was returned to room temperature, filtered, and vacuum dried at 100 ° C. overnight to obtain 112.2 g of a white solid. Elemental analysis of this white solid (silica gel-supported organotin compound) revealed tin of 2.7 wt% and chlorine of 0.06 wt%.
[実施例16] エステル交換反応の活性比較 [Example 16] Comparison of transesterification activity
触媒の活性比較実験は以下のようにして行った。 The catalyst activity comparison experiment was performed as follows.
触媒25ml(12g)を詰めたU字ガラス管に原料(BuOH:MMA=1:1.72(ヒドロキノン0.00057wt%含有))を連続的に空間速度SV≒1.6h−1で流し、100℃のオイルバスに浸してエステル交換反応を行った。加熱開始後16時間の時点でサンプリングし、GC分析を行い、触媒に含まれるスズ0.1gあたりのBuOHの転化率を算出した。この値が大きいほどエステル交換反応が進行したことになる。
各実施例で合成した触媒を用いて反応を行った結果を表3に示す。
A raw material (BuOH: MMA = 1.172 (containing hydroquinone 0.00057 wt%)) was continuously flowed at a space velocity SV≈1.6 h −1 in a U-shaped glass tube packed with 25 ml (12 g) of catalyst. The transesterification was carried out in an oil bath at ℃. Sampling was performed at 16 hours after the start of heating, GC analysis was performed, and the conversion rate of BuOH per 0.1 g of tin contained in the catalyst was calculated. The larger this value, the more the transesterification reaction has progressed.
Table 3 shows the results of reaction using the catalyst synthesized in each Example.
Claims (6)
A process for producing a carboxylic acid ester by transesterification of a carboxylic acid ester with an alcohol, wherein the silica gel-supported organotin compound according to claim 3 or 5 is used as a catalyst. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253003A JP2005097293A (en) | 2003-09-01 | 2004-08-31 | Organotin silane compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003308818 | 2003-09-01 | ||
JP2004253003A JP2005097293A (en) | 2003-09-01 | 2004-08-31 | Organotin silane compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005097293A true JP2005097293A (en) | 2005-04-14 |
Family
ID=34467466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004253003A Pending JP2005097293A (en) | 2003-09-01 | 2004-08-31 | Organotin silane compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005097293A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006335663A (en) * | 2005-05-31 | 2006-12-14 | Mitsubishi Rayon Co Ltd | Method for producing unsaturated carboxylic ester |
JP2008060117A (en) * | 2006-08-29 | 2008-03-13 | Konica Minolta Holdings Inc | Organic thin-film transistor and manufacturing method thereof |
CN113646082A (en) * | 2021-05-28 | 2021-11-12 | 安徽金禾实业股份有限公司 | Supported organic tin catalyst and preparation method of sucrose-6-carboxylate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63218249A (en) * | 1987-03-05 | 1988-09-12 | Shimadzu Corp | Filler for optical resolution and its production |
JPH07502042A (en) * | 1991-12-16 | 1995-03-02 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | Method of treating building materials with tin-containing compounds covalently bonded to silylated groups |
JPH11255782A (en) * | 1997-09-29 | 1999-09-21 | Elf Atochem North America Inc | Heterogenous organotin catalyst |
-
2004
- 2004-08-31 JP JP2004253003A patent/JP2005097293A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63218249A (en) * | 1987-03-05 | 1988-09-12 | Shimadzu Corp | Filler for optical resolution and its production |
JPH07502042A (en) * | 1991-12-16 | 1995-03-02 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | Method of treating building materials with tin-containing compounds covalently bonded to silylated groups |
JPH11255782A (en) * | 1997-09-29 | 1999-09-21 | Elf Atochem North America Inc | Heterogenous organotin catalyst |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006335663A (en) * | 2005-05-31 | 2006-12-14 | Mitsubishi Rayon Co Ltd | Method for producing unsaturated carboxylic ester |
JP2008060117A (en) * | 2006-08-29 | 2008-03-13 | Konica Minolta Holdings Inc | Organic thin-film transistor and manufacturing method thereof |
CN113646082A (en) * | 2021-05-28 | 2021-11-12 | 安徽金禾实业股份有限公司 | Supported organic tin catalyst and preparation method of sucrose-6-carboxylate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2978435B2 (en) | Method for producing acryloxypropyl silane | |
KR20120017045A (en) | Composition including dialkyl tin oxide and use thereof as a transesterification catalyst for the synthesis of (meth)acrylic esters | |
JPH089005B2 (en) | Method for producing hydrosilylation catalyst | |
JP2992965B2 (en) | Transesterification method | |
JP3733635B2 (en) | Method for producing organosilicon compound | |
KR20030005057A (en) | Process for manufacturing silanized (meth)acrylates | |
JP6025476B2 (en) | Process for producing ethylenically unsaturated group-containing isocyanate compound | |
JP2005097293A (en) | Organotin silane compound | |
JP6008600B2 (en) | Method for producing 4-hydroxybutyl acrylate | |
JP5606132B2 (en) | Method for producing (meth) acrylic acid ester | |
JP4178369B2 (en) | Method for producing silyl (meth) acrylate compound | |
JP5981763B2 (en) | Method for producing 4-hydroxybutyl (meth) acrylate | |
JP4934823B2 (en) | Silicon-containing cross-coupling reagent and method for producing organic compound using the same | |
JPS58170730A (en) | Preparation of acrylic or methacrylic ester | |
CN118638142A (en) | Method for preparing acyl silane by using alkene under induction of visible light | |
JP2001019674A (en) | Production of 2,2,6,6-tetramethylpiperidine-n-oxyls | |
JP7130303B2 (en) | Method for producing (meth)acrylic acid ester compound | |
JPH06298716A (en) | Production of urethano ester | |
US6291696B2 (en) | Preparation of tris (trimethylsilyl) silylethyl esters | |
JPH1072433A (en) | Production of heterocylce-containing (meth)acrylate | |
JP3858968B2 (en) | Method for producing tris (trimethylsilyl) silylethyl ester | |
JP3312806B2 (en) | Method for producing tetrahydrobenzyl (meth) acrylate | |
JP2542117B2 (en) | Method for producing silyl unsaturated carboxylate | |
EP3202768A1 (en) | Fluorinated alkyl silane compound, and production method for same | |
JP2014101331A (en) | Method for manufacturing a (meth)acrylic acid ester possessing an aryl ether group |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070821 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100812 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110104 |