【0001】
【発明の属する技術分野】
この発明は、金属母材上に供給した金属粉末やセラミック粉末などの粉末材料をレーザビームにより溶融して肉盛りをおこなうレーザ肉盛装置に関する。
【0002】
【従来の技術】
レーザビームを加熱源としてワイヤ状あるいは粉末状の肉盛用材料を溶融させ母材の表面部に肉盛りする肉盛装置としては、従来はレーザトーチ内に、レーザビーム通過経路に沿ってレンズを配置した光学的集光系を設けて、レーザビームをトーチ直下部で小径に絞って肉盛用材料の溶融をおこなうのが一般的であった(たとえば特許文献1および2参照。)。
【特許文献1】
特開平7−40069号公報(第3頁、図1)
【特許文献2】
特開平8−118049号公報(第2−3頁、図1,図22)
【0003】
ところが上記の装置においては、上記光学的集光系を設けるためレーザトーチが大型となり、たとえば内径40mm程度の小径管内などの狭い空間内での肉盛りは不可能であった。また肉盛用材料が粉末材料から成る場合は、上記特許文献2の図22に示されているように、レーザビームの直前位置に粉末材料を供給する必要があり、レーザビームと粉末材料供給用の給粉ノズルとの位置関係により肉盛進行方向が一方向に制約され、さらに肉盛時における酸化防止のために不活性ガスなどのシールドガスを母材上に供給しようとすると、未溶融の粉末材料の飛散を招くため、シールドガスの使用は困難であった。
【0004】
【発明が解決しようとする課題】
この発明は上記従来の問題点を解決しようとするものであり、レーザトーチを小型化できるとともに、肉盛進行方向も制約されず、粉末材料の肉盛溶接時におけるシールドガスの使用が可能なレーザ肉盛装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するためにこの発明のレーザ肉盛装置は、レーザトーチに設けた給粉ノズルにより金属母材上に供給した粉末材料を、レーザビームにより溶融して肉盛りするレーザ肉盛装置において、レーザ発振器より発振されたレーザビームを分割光として導入する光ファイバ束の射出端側を、光ファイバの小束に分け、この光ファイバの各小束を、その各射出軸線が前記給粉ノズルより所定距離下方の交差位置において該給粉ノズルの軸線と交差するように該軸線に対して傾斜させ、かつ前記給粉ノズルを包囲する分散配置状態で、前記レーザトーチに取付けるとともに、前記レーザトーチの前記光ファイバの小束群取付位置の外周側に、シールドガス供給用の環状のガス流出口を設けたことを特徴とする。
【0006】
この発明のレーザ肉盛装置においては、レーザ発振器により発振されたレーザビームを多数本の光ファイバの束により分割光として伝送し、レーザトーチ部においては光ファイバの各小束から射出する小束ビームを、給粉ノズルの軸線と交差する交差位置である一点(以下、集光点という)に集光させることにより、高密度エネルギの熱源として、給粉ノズルからこの集光点に向って供給される粉末材料の溶融をおこなう。このためレーザトーチ部にはレンズ等の光学的集光系が不要であり、レーザトーチは小型のもので済む。また粉末材料は、上記小束ビーム群で包囲された空間内を、上記集光点と同心の給粉ノズルから集光点に向って供給されるので、肉盛溶接進行方向は自由に選定でき、また粉末材料は集光点付近で高エネルギ密度となった小束ビーム群により迅速・確実に溶融され、粉末のまま滞留することはないので、環状のガス流出口からのシールドガスにより、粉末の飛散をひきおこすことなく、肉盛溶接部を無酸化雰囲気に維持しつつ肉盛溶接をおこなうことができる。
【0007】
【発明の実施の形態】
以下図1〜図4に示す第1例により、この発明の実施の形態を説明する。図1は、レーザ肉盛装置1の構成を示し、2はレーザ発振器、3はこのレーザ発振器により発振されたレーザビーム4を分割光として伝送する光ファイバ束、5はこの光ファイバ束3により伝送される分割光を後述の機構により集光して粉末材料6を溶融し金属母材7上に肉盛層8を形成するレーザトーチである。
【0008】
光ファイバ束3は、多数本(この例では96本)の光ファイバ31から成り、全光ファイバ31を密集状態に束ねたその導入端3aは、レーザ発振器2のレーザビーム4が照射される位置に固定保持されている。なおレーザビーム4の径等によっては、導入端3aの前段側に集光用のレンズを設けてもよい。
【0009】
レーザトーチ5は、図2に示すように屈曲筒体状のケーシング11内に、屈曲管状の給粉ノズル12と光ファイバ束3の射出端側を収容するとともに、その先端部11aにシールドガス供給部13を設けて成り、その基端部11bは、図示しないホルダにより保持されている。
【0010】
ケーシング11の導入口14からケーシング11内に導入された光ファイバ束3は、複数本(この例では4本)の光ファイバ31から成る複数本(この例では24本)の小束32に分けられている。そしてこの各小束32の先端部は、図2〜図4に示すように、その射出軸線(この例では4本の光ファイバ群の中心軸線)33が、給粉ノズル12の給粉口12aより所定距離Hだけ下方の交差位置(以下、集光点Fという)において、給粉ノズル12の軸線15と交差するように、軸線15に対して傾斜した状態で、かつ軸線15を中心として給粉ノズル12を包囲する円周上に分散配置された状態で、ケーシング11の端板16に穿設した穴17に嵌込まれて該端板16により固定保持されている。
【0011】
またシールドガス供給部13は、ケーシング11の先端部11aの外周に環状部材18を固着して下向きの環状のガス流出口19を形成するとともに、ケーシング11内と環状部材18内を連通する多数個の通気穴20をケーシング壁面に穿設して成り、ケーシング11の基端部11b側に設けた図示しない給気口からケーシング11内に送給されたシールドガス21は、ケーシング11内を流通後、通気穴20を経てガス流出口19から金属母材7上に供給される。
【0012】
上記構成のレーザ肉盛装置1により肉盛りをおこなうには、レーザ発振器2のレーザビーム4を光ファイバ束3の導入端3aに照射するとともに、金属粉末やセラミック粉末から成る粉末材料6をアルゴンガスなどのキャリヤガスと共に給粉ノズル12内に圧送して給粉口12aから下方へ送出し、アルゴンガスなどの不活性ガスから成るシールドガス21をケーシング11内に送給しガス流出口19から金属母材7に向って流出させる。
【0013】
レーザビーム4は光ファイバ束3内を伝送され、ケーシング11内において分けられた複数本の光ファイバの各小束32の射出端から射出された小束ビームは、給粉ノズル12の軸線15上の集光点Fに集光され、高密度エネルギのレーザビーム集光部が形成される。そして金属母材7の上面に対するレーザトーチ5の上下位置の調整により集光点Fを上下させて、光学的集光系を用いる場合と同様に、金属母材7の上面(あるいはこの上に供給される粉末材料6層)に対して所望のディフォーカス量Sに設定することにより、粉末材料6の粒度や融点などに応じた所望のエネルギ密度でレーザビームの照射をおこなうことができる。
【0014】
給粉ノズル12の給粉口12aから送出された粉末材料6は、上記の各小束32から射出される小束ビーム群により包囲された円錐体状の空間内を集光点Fに向って降下し、集光点F付近で高エネルギ密度となった小束ビーム群により迅速・確実に溶融され、粉末のまま金属母材7あるいは肉盛層8上に滞留することはないので、シールドガス21による飛散などを生じることなく、環状のガス流出口19から流出するシールドガス21により包囲された無酸化雰囲気内で、肉盛りがおこなわれる。また上記のように粉末材料6は、集光点Fと同心の給粉口12aから上記小束ビーム群の中心部へ供給されるので、肉盛進行方向は自由に選定できるのである。
【0015】
この発明は上記の例に限定されるものではなく、たとえば光ファイバ束3や小束32のファイバ構成、レーザトーチ5の具体的構造などは、上記以外のものとしてもよく、またシールドガス21は環状部材18内に直接送給してもよい。
【0016】
【発明の効果】
以上説明したようにこの発明によれば、レーザビームの集光に光学的集光系を用いないので、レーザトーチを小型化でき狭い空間内での肉盛りが可能となる。また粉末材料は光ファイバの各小束の発する小束ビーム群で包囲された空間の中心部を集光点に向って供給されるので、肉盛進行方向は自由に選定できるとともに、環状のガス流出口からのシールドガスの供給によって、粉末材料の飛散を生じることなく無酸化雰囲気内での肉盛りをおこなうことができる。
【図面の簡単な説明】
【図1】この発明の実施の形態の一例を示すレーザ肉盛装置の構成図である。
【図2】図1のレーザトーチの縦断面図である。
【図3】図2のA−A線断面図である。
【図4】図3における小束貫通部の1個所の拡大図である。
【符号の説明】
1…レーザ肉盛装置、2…レーザ発振器、3…光ファイバ束、3a…導入端、4…レーザビーム、5…レーザトーチ、6…粉末材料、7…金属母材、11…ケーシング、12…給粉ノズル、13…シールドガス供給部、15…軸線、19…ガス流出口、21…シールドガス、31…光ファイバ、32…小束、33…射出軸線。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser build-up apparatus that melts a powder material such as metal powder or ceramic powder supplied on a metal base material with a laser beam to build up the material.
[0002]
[Prior art]
As a build-up device that melts a wire or powder-like material for overlaying using a laser beam as a heating source and builds up on the surface of the base material, a lens is conventionally arranged in the laser torch along the laser beam passage path. In general, the optical condensing system is provided and the laser beam is squeezed to a small diameter just below the torch to melt the material for overlaying (see, for example, Patent Documents 1 and 2).
[Patent Document 1]
JP 7-40069 (page 3, FIG. 1)
[Patent Document 2]
JP-A-8-118049 (page 2-3, FIGS. 1 and 22)
[0003]
However, in the above apparatus, since the optical condensing system is provided, the laser torch becomes large, and it is impossible to build up in a narrow space such as a small diameter tube having an inner diameter of about 40 mm. When the material for building up is made of a powder material, as shown in FIG. 22 of Patent Document 2, it is necessary to supply the powder material immediately before the laser beam. The direction of build-up is limited to one direction due to the positional relationship with the powder feed nozzle, and if an attempt is made to supply a shielding gas such as an inert gas on the base material to prevent oxidation during build-up, unmelted The use of shielding gas has been difficult because of the scattering of the powder material.
[0004]
[Problems to be solved by the invention]
The present invention is intended to solve the above-mentioned conventional problems. The laser torch can be reduced in size, and the direction of build-up is not restricted, and the laser meat capable of using shield gas at the time of build-up welding of a powder material can be used. An object is to provide a filling device.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the laser cladding apparatus of the present invention is a laser cladding apparatus that melts and overlays a powder material supplied on a metal base material by a laser feed nozzle provided on a laser torch with a laser beam. The exit end side of the optical fiber bundle that introduces the laser beam oscillated from the laser oscillator as the divided light is divided into small bundles of optical fibers, and each small bundle of optical fibers is separated from the powder feeding nozzle. The laser torch is attached to the laser torch in a distributed arrangement in which it is inclined with respect to the axis so as to intersect the axis of the powdering nozzle at a crossing position below a predetermined distance and surrounds the powdering nozzle, and the light of the laser torch An annular gas outlet for supplying a shielding gas is provided on the outer peripheral side of the position where the small bundle group of fibers is attached.
[0006]
In the laser cladding apparatus according to the present invention, the laser beam oscillated by the laser oscillator is transmitted as a split beam by a bundle of a plurality of optical fibers, and a small bundle beam emitted from each small bundle of optical fibers is transmitted at the laser torch portion. By condensing at one point (hereinafter referred to as a condensing point) that intersects with the axis of the powder feeding nozzle, it is supplied from the powdering nozzle toward this condensing point as a heat source of high-density energy. The powder material is melted. For this reason, an optical condensing system such as a lens is not required for the laser torch, and the laser torch is small. In addition, since the powder material is supplied from the powder supply nozzle concentric with the condensing point toward the condensing point in the space surrounded by the small bundle beam group, the overlay welding progress direction can be freely selected. In addition, since the powder material is melted quickly and reliably by the small bundle of beams with high energy density near the focal point and does not stay in the powder state, the powder is removed by the shielding gas from the annular gas outlet. Therefore, overlay welding can be performed while maintaining the weld overlay in a non-oxidizing atmosphere.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to a first example shown in FIGS. FIG. 1 shows the configuration of a laser cladding apparatus 1, 2 is a laser oscillator, 3 is an optical fiber bundle that transmits a laser beam 4 oscillated by the laser oscillator as split light, and 5 is transmitted by this optical fiber bundle 3. This is a laser torch in which the divided light to be collected is condensed by a mechanism described later to melt the powder material 6 and form the overlay layer 8 on the metal base material 7.
[0008]
The optical fiber bundle 3 is composed of a large number (96 in this example) of optical fibers 31, and the introduction end 3 a that bundles all the optical fibers 31 in a dense state is a position where the laser beam 4 of the laser oscillator 2 is irradiated. Is held fixed. Depending on the diameter of the laser beam 4 or the like, a condensing lens may be provided on the upstream side of the introduction end 3a.
[0009]
As shown in FIG. 2, the laser torch 5 accommodates the bent tubular powder supply nozzle 12 and the emission end side of the optical fiber bundle 3 in a bent cylindrical casing 11, and a shield gas supply section at the tip 11a. 13 and the base end portion 11b is held by a holder (not shown).
[0010]
The optical fiber bundle 3 introduced into the casing 11 from the introduction port 14 of the casing 11 is divided into a plurality of (four in this example) optical fibers 31 (24 in this example) small bundles 32. It has been. As shown in FIGS. 2 to 4, the distal end portion of each small bundle 32 has an injection axis 33 (in this example, the central axis of four optical fiber groups) 33, which is a powder feed port 12 a of the powder feed nozzle 12. Further, at an intersecting position (hereinafter, referred to as a condensing point F) lower by a predetermined distance H, the feed is performed with the axis 15 as the center while being inclined with respect to the axis 15 so as to intersect with the axis 15 of the powder feeding nozzle 12. In a state of being distributed on the circumference surrounding the powder nozzle 12, it is fitted into a hole 17 formed in the end plate 16 of the casing 11 and fixed and held by the end plate 16.
[0011]
The shield gas supply unit 13 has an annular member 18 fixed to the outer periphery of the front end portion 11 a of the casing 11 to form a downward annular gas outlet 19, and many shield gas supply units 13 communicate with the inside of the casing 11 and the annular member 18. The shield gas 21 which is formed in the casing wall surface and is fed into the casing 11 from an air supply port (not shown) provided on the base end portion 11 b side of the casing 11 flows through the casing 11. Then, the gas is supplied onto the metal base material 7 from the gas outlet 19 through the vent hole 20.
[0012]
In order to perform the build-up by the laser build-up apparatus 1 having the above-described configuration, the laser beam 4 of the laser oscillator 2 is irradiated to the introduction end 3a of the optical fiber bundle 3, and the powder material 6 made of metal powder or ceramic powder is argon gas. The gas is fed into the powder feed nozzle 12 together with a carrier gas such as the like, and sent downward from the powder feed port 12a. The shield gas 21 made of an inert gas such as argon gas is fed into the casing 11, and the gas is discharged from the gas outlet 19 to the metal. Drain toward base material 7.
[0013]
The laser beam 4 is transmitted through the optical fiber bundle 3, and the small bundle beam emitted from the exit end of each small bundle 32 of the plurality of optical fibers divided in the casing 11 is on the axis 15 of the powder feeding nozzle 12. Is condensed at a condensing point F, and a laser beam condensing portion with high density energy is formed. Then, the focal point F is moved up and down by adjusting the vertical position of the laser torch 5 with respect to the upper surface of the metal base material 7, and the upper surface of the metal base material 7 (or supplied thereon) in the same manner as in the case of using the optical condensing system. By setting the desired defocus amount S to the powder material 6 layer), the laser beam can be irradiated with a desired energy density according to the particle size, melting point, etc. of the powder material 6.
[0014]
The powder material 6 delivered from the powder feed port 12a of the powder feed nozzle 12 is directed toward the condensing point F in a conical space surrounded by the small bundle beams emitted from each of the small bundles 32 described above. Since it descends and is melted quickly and reliably by a small bundle of beams having a high energy density near the condensing point F, it does not stay on the metal base material 7 or the overlay layer 8 as a powder. The padding is performed in a non-oxidizing atmosphere surrounded by the shield gas 21 flowing out from the annular gas outlet 19 without scattering by the gas 21. Moreover, since the powder material 6 is supplied to the center part of the said small bundle beam group from the powder feeding port 12a concentric with the condensing point F as mentioned above, the build-up advancing direction can be selected freely.
[0015]
The present invention is not limited to the above example. For example, the fiber configuration of the optical fiber bundle 3 and the small bundle 32, the specific structure of the laser torch 5 and the like may be other than those described above, and the shield gas 21 may be annular. It may be fed directly into the member 18.
[0016]
【The invention's effect】
As described above, according to the present invention, since an optical condensing system is not used for condensing a laser beam, the laser torch can be reduced in size and can be built up in a narrow space. In addition, since the powder material is supplied toward the condensing point through the central portion of the space surrounded by the small bundle beam emitted by each small bundle of optical fibers, the overlaying direction can be freely selected and the annular gas can be selected. By supplying the shielding gas from the outflow port, it is possible to perform build-up in a non-oxidizing atmosphere without causing scattering of the powder material.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a laser cladding apparatus showing an example of an embodiment of the present invention.
2 is a longitudinal sectional view of the laser torch of FIG. 1. FIG.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
4 is an enlarged view of one portion of a small bundle penetrating portion in FIG. 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laser cladding apparatus, 2 ... Laser oscillator, 3 ... Optical fiber bundle, 3a ... Introduction end, 4 ... Laser beam, 5 ... Laser torch, 6 ... Powder material, 7 ... Metal base material, 11 ... Casing, 12 ... Feeding Powder nozzle, 13 ... shield gas supply unit, 15 ... axis, 19 ... gas outlet, 21 ... shield gas, 31 ... optical fiber, 32 ... small bundle, 33 ... injection axis.