Nothing Special   »   [go: up one dir, main page]

JP2005059155A - Groove processing method, groove workpiece, and molded article - Google Patents

Groove processing method, groove workpiece, and molded article Download PDF

Info

Publication number
JP2005059155A
JP2005059155A JP2003293249A JP2003293249A JP2005059155A JP 2005059155 A JP2005059155 A JP 2005059155A JP 2003293249 A JP2003293249 A JP 2003293249A JP 2003293249 A JP2003293249 A JP 2003293249A JP 2005059155 A JP2005059155 A JP 2005059155A
Authority
JP
Japan
Prior art keywords
tool
inclination
workpiece
grooving
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003293249A
Other languages
Japanese (ja)
Inventor
Satoshi Kai
聡 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003293249A priority Critical patent/JP2005059155A/en
Publication of JP2005059155A publication Critical patent/JP2005059155A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform groove processing excellent in flatness by measuring inclination of a rotary shaft of a tool. <P>SOLUTION: In this groove processing method of performing the groove processing using an end surface and the outer peripheral surface of the tool 4, before the groove processing, one surface is processed, a workpiece 2 is rotated by 180°, and the other surface is processed, an angle formed by planes processed with the end surface of the tool 4 is measured, the inclination of the rotary shaft of the tool is measured, the inclination of the tool 4 is adjusted based on the value, and then the groove processing is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エンドミル工具の端面と外周面を用いて溝加工を行う溝加工法及び溝加工品、成形品に関する。   The present invention relates to a grooving method, a grooved product, and a molded product that perform grooving using an end face and an outer peripheral surface of an end mill tool.

例えば、非特許文献1のP27図2(a)にあるようにエンドミル形状の工具の端面と円周面で溝を加工する加工法がある。
機械技術 1998 Vol.46 No.6 P27図2(a)
For example, as shown in FIG. 2 (a) on page 27 of Non-Patent Document 1, there is a machining method in which grooves are machined on the end face and circumferential surface of an end mill-shaped tool.
Mechanical Technology 1998 Vol.46 No.6 P27 Figure 2 (a)

この方法の場合、工具の送り方向と工具の回転軸を含む平面上で、工具の回転軸が工具の送り方向に垂直でない場合、端面方向の形状が凹形状になるという問題がある。
本発明は、1つの面の加工を行った後、加工物を180度回転させ、もう1面の加工を行い、工具の端面で加工された平面がなす角度を測定することにより、工具の回転軸の傾きを測定して、平面度に優れた溝加工を行うことを目的とする。
In the case of this method, when the tool rotation axis is not perpendicular to the tool feed direction on the plane including the tool feed direction and the tool rotation axis, there is a problem that the shape in the end face direction becomes a concave shape.
In the present invention, after one surface is processed, the workpiece is rotated 180 degrees, the other surface is processed, and the angle formed by the plane processed by the end surface of the tool is measured, thereby rotating the tool. The purpose is to measure the inclination of the shaft and perform groove processing with excellent flatness.

上記目的を達成するために、請求項1記載の発明は、工具の端面と外周面を用いて溝加工を行う溝加工法において、溝加工を行う前に、1面の加工を行った後、加工物を180度回転させて、もう1面の加工を行い、工具の端面で加工された平面がなす角度を測定することにより、工具回転軸の傾きを測定し、その値を元に工具の傾きを調整した後に溝加工を行う溝加工法を最も主要な特徴とする。
請求項2記載の発明は、請求項1の溝加工法において、工具の回転中心を加工物の外側にした状態で加工する溝加工法を主要な特徴とする。
請求項3記載の発明は、請求項2の溝加工法において、加工物側の工具端面が高くなるように工具の傾きを設定して加工する溝加工法を主要な特徴とする。
請求項4記載の発明は、請求項1の溝加工法において、2つの平面の傾き測定に干渉計を用いる溝加工法を主要な特徴とする。
請求項5記載の発明は、請求項1の溝加工法において、加工機上に取り付けられた測定器により2つの平面の傾きの測定を行う溝加工法を主要な特徴とする。
請求項6記載の発明は、請求項5の溝加工法において、測定器として、光触針を用いる溝加工法を主要な特徴とする。
請求項7記載の発明は、請求項5の溝加工法において、測定器として、接触式プローブを用いる溝加工法を主要な特徴とする。
請求項8記載の発明は、請求項1の溝加工法において、工具として、単結晶ダイヤモンドを用いる溝加工法を主要な特徴とする。
請求項9記載の発明は、請求項1の溝加工法によって加工された溝加工品を最も主要な特徴とする。
請求項10記載の発明は、請求項9の溝加工品によって成形された成形品を最も主要な特徴とする。
In order to achieve the above object, the invention according to claim 1 is a grooving method for grooving using an end face and an outer peripheral surface of a tool. The workpiece is rotated 180 degrees, the other surface is machined, and the angle formed by the plane machined at the end face of the tool is measured to measure the inclination of the tool rotation axis. The most important feature is a grooving method in which grooving is performed after adjusting the inclination.
The invention according to claim 2 is characterized in that, in the grooving method according to claim 1, the grooving method is performed in which the rotation center of the tool is outside the workpiece.
The invention according to claim 3 is characterized in that, in the grooving method according to claim 2, the grooving method is performed by setting the inclination of the tool so that the tool end surface on the workpiece side becomes higher.
The invention according to claim 4 is characterized in that, in the grooving method of claim 1, the grooving method using an interferometer for measuring the inclination of two planes is a main feature.
The invention according to claim 5 is characterized in that, in the grooving method according to claim 1, the grooving method in which the inclination of two planes is measured by a measuring instrument mounted on a processing machine.
The invention according to claim 6 is characterized in that, in the grooving method of claim 5, the grooving method using an optical stylus as a measuring instrument is a main feature.
The invention according to claim 7 is characterized in that, in the grooving method of claim 5, the grooving method using a contact probe as a measuring instrument is a main feature.
The invention according to claim 8 is characterized in that, in the grooving method of claim 1, a grooving method using single crystal diamond as a tool is a main feature.
The invention according to claim 9 is characterized in that the grooved product processed by the groove processing method of claim 1 is the main feature.
The invention according to claim 10 is characterized in that the molded product formed by the grooved product of claim 9 is the main feature.

請求項1記載の発明によれば、工具回転軸の傾きを測定し、その値を元に工具回転軸の傾きを調整することにより、平面精度に優れた溝加工を行うことができる。
請求項2記載の発明によれば、加工中の切削方向の切り替わりが無いため、安定して加工を行うことができるため、工具の回転軸の傾きを精度よく測定することができる。
請求項3記載の発明によれば、工具の端面方向のみで測定用の加工面の加工を行うことができるため、加工抵抗を小さくできる。そのため工具軸の傾きの測定をより正確に行うことができる。
請求項4記載の発明によれば、工具軸傾き測定用の加工面の傾きを干渉計で測定することにより、加工面同士の傾きを正確に測定できるため、精度よく工具軸の傾きを測定することができる。
請求項5記載の発明によれば、加工物を取り外すことなく、傾き測定を行うことができるため、短時間で工具の傾き調整を行うことができる。
請求項6記載の発明によれば、短時間に測定を行うことができる。
請求項7記載の発明によれば、加工面の光学的な特性の影響を受けることなく、加工面の測定を行うことができる。
請求項8記載の発明によれば、表面あらさ、形状精度に優れた測定用の加工面の加工を行うことができるため、工具軸の傾きの測定精度を向上させることができ、形状精度に優れた溝加工を行うことができる。
請求項9、10記載の発明によれば、形状精度に優れた溝形状加工品を得ることができる。また、その溝形状加工品を用いて成形することにより、形状精度に優れた溝形状の成形品を成形できる。
According to the first aspect of the present invention, it is possible to perform grooving with excellent plane accuracy by measuring the inclination of the tool rotation axis and adjusting the inclination of the tool rotation axis based on the measured value.
According to the second aspect of the invention, since there is no switching of the cutting direction during machining, the machining can be performed stably, and therefore the inclination of the rotation axis of the tool can be measured with high accuracy.
According to invention of Claim 3, since the process surface for a measurement can be processed only in the end surface direction of a tool, process resistance can be made small. As a result, the inclination of the tool axis can be measured more accurately.
According to the invention described in claim 4, since the inclination of the machining surfaces can be accurately measured by measuring the inclination of the machining surface for measuring the tool axis inclination with an interferometer, the inclination of the tool axis is accurately measured. be able to.
According to the invention described in claim 5, since the inclination measurement can be performed without removing the workpiece, the inclination of the tool can be adjusted in a short time.
According to invention of Claim 6, it can measure in a short time.
According to the seventh aspect of the present invention, the processed surface can be measured without being affected by the optical characteristics of the processed surface.
According to the eighth aspect of the present invention, since it is possible to process a measuring surface with excellent surface roughness and shape accuracy, it is possible to improve the measurement accuracy of the inclination of the tool axis, and to have excellent shape accuracy. Grooving can be performed.
According to the ninth and tenth aspects of the invention, it is possible to obtain a groove-shaped processed product having excellent shape accuracy. Further, by molding using the groove-shaped processed product, a groove-shaped molded product having excellent shape accuracy can be formed.

以下、本発明の実施の形態を図面に従って説明する。
図1は本発明の一実施形態に係る加工物の断面図であり、同図の様に加工物2に溝1の加工を行う場合、図2の様に、円柱部3aの先端に切削チップ3を取り付けたエンドミル工具4を工具回転軸5を中心に回転させて工具4の端面と外周面で溝1を加工する方法がある。
図3は図2でA方向から加工している様子を示したものである。図で角度βは、工具の移動方向Fに垂直な直線6と工具4の回転軸5とがなす角度を示している。
図4で3L、3L’は工具を回転させた際の工具の軌跡を示している。図4で、(a)は図3でβが0の場合を、(b)は図3でβ≠0の場合を示している。図4に示すように、βが0の場合、加工される溝1は断面が直線の溝になるが、β≠の場合(b)の1’に示すように、断面が円弧状の溝となる。
図5は溝形状を示したもので、図でPは溝のピッチを、θは溝の傾き角度を、dは溝の深さを示している。図6は図5に示す溝を加工している様子を示したもので工具の回転半径をRとする。
図7は工具が傾いた際に溝が円弧形状になる様子を示したもので、図でδは主軸傾きが0の場合に加工される溝に対する円弧の深さを示している。図8は図5、図6でP=5mm、d=5μm、R=6mmの時に、図4のβと、図7に示す円弧深さδの関係を示したものである。
図8に示すように、5秒程度の傾きであっても、50nm程度の深さの凹形状になることがわかる。そのため、図2に示す加工を行う場合、加工する溝1の要求精度にもよるが、図3に示すβを5秒以下程度にする必要があることがわかる。
本発明は1面の加工を行った後、加工物を180度回転させて、もう1面加工を行い、2つの加工で工具の端面で加工された平面がなす角度を測定することにより、工具回転軸の傾きβを測定し、その値を元に工具回転軸の傾きを調整することにより、平面精度に優れた溝加工を行うものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a workpiece according to an embodiment of the present invention. When the groove 1 is processed in the workpiece 2 as shown in FIG. 1, a cutting tip is provided at the tip of the cylindrical portion 3a as shown in FIG. There is a method in which the end mill tool 4 to which 3 is attached is rotated about the tool rotation shaft 5 to process the groove 1 on the end surface and outer peripheral surface of the tool 4.
FIG. 3 shows a state of machining from the direction A in FIG. In the drawing, an angle β indicates an angle formed by the straight line 6 perpendicular to the moving direction F of the tool and the rotation axis 5 of the tool 4.
In FIG. 4, 3L and 3L ′ indicate the trajectory of the tool when the tool is rotated. 4, (a) shows the case where β is 0 in FIG. 3, and (b) shows the case where β ≠ 0 in FIG. As shown in FIG. 4, when β is 0, the processed groove 1 is a straight groove, but when β ≠, as shown in 1 ′ of (b), the groove is an arc-shaped groove. Become.
FIG. 5 shows the groove shape, where P indicates the groove pitch, θ indicates the groove inclination angle, and d indicates the groove depth. FIG. 6 shows a state in which the groove shown in FIG.
FIG. 7 shows a state in which the groove has an arc shape when the tool is tilted. In FIG. 7, δ indicates the depth of the arc with respect to the groove to be machined when the main axis inclination is zero. FIG. 8 shows the relationship between β in FIG. 4 and the arc depth δ shown in FIG. 7 when P = 5 mm, d = 5 μm, and R = 6 mm in FIGS.
As shown in FIG. 8, it can be seen that a concave shape having a depth of about 50 nm is obtained even when the inclination is about 5 seconds. Therefore, when performing the processing shown in FIG. 2, it is understood that β shown in FIG.
In the present invention, after processing one surface, the workpiece is rotated 180 degrees, another surface processing is performed, and an angle formed by a plane processed at the end face of the tool by two processings is measured. By measuring the inclination β of the rotation axis and adjusting the inclination of the tool rotation axis based on the measured value, grooving with excellent plane accuracy is performed.

図9で(a)は工具の回転中心が加工物の内側にある場合、(c)は工具の回転中心が加工物の外側にある場合を示している。また、(b)、(d)はそれぞれ、(a)、(c)で矢印の方向(上面)から見た様子を示している。
図9(a)の様に、工具4の回転中心が加工物2の内側にある場合、(b)に示すように、工具4の切削方向がMを境にA方向と、B方向に異なることがわかる。この場合、A方向とB方向で加工中の加工抵抗が変わるため、加工面の形状精度が悪化し、加工面の傾きの測定精度が悪くなるという問題がある。
それに対して、図9(c)に示すように、工具4の回転中心が加工物2の外側にある場合は、(d)に示すように、切削方向の切り替わりが無いため、安定して加工を行うことができ、工具4の回転軸の傾きを精度よく測定することができる。
図10に示すように、加工物側の工具端面が低くなるように工具の回転軸の傾いている状態の場合、図に示すように、端面方向だけでなく、円周方向でも加工を行うことになるため、加工抵抗が大きくなり、測定用の加工面の精度が悪化するという問題がある。
そのため、加工物側の工具端面が高くなるように(工具端面のみで加工できるように)、工具4の傾きを設定して加工することにより、工具の端面方向のみで、測定用の加工面の加工を行い、工具軸の傾きの測定を正確に行うことができる。
工具軸傾き測定用の加工面の傾きを干渉計で測定することにより、加工面同士の傾きを正確に測定できるため、精度よく、工具軸の傾きを測定することができる。
加工機上に取り付けられた測定器により傾きの測定を行うことにより、加工物を取り外しすることなく、傾き測定を行うことができるため、短時間で工具の傾き調整を行うことができる。
測定器として、光触針を用いることにより、加工物に傷をつけることなく短時間に測定を行うことができる。測定器として、接触式プローブを用いた場合、加工面の光学的な特性の影響を受けることなく、加工面の測定を行うことができる。
工具として、単結晶ダイヤモンドを用いることにより、表面あらさ、形状精度に優れた測定用の加工面の加工を行うことができるため、工具軸の傾きの測定精度を向上させることができ、形状精度に優れた溝加工を行うことができる。
9A shows a case where the center of rotation of the tool is inside the workpiece, and FIG. 9C shows a case where the center of rotation of the tool is outside the workpiece. Further, (b) and (d) respectively show the state viewed from the direction of the arrow (upper surface) in (a) and (c).
When the rotation center of the tool 4 is inside the workpiece 2 as shown in FIG. 9A, the cutting direction of the tool 4 is different between the A direction and the B direction with respect to M as shown in FIG. 9B. I understand that. In this case, since the machining resistance during machining changes between the A direction and the B direction, there is a problem that the shape accuracy of the machined surface is deteriorated and the measurement accuracy of the inclination of the machined surface is deteriorated.
On the other hand, as shown in FIG. 9C, when the center of rotation of the tool 4 is outside the workpiece 2, the cutting direction is not changed as shown in FIG. And the inclination of the rotation axis of the tool 4 can be measured with high accuracy.
As shown in FIG. 10, when the rotation axis of the tool is inclined so that the tool end surface on the workpiece side is lowered, as shown in the figure, machining is performed not only in the end surface direction but also in the circumferential direction. Therefore, there is a problem that the machining resistance increases and the accuracy of the machining surface for measurement deteriorates.
Therefore, by setting the inclination of the tool 4 so that the tool end surface on the workpiece side is high (so that only the tool end surface can be processed), the processing surface for measurement is measured only in the direction of the end surface of the tool. Machining can be performed to accurately measure the inclination of the tool axis.
By measuring the inclination of the machining surface for measuring the tool axis inclination with an interferometer, the inclination between the machining surfaces can be accurately measured, so that the inclination of the tool axis can be measured with high accuracy.
By measuring the inclination with a measuring instrument attached on the processing machine, the inclination can be measured without removing the work piece, so that the inclination of the tool can be adjusted in a short time.
By using an optical stylus as a measuring instrument, measurement can be performed in a short time without damaging the workpiece. When a contact-type probe is used as the measuring instrument, the processed surface can be measured without being affected by the optical characteristics of the processed surface.
By using single crystal diamond as a tool, it is possible to process the measurement surface with excellent surface roughness and shape accuracy, so that the measurement accuracy of the tool axis tilt can be improved and the shape accuracy is improved. Excellent groove processing can be performed.

図11に加工機の構成を示す。図で2は加工物、4はエンドミル工具、5はエンドミル工具の回転軸を示している。7、8、9はそれぞれ、X、Y、Z方向の移動テーブルを示している。
10は工具の回転軸5をA軸方向に回転させるA軸テーブルを、11は回転軸5をB軸方向へ回転させるB軸テーブル、12は回転軸5をC軸方向へ回転させるC軸テーブルを示している。13はエンドミル工具4を回転させる工具スピンドル、14は加工機本体を示している。
図12は測定用の加工面を作製している様子を示したもので、図12で左側は図11におけるYZ平面での加工の様子を見たもので、右側は、加工面の斜視図を示している。図12で、(a)は加工を行う前の状態を示している。次に工具4を回転させながら、図11のX軸方向に工具4を移動させて、測定用加工面21Aの加工を行う( 図12(b))。次に図11で示すC軸を中心として加工物20を180度回転させる(c)。加工物20を180度回転させた後、測定用加工面21Bの加工を行う(d)。
FIG. 11 shows the configuration of the processing machine. In the figure, 2 is a workpiece, 4 is an end mill tool, and 5 is a rotation axis of the end mill tool. Reference numerals 7, 8, and 9 indicate movement tables in the X, Y, and Z directions, respectively.
10 is an A-axis table that rotates the rotary shaft 5 of the tool in the A-axis direction, 11 is a B-axis table that rotates the rotary shaft 5 in the B-axis direction, and 12 is a C-axis table that rotates the rotary shaft 5 in the C-axis direction. Is shown. Reference numeral 13 denotes a tool spindle for rotating the end mill tool 4, and reference numeral 14 denotes a processing machine main body.
FIG. 12 shows a state where a machining surface for measurement is produced. In FIG. 12, the left side shows a state of machining on the YZ plane in FIG. 11, and the right side shows a perspective view of the machining surface. Show. In FIG. 12, (a) shows a state before processing. Next, while rotating the tool 4, the tool 4 is moved in the X-axis direction of FIG. 11 to process the measurement processing surface 21A (FIG. 12B). Next, the workpiece 20 is rotated 180 degrees around the C axis shown in FIG. 11 (c). After the workpiece 20 is rotated 180 degrees, the processing surface 21B for measurement is processed (d).

図13に示すように、2つの加工面21A、21Bがなす角度をφとすると、図3に示す工具回転軸の傾きβとφの関係は、φ=180+2β(単位は度)となるので、β=(φ−180)/2と表すことができる。よって、測定用加工面21A、21Bがなす角度φを測定することにより、βを求めることができる。
φを測定する方法としては、干渉計で測定する方法がある。この場合、加工物を加工機から取り外す必要があるが、測定精度、再現性の高い測定ができるため、βを高い精度で求めることができる。
加工機に取り付けられた測定器を用いて測定を行う場合、加工物を加工機に取りつけたまま測定を行うことができる。そのため、βの調整を行った後、再度測定用加工面の加工を行うことを繰り返し行うことが容易に行えるので、短時間で工具回転軸の傾きβを求めることができる。
加工機に取り付けた測定器による測定としては、図14に示すように、加工機に取り付けられた光触針30を矢印の様に走査することにより測定を行う方法がある。光触針を用いる場合、短時間に測定を行うことができるという特徴がある。
加工機に取り付ける測定器としては、図15に示すように、接触式プローブ31を取り付ける方法もある。この場合、光触針に比べ、走査速度は遅くなるが、加工物の光学的な特性の影響を受けることなく測定ができるという利点がある。
本発明の場合、工具の材質は特に限定されるものではないが、工具として、単結晶ダイヤモンドを用いた場合、形状精度、表面粗さに優れた加工ができ、工具軸の傾きの測定精度を向上させることができるため、より形状精度に優れた溝加工を行うことができる。
As shown in FIG. 13, when the angle formed by the two machining surfaces 21A and 21B is φ, the relationship between the inclination β and φ of the tool rotation axis shown in FIG. 3 is φ = 180 + 2β (the unit is degrees). β = (φ−180) / 2. Therefore, β can be obtained by measuring the angle φ formed by the measurement processed surfaces 21A and 21B.
As a method of measuring φ, there is a method of measuring with an interferometer. In this case, although it is necessary to remove the workpiece from the processing machine, β can be obtained with high accuracy because measurement with high measurement accuracy and reproducibility can be performed.
When measurement is performed using a measuring instrument attached to the processing machine, the measurement can be performed with the workpiece attached to the processing machine. Therefore, after adjusting β, it is easy to repeatedly perform the processing of the measurement processing surface again, so that the inclination β of the tool rotation axis can be obtained in a short time.
As the measurement by the measuring instrument attached to the processing machine, there is a method of measuring by scanning the optical stylus 30 attached to the processing machine as shown by an arrow as shown in FIG. When using an optical stylus, the measurement can be performed in a short time.
As a measuring instrument attached to a processing machine, there is also a method of attaching a contact probe 31 as shown in FIG. In this case, the scanning speed is slower than that of the optical stylus, but there is an advantage that measurement can be performed without being affected by the optical characteristics of the workpiece.
In the case of the present invention, the material of the tool is not particularly limited. However, when single crystal diamond is used as the tool, processing with excellent shape accuracy and surface roughness can be performed, and the measurement accuracy of the inclination of the tool axis can be improved. Since it can be improved, groove processing with better shape accuracy can be performed.

溝加工された加工物を示す図である。It is a figure which shows the workpiece which carried out the groove process. 加工物に溝を加工する様子を示す図である。It is a figure which shows a mode that a groove | channel is processed into a workpiece. 図2のA視図である。It is A view of FIG. 工具の軌跡を示す図である。It is a figure which shows the locus | trajectory of a tool. 加工物の溝形状を示す図である。It is a figure which shows the groove shape of a workpiece. 図5に示す溝を加工する様子を示す図である。It is a figure which shows a mode that the groove | channel shown in FIG. 5 is processed. 工具が傾いた際に溝が円弧形状になる様子を示す図である。It is a figure which shows a mode that a groove | channel becomes circular arc shape when a tool inclines. 図3のβと図7に示す円弧深さδの関係を示す図である。It is a figure which shows the relationship between (beta) of FIG. 3, and circular arc depth (delta) shown in FIG. 工具の回転中心が加工物の内側と外側にある場合を示す図である。It is a figure which shows the case where the rotation center of a tool exists in the inner side and the outer side of a workpiece. 端面方向、円周方向で加工を行う様子を示す図である。It is a figure which shows a mode that it processes in an end surface direction and the circumferential direction. 加工機の外観図である。It is an external view of a processing machine. 測定用の加工面を作製している様子を示す図である。It is a figure which shows a mode that the process surface for a measurement is produced. 2つの加工面がなす角度φを示す図である。It is a figure which shows angle (phi) which two process surfaces make. 光触針による測定の様子を示す図である。It is a figure which shows the mode of the measurement by an optical stylus. 接触式プローブによる測定の様子を示す図である。It is a figure which shows the mode of the measurement by a contact type probe.

符号の説明Explanation of symbols

1 溝
2 加工物
4 工具
1 Groove 2 Workpiece 4 Tool

Claims (10)

工具の端面と外周面を用いて加工物に対する溝加工を行う溝加工法において、溝加工を行う前に、1面の加工を行った後、加工物を180度回転させて、もう1面の加工を行い、工具の端面で加工された平面がなす角度を測定することにより、工具回転軸の傾きを測定し、その値を元に工具の傾きを調整した後に溝加工を行うことを特徴とする溝加工法。   In a grooving method for grooving a workpiece using the end face and outer peripheral surface of the tool, before performing grooving, after machining one surface, the workpiece is rotated 180 degrees to obtain another surface. Measure the inclination of the tool rotation axis by measuring the angle formed by the plane machined at the end face of the tool, adjust the tool inclination based on the value, and then perform grooving Grooving method. 請求項1の溝加工法において、工具の回転中心を加工物の外側に配した状態で加工することを特徴とする溝加工法。   The grooving method according to claim 1, wherein the grooving method is performed in a state where the center of rotation of the tool is arranged outside the workpiece. 請求項2の溝加工法において、工具の端面のみで加工物に対する加工を行うように工具の傾きを設定して加工することを特徴とする溝加工法。   3. The grooving method according to claim 2, wherein the machining is performed by setting the inclination of the tool so that the workpiece is machined only by the end face of the tool. 請求項1の溝加工法において、2つの平面の傾き測定に干渉計を用いることを特徴とする溝加工法。   2. A grooving method according to claim 1, wherein an interferometer is used for measuring the inclination of two planes. 請求項1の溝加工法において、加工機上に取り付けられた測定器により2つの平面の傾きの測定を行うことを特徴とする溝加工法。   2. The grooving method according to claim 1, wherein the inclination of two planes is measured by a measuring instrument mounted on a processing machine. 請求項5の溝加工法において、測定器として、光触針を用いることを特徴とする溝加工法。   6. A grooving method according to claim 5, wherein an optical stylus is used as a measuring instrument. 請求項5の溝加工法において、測定器として、接触式プローブを用いることを特徴とする溝加工法。   6. The grooving method according to claim 5, wherein a contact probe is used as a measuring instrument. 請求項1の溝加工法において、工具として、単結晶ダイヤモンドを用いることを特徴とする溝加工法。   2. The grooving method according to claim 1, wherein single-crystal diamond is used as a tool. 請求項1の溝加工法によって加工されたことを特徴とする溝加工品。   A grooved product processed by the groove processing method according to claim 1. 請求項9の溝加工品によって成形されたことを特徴とする成形品。
A molded product formed by the grooved product according to claim 9.
JP2003293249A 2003-08-13 2003-08-13 Groove processing method, groove workpiece, and molded article Pending JP2005059155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293249A JP2005059155A (en) 2003-08-13 2003-08-13 Groove processing method, groove workpiece, and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293249A JP2005059155A (en) 2003-08-13 2003-08-13 Groove processing method, groove workpiece, and molded article

Publications (1)

Publication Number Publication Date
JP2005059155A true JP2005059155A (en) 2005-03-10

Family

ID=34370274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293249A Pending JP2005059155A (en) 2003-08-13 2003-08-13 Groove processing method, groove workpiece, and molded article

Country Status (1)

Country Link
JP (1) JP2005059155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017056491A (en) * 2015-09-14 2017-03-23 Jfeスチール株式会社 Slab surface repairing method
CN107824843A (en) * 2016-09-16 2018-03-23 发那科株式会社 Lathe and workpiece planarization processing method
CN113634801A (en) * 2021-10-13 2021-11-12 江苏巨杰机电有限公司 Method and device for milling irregular disc on upper and lower end surfaces

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017056491A (en) * 2015-09-14 2017-03-23 Jfeスチール株式会社 Slab surface repairing method
CN107824843A (en) * 2016-09-16 2018-03-23 发那科株式会社 Lathe and workpiece planarization processing method
CN113634801A (en) * 2021-10-13 2021-11-12 江苏巨杰机电有限公司 Method and device for milling irregular disc on upper and lower end surfaces

Similar Documents

Publication Publication Date Title
JPH01159118A (en) Method of machining work by end-face grinding tool
JPWO2005092548A1 (en) Cutting method and apparatus, and rib electrode for electric discharge machining
TW201038345A (en) Processing apparatus and processing method
JPWO2017057026A1 (en) Screw rotor processing method, processing apparatus, processing tool, and screw compressor manufacturing method
JP2005022034A (en) Machine tool
JP2007307680A (en) Cutting method, optical element and die
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP2005059155A (en) Groove processing method, groove workpiece, and molded article
KR20160141650A (en) Method of manufacturing stylus and stylus
JP2005212030A (en) Method of manufacturing metal mold for ring band optical element
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JP2003220501A (en) Method for making circular arc groove
JP2008110458A (en) Manufacturing method of end mill having circular arc blade
JP6644223B2 (en) Rotary electrode electric discharge machine
JPH01146649A (en) Cutting tool polishing device
JP5545254B2 (en) Burnishing tool
JP5697239B2 (en) Method for processing susceptor substrate and susceptor substrate
JP2011011295A (en) Fine recessed part working method and fine recessed part working machine
JP2019072788A (en) Processing method, processing device and grindstone
JP2001162426A (en) Curved surface cutting device and curved surface cutting method
CN215748577U (en) Workpiece grinding device and processing equipment
JP2000198001A (en) Cutting tool and cutting work method
JP2009090405A (en) Gripping tool, gripping method, and machining device
JP2005305590A (en) Method and apparatus for machining curved surface
JPH07148602A (en) Spherical surface machining method, its device and jig used for the device