【0001】
【発明の属する技術分野】
本発明は、高得率で単板の偏光板が得られる長尺の偏光板、該長尺偏光板から得られる単板の偏光板、該長尺の偏光板の製造方法、及び該単板の偏光板を用いた液晶表示装置に関する。
【0002】
【従来の技術】
偏光板は液晶表示装置(以下、LCD)の普及に伴い、需要が急増している。偏光板は一般に偏光能を有する偏光層の両面あるいは片面に、接着剤層を介して保護フィルムを貼り合わせられている。
偏光層の素材としては、ポリビニルアルコール(以下、PVA)が主に用いられており、PVAフィルムを一軸延伸してから、ヨウ素あるいは二色性染料で染色するかあるいは染色してから延伸し、さらにホウ素化合物で架橋することにより偏光層用の偏光膜が形成される。偏光膜の吸収軸は、通常長手方向に一軸延伸するため、長手方向にほぼ平行となる。
保護フィルムとしては、光学的に透明で複屈折が小さいことから、主にセルローストリアセテートが用いられている。
【0003】
従来のLCDにおいては、画面の縦あるいは横方向に対して偏光板の透過軸を45゜傾けて配置しているため、ロール形態で製造される偏光板の打ち抜き工程において、ロール長手方向に対し45゜方向に打ち抜いていた。
しかしながら45゜方向に打ち抜いたときには、ロールの端付近で使用できない部分が発生し、特に大サイズの偏光板では、得率が小さくなるという問題があり、結果として廃棄物が増えると言う問題があった。
【0004】
この問題を解決するため、フィルム搬送方法に対しポリマーの配向軸を所望の角度傾斜させる方法がいくつか提案されている。特許文献1(特開2000−9912号公報)において、プラスチックフィルムを横または縦に一軸延伸しつつ、その延伸方向の左右を異なる速度で前期延伸方向とは相違する縦または横方向に引っ張り延伸して、配向軸を前記一軸延伸方向に対し傾斜させることが提案されている。しかしながらこの方法では例えばテンター方式を用いた場合、左右で搬送速度差をつけねばならず、これに起因するツレシワ、フィルム寄り、延伸ムラが発生し、望ましい傾斜角度(偏光板においては45゜)を得ることが困難である。左右速度差を小さくしようとすれば、延伸工程を長くせざるを得ず、設備コストが非常に大きなものとなる。
【0005】
また、特許文献2(特開平3−182701号公報)において、連続フィルムの左右両耳端に走行方向とθの角度をなす左右対のフィルム保持ポイントを複数対有し、フィルムの走行につれて、各々の対ポイントがθの方向に延伸できる機構により、フィルムの走行方向に対し任意の角度θの延伸軸を有するフィルムを製造する方法が提案されている。但し、この手法においてもフィルム進行速度がフィルムの左右で変わるためフィルムにツレ、シワ、延伸ムラが生じ、これを緩和するためには延伸工程を非常に長くする必要があり、設備コストが大きくなる欠点があった。
【0006】
更に、特許文献3(特開平2−113920公報)において、フィルムの両端部を、所定走行区間内におけるチャックの走行距離が異なるようにように配置されたテンターレール上を走行する2列のチャック間に把持して走行させることによりフィルムの長さ方向と斜交する方向に延伸する製造方法が提案されている。ただし,この手法においても斜交させた際に、ツレ、シワ、延伸ムラが生じ、光学用フィルムには不都合であった。
【0007】
また、特許文献4(特開2002−48918号公報)にて、ラビング処理により透過軸を傾けた偏光板の提案がなされている。ラビングによる配向規制はフィルム表面から最大でナノオーダーの部分までしか効果が無いことは一般的に知られており、ヨウ素・二色性色素などの偏光子を十分配向させることができないため、結果として偏光性能が低いという欠点があった。
【0008】
これらの問題を解決するために特許文献5(特開2002−86554号公報)にて画期的な斜め延伸方法が提案された。これにより偏光板打ち抜き工程における得率を向上させた偏光板を作製できるようになったが、長手方向での偏光性能のばらつきが大きく更なる改良が求められていた。
【0009】
【特許文献1】
特開2000−9912号公報
【特許文献2】
特開平3−182701号公報
【特許文献3】
特開平2−113920公報
【特許文献4】
特開2002−48918号公報
【特許文献5】
特開2002−86554号公報
【0010】
【発明が解決しようとする課題】
本発明の目的は、斜め延伸方法により得られ、偏光板打ち抜き工程における得率を向上することができる斜め延伸したポリマーフィルムを偏光膜として有し、しかも延伸ムラが少なく偏光性能にばらつきが少ない高性能で安価な偏光板を提供することにある。
本発明のさらなる目的は、上記偏光板の製造方法及び上記偏光板を備えた液晶表示装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明によれば、下記構成のポリマーフィルムの延伸方法、偏光板、及び液晶表示装置が提供され、本発明の上記目的が達成される。
1.偏光能を持つ偏光膜を少なくとも有する長尺の偏光板であって、
偏光膜の吸収軸が長手方向に平行でも垂直でもなく、550nmにおける偏光度が99.0%以上、単板透過率が40.0%以上であり、かつ長尺方向の単板透過率のばらつきが±0.3%以内であることを特徴とする偏光板。
2.偏光膜の少なくとも片面に保護膜を有し、該保護膜の遅相軸と偏光膜の吸収軸との角度が10°以上90°未満であることを特徴とする上記1に記載の偏光板。
3.偏光膜の長手方向と吸収軸方向とのなす角が20°以上70゜以下であることを特徴とする上記1または2に記載の偏光板。
4,偏光膜の長手方向と吸収軸方向とのなす角が40°以上50゜以下であることを特徴とする上記3に記載の偏光板。
5.偏光膜がポリビニルアルコールフィルムから形成されていることを特徴とする上記1〜4のいずれかに記載の偏光板。
6.保護膜が透明フィルムであり、632.8nmにおけるレターデーションが、10nm以下である上記2〜5のいずれかに記載の偏光板。
7.連続的に供給される偏光膜用ポリマーフィルムの両端を保持手段により保持し、該保持手段をフィルムの長手方向に進行させつつ張力を付与して延伸して偏光膜を形成する工程を含む上記1〜6のいずれかに記載の偏光板を製造する方法であって、
該工程が、偏光膜用ポリマーフィルムの一方端の実質的な保持開始点から実質的な保持解除点までの保持手段の軌跡L1及びポリマーフィルムのもう一端の実質的な保持開始点から実質的な保持解除点までの保持手段の軌跡L2と、二つの実質的な保持解除点の距離Wが、下記式(1)を満たし、かつポリマーフィルムの支持性を保ち、揮発分率が10%以上の状態を存在させて延伸し、その後乾燥により10%以上収縮させると共に揮発分率を低下させることにより行われること特徴とする請求項1〜2の偏光板の製造方法。
式(1):|L2−L1|>0.4W
8.延伸時の湿度変動が±2.5%以内であることを特徴とする上記7に記載の偏光板の製造方法。
9.乾燥後もしくは乾燥中に少なくとも片面に保護膜を貼り合わせた後、後加熱を施すことを特徴とする上記7または8に記載の偏光板の製造方法。
10.上記1〜6のいずれかに記載の偏光板から切り出した偏光板を、液晶セルの両側に配置された2枚の偏光板のうち少なくとも一方に用いることを特徴とする液晶表示装置。
【0012】
【発明の実施形態】
本発明の偏光板は、偏光能を持つ偏光膜を少なくとも有する長尺の偏光板である。そして、該偏光膜の吸収軸が長手方向に平行でも垂直でもなく、好ましくは該吸収軸と長手方向とのなす角度が20°以上70°以下の範囲に、より好ましくは40°以上50°以下の範囲にあり、偏光板の550nmおける偏光度が99.0%以上、好ましくは99.5%以上、単板透過率が40.0%以上、好ましくは41.0%以上であり、かつ長尺方向の単板透過率のばらつきが±0.3%以内、好ましくは±0.2%以内である。
本発明の好ましい偏光板は、上記偏光膜の少なくとも片面に保護膜を有し、該保護膜の遅相軸と偏光膜の吸収軸との角度が10°以上90°未満、好ましくは20°以上70°以下、より好ましくは40°以上50°以下である偏光板である。
偏光膜の吸収軸が長手方向に平行でも垂直でもないこと、また保護膜の遅相軸と偏光膜の吸収軸との角度が10°以上90°未満であることにより、長尺の偏光板より単板を偏光板打ち抜き工程で高得率で得ることができる。
【0013】
本発明の偏光板の重要な特徴は、長尺方向の単板透過率のばらつきが±0.3%以内、好ましくは±0.2%以内にあることであり、この特徴により本発明の偏光板は延伸ムラが少なく偏光性能にばらつきが少ない。
【0014】
以上の特徴を有する偏光板は、偏光膜を構成するポリマーフィルムの延伸方法を工夫することにより、作製することができる。以下、本発明で採用する延伸方法を詳述する。
図1および図2は、ポリマーフィルムを斜め延伸する方法の典型例を、概略平面図として、示したものである。本発明で用いる延伸方法は、(a)で示される原反フィルムを矢印(イ)方向に導入する工程、(b)で示される幅方向延伸工程、及び(c)で示される延伸フィルムを次工程、即ち(ロ)方向に送る工程を含む。以下「延伸工程」と称するときは、これらの(a)〜(c)工程を含んで、本発明で用いる延伸方法を行うための工程全体を指す。フィルムは(イ)の方向から連続的に導入され、上流側から見て左側の保持手段にB1点で初めて保持される。この時点ではいま一方のフィルム端は保持されておらず、幅方向に張力は発生しない。つまり、B1点は実質的な保持開始点(以下、「実質保持開始点」という)には相当しない。本発明で用いる方法では、実質保持開始点は、フィルム両端が初めて保持される点で定義される。実質保持開始点は、より下流側の保持開始点A1と、A1から導入側フィルムの中心線11(図1)または21(図2)に略垂直に引いた直線が、反対側の保持手段の軌跡13(図1)または23(図2)と交わる点C1の2点で示される。この点を起点とし、両端の保持手段を実質的に等速度で搬送すると、単位時間ごとにA1はA2,A3…Anと移動し、C1は同様にC2,C3…Cnに移動する。つまり同時点に基準となる保持手段が通過する点AnとCnを結ぶ直線が、その時点での延伸方向となる。
【0015】
本発明で用いる方法では、図1、図2のようにAnはCnに対し次第に遅れてゆくため、延伸方向は、搬送方向垂直から徐々に傾斜していく。実質的な保持解除点(以下、「実質保持解除点」という)は、より上流で保持手段から離脱するCx点と、Cxから次工程へ送られるフィルムの中心線12(図1)または22(図2)に略垂直に引いた直線が、反対側の保持手段の軌跡14(図1)または24(図2)と交わる点Ayの2点で定義される。最終的なフィルムの延伸方向の角度は、実質的な延伸工程の終点(実質保持解除点)での左右保持手段の行程差Ay−Ax(すなわち|L1−L2|)と、実質保持解除点の距離W(CxとAyの距離)との比率で決まる。従って、延伸方向が次工程への搬送方向に対しなす傾斜角θはtanθ=W/(Ay−Ax)、即ち、tanθ=W/|L1−L2|を満たす角度である。図1及び図2の上側のフィルム端は、Ay点の後も18(図1)または28(図2)まで保持されるが、もう一端が保持されていないため新たな幅方向延伸は発生せず、18および28は実質保持解除点ではない。
【0016】
以上のように、本発明で用いる延伸方法において、フィルムの両端にある実質保持開始点は、左右各々の保持手段への単純な噛み込み点ではない。二つの実質保持開始点は、上記で定義したことをより厳密に記述すれば、左右いずれかの保持点と他の保持点とを結ぶ直線がフィルムを保持する工程に導入されるフィルムの中心線と略直交している点であり、かつこれらの二つの保持点が最も上流に位置するものとして定義される。同様に、本発明において、二つの実質保持解除点は、左右いずれかの保持点と他の保持点とを結ぶ直線が、次工程に送りだされるフィルムの中心線と略直交している点であり、しかもこれら二つの保持点が最も下流に位置するものとして定義される。ここで、略直交とは、フィルムの中心線と左右の実質保持開始点、あるいは実質保持解除点を結ぶ直線が、90±0.5゜であることを意味する。
【0017】
テンター方式の延伸機を用いて左右の行程差を付けようとする場合、レール長などの機械的制約により、しばしば保持手段への噛み込み点と実質保持開始点に大きなずれが生じたり、保持手段からの離脱点と実質保持解除点に大きなずれが生ずることがあるが、上に定義した実質保持開始点と実質保持解除点間の工程が、式(1)(式(1):|L2−L1|>0.4W)の関係を満たしていれば本発明の目的は達成される。
【0018】
上記において、得られる延伸フィルムにおける配向軸の傾斜角度は、(c)工程の出口幅Wと、左右の二つの実質的保持手段の行程差|L1−L2|の比率で制御、調整することができる。偏光板、位相差膜では、しばしば長手方向に対し45゜配向したフィルムが求められる。この場合、45゜に近い配向角を得るために、式(2)(式(2):0.9W<|L1−L2|<1.1W)を満たすことが好ましく、さらに好ましくは、式(3)(式(3):0.97W<|L1−L2|<1.03W)を満たすことが好ましい。
【0019】
具体的な延伸工程の構造は、式(1)を満たしてポリマーフィルムを斜め延伸する図1〜2や特開2002−86554号公報の図3〜6等に例示した方法に示されており、これらは、設備コスト、生産性を考慮して任意に設計できる。
【0020】
延伸工程へのフィルム導入方向(イ)と、次工程へのフィルム搬送方向(ロ)のなす角度は、任意の数値が可能であるが、延伸前後の工程を含めた設備の総設置面積を最小にする観点からは、この角度は小さい方がよく、3゜以内が好ましく、0.5゜以内がさらに好ましい。例えば図1に例示するような構造で、この値を達成することができる。このようにフィルム進行方向が実質的に変わらない方法では、保持手段の幅を拡大するのみでは、偏光板、位相差膜として好ましい長手方向に対して45゜の配向角を得るのは困難である。そこで、図1の如く、一旦延伸した後、収縮させる工程を設けることで、|L1−L2|を大きくすることができる。延伸率は1.1〜10.0倍が望ましく、より望ましくは2〜10倍であり、その後の収縮率は10%以上が望ましい。また、延伸−収縮を複数回繰り返すことも、|L1−L2|を大きくできるため好ましい。
【0021】
また、延伸工程の設備コストを最小に抑える観点からは、保持手段の軌跡の屈曲回数、屈曲角度は小さい程良い。この観点からは、図2に例示する如くフィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向をフィルム両端を保持させた状態で屈曲させることが好ましい。
【0022】
本発明で用いる延伸方法において、両端を保持しつつ張力を付与しフィルムを延伸する装置としては、いわゆる図1、図2のようなテンター装置が好ましい。
【0023】
テンター型の延伸機の場合、クリップが固定されたチェーンがレールに沿って進む構造が多いが、本発明で採用する延伸方法のように左右不均等な延伸方法をとると、結果的に図1及び2に例示される如く、工程入口、出口でレールの終端がずれ、左右同時に噛み込み、離脱をしなくなることがある。この場合、実質工程長L1,L2は、上に述べたように単純な噛み込み−離脱間の距離ではなく、既に述べたように、あくまでフィルムの両端を保持手段が保持している部分の行程長である。
【0024】
延伸工程出口でフィルムの左右に進行速度差があると、延伸工程出口におけるシワ、寄りが発生するため、左右のフィルム把持手段の搬送速度差は、実質的に同速度であることが求められる。速度差は好ましくは1%以下であり、さらに好ましくは0.5%未満であり、最も好ましくは0.05%未満である。ここで述べる速度とは、毎分当たりに左右各々の保持手段が進む軌跡の長さのことである。一般的なテンター延伸機等では、チェーンを駆動するスプロケット歯の周期、駆動モータの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%のムラを生ずるが、これらは本発明で述べる速度差には該当しない。
【0025】
また、左右の行程差が生じるに従って、フィルムにシワ、寄りが発生する。この問題を解決するために、本発明の延伸方法では、ポリマーフィルムの支持性を保ち、揮発分率が10%以上の状態を存在させて延伸した後、乾燥により10%以上収縮させながら揮発分率を低下させる。ここで、「ポリマーフィルムの支持性を保つ」とは、フィルムが膜性を損なうことなく両側が保持され得ることを意味する。また、「揮発分率が10%以上の状態を存在させて延伸する」とは、延伸工程の全過程を通して揮発分率が10%以上の状態を維持することを必ずしも意味するのではなく、揮発分率が10%以上における延伸過程が存在し、その延伸過程により発明の効果を発現する限り、工程の一部には揮発分が10%未満である部分が有ってもよいことを意味するものである。
【0026】
ポリマーフィルムに揮発分を含有させる方法としては、フィルムをキャストし、水や非水溶剤などの揮発分を含有させる、延伸前に水や非水溶剤などの揮発分に浸漬・塗布・噴霧する、延伸中に水や非水溶剤などの揮発分を塗布することなどが上げられる。ポリビニルアルコールなどの親水性ポリマーフィルムは、高温高湿雰囲気下で水を含有するので、高湿雰囲気下で調湿後延伸、もしくは高湿条件下で延伸することにより揮発分を含有させることが好ましい。
本発明者らは、長尺偏光板の長手方向の単板透過率ばらつきを改良すべく検討した結果、延伸時の雰囲気が重要であること、具体的には延伸時の湿度変動に連動して単板透過率が変動し、延伸時の湿度が安定しているほど連続製造した際の単板透過率の長手方向の変動が小さくなることを見出した。
本発明において、延伸雰囲気は、温度として、少なくともフィルムに含まれる揮発分の凝固点以上であればよい。フィルムがポリビニルアルコールである場合には、25℃以上が好ましい。また、偏光膜を作製するためのヨウ素・ホウ酸を浸漬したポリビニルアルコールを延伸する場合には、30℃以上90℃以下が好ましく、更に好ましくは50℃以上70℃以下である。湿度としては80%以上、更に好ましくは90%以上である。
本発明において、延伸時の湿度変動が±2.5%以内であれば、長手方向の単板透過率変動を±0.3%以内に改良できることが分かった。
なお、単板透過率のばらつき(変動幅)は、長尺偏光板の100m長さに対し、10mおきに10点サンプリングし、その単板透過率の値の最大値と最小値の幅をばらつき(変動幅)とした。
【0027】
好ましい揮発分率は、ポリマーフィルムの種類によって異なる。揮発分率の最大は、ポリマーフィルムの支持性を保つ限り可能である。ポリビニルアルコールでは揮発分率として10%〜100%が好ましい。セルロースアシレートでは、10%〜200%が好ましい。
【0028】
また、延伸ポリマーフィルムの収縮は、延伸時・延伸後のいずれの工程でも行って良いが、延伸後、温度を掛けて乾燥することにより、揮発分を除去する方法で行うことが好ましい。勿論、フィルムを収縮させればいかなる手段を用いても良い。乾燥後の揮発分量は、3%以下が好ましく、2%以下がより好ましく、1.5%以下がさらに好ましい。
フィルムを収縮させる手段として、延伸後、温度を掛けて乾燥し、揮発分を除去する方法を採用する場合、フィルム表面の膜面温度を60秒以内に55℃以上にすることが好ましい。更に好ましくは30秒以内に60℃以上にすることである。膜面温度の上限は、100℃以下、更に好ましくは90℃以下である。好ましいフィルムの収縮率としては、長手方向に対する配向角θを用いて、1/sinθ倍以上収縮することで、値としては10%以上収縮することが好ましい。これらのフィルム表面の膜面温度および収縮率は、収縮時の温度、風量および時間により調整することができる。好ましい温度範囲としては、55℃以上100℃以下、更に好ましい温度としては60℃以上90℃以下である
【0029】
このように、(i)少なくともフィルム幅方向に1.1〜20.0倍に延伸し、(ii)フィルム両端の保持装置の長手方向進行速度差を1%以下とし、(iii)フィルム両端を保持する工程の出口におけるフィルムの進行方向とフィルムの実質的延伸方向のなす角が、20゜以上70゜以下傾斜するようにフィルム進行方向をフィルム両端を保持させた状態で屈曲させ、(iv)ポリマーフィルムの支持性を保ち、揮発分率が10%以上の状態を存在させて延伸した後、収縮させながら揮発分率を低下させる、ことからなる延伸方法は、本発明に採用される延伸方法として、好ましい態様である。
【0030】
保持手段の軌跡を規制するレールには、しばしば大きい屈曲率が求められる。急激な屈曲によるフィルム把持手段同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部では把持手段の軌跡が円弧を描くようにすることが望ましい。
【0031】
本発明で用いる延伸方法が延伸の対象とするポリマーフィルムに関しては特に制限はなく、揮発性溶剤に可溶の適宜なポリマーからなるフィルムを用いることができる。ポリマーの例としては、ポリビニルアルコール(PVA)、ポリカーボネート、セルロースアシレート、ポリスルホン、などをあげることができる。
【0032】
延伸前のフィルムの厚味は特に限定されないが、フィルム保持の安定性、延伸の均質性の観点から、1μm〜1mmが好ましく、20〜200μmが特に好ましい。
【0033】
上記延伸方法で得られる延伸フィルムは、各種用途に用いうるが、長手方向に対し配向軸が傾いている特性より、偏光膜、または位相差膜として好適に用いられる。特に、配向軸の傾斜角度が長手方向に対し40〜50゜である偏光膜は、LCD用偏光板として好ましく用いられる。さらに好ましくは44〜46゜である。
【0034】
本発明で用いる延伸方法を偏光膜の製造に適用する場合、ポリマーとしてはポリビニルアルコール(PVA)が好ましく用いられる。PVAは通常、ポリ酢酸ビニルをケン化したものであるが、例えば不飽和カルボン酸、不飽和スルホン酸、オレフィン類、ビニルエーテル類のように酢酸ビニルと共重合可能な成分を含有しても構わない。また、アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等を含有する変性PVAも用いることができる。
【0035】
PVAのケン化度は特に限定されないが、溶解性等の観点から80〜100mol%が好ましく、90〜100mol%が特に好ましい。またPVAの重合度は特に限定されないが、1000〜10000が好ましく、1500〜5000が特に好ましい。
【0036】
PVAを染色して偏光膜が得られるが、染色工程は気相または液相吸着により行われる。液相で行う場合の例として、ヨウ素を用いる場合には、ヨウ素−ヨウ化カリウム水溶液にPVAフィルムを浸漬させて行われる。ヨウ素は0.1〜20g/l、ヨウ化カリウムは1〜100g/l、ヨウ素とヨウ化カリウムの質量比は1〜100が好ましい。染色時間は30〜5000秒が好ましく、液温度は5〜50℃が好ましい。染色方法としては浸漬だけでなく、ヨウ素あるいは染料溶液の塗布あるいは噴霧等、任意の手段が可能である。染色工程は、本発明の延伸工程の前後いずれに置いても良いが、適度に膜が膨潤され延伸が容易になることから、延伸工程前に液相で染色することが特に好ましい。
【0037】
ヨウ素の他に二色性色素で染色することも好ましい。二色性色素の具体例としては、例えば、特開2002−86554号公報の段落番号[0038]に記載の二色性色素などが使用できる。これらの二色性色素は2種以上を配合することにより、各種の色相を有する偏光子を製造することができる。偏光素子または偏光板として偏光軸を直交させた時に黒色を呈する化合物(色素)や黒色を呈するように各種の二色性色素を配合したものが単板透過率、偏光率とも優れており好ましい。
【0038】
PVAを延伸して偏光膜を製造する過程では、PVAに架橋させる添加物を用いることが好ましい。特に本発明の斜め延伸法を用いる場合、延伸工程出口でPVAが十分に硬膜されていないと、工程のテンションでPVAの配向方向がずれてしまうことがあるため、延伸前工程あるいは延伸工程で架橋剤溶液に浸漬、または溶液を塗布して架橋剤を含ませるのが好ましい。架橋剤としては、米国再発行特許第232897号明細書に記載のものが使用できるが、ホウ酸類が最も好ましく用いられる。
【0039】
また、PVA,ポリ塩化ビニルを脱水、脱塩素することによりポリエン構造をつくり、共役二重結合により偏光を得るいわゆるポリビニレン系偏光膜の製造にも、本発明の延伸法は好ましく用いることができる。
【0040】
本発明で製造された偏光膜は、両面あるいは片面に保護フィルムを貼り付けて偏光板として用いられる。保護フィルムの種類は特に限定されず、セルロースアセテート、セルロースアセテートブチレート、セルロースプロピオネート等のセルロースエステル類、ポリカーボネート、ポリオレフィン、ポリスチレン、ポリエステル等を用いることができるが、保護フィルムのレターデーション値が一定値以上であると、偏光軸と保護フィルムの配向軸が斜めにずれているため、直線偏光が楕円偏光に変化し、好ましくない。このため保護フィルムのレターデーションは低いことが好ましい。例えば、632.8nmにおいて10nm以下が好ましく、5nm以下がさらに好ましい。このような低レターデーションを得るためには、保護フィルムとして使用するポリマーはセルローストリアセテートが特に好ましい。また、ゼオネックス、ゼオノア(共に日本ゼオン(株)製)、ARTON(JSR(株)製)のようなポリオレフィン類も好ましく用いられる。その他、例えば特開平8−110402号公報あるいは特開平11−293116号公報に記載されているような非複屈折性光学樹脂材料が挙げられる。
【0041】
本発明において、保護膜を貼り合せる工程は、延伸後実質保持解除点までの間に行えばよい。好ましくは、延伸ポリマーフィルムの収縮中または収縮後が好ましい。
【0042】
偏光膜と保護層との接着剤は、特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液等が挙げられ、中でもPVA系樹脂が好ましい。接着剤層厚みは乾燥後に0.01乃至10μmが好ましく、0.05乃至5μmが特に好ましい。
【0043】
図3に従来の偏光板打ち抜きの例を、図4に本発明の偏光板打ち抜きする例を示す。従来の偏光板は、図3に示されるように、偏光の吸収軸71すなわち延伸軸が長手方向72と一致しているのに対し、本発明の偏光板は、図4に示されるように、偏光の吸収軸81すなわち延伸軸が長手方向82に対して45゜傾斜しており、この角度がLCDにおける液晶セルに貼り合わせる際の偏光板の吸収軸と、液晶セル自身の縦または横方向とのなす角度に一致しているため、打ち抜き工程において斜めの打ち抜きは不要となる。しかも図4からわかるように、本発明の偏光板は切断が長手方向に沿って一直線であるため、打ち抜かず長手方向に沿ってスリットすることによっても製造可能であるため、生産性も格段に優れている。
【0044】
本発明の偏光板は、液晶表示装置のコントラストを高める観点から、透過率は高い方が好ましく、偏光度は高い方が好ましい。透過率は好ましくは550nmで40%以上が好ましく、41%以上がさらに好ましい。偏光度は550nmで99.0%以上が好ましく、99.5%以上がさらに好ましく、特に好ましくは99.9%以上である。
また、本発明の偏光板は、液晶セルの両側に配置された2枚の偏光板のうち少なくとも一方に用いることが好ましい。
【0045】
また、本発明による延伸フィルムは、長手方向に対し斜めに配向している特徴から、位相差板としても好適に用いうる。位相差板として用いる場合、ポリカーボネート、ポリスルホン、酢酸セルロース等のセルロースアシレートのように、透明性に優れる素材を延伸したものが好ましい。このうち、特にセルロースアシレートが好ましい。フィルムの厚味は、特に限定されないが、一般的には5〜300μmである。
【0046】
【実施例】
本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
[実施例1]
重合度1700のPVAフィルムをイオン交換水にて1分浸漬し、ゴムローラーにて余剰水分を取った後、該PVAフィルムをヨウ素1.0g/l、ヨウ化カリウム90.0g/lの水溶液に25℃にて50秒間、フィルムが弛まないように浸漬し、ゴムローラーにて余剰水分を取った後、さらにホウ酸40g/l、ヨウ化カリウム30g/lの水溶液に30℃にて90秒間、フィルムが弛まないように浸漬後、ステンレス製のブレードにて余剰水分を除去し、フィルム中の含有水分率の分布を2%以下にした状態で図2の形態のテンター延伸機に導入した。搬送速度を4m/分として、200m送出し、55℃95%雰囲気下で4.2倍に延伸し、テンターを延伸方向に対し図2の如く屈曲させ、以降幅を一定に保ち、収縮させながら、45秒で膜面温度が60℃から65℃となるように80℃雰囲気で3分30秒乾燥させた後テンターから離脱し、幅方向から3cm、カッターにて耳きりをした後、PVA((株)クラレ製PVA−117H)3%/ヨウ化カリウム4%水溶液を接着剤としてケン化処理した富士写真フィルム(株)製フジタック(セルローストリアセテート、レターデーション値3.0nm)と貼り合わせ、さらに70℃で10分間加熱して有効幅650mm、長さ500mのロール形態の偏光板を問題なく作製できた。表面の膜面温度は非接触型温度計HORIBA製IT−540Nにて測定した。
偏光膜作成中の延伸温度湿度の変動は温度が55±0.2℃、湿度が95%±1%であった。延伸開始前のPVAフィルムの含水率は32%で、乾燥後の含水率は2.5%であった。
左右のテンタークリップの搬送速度差は、0.05%未満であり、導入されるフィルムの中心線と次工程に送られるフィルムの中心線のなす角は、46゜であった。ここで|L1−L2|は0.7m、Wは0.7mであり、|L1−L2|=Wの関係にあった。テンター出口における実質延伸方向Ax−Cxは、次工程へ送られるフィルムの中心線22に対し45゜傾斜していた。テンター出口におけるシワ、フィルム変形および延伸ムラは観察されなかった。
得られた偏光板の吸収軸方向は、長手方向に対し45゜傾斜していた。このロール形態の偏光板の550nmにおける透過率および偏光度を10mおきに測定した結果、単板透過率の変動は43.0±0.3%、偏光度は99.92±0.02%であった。
さらに図4の如く310×233mmサイズに裁断したところ、91.5%の面積効率で辺に対し45゜吸収軸が傾斜した偏光板を得ることができた。
【0047】
[実施例2]
重合度2400のPVAフィルムをイオン交換水にて1分浸漬し、ゴムローラーにて余剰水分を取った後、該PVAフィルムをヨウ素1.0g/l、ヨウ化カリウム80.0g/lの水溶液に25℃にて55秒、フィルムが弛まないように浸漬し、ゴムローラーにて余剰水分を取った後、さらにホウ酸40g/l、ヨウ化カリウム30g/lの水溶液に30℃にて90秒、フィルムが弛まないように浸漬後、ステンレス製のブレードにて余剰水分を除去し、フィルム中の含有水分率の分布を2%以下にした状態で図2の形態のテンター延伸機に導入した。搬送速度を15m/分として、500m送出し、60℃95%雰囲気下で4.5倍に延伸し、テンターを延伸方向に対し図2の如く屈曲させ、以降幅を一定に保ち、収縮させながら、30秒で膜面温度が60℃から65℃となるように80℃雰囲気で3分30秒乾燥させた後テンターから離脱し、幅方向から3cm、カッターにて耳きりをした後、PVA((株)クラレ製PVA−124H)3%/ヨウ化カリウム4%水溶液を接着剤としてケン化処理した富士写真フィルム(株)製フジタック(セルローストリアセテート、レターデーション値3.0nm)と貼り合わせ、さらに70℃で10分間加熱して有効幅650mm、長さ500mのロール形態の偏光板を問題なく作製できた。表面の膜面温度は非接触型温度計HORIBA製IT−540Nにて測定した。
偏光膜作成中の延伸温度湿度の変動は温度が60±0.1℃、湿度が95%±0.5%であった。延伸開始前のPVAフィルムの含水率は33%で、乾燥後の含水率は2.2%であった。
左右のテンタークリップの搬送速度差は、0.05%未満であり、導入されるフィルムの中心線と次工程に送られるフィルムの中心線のなす角は、47゜であった。ここで|L1−L2|は0.7m、Wは0.7mであり、|L1−L2|=Wの関係にあった。テンター出口における実質延伸方向Ax−Cxは、次工程へ送られるフィルムの中心線22に対し45゜傾斜していた。テンター出口におけるシワ、フィルム変形および延伸ムラは観察されなかった。
得られた偏光板の吸収軸方向は、長手方向に対し45゜傾斜していた。このロール形態の偏光板の550nmにおける透過率および偏光度を10mおきに測定した結果、単板透過率の変動は43.2±0.1%、偏光度は99.97±0.01%であった。
さらに図4の如く310×233mmサイズに裁断したところ、91.5%の面積効率で辺に対し45゜吸収軸が傾斜した偏光板を得ることができた。
【0048】
[比較例]
重合度2400のPVAフィルムをイオン交換水にて1分浸漬し、ゴムローラーにて余剰水分を取った後、該PVAフィルムをヨウ素1.0g/l、ヨウ化カリウム80.0g/lの水溶液に25℃にて55秒、フィルムが弛まないように浸漬し、ゴムローラーにて余剰水分を取った後、さらにホウ酸40g/l、ヨウ化カリウム30g/lの水溶液に30℃にて90秒、フィルムが弛まないように浸漬後、ステンレス製のブレードにて余剰水分を除去し、フィルム中の含有水分率の分布を2%以下にした状態で図2の形態のテンター延伸機に導入した。搬送速度を15m/分として、500m送出し、60℃98%雰囲気下で4.5倍に延伸し、テンターを延伸方向に対し図2の如く屈曲させ、以降幅を一定に保ち、収縮させながら、30秒で膜面温度が60℃から65℃となるように80℃雰囲気で3分30秒乾燥させた後テンターから離脱し、幅方向から3cm、カッターにて耳きりをした後、PVA((株)クラレ製PVA−124H)3%/ヨウ化カリウム4%水溶液を接着剤としてケン化処理した富士写真フィルム(株)製フジタック(セルローストリアセテート、レターデーション値3.0nm)と貼り合わせ、さらに70℃で10分間加熱して有効幅650mm、長さ500mのロール形態の偏光板を問題なく作製できた。表面の膜面温度は非接触型温度計HORIBA製IT−540Nにて測定した。
偏光膜作成中の延伸温度湿度の変動は温度が60±0.1℃、湿度が95%±5%であった。延伸開始前のPVAフィルムの含水率は33%で、乾燥後の含水率は2.2%であった。
左右のテンタークリップの搬送速度差は、0.05%未満であり、導入されるフィルムの中心線と次工程に送られるフィルムの中心線のなす角は、47゜であった。ここで|L1−L2|は0.7m、Wは0.7mであり、|L1−L2|=Wの関係にあった。テンター出口における実質延伸方向Ax−Cxは、次工程へ送られるフィルムの中心線22に対し45゜傾斜していた。テンター出口におけるシワ、フィルム変形および延伸ムラは観察されなかった。
得られた偏光板の吸収軸方向は、長手方向に対し45゜傾斜していた。このロール形態の偏光板の550nmにおける透過率および偏光度を10mおきに測定した結果、単板透過率の変動は43.2±2.0%、偏光度は99.97±0.03%であった。
さらに図4の如く310×233mmサイズに裁断したところ、91.5%の面積効率で辺に対し45゜吸収軸が傾斜した偏光板を得ることができた。
【0049】
【発明の効果】
本発明の長尺の偏光板は、斜め延伸方法により得られた斜め延伸したポリマーフィルムを偏光膜として有し、偏光板打ち抜き工程における得率が向上し、しかも延伸ムラが少なく偏光性能のばらつきが少なく安価である。
本発明の偏光板の製造方法は、上記特性に優れた偏光板を効率的に製造することができる。また、上記偏光板を備えた液晶表示装置は、偏光板の偏光性能のばらつきが少ないので、視認性などの表示特性にロット差が少ない。
【図面の簡単な説明】
【図1】ポリマーフィルムを斜め延伸する本発明の方法の一例を示す概略平面図である。
【図2】ポリマーフィルムを斜め延伸する本発明の方法の一例を示す概略平面図である。
【図3】従来の偏光板を打ち抜く様子を示す概略平面図である。
【図4】本発明の偏光板を打ち抜く様子を示す概略平面図である。
【符号の説明】
(イ) フィルム導入方向
(ロ) 次工程へのフィルム搬送方向
(a) フィルムを導入する工程
(b) フィルムを延伸する工程
(c) 延伸フィルムを次工程へ送る工程
A1 フィルムの保持手段への噛み込み位置とフィルム延伸の起点位置(実質保持開始点:右)
B1 フィルムの保持手段への噛み込み位置(左)
C1 フィルム延伸の起点位置(実質保持開始点:左)
Cx フィルム離脱位置とフィルム延伸の終点基準位置(実質保持解除点:左)
Ay フィルム延伸の終点基準位置(実質保持解除点:右)
|L1−L2| 左右のフィルム保持手段の行程差
W フィルムの延伸工程終端における実質幅
θ 延伸方向とフィルム進行方向のなす角
11 導入側フィルムの中央線
12 次工程に送られるフィルムの中央線
13 フィルム保持手段の軌跡(左)
14 フィルム保持手段の軌跡(右)
15 導入側フィルム
16 次工程に送られるフィルム
17、17’ 左右のフィルム保持開始(噛み込み)点
18、18’ 左右のフィルム保持手段からの離脱点
21 導入側フィルムの中央線
22 次工程に送られるフィルムの中央線
23 フィルム保持手段の軌跡(左)
24 フィルム保持手段の軌跡(右)
25 導入側フィルム
26 次工程に送られるフィルム
27、27’ 左右のフィルム保持開始(噛み込み)点
28、28’ 左右のフィルム保持手段からの離脱点
71 吸収軸(延伸軸)
72 長手方向
81 吸収軸(延伸軸)
82 長手方向[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a long polarizing plate from which a single plate polarizing plate can be obtained with high yield, a single polarizing plate obtained from the long polarizing plate, a method for producing the long polarizing plate, and the single plate The present invention relates to a liquid crystal display device using the polarizing plate.
[0002]
[Prior art]
The demand for polarizing plates is rapidly increasing with the spread of liquid crystal display devices (hereinafter referred to as LCDs). In the polarizing plate, a protective film is generally bonded to both surfaces or one surface of a polarizing layer having polarizing ability via an adhesive layer.
As a material for the polarizing layer, polyvinyl alcohol (hereinafter referred to as PVA) is mainly used. After the PVA film is uniaxially stretched, it is dyed with iodine or a dichroic dye, or is stretched after being dyed. A polarizing film for a polarizing layer is formed by crosslinking with a boron compound. Since the absorption axis of the polarizing film is usually uniaxially stretched in the longitudinal direction, it is substantially parallel to the longitudinal direction.
As the protective film, cellulose triacetate is mainly used because it is optically transparent and has a small birefringence.
[0003]
In the conventional LCD, the transmission axis of the polarizing plate is inclined by 45 ° with respect to the vertical or horizontal direction of the screen. Therefore, in the punching process of the polarizing plate manufactured in a roll form, Punched in the direction.
However, when punched in the direction of 45 °, there is a portion that cannot be used near the end of the roll. In particular, a large-size polarizing plate has a problem that the yield decreases, resulting in an increase in waste. It was.
[0004]
In order to solve this problem, several methods have been proposed in which the orientation axis of the polymer is inclined by a desired angle with respect to the film transport method. In Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-9912), a plastic film is stretched uniaxially in the horizontal or vertical direction, and stretched in the vertical or horizontal direction different from the previous stretching direction at different speeds on the left and right sides of the stretching direction. Thus, it has been proposed to incline the orientation axis with respect to the uniaxial stretching direction. However, in this method, for example, when a tenter method is used, a difference in transport speed must be made between the right and left, resulting in wrinkles, film deviation, and uneven stretching, and a desired tilt angle (45 ° for a polarizing plate). It is difficult to obtain. If an attempt is made to reduce the left-right speed difference, the stretching process must be lengthened, and the equipment cost becomes very large.
[0005]
Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 3-182701), it has a plurality of pairs of left and right film holding points that form an angle θ with the traveling direction at the left and right ear ends of the continuous film. A method of manufacturing a film having a stretching axis having an arbitrary angle θ with respect to the traveling direction of the film has been proposed by a mechanism that can stretch the pair of points in the direction θ. However, even in this method, since the film traveling speed changes depending on the right and left of the film, the film has creases, wrinkles, and uneven stretching. To alleviate this, it is necessary to lengthen the stretching process and increase the equipment cost. There were drawbacks.
[0006]
Furthermore, in Patent Document 3 (Japanese Patent Laid-Open No. 2-113920), between two rows of chucks that travel on tenter rails that are arranged so that the travel distances of the chucks in the predetermined travel section are different at both ends of the film. A manufacturing method has been proposed in which the film is stretched in a direction oblique to the length direction of the film by gripping and running. However, even in this method, slanting, wrinkling, and stretching unevenness occurred when obliquely crossed, which was inconvenient for an optical film.
[0007]
Patent Document 4 (Japanese Patent Laid-Open No. 2002-48918) proposes a polarizing plate whose transmission axis is inclined by rubbing treatment. It is generally known that orientation regulation by rubbing is effective only from the film surface to the nano-order part at the maximum, and as a result, polarizers such as iodine and dichroic dye cannot be sufficiently oriented. There was a drawback that the polarization performance was low.
[0008]
In order to solve these problems, an innovative oblique stretching method was proposed in Patent Document 5 (Japanese Patent Laid-Open No. 2002-86554). This makes it possible to produce a polarizing plate with an improved yield in the polarizing plate punching process, but there is a great variation in polarization performance in the longitudinal direction, and further improvement has been demanded.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-9912 [Patent Document 2]
Japanese Patent Laid-Open No. 3-182701 [Patent Document 3]
Japanese Patent Laid-Open No. 2-113920 [Patent Document 4]
Japanese Patent Laid-Open No. 2002-48918 [Patent Document 5]
Japanese Patent Laid-Open No. 2002-86554
[Problems to be solved by the invention]
The object of the present invention is to provide a polarizing film having an obliquely stretched polymer film that can be obtained by an oblique stretching method and can improve the yield in the polarizing plate punching process, and has little unevenness in stretching and little variation in polarization performance. The object is to provide a polarizing plate that is inexpensive in terms of performance.
A further object of the present invention is to provide a method for producing the polarizing plate and a liquid crystal display device provided with the polarizing plate.
[0011]
[Means for Solving the Problems]
According to the present invention, a polymer film stretching method, a polarizing plate, and a liquid crystal display device having the following constitution are provided, and the above object of the present invention is achieved.
1. A long polarizing plate having at least a polarizing film having polarizing ability,
The absorption axis of the polarizing film is neither parallel nor perpendicular to the longitudinal direction, the degree of polarization at 550 nm is 99.0% or more, the single plate transmittance is 40.0% or more, and the single plate transmittance in the longitudinal direction varies. Is a polarizing plate characterized by being within ± 0.3%.
2. 2. The polarizing plate according to 1 above, wherein the polarizing film has a protective film on at least one surface, and the angle between the slow axis of the protective film and the absorption axis of the polarizing film is 10 ° or more and less than 90 °.
3. 3. The polarizing plate according to 1 or 2 above, wherein an angle formed by the longitudinal direction of the polarizing film and the absorption axis direction is 20 ° or more and 70 ° or less.
4. The polarizing plate according to 3 above, wherein an angle formed by the longitudinal direction of the polarizing film and the absorption axis direction is 40 ° or more and 50 ° or less.
5). 5. The polarizing plate as described in any one of 1 to 4 above, wherein the polarizing film is formed from a polyvinyl alcohol film.
6). The polarizing plate according to any one of 2 to 5 above, wherein the protective film is a transparent film, and the retardation at 632.8 nm is 10 nm or less.
7). The above-mentioned 1 comprising the steps of: holding the both ends of the polymer film for polarizing film continuously supplied by holding means; forming the polarizing film by stretching the holding means while applying the tension in the longitudinal direction of the film; A method for producing the polarizing plate according to any one of?
The step is substantially performed from the locus L1 of the holding means from the substantial holding start point at one end of the polymer film for polarizing film to the substantial holding release point and from the substantial holding start point at the other end of the polymer film. The trajectory L2 of the holding means to the holding release point and the distance W between the two substantially holding release points satisfy the following formula (1) and maintain the support of the polymer film, and the volatile content rate is 10% or more. The method for producing a polarizing plate according to claim 1, wherein the polarizing plate is stretched in the presence of a state and then contracted by 10% or more by drying and the volatile content rate is reduced.
Formula (1): | L2-L1 |> 0.4W
8). 8. The method for producing a polarizing plate according to 7 above, wherein the humidity fluctuation during stretching is within ± 2.5%.
9. 9. The method for producing a polarizing plate as described in 7 or 8 above, wherein after the drying or during the drying, a protective film is bonded to at least one surface and then post-heating is performed.
10. A liquid crystal display device, wherein the polarizing plate cut out from the polarizing plate according to any one of 1 to 6 is used for at least one of two polarizing plates disposed on both sides of the liquid crystal cell.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The polarizing plate of the present invention is a long polarizing plate having at least a polarizing film having polarizing ability. The absorption axis of the polarizing film is neither parallel nor perpendicular to the longitudinal direction, preferably the angle formed by the absorption axis and the longitudinal direction is in the range of 20 ° to 70 °, more preferably 40 ° to 50 °. The polarization degree of the polarizing plate at 550 nm is 99.0% or more, preferably 99.5% or more, the single plate transmittance is 40.0% or more, preferably 41.0% or more, and long. The variation of the single plate transmittance in the scale direction is within ± 0.3%, preferably within ± 0.2%.
A preferred polarizing plate of the present invention has a protective film on at least one surface of the polarizing film, and the angle between the slow axis of the protective film and the absorption axis of the polarizing film is 10 ° or more and less than 90 °, preferably 20 ° or more. The polarizing plate is 70 ° or less, more preferably 40 ° or more and 50 ° or less.
Since the absorption axis of the polarizing film is neither parallel nor perpendicular to the longitudinal direction, and the angle between the slow axis of the protective film and the absorption axis of the polarizing film is 10 ° or more and less than 90 °, A single plate can be obtained with a high yield by a polarizing plate punching process.
[0013]
An important feature of the polarizing plate of the present invention is that the variation in the single plate transmittance in the longitudinal direction is within ± 0.3%, preferably within ± 0.2%. The plate has little unevenness in stretching and little variation in polarization performance.
[0014]
The polarizing plate having the above characteristics can be produced by devising a method for stretching the polymer film constituting the polarizing film. Hereinafter, the extending | stretching method employ | adopted by this invention is explained in full detail.
1 and 2 are schematic plan views showing typical examples of a method of obliquely stretching a polymer film. The stretching method used in the present invention includes the step of introducing the raw film shown in (a) in the direction of arrow (A), the width direction drawing step shown in (b), and the stretched film shown in (c). A process, that is, a process of sending in the (B) direction. Hereinafter, when referred to as “stretching step”, it refers to the entire step for carrying out the stretching method used in the present invention, including these steps (a) to (c). The film is continuously introduced from the direction of (A) and is held for the first time at the B1 point by the holding means on the left side as viewed from the upstream side. At this point, the other film end is not held and no tension is generated in the width direction. That is, the point B1 does not correspond to a substantial holding start point (hereinafter referred to as “substantial holding start point”). In the method used in the present invention, the substantial holding start point is defined as the point at which both ends of the film are held for the first time. The substantial holding start point is the holding start point A1 on the downstream side and the straight line drawn substantially perpendicularly from the center line 11 (FIG. 1) or 21 (FIG. 2) of the introduction side film from A1 of the holding means on the opposite side. This is indicated by two points C1 that intersect the trajectory 13 (FIG. 1) or 23 (FIG. 2). Starting from this point, if the holding means at both ends are conveyed at substantially constant speed, A1 moves to A2, A3... An for each unit time, and C1 similarly moves to C2, C3. That is, the straight line connecting the points An and Cn through which the holding means serving as a reference passes at the same point is the extending direction at that time.
[0015]
In the method used in the present invention, since An is gradually delayed with respect to Cn as shown in FIGS. 1 and 2, the stretching direction is gradually inclined from the vertical in the transport direction. The substantial holding release point (hereinafter referred to as “substantial holding release point”) includes a Cx point that is separated from the holding means at a further upstream, and a center line 12 (FIG. 1) or 22 ( A straight line drawn substantially perpendicularly to FIG. 2) is defined by two points Ay that intersect the trajectory 14 (FIG. 1) or 24 (FIG. 2) of the opposite holding means. The final film stretching direction angle is determined by the difference between the left and right holding means strokes Ay-Ax (ie, | L1-L2 |) at the end point (substantially holding release point) of the substantive drawing step, and the substantial holding releasing point. It is determined by the ratio of the distance W (the distance between Cx and Ay). Accordingly, the inclination angle θ formed by the stretching direction with respect to the transport direction to the next process is tan θ = W / (Ay−Ax), that is, an angle satisfying tan θ = W / | L1-L2 |. The upper film edge in FIGS. 1 and 2 is held up to 18 (FIG. 1) or 28 (FIG. 2) after the Ay point, but the other end is not held, so a new width direction stretching does not occur. First, 18 and 28 are not substantial holding release points.
[0016]
As described above, in the stretching method used in the present invention, the substantial holding start points at both ends of the film are not simple biting points into the left and right holding means. The two real holding start points can be described more precisely as defined above. A straight line connecting one of the left and right holding points and the other holding point is introduced into the process of holding the film. And these two holding points are defined as those located most upstream. Similarly, in the present invention, the two substantially holding release points are such that the straight line connecting either the left or right holding point and the other holding point is substantially perpendicular to the center line of the film sent to the next process. And these two retention points are defined as being most downstream. Here, “substantially orthogonal” means that the straight line connecting the center line of the film and the right and left substantial holding start points or substantial holding release points is 90 ± 0.5 °.
[0017]
When using a tenter-type stretching machine to create a left / right stroke difference, due to mechanical restrictions such as rail length, a large deviation often occurs between the biting point to the holding means and the actual holding start point, or the holding means. There is a case where a large deviation occurs between the separation point from the actual holding point and the real holding release point, but the process between the real holding start point and the real holding release point defined above is expressed by the following equation (1) (formula (1): | L2- If the relationship of L1 |> 0.4 W) is satisfied, the object of the present invention is achieved.
[0018]
In the above, the inclination angle of the orientation axis in the stretched film obtained can be controlled and adjusted by the ratio of the exit width W of step (c) and the stroke difference | L1-L2 | between the two left and right substantial holding means. it can. For polarizing plates and retardation films, films that are often oriented at 45 ° to the longitudinal direction are required. In this case, in order to obtain an orientation angle close to 45 °, it is preferable to satisfy the formula (2) (formula (2): 0.9 W <| L1-L2 | <1.1 W), and more preferably, the formula ( 3) It is preferable to satisfy (Expression (3): 0.97W <| L1-L2 | <1.03W).
[0019]
The specific structure of the stretching step is shown in the methods illustrated in FIGS. 1-2 and FIGS. 3-6 of JP-A-2002-86554, which satisfy the formula (1) and obliquely stretch the polymer film, These can be arbitrarily designed in consideration of equipment cost and productivity.
[0020]
The angle between the film introduction direction (b) in the stretching process and the film transport direction (b) in the next process can be any numerical value, but the total installation area of the equipment including the processes before and after stretching is minimized. From this viewpoint, this angle should be small, preferably within 3 °, and more preferably within 0.5 °. For example, this value can be achieved with the structure illustrated in FIG. Thus, in the method in which the film traveling direction does not substantially change, it is difficult to obtain an orientation angle of 45 ° with respect to the preferred longitudinal direction as a polarizing plate and retardation film only by increasing the width of the holding means. . Therefore, as shown in FIG. 1, | L1-L2 | can be increased by providing a step of once stretching and then contracting. The stretching ratio is desirably 1.1 to 10.0 times, more desirably 2 to 10 times, and the subsequent shrinkage ratio is desirably 10% or more. It is also preferable to repeat stretching and shrinking a plurality of times because | L1-L2 | can be increased.
[0021]
Further, from the viewpoint of minimizing the equipment cost of the stretching process, it is better that the number of bending times and the bending angle of the trajectory of the holding means are smaller. From this point of view, as shown in FIG. 2, the film traveling direction is adjusted so that the angle formed by the film traveling direction at the exit of the step of holding the film both ends and the substantial stretching direction of the film is inclined by 20 to 70 °. It is preferable to bend it in a state where it is held.
[0022]
In the stretching method used in the present invention, a tenter device as shown in FIGS. 1 and 2 is preferable as a device for stretching the film while applying tension while holding both ends.
[0023]
In the case of a tenter type stretching machine, there are many structures in which the chain with the clip fixed advances along the rail. However, when a stretching method that is not equal to the right and left is employed as in the stretching method employed in the present invention, the result is that FIG. 2 and 2, the end of the rail may be shifted at the process entrance and exit, and the left and right may be bitten at the same time and may not be detached. In this case, the substantial process lengths L1 and L2 are not the distance between simple engagement and disengagement as described above, but the process of the portion where the holding means holds the both ends of the film as described above. It is long.
[0024]
If there is a difference in the traveling speed between the left and right sides of the film at the stretching process exit, wrinkles and deviations occur at the stretching process exit, and therefore the transport speed difference between the left and right film gripping means is required to be substantially the same speed. The speed difference is preferably 1% or less, more preferably less than 0.5%, and most preferably less than 0.05%. The speed described here is the length of the trajectory traveled by the left and right holding means per minute. In general tenter drawing machines, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket teeth that drive the chain, the frequency of the drive motor, etc. This does not correspond to the speed difference described in the invention.
[0025]
Further, as the left and right stroke difference occurs, wrinkles and shifts occur in the film. In order to solve this problem, in the stretching method of the present invention, the support of the polymer film is maintained, the volatile component is stretched in the state of 10% or more, and then the volatile component is contracted by 10% or more by drying. Reduce the rate. Here, “maintaining supportability of the polymer film” means that the film can be held on both sides without impairing the film properties. Further, “stretching in a state where the volatile content rate is 10% or more” does not necessarily mean that the volatile content rate is maintained at 10% or more throughout the entire stretching process. It means that there may be a part where the volatile content is less than 10% in a part of the process as long as a stretching process exists at a fraction of 10% or more and the effect of the invention is expressed by the stretching process. Is.
[0026]
As a method of adding volatile matter to the polymer film, cast the film and make it contain volatile matter such as water and non-aqueous solvent, immerse, apply and spray into volatile matter such as water and non-aqueous solvent before stretching, Application of volatile components such as water and non-aqueous solvents during stretching can be raised. Since hydrophilic polymer films such as polyvinyl alcohol contain water in a high-temperature and high-humidity atmosphere, it is preferable to contain volatile components by stretching after conditioning in a high-humidity atmosphere or by stretching under high-humidity conditions. .
As a result of studying to improve the single plate transmittance variation in the longitudinal direction of the long polarizing plate, the present inventors have found that the atmosphere during stretching is important, specifically, in conjunction with humidity fluctuations during stretching. It has been found that the fluctuation in the longitudinal direction of the single plate transmittance when continuously producing is reduced as the single plate transmittance is changed and the humidity during stretching is stabilized.
In this invention, extending | stretching atmosphere should just be more than the freezing point of the volatile matter contained in a film as temperature. When the film is polyvinyl alcohol, it is preferably 25 ° C. or higher. Moreover, when extending | stretching the polyvinyl alcohol which immersed the iodine and boric acid for producing a polarizing film, 30 to 90 degreeC is preferable, More preferably, it is 50 to 70 degreeC. The humidity is 80% or more, more preferably 90% or more.
In the present invention, it has been found that if the humidity fluctuation during stretching is within ± 2.5%, the single-plate transmittance fluctuation in the longitudinal direction can be improved within ± 0.3%.
The variation (variation width) of the single plate transmittance is sampled at 10 points every 10 m with respect to the length of 100 m of the long polarizing plate, and the width of the maximum value and the minimum value of the single plate transmittance varies. (Variation range).
[0027]
The preferred volatile content varies depending on the type of polymer film. The maximum volatile content is possible as long as the support of the polymer film is maintained. In the case of polyvinyl alcohol, the volatile content is preferably 10% to 100%. In cellulose acylate, 10% to 200% is preferable.
[0028]
Further, the stretch of the stretched polymer film may be performed in any step during stretching or after stretching, but is preferably performed by a method of removing volatile matter by stretching after stretching and drying by applying temperature. Of course, any means may be used as long as the film is shrunk. The volatile content after drying is preferably 3% or less, more preferably 2% or less, and even more preferably 1.5% or less.
As a means for shrinking the film, when adopting a method of removing the volatile matter after stretching by applying a temperature, the film surface temperature on the film surface is preferably set to 55 ° C. or higher within 60 seconds. More preferably, the temperature is set to 60 ° C. or higher within 30 seconds. The upper limit of the film surface temperature is 100 ° C. or lower, more preferably 90 ° C. or lower. As a preferable shrinkage rate of the film, it is preferable to shrink by 10% or more as a value by shrinking by 1 / sin θ times or more using the orientation angle θ with respect to the longitudinal direction. The film surface temperature and shrinkage rate of these film surfaces can be adjusted by the temperature during shrinkage, the air volume, and the time. A preferred temperature range is 55 ° C. or more and 100 ° C. or less, and a more preferred temperature is 60 ° C. or more and 90 ° C. or less.
Thus, (i) the film is stretched at least 1.1 to 20.0 times in the film width direction, (ii) the longitudinal traveling speed difference of the holding device at both ends of the film is 1% or less, and (iii) both ends of the film are Bending the film traveling direction while holding both ends of the film so that the angle formed by the film traveling direction at the exit of the holding step and the substantial stretching direction of the film is inclined at 20 ° or more and 70 ° or less; (iv) The stretching method comprising: maintaining the support of the polymer film, stretching in a state where the volatile content rate is 10% or more, and then reducing the volatile content rate while shrinking is a stretching method employed in the present invention. As a preferred embodiment.
[0030]
A rail that regulates the trajectory of the holding means often requires a large bending rate. In order to avoid interference between film gripping means due to sudden bending or local stress concentration, it is desirable that the trajectory of the gripping means draws an arc at the bent portion.
[0031]
There is no restriction | limiting in particular regarding the polymer film which the extending | stretching method used by this invention makes the object of extending | stretching, The film which consists of a suitable polymer soluble in a volatile solvent can be used. Examples of the polymer include polyvinyl alcohol (PVA), polycarbonate, cellulose acylate, polysulfone, and the like.
[0032]
The thickness of the film before stretching is not particularly limited, but 1 μm to 1 mm is preferable and 20 to 200 μm is particularly preferable from the viewpoint of film holding stability and stretching uniformity.
[0033]
The stretched film obtained by the above stretching method can be used for various applications, but is preferably used as a polarizing film or a retardation film because of the property that the orientation axis is inclined with respect to the longitudinal direction. In particular, a polarizing film having an orientation axis tilt angle of 40 to 50 ° with respect to the longitudinal direction is preferably used as a polarizing plate for LCD. More preferably, it is 44-46 degrees.
[0034]
When the stretching method used in the present invention is applied to the production of a polarizing film, polyvinyl alcohol (PVA) is preferably used as the polymer. PVA is usually a saponified polyvinyl acetate, but may contain components copolymerizable with vinyl acetate, such as unsaturated carboxylic acids, unsaturated sulfonic acids, olefins, and vinyl ethers. . In addition, modified PVA containing an acetoacetyl group, a sulfonic acid group, a carboxyl group, an oxyalkylene group, or the like can also be used.
[0035]
The saponification degree of PVA is not particularly limited, but is preferably 80 to 100 mol%, particularly preferably 90 to 100 mol% from the viewpoint of solubility and the like. The degree of polymerization of PVA is not particularly limited, but is preferably 1000 to 10,000, and particularly preferably 1500 to 5000.
[0036]
Although a polarizing film is obtained by dyeing PVA, the dyeing process is performed by gas phase or liquid phase adsorption. As an example in the case of performing in a liquid phase, when iodine is used, it is performed by immersing a PVA film in an iodine-potassium iodide aqueous solution. The iodine is preferably 0.1 to 20 g / l, the potassium iodide is 1 to 100 g / l, and the mass ratio of iodine to potassium iodide is preferably 1 to 100. The dyeing time is preferably 30 to 5000 seconds, and the liquid temperature is preferably 5 to 50 ° C. As a dyeing method, not only immersion but any means such as application or spraying of iodine or a dye solution can be used. The dyeing step may be placed either before or after the stretching step of the present invention, but it is particularly preferable to dye in the liquid phase before the stretching step because the film is appropriately swelled to facilitate stretching.
[0037]
It is also preferable to dye with a dichroic dye in addition to iodine. As a specific example of the dichroic dye, for example, a dichroic dye described in paragraph [0038] of JP-A-2002-86554 can be used. By blending two or more of these dichroic dyes, it is possible to produce polarizers having various hues. A polarizing element or polarizing plate is preferably a compound (pigment) that exhibits black when the polarization axes are orthogonal to each other or a blend of various dichroic dyes so as to exhibit black because both the single plate transmittance and the polarization rate are excellent.
[0038]
In the process of producing a polarizing film by stretching PVA, it is preferable to use an additive that crosslinks PVA. In particular, when the oblique stretching method of the present invention is used, if the PVA is not sufficiently hardened at the exit of the stretching process, the orientation direction of the PVA may shift due to the tension of the process. It is preferable to immerse in or apply a solution to the crosslinking agent solution to contain the crosslinking agent. As the cross-linking agent, those described in US Pat. No. 2,328,977 can be used, but boric acids are most preferably used.
[0039]
The stretching method of the present invention can also be preferably used for the production of a so-called polyvinylene polarizing film in which a polyene structure is formed by dehydrating and dechlorinating PVA and polyvinyl chloride, and polarized light is obtained by a conjugated double bond.
[0040]
The polarizing film produced in the present invention is used as a polarizing plate by attaching a protective film on both sides or one side. The type of the protective film is not particularly limited, and cellulose esters such as cellulose acetate, cellulose acetate butyrate, and cellulose propionate, polycarbonate, polyolefin, polystyrene, polyester, and the like can be used. If the value is above a certain value, the polarization axis and the orientation axis of the protective film are obliquely shifted, so that the linearly polarized light changes to elliptically polarized light, which is not preferable. For this reason, it is preferable that the retardation of a protective film is low. For example, at 632.8 nm, it is preferably 10 nm or less, and more preferably 5 nm or less. In order to obtain such low retardation, the polymer used as the protective film is particularly preferably cellulose triacetate. Polyolefins such as ZEONEX, ZEONOR (both manufactured by Nippon Zeon Co., Ltd.) and ARTON (manufactured by JSR Co., Ltd.) are also preferably used. Other examples include non-birefringent optical resin materials as described in JP-A-8-110402 or JP-A-11-293116.
[0041]
In the present invention, the step of attaching the protective film may be performed after the stretching and before the substantial retention release point. Preferably, during or after shrinkage of the stretched polymer film.
[0042]
The adhesive between the polarizing film and the protective layer is not particularly limited, and examples thereof include PVA resins (including modified PVA such as acetoacetyl group, sulfonic acid group, carboxyl group, oxyalkylene group) and boron compound aqueous solution, Of these, PVA resins are preferred. The thickness of the adhesive layer is preferably 0.01 to 10 μm after drying, and particularly preferably 0.05 to 5 μm.
[0043]
FIG. 3 shows an example of conventional punching of a polarizing plate, and FIG. 4 shows an example of punching of a polarizing plate of the present invention. As shown in FIG. 3, the conventional polarizing plate has an absorption axis 71 of polarized light, that is, a stretching axis that coincides with the longitudinal direction 72, whereas the polarizing plate of the present invention has a structure as shown in FIG. 4. The polarization absorption axis 81, that is, the stretching axis is inclined by 45 ° with respect to the longitudinal direction 82, and this angle indicates the absorption axis of the polarizing plate when bonded to the liquid crystal cell in the LCD and the vertical or horizontal direction of the liquid crystal cell itself. Therefore, oblique punching is not necessary in the punching process. Moreover, as can be seen from FIG. 4, since the polarizing plate of the present invention is cut in a straight line along the longitudinal direction, it can be manufactured by slitting along the longitudinal direction without punching, so the productivity is remarkably excellent. ing.
[0044]
From the viewpoint of increasing the contrast of the liquid crystal display device, the polarizing plate of the present invention preferably has a high transmittance and preferably has a high degree of polarization. The transmittance is preferably 40% or more at 550 nm, and more preferably 41% or more. The degree of polarization is preferably 99.0% or more at 550 nm, more preferably 99.5% or more, and particularly preferably 99.9% or more.
The polarizing plate of the present invention is preferably used for at least one of the two polarizing plates arranged on both sides of the liquid crystal cell.
[0045]
In addition, the stretched film according to the present invention can be suitably used as a retardation plate because it is oriented obliquely with respect to the longitudinal direction. When used as a retardation plate, a stretched material such as cellulose acylate such as polycarbonate, polysulfone or cellulose acetate is preferably used. Of these, cellulose acylate is particularly preferable. The thickness of the film is not particularly limited, but is generally 5 to 300 μm.
[0046]
【Example】
In order to describe the present invention in detail, examples will be described below, but the present invention is not limited thereto.
[Example 1]
A PVA film having a polymerization degree of 1700 is immersed in ion-exchanged water for 1 minute, and after removing excess water with a rubber roller, the PVA film is dissolved in an aqueous solution of 1.0 g / l iodine and 90.0 g / l potassium iodide. After dipping the film so as not to sag for 50 seconds at 25 ° C., and removing excess water with a rubber roller, it was further added to an aqueous solution of 40 g / l boric acid and 30 g / l potassium iodide for 90 seconds at 30 ° C. After dipping so that the film does not loosen, excess water was removed with a stainless steel blade, and the distribution of the moisture content in the film was set to 2% or less, and the film was introduced into a tenter stretching machine having the configuration shown in FIG. Sending 200m at a transfer speed of 4m / min, stretching 4.2 times in an atmosphere of 55 ° C and 95%, bending the tenter as shown in Fig. 2 with respect to the stretching direction, and thereafter keeping the width constant and contracting The film surface was dried at 80 ° C. for 3 minutes and 30 seconds so that the film surface temperature was changed from 60 ° C. to 65 ° C. in 45 seconds, then detached from the tenter, and 3 cm from the width direction, and then trimmed with a cutter, then PVA ( Bonded with Fuji Photo Film Co., Ltd. Fujitac (cellulose triacetate, retardation value 3.0 nm) which was saponified using an aqueous 3% / potassium iodide 4% aqueous solution (Kuraray Co., Ltd.) A roll-shaped polarizing plate having an effective width of 650 mm and a length of 500 m was successfully produced by heating at 70 ° C. for 10 minutes. The surface temperature of the film was measured with a non-contact thermometer IT-540N manufactured by HORIBA.
The fluctuation of the stretching temperature and humidity during the preparation of the polarizing film was such that the temperature was 55 ± 0.2 ° C. and the humidity was 95% ± 1%. The moisture content of the PVA film before the start of stretching was 32%, and the moisture content after drying was 2.5%.
The difference in transport speed between the left and right tenter clips was less than 0.05%, and the angle between the center line of the introduced film and the center line of the film sent to the next process was 46 °. Here, | L1-L2 | is 0.7 m, W is 0.7 m, and | L1-L2 | = W. The substantial stretching direction Ax-Cx at the tenter outlet was inclined by 45 ° with respect to the center line 22 of the film sent to the next process. Wrinkles, film deformation, and stretching unevenness at the tenter exit were not observed.
The absorption axis direction of the obtained polarizing plate was inclined 45 ° with respect to the longitudinal direction. As a result of measuring the transmittance and the degree of polarization at 550 nm of this roll-type polarizing plate every 10 m, the fluctuation of the single plate transmittance was 43.0 ± 0.3% and the degree of polarization was 99.92 ± 0.02%. there were.
Further, as shown in FIG. 4, when the substrate was cut into a size of 310 × 233 mm, a polarizing plate having an absorption efficiency of 91.5% and an inclination angle of 45 ° with respect to the side could be obtained.
[0047]
[Example 2]
A PVA film having a polymerization degree of 2400 is immersed in ion-exchanged water for 1 minute, and after excess water is removed with a rubber roller, the PVA film is dissolved in an aqueous solution of 1.0 g / l iodine and 80.0 g / l potassium iodide. After dipping so that the film does not sag at 25 ° C. for 55 seconds and removing excess moisture with a rubber roller, it was further added to an aqueous solution of boric acid 40 g / l and potassium iodide 30 g / l at 30 ° C. for 90 seconds. After dipping so that the film does not loosen, excess water was removed with a stainless steel blade, and the distribution of the moisture content in the film was set to 2% or less, and the film was introduced into a tenter stretching machine having the configuration shown in FIG. With a transfer speed of 15 m / min, 500 m is sent out, stretched 4.5 times in an atmosphere of 60 ° C. and 95%, and the tenter is bent as shown in FIG. 2 with respect to the stretching direction. The film surface was dried at 80 ° C. for 3 minutes and 30 seconds so that the film surface temperature was changed from 60 ° C. to 65 ° C. in 30 seconds, then removed from the tenter, 3 cm from the width direction, and then trimmed with a cutter, then PVA ( Bonded with Fuji Photo Film Co., Ltd. Fujitac (cellulose triacetate, retardation value 3.0 nm), which was saponified with an aqueous solution of 3% Kuraray PVA-124H) and 4% potassium iodide as an adhesive, and A roll-shaped polarizing plate having an effective width of 650 mm and a length of 500 m was successfully produced by heating at 70 ° C. for 10 minutes. The surface temperature of the film was measured with a non-contact type thermometer IT-540N manufactured by HORIBA.
The fluctuation of the stretching temperature and humidity during the preparation of the polarizing film was such that the temperature was 60 ± 0.1 ° C. and the humidity was 95% ± 0.5%. The moisture content of the PVA film before the start of stretching was 33%, and the moisture content after drying was 2.2%.
The difference in transport speed between the left and right tenter clips was less than 0.05%, and the angle formed by the center line of the introduced film and the center line of the film sent to the next process was 47 °. Here, | L1-L2 | is 0.7 m, W is 0.7 m, and | L1-L2 | = W. The substantial stretching direction Ax-Cx at the tenter outlet was inclined by 45 ° with respect to the center line 22 of the film sent to the next process. Wrinkles, film deformation, and stretching unevenness at the tenter exit were not observed.
The absorption axis direction of the obtained polarizing plate was inclined 45 ° with respect to the longitudinal direction. As a result of measuring the transmittance and the degree of polarization at 550 nm of this roll-shaped polarizing plate every 10 m, the fluctuation of the single plate transmittance was 43.2 ± 0.1% and the degree of polarization was 99.97 ± 0.01%. there were.
Further, as shown in FIG. 4, when the substrate was cut into a size of 310 × 233 mm, a polarizing plate having an absorption efficiency of 91.5% and an inclination angle of 45 ° with respect to the side could be obtained.
[0048]
[Comparative example]
A PVA film having a polymerization degree of 2400 is immersed in ion-exchanged water for 1 minute, and after excess water is removed with a rubber roller, the PVA film is dissolved in an aqueous solution of 1.0 g / l iodine and 80.0 g / l potassium iodide. After dipping so that the film does not sag at 25 ° C. for 55 seconds and removing excess moisture with a rubber roller, it was further added to an aqueous solution of boric acid 40 g / l and potassium iodide 30 g / l at 30 ° C. for 90 seconds. After dipping so that the film does not loosen, excess water was removed with a stainless steel blade, and the distribution of the moisture content in the film was set to 2% or less, and the film was introduced into a tenter stretching machine having the configuration shown in FIG. The transfer speed is 15 m / min, 500 m is sent out, stretched 4.5 times in an atmosphere of 60 ° C. and 98%, and the tenter is bent as shown in FIG. 2 with respect to the stretching direction. The film surface was dried at 80 ° C. for 3 minutes and 30 seconds so that the film surface temperature was changed from 60 ° C. to 65 ° C. in 30 seconds, then removed from the tenter, 3 cm from the width direction, and then trimmed with a cutter, then PVA ( Bonded with Fuji Photo Film Co., Ltd. Fujitac (cellulose triacetate, retardation value 3.0 nm), which was saponified with an aqueous solution of 3% Kuraray PVA-124H) and 4% potassium iodide as an adhesive, and A roll-shaped polarizing plate having an effective width of 650 mm and a length of 500 m was successfully produced by heating at 70 ° C. for 10 minutes. The surface temperature of the film was measured with a non-contact type thermometer IT-540N manufactured by HORIBA.
The fluctuation of the stretching temperature and humidity during the preparation of the polarizing film was such that the temperature was 60 ± 0.1 ° C. and the humidity was 95% ± 5%. The moisture content of the PVA film before the start of stretching was 33%, and the moisture content after drying was 2.2%.
The difference in transport speed between the left and right tenter clips was less than 0.05%, and the angle formed by the center line of the introduced film and the center line of the film sent to the next process was 47 °. Here, | L1-L2 | is 0.7 m, W is 0.7 m, and | L1-L2 | = W. The substantial stretching direction Ax-Cx at the tenter outlet was inclined by 45 ° with respect to the center line 22 of the film sent to the next process. Wrinkles, film deformation, and stretching unevenness at the tenter exit were not observed.
The absorption axis direction of the obtained polarizing plate was inclined 45 ° with respect to the longitudinal direction. As a result of measuring the transmittance and the degree of polarization at 550 nm of this roll-type polarizing plate every 10 m, the fluctuation of the single plate transmittance was 43.2 ± 2.0%, and the degree of polarization was 99.97 ± 0.03%. there were.
Further, as shown in FIG. 4, when the substrate was cut into a size of 310 × 233 mm, a polarizing plate having an absorption efficiency of 91.5% and an inclination angle of 45 ° with respect to the side could be obtained.
[0049]
【The invention's effect】
The long polarizing plate of the present invention has an obliquely stretched polymer film obtained by the oblique stretching method as a polarizing film, and the yield in the polarizing plate punching process is improved, and there is little stretching unevenness and variation in polarization performance. Less expensive.
The method for producing a polarizing plate of the present invention can efficiently produce a polarizing plate having excellent characteristics. In addition, the liquid crystal display device including the polarizing plate has little variation in polarization performance of the polarizing plate, so that there is little lot difference in display characteristics such as visibility.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing an example of the method of the present invention for obliquely stretching a polymer film.
FIG. 2 is a schematic plan view showing an example of the method of the present invention for obliquely stretching a polymer film.
FIG. 3 is a schematic plan view showing a state of punching a conventional polarizing plate.
FIG. 4 is a schematic plan view showing a state of punching out the polarizing plate of the present invention.
[Explanation of symbols]
(A) Film introduction direction (b) Film transport direction to the next step (a) Step of introducing the film (b) Step of stretching the film (c) Step of sending the stretched film to the next step A1 To the means for holding the film Biting position and starting point of film stretching (actual holding start point: right)
B1 Biting position of film holding means (left)
C1 Film stretch starting position (substantially holding start point: left)
Cx film release position and film stretching end point reference position (actual holding release point: left)
Ay Film drawing end point reference position (substantially holding release point: right)
| L1-L2 | Stroke difference W between left and right film holding means W Substantially width θ at the end of the film stretching process Angle 11 formed by stretching direction and film traveling direction Center line 12 of introduction side film Center line 13 of film sent to next process Trajectory of film holding means (left)
14 Trajectory of film holding means (right)
15 Introducing film 16 Film 17, 17 ′ sent to the next step Left and right film holding start (engagement) points 18, 18 ′ Disengagement point 21 from the left and right film holding means Center line 22 of the introducing side film Sent to the next step The center line 23 of the film to be filmed The trajectory of the film holding means (left)
24 Trajectory of film holding means (right)
25 Introducing film 26 Films 27, 27 'sent to the next step Left and right film holding start (biting) points 28, 28' Release points 71 from left and right film holding means Absorption axis (stretching axis)
72 Longitudinal direction 81 Absorption axis (stretching axis)
82 Longitudinal direction