JP2004228901A - Surface wave device and its manufacturing method - Google Patents
Surface wave device and its manufacturing method Download PDFInfo
- Publication number
- JP2004228901A JP2004228901A JP2003013827A JP2003013827A JP2004228901A JP 2004228901 A JP2004228901 A JP 2004228901A JP 2003013827 A JP2003013827 A JP 2003013827A JP 2003013827 A JP2003013827 A JP 2003013827A JP 2004228901 A JP2004228901 A JP 2004228901A
- Authority
- JP
- Japan
- Prior art keywords
- film
- sio
- thickness
- platinum
- idt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、例えば表面波フィルタなどに用いられる表面波装置に関し、より詳細には、LiTaO3からなる圧電基板を用いた表面波装置に関する。
【0002】
【従来の技術】
従来、帯域フィルタとして、40°〜42°回転Y板X伝搬LiTaO3基板を用いた表面波装置が知られている(例えば、下記の非特許文献1)。RF帯の帯域フィルタでは、上記40°〜42°回転Y板X伝搬LiTaO3基板上に、波長λで規格化された膜厚H/λが0.08〜0.10であるAl膜によりIDTが形成されていた。
【0003】
上記のように、40°〜42°回転Y板X伝搬LiTaO3基板を用いた従来の表面波装置では、周波数温度特性TCFが−33ppm/℃と比較的大きいため、より一層温度特性が良好である仕様を十分に満たすことができなかった。なお、従来、表面波装置の周波数温度特性TCFを改善する方法として、LiTaO3基板上にAlからなるIDTを形成した後に、SiO2層を形成する方法が知られている(下記の特許文献1)。
【0004】
【非特許文献1】
1997年電子情報通信学会総合大会論文集:SA−10−6、第500頁−501頁
【特許文献1】
特開平2−295212号公報
【0005】
【発明が解決しようとする課題】
しかしながら、AlからなるIDTを用いた共振子やフィルタを形成する場合、大きな電気機械結合係数Ksawや反射係数を得るには、後述の図4や図5に示すように、IDTの電極膜厚H/λ(Hは膜厚、λは表面波の波長)は、0.08〜0.10とかなり厚くしなければならない。このように、AlからなるIDTがかなり厚くされているため、図15(a)に示されているIDTが形成されている部分において、周波数温度特性を改善するためにSiO2膜がその上に形成されると、図15(b),(c)に示すように、SiO2膜において大きな段差が生じ、SiO2膜にクラックが生じることがあった。そのため、クラックの発生により、弾性表面波フィルタのフィルタ特性が悪化しがちであった。
【0006】
加えて、AlからなるIDTの電極膜厚が厚いため、SiO2膜の形成によるIDTの電極表面の凹凸を被覆する効果が十分でなく、それによって、周波数温度特性が十分に改善されないことがあった。
【0007】
本発明の目的は、上述した従来技術の現状に鑑み、回転Y板X伝搬のLiTaO3基板を用いた弾性表面波装置において、SiO2膜の形成により周波数温度特性を改善し得るだけでなく、IDTの電極膜厚を薄くすることにより、SiO2膜におけるクラックを防止することができると共に減衰定数も大幅に低減でき、従って目的とするフィルタ特性などの電気的特性を得ることができ、かつIDTにおける電気機械結合係数及び反射係数が十分な大きさとされる、弾性表面波装置及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明のある広い局面によれば、オイラー角(0±2°,90°〜160°,0±2°)のLiTaO3からなる圧電基板と、前記圧電基板上に形成されており、少なくとも白金からなる電極層を有し、膜厚をH、表面波の波長をλとしたときに、規格化膜厚H/λが0.005〜0.054の範囲にあるIDTと、前記IDTを覆うように前記圧電基板上に形成されており、膜厚をHsとしたとき、表面波の波長λで規格化膜厚Hs/λが0.10〜0.40の範囲にあるSiO2膜とを備えることを特徴とする、表面波装置が提供される。
【0009】
本発明に係る表面波装置のある特定の局面では、前記圧電基板のオイラー角が(0±2°,90°〜155°,0±2°)であり、前記IDTの規格化膜厚H/λが0.01〜0.04の範囲にあり、それによって、電気機械結合係数を高めることができる。
【0010】
本発明に係る表面波装置の他の特定の局面では、前記LiTaO3からなる圧電基板のオイラー角と、SiO2膜の規格化膜厚Hs/λが下記の表3に示す組み合わせのいずれかであり、それによって、減衰定数αを0.05dB/λ以下、また、表3中の好ましいオイラー角の場合には、減衰定数αを0.025dB/λ以下とすることができる。
【0011】
【表3】
【0012】
本発明に係る表面波装置のさらに他の特定の局面では、前記圧電基板のオイラー角が(0±2°,102°〜150°,0±2°)であり、前記IDTの規格化膜厚H/λが0.013〜0.033の範囲にあり、それによって、電気機械結合係数を高めることができる。
【0013】
本発明に係る表面波装置のさらに限定的な局面では、前記LiTaO3からなる圧電基板のオイラー角と、前記SiO2膜の規格化膜厚Hs/λが下記の表4に示すいずれかの組み合わせであり、それによって、減衰定数αを0.05dB/λ以下、また、表4中の好ましいオイラー角の場合には、減衰定数αを0.025dB/λ以下とすることができる。
【0014】
【表4】
【0015】
本発明に係る表面波装置のさらに他の特定の局面では、白金からなる電極層に積層された白金以外の金属からなる少なくとも1つの電極層をさらに備えていてもよく、IDTの全体の平均密度が白金の密度±20%の範囲であれば、本発明の効果を得ることができる。
【0016】
本発明の別の広い局面によれば、オイラー角(0±2°,90°〜160°,0±2°)のLiTaO3からなる圧電基板を用意する工程と、前記圧電基板上に、白金からなる電極層を少なくとも有する少なくもと1つのIDTを形成する工程と、前記IDTを形成した後に周波数調整を行う工程と、前記周波数調整後に、IDTを被覆するようにSiO2膜を前記圧電基板上に形成する工程とを備える、本発明の表面波装置の製造方法が提供される。
【0017】
【発明の実施の形態】
以下、図面を参照しつつ、発明の具体的な実施例を説明することにより、本発明を明らかにする。
【0018】
図1は、本発明の一実施形態に係る表面波装置の模式的平面図である。表面波装置1は、縦結合共振子型表面波フィルタであり、オイラー角で(0±2°,90°〜160°,0±2°)のLiTaO3すなわち、0°〜70°回転Y板LiTaO3からなる圧電基板2を有する。
【0019】
圧電基板2上に、白金膜よりなるIDT3a,3b及び反射器5a,5bが形成されている。IDT3a,3bの規格化膜厚H/λは0.005〜0.054の範囲とされている。
【0020】
なお、IDTの規格化膜厚H/λにおいて、HはIDTの厚みを、λは表面波の波長を示す。
【0021】
また、IDT3a,3bを覆うように、圧電基板2上には、SiO2膜4が形成されている。SiO2膜4の規格化膜厚Hs/λは、0.10〜0.40の範囲とされている。なお、HsはSiO2膜の厚みを示し、λは表面波の波長を示す。
【0022】
本実施例では上記のように、オイラー角(0±2°,90°〜160°,0±2°)のLiTaO3からなる圧電基板2と、H/λ=0.005〜0.054である白金よりなるIDT3a,3bと、Hs/λ=0.10〜0.40の範囲にあるSiO2膜4とを用いているため、周波数温度係数TCFが小さく、電気機械結合係数K2が大きく、かつ伝搬損失が小さい表面波装置を提供することができる。これを、以下の具体的な実験例に基づき説明する。
【0023】
LiTaO3基板を伝搬する表面波としては、レイリー波の他に、漏洩弾性表面波が存在する。漏洩弾性表面波は、レイリー波に比べて音速が速く、電気機械結合係数が大きい。しかしながら、漏洩弾性表面波は、エネルギーを基板内部に放射しながら伝搬する波である。従って、漏洩弾性表面波は、伝搬損失の原因となる減衰定数を有する。
【0024】
図2は、回転Y板X伝搬LiTaO3におけるオイラー角(0,θ,0)のθと、基板表面が電気的に短絡された場合の減衰定数(伝搬損失)αとの関係を示す。なお、回転角=θ−90度の関係である。
【0025】
図2から明らかなように、オイラー角のθが124〜126°の範囲で減衰定数αは小さい。この範囲を外れると、減衰定数αは大きくなる。
また、比較的膜厚が厚いAlからなるIDTを形成した場合には、θ=130°〜132°で減衰定数が小さくなることが知られている(例えば、前述した非特許文献1)。従って、従来、AlからなるIDTと、LiTaO3基板とを組み合わせた構成では、θ=130°〜132°の回転Y板X伝搬のLiTaO3基板が用いられていた。
【0026】
図3は、回転Y板X伝搬LiTaO3基板におけるオイラー角(0,θ,0)のθと電気機械結合係数K2との関係を示す。オイラー角のθが100°〜120°の範囲で大きな電気機械結合係数K2が得られることがわかる。しかしながら、θ=100°〜120°の範囲では、前述の図2から明らかなように減衰定数αが大きい。従って、このようなオイラー角のLiTaO3基板を用いることはできないことがわかる。
【0027】
図4は、36°回転Y板X伝搬[オイラー角で(0°,126°,0°)]のLiTaO3基板上に、電極膜として、白金膜またはアルミニウム膜を形成した場合の該電極膜の規格化膜厚H/λ(Hは膜厚を、λは表面波の波長を示す)と、電気機械結合係数K2との関係を示す。白金膜の規格化膜厚H/λ=0.005〜0.054の範囲では、電気機械結合係数K2は、H/λ=0(成膜しなかった場合)の場合の電気機械結合係数の1.5倍以上となり、H/λ=0.01〜0.04では、1.75倍以上となり、H/λ=0.013〜0.033では、1.85倍以上となることがわかる。
【0028】
従って、H/λ=0.005〜0.054とすることにより、電気機械結合係数K2を高めることができることがわかる。
【0029】
図5は、白金膜またはアルミニウム膜からなる電極膜の規格化膜厚H/λと、電極指1本あたりの反射係数との関係を示す図である。従来、AlからなるIDTでは、十分な反射係数と電気機械結合係数を得るためには、規格化膜厚H/λは0.08以上であることが必要であった。これに対して、白金膜からなるIDTでは、H/λが0.08以上のAl膜の場合と同等の反射係数を得るには、H/λは0.01以上であればよいことがわかる。
【0030】
よって、白金膜からなるIDTの規格化膜厚H/λは、0.005〜0.054の範囲、好ましくは0.01〜0.04の範囲、より好ましくは0.013〜0.033の範囲とすればよいことがわかる。
【0031】
次に、SiO2膜をLiTaO3基板上に形成した場合の周波数温度係数TCFの改善効果を説明する。図6は、θ=113°、126°及び129°の(0,θ,0)の各LiTaO3基板上にSiO2膜を成膜した場合の周波数温度係数TCFの変化を示す図である。
【0032】
図6から明らかなように、θが113°,126°及び129°のいずれの場合においても、SiO2の規格化膜厚Hs/λ(HsはSiO2膜の膜厚を、λは表面波の波長を示す)が0.10〜0.45の範囲において、TCFが−24〜+17ppm/℃の範囲にはいることがわかる。もっとも、SiO2膜の成膜には時間を要するため、SiO2膜の規格化膜厚Hs/λは0.40以下であることが望ましい。従って、好ましくは、SiO2膜の規格化膜厚Hs/λは、0.10〜0.40の範囲であり、それによって、短時間で成膜でき、かつTCFを−20〜+17ppm/℃の範囲とすることができる。
【0033】
従来、LiTaO3基板上に、Al電極を形成し、さらにSiO2膜を形成することにより、レイリー波などのTCFが改善されるという報告がいくつか存在する(例えば、特許文献1など)。しかしながら、LiTaO3基板−白金からなる電極−SiO2膜の積層構造において、電極の膜厚や漏洩弾性表面波の減衰定数を考慮にいれて実験が行われた報告は存在しない。
【0034】
図7及び図8は、オイラー角(0°,125°,0°)と、(0°,140°,0°)の各LiTaO3基板上に、種々の膜厚の白金からなるIDTと、種々の膜厚のSiO2膜とを形成した場合の減衰定数を示す図である。
【0035】
図7から明らかなように、θ=125°では、SiO2の膜厚Hs/λが0.1〜0.40かつ白金よりなる電極の規格化膜厚H/λが0.005〜0.06の範囲において、減衰定数が小さいことがわかる。他方、図8から明らかなように、θ=140°では、白金からなる電極の規格化膜厚H/λが0.005〜0.06の範囲では、SiO2膜の膜厚の如何に係わらず、減衰定数が大きくなっていることがわかる。
【0036】
すなわち、TCFの絶対値を小さくし、大きな電気機械結合係数を得、かつ減衰定数を小さくするには、LiTaO3基板のカット角、SiO2膜の厚み及び白金からなる電極の膜厚の3つの条件を考慮しなければならないことがわかる。
【0037】
図9〜図14は、SiO2膜の規格化膜厚Hs/λ及び白金からなる電極膜の規格化膜厚H/λを変化させた場合の、θ(度)と減衰定数との関係を示す。
図9〜図14から明らかなように、白金からなる電極の規格化膜厚H/λが0.005〜0.054では、θは90°〜160°の範囲とすることが望ましいことがわかる。また、白金からなる電極の規格化膜厚H/λが0.01〜0.04及び0.013〜0.033においては、SiO2膜の膜厚と、最適なθとの関係は、減衰定数αを低下させることも考慮すると、下記の表5及び表6に示す通りとなる。ここで、表5及び表6における「LiTaO3のオイラー角」の範囲は、減衰定数が0.05dB/λ以下の範囲を規定したものである。また、表5及び表6におけるLiTaO3のオイラー角の「より好ましい」範囲は、減衰定数が0.025dB/λ以下の範囲を規定したものである。なお、この最適θは、白金電極の電極指幅のばらつきや単結晶基板のばらつきにより−2°〜+4°程度ばらつくことがある。
【0038】
【表5】
【0039】
【表6】
【0040】
すなわち、表5及び表6から明らかなように、白金よりなる電極の規格化膜厚H/λが、0.005〜0.054の場合、温度特性を改善するために、SiO2膜の膜厚を0.1〜0.4の範囲とした場合、LiTaO3のオイラー角におけるθは、90°〜160°の範囲、すなわち、回転角で0°〜70°の範囲を選択すればよいことがわかる。
【0041】
同様に、表5から明らかなように、白金膜からなる電極の規格化膜厚H/λが0.01〜0.04であり、周波数温度特性を改善するために、SiO2膜の規格化膜厚Hs/λを0.1〜0.4の範囲とした場合には、LiTaO3基板のオイラー角のθは90°〜145°の範囲とすればよく、より好ましくはSiO2膜の膜厚に応じて表5のオイラー角を選択すればよいことがわかる。
【0042】
同様に、白金膜からなる電極の規格化膜厚H/λが0.013〜0.033であり、周波数温度特性を改善するために、SiO2膜の規格化膜厚Hs/λを0.1〜0.4の範囲とした場合には、LiTaO3基板のオイラー角のθは、102°〜150°の範囲とすればよく、より好ましくは、SiO2膜の膜厚に応じて表6のオイラー角を選択すればよいことがわかる。
【0043】
また、白金からなる電極膜の規格化膜厚が0.013〜0.033である場合のSiO2膜の膜厚とオイラー角の関係は、図9〜図14に示す白金からなる電極膜の規格化膜厚から換算して求めたものであり、それによって、表5及び表6のSiO2膜の膜厚とオイラー角の値を求めている。
【0044】
また、図16(a)〜(c)は、上記実施例の弾性表面波フィルタにおける表面の走査型電子顕微鏡写真である。ここでは、H/λ=0.02の規格化膜厚の白金からなるIDT上に、規格化膜厚Hs/λ=0.3のSiO2膜が形成される前後の結果が示されている。図16(b)の成膜後の写真から明らかなように、SiO2膜の表面にクラックは見られず、従って、クラックによる特性の劣化も生じ難いことがわかる。Al電極に比べ白金電極では、薄い膜厚で大きな電気機械結合係数と反射係数が得られる。そのため、薄い白金電極の上にSiO2が成膜されていても、図16(b),(c)に示すように、SiO2に大きな段差やクラックが生じないという利点がある。
【0045】
本発明に係る弾性表面波装置の製造に際しては、回転Y板X伝搬LiTaO3基板上に白金を主成分とする金属からなるIDTを形成した後、その状態において周波数調整を行い、しかる後減衰定数αを小さくし得る範囲の膜厚のSiO2膜を成膜することが望ましい。これを、図17及び図18を参照して説明する。図17は、オイラー角(0°,126°,0°)の回転Y板X伝搬LiTaO3基板上に、種々の厚みH/λの白金からなるIDT上に種々の膜厚Hs/λのSiO2膜を形成した場合のSiO2膜厚に対する漏洩弾性表面波の音速の変化を示す。また、図18は、同じオイラー角のLiTaO3基板上に、種々の膜厚H/λの白金からなるIDTとその上にSiO2膜を形成した場合の白金の膜厚に対する漏洩弾性表面波の音速の変化を示す。図17と図18を比較すれば明らかなように、白金の膜厚を変化させた場合の方が、SiO2膜の膜厚を変化させた場合よりも表面波の音速の変化がはるかに大きい。従って、SiO2膜の形成に先立ち、周波数調整が、行われることが望ましく、白金からなるIDTを形成した後に、例えば、レーザーエッチングやイオンエッチングなどにより周波数調整を行うことが望ましい。
【0046】
なお、本発明は、上記のように、オイラー角(0±2°,90°〜160°,0±2°)のLiTaO3からなる圧電基板、H/λ=0.005〜0.054である白金よりなるIDTと、Hs/λ=0.10〜0.40であるSiO2膜とを有することを特徴とするものであり、従って、IDTの数及び構造等については特に限定されない。すなわち、本発明は、図1に示した表面波装置だけでなく、上記条件を満たす限り、様々な表面波共振子や表面波フィルタ等のデバイスに適用することができる。
【0047】
また、白金からなる電極層の下や上に電極の密着強度を向上させるためやボンディングを容易とするために、TiやCr,Al等の他の金属からなる電極層を薄く成膜してもよく、その場合、IDT全体の平均密度が、白金の密度±20%以内であれば、上記実施形態と同様の効果を得ることができる。
【0048】
【発明の効果】
本発明に係る表面波装置では、オイラー角(0±2°,90°〜160°,0±2°)のLiTaO3からなる圧電基板上に、規格化膜厚H/λが0.005〜0.054であり、かつ白金よりなるIDTが形成されており、IDTを覆うように、Hs/λ=0.10〜0.40のSiO2膜が形成されている、SiO2膜により周波数温度係数TCFが改善され、白金膜よりなるIDTの膜厚H/λが上記特定の範囲とされているため、電気機械結合係数と反射係数が大きく、さらにLiTaO3基板の回転角が上記特定の範囲とされているため、減衰定数が小さくされる。よって、周波数温度特性に優れ、大きな電気機械結合係数を有し、かつ伝搬損失が少ない表面波装置を提供することが可能となる。
【0049】
特に、IDTの膜厚H/λが0.010〜0.40、より好ましくは0.013〜0.033の範囲にある場合には、電気機械結合係数を効果的に高めることができる。
【0050】
また、白金電極が薄いため、この白金電極からなるIDT上にSiO2が成膜されてもSiO2に大きな段差やクラックができないため、Al電極の場合に生じるそれらに起因した挿入損失等の特性の劣化もない。
【図面の簡単な説明】
【図1】本発明の一実施例に係る表面波装置を示す模式的平面図。
【図2】オイラー角(0,θ,0)のLiTaO3基板のθと、減衰定数αとの関係を示す図。
【図3】オイラー角(0,θ,0)のLiTaO3基板におけるθと電気機械結合係数K2との関係を示す図。
【図4】オイラー角(0°,126°,0°)のLiTaO3基板上に白金またはアルミニウムからなる電極膜を形成した構造における電極膜の規格化膜厚H/λと、電気機械結合係数K2との関係を示す図。
【図5】オイラー角(0°,126°,0°)のLiTaO3基板上に、様々な厚みの白金またはアルミニウムによりなる電極を形成した場合の電極の規格化膜厚と、電極指1本あたりの反射係数との関係を示す図。
【図6】オイラー角(0°,113°,0°)、(0°,126°,0°)及び(0°,129°0,0°)の各LiTaO3基板上にSiO2膜を形成した場合のSiO2膜の規格化膜厚Hs/λと、周波数温度係数TCFとの関係を示す図。
【図7】オイラー角(0°,125°,0°)のLiTaO3基板上に、様々な厚みのSiO2膜及び様々な厚みの白金からなるIDTを形成した構造における減衰定数αの変化を示す図。
【図8】オイラー角(0°,140°,0°)のLiTaO3基板上に、様々な厚みのSiO2膜及び様々な厚みの白金からなるIDTを形成した構造における減衰定数αの変化を示す図。
【図9】オイラー角(0°,θ,0°)のLiTaO3基板上に、様々な厚みの白金よりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.1のSiO2膜を形成した表面波装置におけるθと、白金よりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図10】オイラー角(0°,θ,0°)のLiTaO3基板上に、様々な厚みの白金よりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.15のSiO2膜を形成した表面波装置におけるθと、白金よりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図11】オイラー角(0°,θ,0°)のLiTaO3基板上に、様々な厚みの白金よりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.2のSiO2膜を形成した表面波装置におけるθと、白金よりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図12】オイラー角(0°,θ,0°)のLiTaO3基板上に、様々な厚みの白金よりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.25のSiO2膜を形成した表面波装置におけるθと、白金よりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図13】オイラー角(0°,θ,0°)のLiTaO3基板上に、様々な厚みの白金よりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.3のSiO2膜を形成した表面波装置におけるθと、白金よりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図14】オイラー角(0°,θ,0°)のLiTaO3基板上に、様々な厚みの白金よりなる電極膜を形成し、さらに規格化膜厚Hs/λ=0.4のSiO2膜を形成した表面波装置におけるθと、白金よりなる電極膜の規格化厚みH/λと、減衰定数αとの関係を示す図。
【図15】(a)は、オイラー角(0°,126°,0°)のLiTaO3基板上に、膜厚H/λ=0.08のアルミニウム電極からなるIDTが形成された表面、(b)は、その上に厚みHs/λ=0.3のSiO2が成膜された表面、(c)は、その断面を示す各走査型電子顕微鏡写真を示す図。
【図16】(a)は、オイラー角(0°,126°,0°)のLiTaO3基板上に、厚みH/λ=0.02の白金からなるIDTが形成された表面、(b)は、その上に厚みHs/λ=0.3のSiO2が成膜された表面、(c)は、その断面を示す各走査型電子顕微鏡写真を示す図。
【図17】オイラー角(0°,126°,0°)のLiTaO3基板上に白金からなるIDTを形成し、さらにSiO2膜を形成した場合のSiO2膜の膜厚と、音速との関係を示す図。
【図18】オイラー角(0°,126°,0°)のLiTaO3基板上に白金からなるIDTを形成し、さらにSiO2膜を形成した場合の白金膜の膜厚と、音速との関係を示す図。
【符号の説明】
1…表面波装置
2…圧電基板
3a,3b…IDT
4…SiO2膜
5a,5b…反射器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface acoustic wave device used for, for example, a surface acoustic wave filter, and more particularly, to a surface acoustic wave device using a piezoelectric substrate made of LiTaO 3 .
[0002]
[Prior art]
Conventionally, a surface wave device using a 40 ° to 42 ° rotating Y-plate X-propagation LiTaO 3 substrate has been known as a bandpass filter (for example, the following Non-Patent Document 1). In the band filter in the RF band, the IDT is formed on the 40 ° to 42 ° rotating Y plate X-propagating LiTaO 3 substrate by using an Al film having a thickness H / λ of 0.08 to 0.10. Was formed.
[0003]
As described above, in the conventional surface acoustic wave device using the 40 ° to 42 ° rotating Y-plate X-propagation LiTaO 3 substrate, the frequency-temperature characteristic TCF is relatively large at −33 ppm / ° C., so that the temperature characteristic is further improved. Certain specifications could not be fully met. Conventionally, as a method of improving the frequency temperature characteristic TCF of the surface acoustic wave device, a method of forming an IDT made of Al on a LiTaO 3 substrate and then forming an SiO 2 layer is known (see
[0004]
[Non-patent document 1]
Proceedings of the 1997 IEICE General Conference: SA-10-6, pp. 500-501 [Patent Document 1]
JP-A-2-295212
[Problems to be solved by the invention]
However, when forming a resonator or a filter using an IDT made of Al, in order to obtain a large electromechanical coupling coefficient K saw and a reflection coefficient, as shown in FIG. 4 and FIG. H / λ (H is the film thickness, λ is the wavelength of the surface wave) must be considerably thick, 0.08 to 0.10. As described above, since the IDT made of Al is considerably thick, a SiO 2 film is formed on the portion where the IDT shown in FIG. 15A is formed in order to improve the frequency-temperature characteristics. Once formed, as shown in FIG. 15 (b), (c) , a large step in the SiO 2 film occurs, there is a crack occurs in the SiO 2 film. For this reason, the filter characteristics of the surface acoustic wave filter tend to deteriorate due to the occurrence of cracks.
[0006]
In addition, since the thickness of the electrode of the IDT made of Al is large, the effect of covering the unevenness of the electrode surface of the IDT by the formation of the SiO 2 film is not sufficient, so that the frequency temperature characteristic may not be sufficiently improved. Was.
[0007]
An object of the present invention is to provide a surface acoustic wave device using a rotating Y-plate X-propagation LiTaO 3 substrate in view of the above-mentioned state of the art, and not only to improve the frequency-temperature characteristics by forming a SiO 2 film, By reducing the thickness of the electrode of the IDT, cracks in the SiO 2 film can be prevented and the attenuation constant can be significantly reduced. Therefore, electrical characteristics such as desired filter characteristics can be obtained. It is an object of the present invention to provide a surface acoustic wave device and a method of manufacturing the same in which the electromechanical coupling coefficient and the reflection coefficient are sufficiently large.
[0008]
[Means for Solving the Problems]
According to a broad aspect of the present invention, a piezoelectric substrate made of LiTaO 3 having an Euler angle (0 ± 2 °, 90 ° to 160 °, 0 ± 2 °), and at least platinum formed on the piezoelectric substrate And an IDT having a normalized thickness H / λ in the range of 0.005 to 0.054, wherein the thickness is H and the wavelength of the surface wave is λ. As described above, when the film thickness is Hs, the SiO 2 film having a normalized thickness Hs / λ in the range of 0.10 to 0.40 at the wavelength λ of the surface wave is formed on the piezoelectric substrate. There is provided a surface acoustic wave device comprising:
[0009]
In a specific aspect of the surface acoustic wave device according to the present invention, the piezoelectric substrate has an Euler angle of (0 ± 2 °, 90 ° to 155 °, 0 ± 2 °), and the normalized film thickness H / λ is in the range of 0.01 to 0.04, whereby the electromechanical coupling coefficient can be increased.
[0010]
In another specific aspect of the surface acoustic wave device according to the present invention, the Euler angle of the piezoelectric substrate made of LiTaO 3 and the normalized thickness Hs / λ of the SiO 2 film are one of the combinations shown in Table 3 below. Accordingly, the attenuation constant α can be set to 0.05 dB / λ or less, and in the case of the preferable Euler angle shown in Table 3, the attenuation constant α can be set to 0.025 dB / λ or less.
[0011]
[Table 3]
[0012]
In still another specific aspect of the surface acoustic wave device according to the present invention, the piezoelectric substrate has an Euler angle of (0 ± 2 °, 102 ° to 150 °, 0 ± 2 °), and the normalized film thickness of the IDT. H / λ is in the range of 0.013 to 0.033, whereby the electromechanical coupling coefficient can be increased.
[0013]
In a further limited aspect of the surface acoustic wave device according to the present invention, the Euler angle of the piezoelectric substrate made of LiTaO 3 and the normalized thickness Hs / λ of the SiO 2 film are any combination shown in Table 4 below. Accordingly, the attenuation constant α can be set to 0.05 dB / λ or less, and in the case of the preferable Euler angle shown in Table 4, the attenuation constant α can be set to 0.025 dB / λ or less.
[0014]
[Table 4]
[0015]
In still another specific aspect of the surface acoustic wave device according to the present invention, the surface acoustic wave device may further include at least one electrode layer made of a metal other than platinum laminated on the electrode layer made of platinum, and the overall average density of the IDT Is within the range of the density of platinum ± 20%, the effect of the present invention can be obtained.
[0016]
According to another broad aspect of the present invention, there is provided a step of preparing a piezoelectric substrate made of LiTaO 3 having an Euler angle (0 ± 2 °, 90 ° to 160 °, 0 ± 2 °), and forming platinum on the piezoelectric substrate. Forming at least one IDT having at least an electrode layer consisting of: a step of adjusting the frequency after forming the IDT; and, after adjusting the frequency, forming a SiO 2 film on the piezoelectric substrate so as to cover the IDT. And a method of manufacturing a surface acoustic wave device according to the present invention.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be clarified by describing specific embodiments of the invention with reference to the drawings.
[0018]
FIG. 1 is a schematic plan view of a surface acoustic wave device according to one embodiment of the present invention. The surface
[0019]
On the
[0020]
In the standardized film thickness H / λ of the IDT, H represents the thickness of the IDT, and λ represents the wavelength of the surface wave.
[0021]
Further, an SiO 2 film 4 is formed on the
[0022]
In this embodiment, as described above, the
[0023]
As surface waves propagating through the LiTaO 3 substrate, there are leaky surface acoustic waves in addition to Rayleigh waves. Leaky surface acoustic waves have a higher sound speed and a larger electromechanical coupling coefficient than Rayleigh waves. However, leaky surface acoustic waves are waves that propagate while radiating energy into the interior of the substrate. Therefore, the leaky surface acoustic wave has an attenuation constant that causes a propagation loss.
[0024]
FIG. 2 shows the relationship between θ of the Euler angles (0, θ, 0) in the rotating Y plate X-propagation LiTaO 3 and the attenuation constant (propagation loss) α when the substrate surface is electrically short-circuited. It should be noted that the rotation angle has a relationship of θ-90 degrees.
[0025]
As is clear from FIG. 2, the attenuation constant α is small when the Euler angle θ is in the range of 124 to 126 °. Outside this range, the attenuation constant α increases.
It is also known that when an IDT made of Al having a relatively large thickness is formed, the attenuation constant decreases when θ = 130 ° to 132 ° (for example,
[0026]
FIG. 3 shows the relationship between the Euler angle (0, θ, 0) θ and the electromechanical coupling coefficient K 2 in the rotating Y-plate X-propagation LiTaO 3 substrate. Euler angle θ is understood that a large electromechanical coupling coefficient K 2 can be obtained in the range of 100 ° to 120 °. However, in the range of θ = 100 ° to 120 °, the attenuation constant α is large as is apparent from FIG. Therefore, it is understood that a LiTaO 3 substrate having such an Euler angle cannot be used.
[0027]
FIG. 4 shows a case where a platinum film or an aluminum film is formed as an electrode film on a LiTaO 3 substrate having a 36 ° rotation Y plate X propagation [Euler angle (0 °, 126 °, 0 °)]. (a is H film thickness, lambda denotes the wavelength of the surface wave) of the normalized thickness H / lambda and shows the relationship between the electromechanical coupling coefficient K 2. In the range of the normalized thickness H / λ of the platinum film in the range of 0.005 to 0.054, the electromechanical coupling coefficient K 2 is the electromechanical coupling coefficient in the case of H / λ = 0 (when no film is formed). 1.5 times or more of H / λ = 0.01 to 0.04, and more than 1.75 times of H / λ = 0.013 to 0.033. Understand.
[0028]
Therefore, by the H / lambda = from 0.005 to 0.054, it is understood that it is possible to increase the electromechanical coupling coefficient K 2.
[0029]
FIG. 5 is a diagram showing the relationship between the normalized film thickness H / λ of the electrode film made of a platinum film or an aluminum film and the reflection coefficient per electrode finger. Conventionally, in the IDT made of Al, the normalized film thickness H / λ needs to be 0.08 or more in order to obtain a sufficient reflection coefficient and electromechanical coupling coefficient. On the other hand, in the IDT made of a platinum film, H / λ is required to be 0.01 or more to obtain a reflection coefficient equivalent to that of the Al film having H / λ of 0.08 or more. .
[0030]
Therefore, the normalized thickness H / λ of the IDT made of a platinum film is in the range of 0.005 to 0.054, preferably in the range of 0.01 to 0.04, and more preferably in the range of 0.013 to 0.033. It is understood that the range should be set.
[0031]
Next, the effect of improving the frequency temperature coefficient TCF when the SiO 2 film is formed on the LiTaO 3 substrate will be described. FIG. 6 is a diagram showing a change in the frequency temperature coefficient TCF when an SiO 2 film is formed on each (0, θ, 0) LiTaO 3 substrate at θ = 113 °, 126 °, and 129 °.
[0032]
As apparent from FIG. 6, theta is 113 °, in either case of 126 ° and 129 °, the film thickness of the SiO 2 normalized thickness Hs / λ (Hs is SiO 2 film, lambda surface waves It can be seen that the TCF falls within the range of −24 to +17 ppm / ° C. in the range of 0.10 to 0.45. However, since the formation of the SiO 2 film it takes time, it is desirable that the normalized thickness Hs / lambda of the SiO 2 film is 0.40 or less. Therefore, preferably, the normalized film thickness Hs / λ of the SiO 2 film is in the range of 0.10 to 0.40, whereby the film can be formed in a short time and the TCF is in the range of −20 to +17 ppm / ° C. Range.
[0033]
Conventionally, there have been some reports that forming an Al electrode on a LiTaO 3 substrate and further forming an SiO 2 film can improve TCF such as Rayleigh waves (for example, Patent Document 1). However, there is no report that an experiment has been performed in the layered structure of the LiTaO 3 substrate, the electrode composed of platinum, and the SiO 2 film in consideration of the film thickness of the electrode and the attenuation constant of the leaky surface acoustic wave.
[0034]
FIGS. 7 and 8 show an Euler angle (0 °, 125 °, 0 °), an IDT made of platinum of various thicknesses on each LiTaO 3 substrate at (0 °, 140 °, 0 °), FIG. 3 is a diagram showing attenuation constants when SiO 2 films having various thicknesses are formed.
[0035]
As is clear from FIG. 7, when θ = 125 °, the thickness Hs / λ of SiO 2 is 0.1 to 0.40 and the normalized thickness H / λ of the electrode made of platinum is 0.005 to 0.5. It can be seen that the attenuation constant is small in the range of 06. On the other hand, as is clear from FIG. 8, when θ = 140 °, the normalized thickness H / λ of the platinum electrode is in the range of 0.005 to 0.06 regardless of the thickness of the SiO 2 film. It can be seen that the damping constant is large.
[0036]
That is, in order to reduce the absolute value of TCF, obtain a large electromechanical coupling coefficient, and reduce the damping constant, there are three cut angles of the LiTaO 3 substrate, the thickness of the SiO 2 film, and the thickness of the electrode made of platinum. It turns out that conditions must be considered.
[0037]
9 to 14 show the relationship between θ (degree) and the attenuation constant when the normalized thickness Hs / λ of the SiO 2 film and the normalized thickness H / λ of the electrode film made of platinum are changed. Show.
As is clear from FIGS. 9 to 14, when the normalized film thickness H / λ of the electrode made of platinum is 0.005 to 0.054, θ is desirably in the range of 90 ° to 160 °. . When the normalized thickness H / λ of the electrode made of platinum is 0.01 to 0.04 and 0.013 to 0.033, the relationship between the thickness of the SiO 2 film and the optimal θ is attenuated. Taking into account the reduction of the constant α, the results are as shown in Tables 5 and 6 below. Here, the range of “Eulerian angle of LiTaO 3 ” in Tables 5 and 6 defines a range where the attenuation constant is 0.05 dB / λ or less. In Tables 5 and 6, the “more preferable” range of the Euler angle of LiTaO 3 is a range in which the attenuation constant is 0.025 dB / λ or less. Note that this optimum θ may vary from about −2 ° to + 4 ° due to variations in the electrode finger width of the platinum electrode and variations in the single crystal substrate.
[0038]
[Table 5]
[0039]
[Table 6]
[0040]
That is, as is clear from Tables 5 and 6, when the normalized thickness H / λ of the electrode made of platinum is 0.005 to 0.054, in order to improve the temperature characteristics, the SiO 2 film is formed. When the thickness is in the range of 0.1 to 0.4, θ in the Euler angle of LiTaO 3 may be in the range of 90 ° to 160 °, that is, in the range of 0 ° to 70 ° in the rotation angle. I understand.
[0041]
Similarly, as is apparent from Table 5, the normalized film thickness H / λ of the platinum film electrode is 0.01 to 0.04, and in order to improve the frequency temperature characteristics, the normalized SiO 2 film is used. When the film thickness Hs / λ is in the range of 0.1 to 0.4, the Euler angle θ of the LiTaO 3 substrate may be in the range of 90 ° to 145 °, and more preferably a SiO 2 film. It can be seen that the Euler angles in Table 5 should be selected according to the thickness.
[0042]
Similarly, the normalized thickness H / λ of the electrode made of a platinum film is 0.013 to 0.033, and the normalized thickness Hs / λ of the SiO 2 film is set to 0.1 to improve the frequency temperature characteristics. When the thickness is in the range of 1 to 0.4, the Euler angle θ of the LiTaO 3 substrate may be in the range of 102 ° to 150 °, and more preferably, according to the thickness of the SiO 2 film. It can be seen that the Euler angle should be selected.
[0043]
When the normalized thickness of the electrode film made of platinum is 0.013 to 0.033, the relationship between the thickness of the SiO 2 film and the Euler angle is as shown in FIG. 9 to FIG. The values are obtained by conversion from the normalized film thickness, and the values of the film thickness and the Euler angle of the SiO 2 film in Tables 5 and 6 are obtained accordingly.
[0044]
FIGS. 16A to 16C are scanning electron micrographs of the surface of the surface acoustic wave filter of the above embodiment. Here, the results before and after the formation of the SiO 2 film having the normalized thickness Hs / λ = 0.3 on the IDT made of platinum having the normalized thickness of H / λ = 0.02 are shown. . As is clear from the photograph after the film formation shown in FIG. 16B, no crack is observed on the surface of the SiO 2 film, and therefore, it is understood that deterioration of the characteristics due to the crack hardly occurs. Compared with the Al electrode, the platinum electrode provides a large electromechanical coupling coefficient and a large reflection coefficient with a thin film thickness. Therefore, even if SiO 2 is formed on a thin platinum electrode, there is an advantage that large steps and cracks do not occur in SiO 2 as shown in FIGS. 16 (b) and 16 (c).
[0045]
In manufacturing the surface acoustic wave device according to the present invention, an IDT made of a metal containing platinum as a main component is formed on a rotating Y-plate X-propagation LiTaO 3 substrate, the frequency is adjusted in that state, and then the attenuation constant is set. It is desirable to form a SiO 2 film having a thickness in a range where α can be reduced. This will be described with reference to FIGS. FIG. 17 shows that a rotating Y-plate X-propagation LiTaO 3 substrate having an Euler angle (0 °, 126 °, 0 °) is formed on a platinum IDT having various thicknesses H / λ on an IDT made of various thicknesses Hs / λ. The change of the sound speed of the leaky surface acoustic wave with respect to the SiO 2 film thickness when two films are formed is shown. FIG. 18 shows an IDT made of platinum having various film thicknesses H / λ on a LiTaO 3 substrate having the same Euler angle and a leakage surface acoustic wave with respect to the film thickness of platinum when an SiO 2 film is formed thereon. Shows the change in sound speed. As is clear from a comparison between FIG. 17 and FIG. 18, the change in the sound velocity of the surface wave is much greater when the thickness of the platinum is changed than when the thickness of the SiO 2 film is changed. . Therefore, it is desirable to adjust the frequency before forming the SiO 2 film, and it is preferable to adjust the frequency by, for example, laser etching or ion etching after forming the IDT made of platinum.
[0046]
Note that, as described above, the present invention provides a piezoelectric substrate made of LiTaO 3 having an Euler angle (0 ± 2 °, 90 ° to 160 °, 0 ± 2 °), wherein H / λ = 0.005 to 0.054. It is characterized by having an IDT made of a certain platinum and a SiO 2 film with Hs / λ = 0.10 to 0.40, and therefore the number and structure of the IDTs are not particularly limited. That is, the present invention can be applied not only to the surface acoustic wave device shown in FIG. 1 but also to various devices such as surface acoustic wave resonators and surface acoustic wave filters as long as the above conditions are satisfied.
[0047]
Further, in order to improve the adhesion strength of the electrode below or above the electrode layer made of platinum and to facilitate bonding, an electrode layer made of another metal such as Ti, Cr, or Al may be formed as a thin film. In this case, if the average density of the entire IDT is within ± 20% of the density of platinum, the same effect as in the above embodiment can be obtained.
[0048]
【The invention's effect】
In the surface acoustic wave device according to the present invention, the normalized film thickness H / λ is 0.005 to 0.005 on a piezoelectric substrate made of LiTaO 3 having an Euler angle (0 ± 2 °, 90 ° to 160 °, 0 ± 2 °). is 0.054, and is formed with an IDT made of platinum, so as to cover the IDT, the SiO 2 film of Hs / lambda = 0.10 to 0.40 is formed, the frequency temperature by SiO 2 film Since the coefficient TCF is improved and the thickness H / λ of the IDT made of a platinum film is in the above specific range, the electromechanical coupling coefficient and the reflection coefficient are large, and the rotation angle of the LiTaO 3 substrate is in the above specific range. Therefore, the attenuation constant is reduced. Therefore, it is possible to provide a surface acoustic wave device having excellent frequency-temperature characteristics, a large electromechanical coupling coefficient, and a small propagation loss.
[0049]
In particular, when the thickness H / λ of the IDT is in the range of 0.010 to 0.40, more preferably 0.013 to 0.033, the electromechanical coupling coefficient can be effectively increased.
[0050]
Furthermore, since the platinum electrodes is thin, the characteristics of this for SiO 2 on the IDT composed of platinum electrode can not be a large step or cracks SiO 2 be deposited, insertion loss or the like due to their occurring when the Al electrode There is no deterioration.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a surface acoustic wave device according to one embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between θ of a LiTaO 3 substrate having an Euler angle (0, θ, 0) and an attenuation constant α.
[3] Euler angles (0, θ, 0) shows the relationship between the LiTaO 3 and the theta in the substrate electromechanical coefficient K 2 of.
FIG. 4 is a diagram illustrating a normalized film thickness H / λ and an electromechanical coupling coefficient of an electrode film in a structure in which an electrode film made of platinum or aluminum is formed on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °). diagram showing the relationship between K 2.
FIG. 5 shows the normalized film thickness of electrodes formed of platinum or aluminum electrodes of various thicknesses on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °), and one electrode finger. FIG. 5 is a diagram showing a relationship between the reflection coefficient and the reflection coefficient.
FIG. 6 shows a SiO 2 film formed on each LiTaO 3 substrate having Euler angles (0 °, 113 °, 0 °), (0 °, 126 °, 0 °) and (0 °, 129 ° 0, 0 °). shows the normalized thickness Hs / lambda of the SiO 2 film in the case of forming, the relation between the temperature coefficient of frequency TCF.
FIG. 7 is a graph showing changes in attenuation constant α in a structure in which an IDT made of various thicknesses of SiO 2 films and various thicknesses of platinum is formed on a LiTaO 3 substrate having Euler angles (0 °, 125 °, 0 °). FIG.
FIG. 8 shows changes in attenuation constant α in a structure in which IDTs made of various thicknesses of SiO 2 films and various thicknesses of platinum are formed on a LiTaO 3 substrate having Euler angles (0 °, 140 °, 0 °). FIG.
FIG. 9 shows that an electrode film made of platinum having various thicknesses is formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized film thickness Hs / λ = 0.1. The figure which shows the relationship between (theta) in the surface acoustic wave device which formed the film, the normalized thickness H / (lambda) of the electrode film which consists of platinum, and the attenuation constant (alpha).
FIG. 10 shows an example in which electrode films made of platinum having various thicknesses are formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized film thickness Hs / λ = 0.15. The figure which shows the relationship between (theta) in the surface acoustic wave device which formed the film, the normalized thickness H / (lambda) of the electrode film which consists of platinum, and the attenuation constant (alpha).
FIG. 11 shows that an electrode film made of platinum having various thicknesses is formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized film thickness Hs / λ = 0.2. The figure which shows the relationship between (theta) in the surface acoustic wave device which formed the film, the normalized thickness H / (lambda) of the electrode film which consists of platinum, and the attenuation constant (alpha).
FIG. 12 shows an example in which electrode films made of platinum having various thicknesses are formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized film thickness Hs / λ = 0.25 is formed. The figure which shows the relationship between (theta) in the surface acoustic wave device which formed the film, the normalized thickness H / (lambda) of the electrode film which consists of platinum, and the attenuation constant (alpha).
FIG. 13 shows a method of forming electrode films made of platinum of various thicknesses on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and further forming SiO 2 having a normalized film thickness Hs / λ = 0.3. The figure which shows the relationship between (theta) in the surface acoustic wave device which formed the film, the normalized thickness H / (lambda) of the electrode film which consists of platinum, and the attenuation constant (alpha).
FIG. 14 shows an example in which electrode films made of platinum having various thicknesses are formed on a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °), and SiO 2 having a normalized film thickness Hs / λ = 0.4. The figure which shows the relationship between (theta) in the surface acoustic wave device which formed the film, the normalized thickness H / (lambda) of the electrode film which consists of platinum, and the attenuation constant (alpha).
FIG. 15A shows a surface on which an IDT made of an aluminum electrode having a film thickness of H / λ = 0.08 is formed on a LiTaO 3 substrate having an Euler angle (0 °, 126 °, 0 °); (b) is a surface on which a SiO 2 film having a thickness of Hs / λ = 0.3 is formed, and (c) is a view showing each scanning electron micrograph showing a cross section thereof.
FIG. 16 (a) is a surface in which an IDT made of platinum having a thickness of H / λ = 0.02 is formed on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °); Is a surface on which a SiO 2 film having a thickness of Hs / λ = 0.3 is formed, and (c) is a view showing each scanning electron micrograph showing a cross section thereof.
FIG. 17 shows the relationship between the thickness of a SiO 2 film and the sound velocity when an IDT made of platinum is formed on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °), and a SiO 2 film is further formed. The figure which shows a relationship.
FIG. 18 shows the relationship between the thickness of a platinum film and the sound speed when an IDT made of platinum is formed on a LiTaO 3 substrate having Euler angles (0 °, 126 °, 0 °) and a SiO 2 film is further formed. FIG.
[Explanation of symbols]
DESCRIPTION OF
4. SiO 2 films 5a, 5b reflector
Claims (7)
前記圧電基板上に形成されており、白金からなる電極層を有し、膜厚をH、表面波の波長をλとしたときに、規格化膜厚H/λが0.005〜0.054の範囲にあるIDTと、
前記IDTを覆うように前記圧電基板上に形成されており、膜厚をHsとしたとき、表面波の波長λで規格化膜厚Hs/λが0.10〜0.40の範囲にあるSiO2膜とを備えることを特徴とする、表面波装置。A piezoelectric substrate made of LiTaO 3 having an Euler angle (0 ± 2 °, 90 ° to 160 °, 0 ± 2 °);
It is formed on the piezoelectric substrate, has an electrode layer made of platinum, and when the film thickness is H and the wavelength of the surface wave is λ, the normalized film thickness H / λ is 0.005 to 0.054. IDT in the range of
The SiO 2 is formed on the piezoelectric substrate so as to cover the IDT and has a normalized thickness Hs / λ in the range of 0.10 to 0.40 at a wavelength λ of a surface wave when the thickness is Hs. A surface acoustic wave device, comprising: two films.
前記圧電基板上に、白金からなる電極層を少なくとも有する少なくもと1つのIDTを形成する工程と、
前記IDTを形成した後に周波数調整を行う工程と、
前記周波数調整後に、IDTを被覆するようにSiO2膜を前記圧電基板上に形成する工程とを備える、請求項1〜6のいずれかに記載の表面波装置の製造方法。A step of preparing a piezoelectric substrate made of LiTaO 3 having an Euler angle (0 ± 2 °, 90 ° to 160 °, 0 ± 2 °);
Forming at least one IDT having at least an electrode layer made of platinum on the piezoelectric substrate;
Performing frequency adjustment after forming the IDT;
7. The method of manufacturing a surface acoustic wave device according to claim 1, further comprising: after the frequency adjustment, forming a SiO 2 film on the piezoelectric substrate so as to cover the IDT. 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003013827A JP3975924B2 (en) | 2003-01-22 | 2003-01-22 | Surface wave device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003013827A JP3975924B2 (en) | 2003-01-22 | 2003-01-22 | Surface wave device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004228901A true JP2004228901A (en) | 2004-08-12 |
JP3975924B2 JP3975924B2 (en) | 2007-09-12 |
Family
ID=32902052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003013827A Expired - Fee Related JP3975924B2 (en) | 2003-01-22 | 2003-01-22 | Surface wave device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3975924B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8373329B2 (en) | 2009-10-19 | 2013-02-12 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US20160211829A1 (en) * | 2015-01-20 | 2016-07-21 | Taiyo Yuden Co., Ltd. | Acoustic wave device |
-
2003
- 2003-01-22 JP JP2003013827A patent/JP3975924B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8373329B2 (en) | 2009-10-19 | 2013-02-12 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US20160211829A1 (en) * | 2015-01-20 | 2016-07-21 | Taiyo Yuden Co., Ltd. | Acoustic wave device |
US10355668B2 (en) * | 2015-01-20 | 2019-07-16 | Taiyo Yuden Co., Ltd. | Acoustic wave device |
Also Published As
Publication number | Publication date |
---|---|
JP3975924B2 (en) | 2007-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101623099B1 (en) | Elastic wave device and production method thereof | |
JP3945363B2 (en) | Surface acoustic wave device | |
JP4793448B2 (en) | Boundary acoustic wave device | |
US8680744B2 (en) | Surface acoustic wave device | |
JP2004112748A (en) | Surface acoustic wave apparatus and manufacturing method therefor | |
JPWO2004070946A1 (en) | Boundary acoustic wave device | |
WO2005034347A1 (en) | Surface acoustic wave device | |
JP5137828B2 (en) | Surface acoustic wave device | |
WO2020204045A1 (en) | High-order mode surface acoustic wave device | |
WO2011007690A1 (en) | Surface acoustic wave device | |
JP5213708B2 (en) | Manufacturing method of surface acoustic wave device | |
JP3979279B2 (en) | Surface acoustic wave device | |
JP3780947B2 (en) | Surface acoustic wave device | |
CN112468109A (en) | Heterogeneous layered piezoelectric substrate suitable for high-frequency and broadband surface acoustic wave device | |
WO2009081647A1 (en) | Surface acoustic wave apparatus | |
JP2004236285A (en) | Surface wave device | |
JP3975924B2 (en) | Surface wave device and manufacturing method thereof | |
JP2004228985A (en) | Surface wave device and manufacturing method therefor | |
JP2004172990A (en) | Surface acoustic wave device | |
JP4363443B2 (en) | Surface acoustic wave device | |
JP2003198323A (en) | Surface acoustic wave device | |
JP2008136238A (en) | Surface wave instrument and its manufacturing method | |
JP2008125131A (en) | Surface acoustic wave device and its manufacturing method | |
JP3945504B2 (en) | Manufacturing method of surface acoustic wave device | |
JP2004172991A (en) | Surface wave instrument and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050920 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070611 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3975924 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110629 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120629 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130629 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130629 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |