Nothing Special   »   [go: up one dir, main page]

JP2004292748A - Aqueous polymer dispersion and coating agent containing the dispersion - Google Patents

Aqueous polymer dispersion and coating agent containing the dispersion Download PDF

Info

Publication number
JP2004292748A
JP2004292748A JP2003090150A JP2003090150A JP2004292748A JP 2004292748 A JP2004292748 A JP 2004292748A JP 2003090150 A JP2003090150 A JP 2003090150A JP 2003090150 A JP2003090150 A JP 2003090150A JP 2004292748 A JP2004292748 A JP 2004292748A
Authority
JP
Japan
Prior art keywords
group
polymerization
polymer
stage
aqueous dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003090150A
Other languages
Japanese (ja)
Inventor
Kunihiro Inui
州弘 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2003090150A priority Critical patent/JP2004292748A/en
Publication of JP2004292748A publication Critical patent/JP2004292748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emulsion polymerization type resin capable of forming a coating film excellent in long term weather resistance and long term soil resistance, concretely excellent in luster maintaining property, crack resistance, yellowing resistance, waterproof property, etc., and also hardly being attached with soiling substances, and also excellent in freezing/thawing stability. <P>SOLUTION: This aqueous dispersion of a polymer is obtained by the multiple stage emulsion polymerization of radically polymerizable unsaturated monomers capable of forming a polymer having (-)10-60°C range glass transition temperature is characterized by exhibiting the glass transition temperature [first stage] Tg obtained from the radically polymerizable unsaturated monomer used in a first stage polymerization lower by ≥50°C than the glass transition temperature [final] Tg obtained from a radically polymerizable unsaturated monomer used in the final stage polymerization, and performing the polymerization of a monomer containing a polymerizable ultraviolet light stabilizer as an essential component in the presence of a silane coupling agent having a cycloalkyl group in the final stage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ラジカル重合性単量体を乳化重合せしめてなる重合体の水性分散体に関する。詳しくは、建築用塗料、印刷インキ等のコーティング剤の用途において耐候性向上、耐汚染性向上並びに凍結融解安定性向上にも効果を奏する重合体の水性分散体に関する。
【0002】
【従来の技術】
近年、有機溶剤型塗料から省資源および地球環境汚染の問題や作業性の安全面などの理由から水性型塗料、特に水性エマルジョン型塗料に代わりつつある。
しかし、通常の水性エマルジョン型塗料は、水中に分散した乳化重合型樹脂が乾燥に際して融着して被膜を形成するために有機溶剤型塗料に比べ塗膜の緻密性が悪く、塗料に要求される性能の中で特に皮膜の耐水性、耐候性が悪いという欠点を有していた。
【0003】
そこで、この欠点を改良するために乳化重合系の樹脂において、公知の紫外線吸収剤やヒンダードアミン系ラジカル補足剤を後添加する方法が知られている。しかし、それら化合物は低分子量であるために長期耐候性では紫外線吸収剤やヒンダードアミンの揮散、ブリードアウト、分解のために光沢保持率の低下や色差の変化が大きく、耐候性の良好な乳化重合型樹脂は得られない。
【0004】
そこで、このような問題に対し、重合性のヒンダードアミン系単量体を共重合してなる乳化重合型樹脂が、特許文献1:特開平3−128978号公報、特許文献2:特開平10−60023号公報、特許文献3:特開平10−60024号公報、特許文献4:特開2000−351886号公報、特許文献5:特開2000−351908号公報、特許文献6:特開2001−115080号公報等に提案されている。
このヒンダードアミン系単量体を共重合した乳化重合型樹脂は、ヒンダードアミンが樹脂と結合しているので、形成された塗膜から揮散したりブリードアウトしたりしない。
【0005】
また、塗膜の耐汚染性や透湿性や弾性を改良することを目的としたエマルションが特許文献7:特開平11−92708号公報に、塗膜の耐水性や耐ブロッキング性を改良することを目的とした水性樹脂分散体が特許文献8:特開2000−355602号公報に、塗膜の耐水性、耐ブロッキング性、耐候性、耐凍結融解性を改良することを目的とした水性重合体分散液が特許文献9:特開2002−12601号公報に、それぞれ開示されている。
【0006】
しかし、特許文献1〜6に提案されるような方法では、ヒンダードアミンと他の単量体との相溶性の悪さから完全に均質なコーティング膜が得られず微視的に相分離していることから耐候性試験後において皮膜表面に微細なクラックが発生してチョーキングし、その結果被膜の光沢が低下するために必ずしも長期耐候性を満足することはできない。
【0007】
また、特許文献7に提案されるようなエマルションは、粒子界面に親水性成分を多量に導入するので、耐水性、耐候性、耐汚染性を満足する塗膜を形成できない。特許文献8に提案されるような方法では、耐汚染性は向上せず、また塗膜の凍結融解安定性が悪化し、十分な耐久性を満足できない。しかも、凍結融解安定性が著しく悪い。一方、特許文献9に提案される水性重合体分散液は、塗膜の耐水性、耐ブロッキング性、耐候性、耐凍結融解性を改良することを目的とするものではあるが、特許文献9に提案される水性重合体分散液では、塗膜の耐汚染性は悪化してしまい長期耐久性を満足できない。
【0008】
また、耐候性を向上させるために、シクロアルキル基を有するモノマーを多く共重合した場合には、成膜助剤の揮散性が悪く、コーティング膜形成時にブロッキングを起したり、クラックが発生することが多く、その結果として光沢が低下して耐候性が良好な皮膜が得られない。
さらに、耐候性に対する要求が厳しくなりつつある今日、上記ヒンダードアミン系単量体を共重合した乳化重合型樹脂では、その要求に応えられなくなりつつある。
【0009】
そこで、長期耐候性に優れた、具体的には、光沢保持性、耐クラック性、耐黄変性、耐水性等に優れたコーティング膜を形成し得る重合体の水性分散体が提案された(特願2002−168103号)。該重合体の水性分散体は、確かに光沢保持性、耐クラック性、耐黄変性、耐水性等の点では、長期耐候性に優れた塗膜を形成し得る。しかし、汚染物質が塗膜に定着し易く、一度汚染物質が付着すると、塗膜表面からその汚れを除去することが困難であり、耐汚染性の観点からは満足できるものではなかった。
【0010】
【特許文献1】
特開平3−128978号公報
【特許文献2】
特開平10−60023号公報
【特許文献3】
特開平10−60024号公報
【特許文献4】
特開2000−351886号公報
【特許文献5】
特開2000−351908号公報
【特許文献6】
特開2001−115080号
【特許文献7】
特開平11−92708号公報
【特許文献8】
特開2000−355602号公報
【特許文献9】
特開2002−012601号
【0011】
【発明が解決しようとする課題】
本発明は、長期耐候性に優れると共に長期の耐汚染性にも優れた、具体的には、光沢保持性、耐クラック性、耐黄変性、耐水性等に優れると共に汚染物質の付着しにくく、かつ耐凍結融解安定性にも優れたコーティング膜を形成することができる乳化重合型樹脂を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者は、前記課題を解決すべく鋭意検討を行った。
その結果、多段乳化重合法においてヒンダードアミン及びシクロアルキル基を有するシランカップリング剤をエマルジョン粒子の最外層に局在化させ、重合に用いられる全単量体から形成され得る重合体及び重合の最初と最後に用いられる単量体から形成され得るそれぞれの重合体のガラス転移温度を特定の範囲にコントロールすることによって、相溶性に優れた均質なコーティング膜が得られ耐候性及び耐汚染性向上し、かつコーティング膜の凍結融解安定性の確保に顕著な効果を奏することを見い出した。
【0013】
すなわち、第1の発明は、ガラス転移温度が−10〜60℃の範囲にある重合体を形成し得るラジカル重合性不飽和単量体を多段乳化重合してなる重合体の水性分散体であって、
第一段目の重合に用いられるラジカル重合性不飽和単量体から求められるガラス転移温度[一段目]Tgが、最終段階の重合に用いられるラジカル重合性不飽和単量体から求められるガラス転移温度[最終]Tgよりも50℃以上低く、
シクロアルキル基を有するシランカップリング剤の存在下に、一般式(1)で示される重合性紫外線安定剤を必須成分とする単量体を最終段階で重合せしめてなることを特徴とする重合体の水性分散体である。
【0014】
【化3】

Figure 2004292748
【0015】
(式中、Rは水素原子又はシアノ基を表し、R、Rはそれぞれ独立して水素原子、メチル基又はエチル基を表し、Rは水素原子、炭素数1〜18のアルキル基、−CO−C(R)=CH(CR)を表し、Xはイミノ基又は酸素原子を表す。R、Rはそれぞれ独立して水素原子、メチル基又はエチル基を表わす。)
【0016】
第2の発明は、ラジカル重合可能な不飽和二重結合を有する反応性乳化剤を用いてなることを特徴とする請求項1記載の重合体の水性分散体であり、
第3の発明は、式(1)で示される重合性紫外線安定剤を必須成分とする単量体を最終段階で重合せしめる際に、下記式(2)で示される重合性紫外線吸収剤を併用してなることを特徴とする第1又は第2の発明に記載の重合体の水性分散体である。
【0017】
【化4】
Figure 2004292748
【0018】
(式中、R7は水素原子又はメチル基を表し、Yは炭素数1〜6のアルキレン基を表す)
【0019】
第4の発明は、シクロアルキル基がシクロヘキシル基であり、環状エーテル構造を有しないシランカップリング剤を用いることを特徴とする第1ないし第3の発明のいずれか記載の重合体の水性分散体である。
【0020】
第5の発明は、第1ないし第4の発明のいずれか記載の重合体の水性分散体を含有することを特徴とするコーティング剤である。
【0021】
【発明の実施の形態】
本発明の重合体水性分散体は、ガラス転移温度が−10〜60℃の範囲にある重合体を形成し得るラジカル重合性不飽和単量体を多段乳化重合してなるもので、第一段目の重合に用いられるラジカル重合性不飽和単量体から求められるガラス転移温度[一段目]Tgが、最終段階の重合に用いられるラジカル重合性不飽和単量体から求められるガラス転移温度[最終]Tgよりも50℃以上低く、かつシクロアルキル基を有するシランカップリング剤の存在下に一般式(1)で示される重合性紫外線安定剤を必須成分とする単量体を多段乳化重合の最終段階で重合せしめてなるものである。
尚、発明にいう多段乳化重合とは、乳化重合の一種であって、二つ以上の異なる重合段階からなるものである。即ち、使用する単量体、乳化剤、重合開始剤等の相違する複数の重合段階を経る重合方法である。
【0022】
【化5】
Figure 2004292748
【0023】
(式中、Rは水素原子又はシアノ基を表し、R、Rはそれぞれ独立して水素原子、メチル基又はエチル基を表し、Rは水素原子、炭素数1〜18のアルキル基、−CO−C(R)=CH(CR)を表し、Xはイミノ基又は酸素原子を表す。R、Rはそれぞれ独立して水素原子、メチル基又はエチル基を表わす。)
【0024】
本発明における重合性紫外線安定剤の具体例としては、4−(メタ)アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、4−(メタ)アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、4−(メタ)アクリロイルアミノ−1,2,2,6,6−ペンタメチルピペリジン、4−シアノ−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルアミノ−2,2,6,6−テトラメチルピペリジン、1−(メタ)アクリロイル−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、1−(メタ)アクリロイル−4−シアノ−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、1−クロトノイル−4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン等が挙げられる。これらは1種類のみを用いてもよく、2種類以上を適宜混合して用いてもよい。
【0025】
本発明においては、前記例示の重合性紫外線安定剤の中でも特に、前記一般式(1)において、Rが水素原子であり、Rがメチル基であり、Rが水素原子であり、Rが水素原子またはメチル基であり、Xが酸素原子であるような化合物が、特に好ましい。このような化合物としては、具体的には、例えば、4−(メタ)アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(メタ)アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン等が挙げられる。
【0026】
上記重合性紫外線安定剤の含有量は、重合性紫外線安定剤、後述するシクロアルキル基を有するシランカップリング剤及び後述するラジカル重合性重合性不飽和単量体の合計100重量%中に(後述する重合性紫外線吸収剤やアルコキシシリル基を有する重合性単量体を用いる場合にはこれらも含めて合計100重量%中に)、0.1〜60.0重量%であるのがよい。重合性紫外線安定剤が0.1重量%未満では耐候性向上の効果を十分に発揮しにくい。また60重量%を越えると重合反応が進行しにくくなり未反応モノマーが多量に発生し、また乳化重合の際に重合安定性も低下し凝集物が発生するので好ましくない。尚、本発明でいうラジカル重合性不飽和単量体の中には、重合性紫外線安定剤、後述する重合性紫外線吸収剤やアルコキシシリル基を有する重合性単量体は含めないものとする。
【0027】
また、本発明においては、後述するようにアクリル酸等の重合性不飽和カルボン酸を最終段階の重合の前までに重合せしめておくことが好ましい。このような場合、上記重合性紫外線安定剤を最終段で乳化重合させる前に、重合性不飽和カルボン酸に由来する−COOHをアンモニア水などの中和剤で中和し、予めpHを4.0を越えるように調整しておくことが好ましい。pHを調整しておかないと重合安定性が悪くなりやすい。
【0028】
また、本発明の重合体水性分散体は、使用する重合性紫外線安定剤の含有量に応じて様々な使い方ができる。
すなわち、重合性紫外線安定剤の含有量が0.1〜10.0重量%である場合、重合体の水性分散体そのものをコーティング剤として用い、長期耐候性に優れたコーティング膜が得られる。
また、重合性紫外線安定剤の含有量が10.0〜60.0重量%である場合には、アクリル、ウレタン、ポリエステル、エポキシ、アルキッド等の各種重合体の水性分散体の固形分で100重量部に対し、本発明の重合体水性分散体を固形分で0.5〜5.0重量部を後添加することにより、長期耐候性向上用の添加剤として使用することができる。
【0029】
本発明におけるシクロアルキル基を有するシランカップリング剤の具体例としては、シクロヘキシルジメチルクロロシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルメチルジクロロシラン、シクロヘキシルメチルジメトキシシラン、(シクロヘキシルメチル)トリクロロシラン、シクロヘキシルトリクロロシラン、シクロヘキシルトリメトキシシラン、シクロオクチルトリクロロシラン、シクロペンチルトリクロロシラン、シクロペンチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。これらは1種類のみを用いてもよく、2種類以上を適宜混合して用いてもよい。
【0030】
本発明においては、前記例示のシクロアルキル基を有するシランカップリング剤の中でも特に好ましい化合物としては、シクロヘキシル基を有し、かつ環状エーテル構造を有しない、シクロヘキシルエチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルトリメトキシシラン、シクロペンチルトリメトキシシラン等が挙げられる。
2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のように環状エーテル構造を有し、この環状エーテル構造が塗膜中で−COOHと反応することなく単に開環した場合、開環によって生じた水酸基が塗膜の耐水性を悪化させることがある。従って、シクロヘキシル基を有し、かつ環状エーテル構造を有しないシランカップリング剤を用いることが好ましい。
【0031】
シクロアルキル基を有するシランカップリング剤の含有量は、シクロアルキル基を有するシランカップリング剤、重合性紫外線安定剤、後述する重合性不飽和単量体、必要に応じて使用し得る重合性紫外線吸収剤及び必要に応じて使用し得るアルコキシシリル基を有する重合性単量体の合計100重量%中に、0.1〜10.0重量%、好ましくは0.2〜5.0重量%であるのがよい。シクロアルキル基を有するシランカップリング剤の含有量が0.1重量%未満であると、耐候性および相溶性の向上効果が現れにくく、一方、10.0重量%を越えると、コーティング膜の耐水性が低下する傾向があるので好ましくない。
【0032】
本発明において多段乳化重合の際には、種々の乳化剤を用いることができるが、塗膜の耐水性向上の観点からは、ラジカル重合性と乳化剤としての機能を併せ持つ、いわゆる反応性乳化剤を用いることが好ましい。
本発明で好適に使用する反応性乳化剤としては、非ノニルフェノール構造の分子内にラジカル重合可能な不飽和2重結合を1個以上有するアニオン性またはノニオン性の乳化剤が挙げられる。例えば、スルフォコハク酸エステル系(市販品としては、例えば花王株式会社製ラテムルS−120,S−180P,S−180A,三洋化成株式会社製エレミノールJS−2等)やアルキルエーテル系(市販品としては、例えば第一工業製薬株式会社製アクアロンKH−05、KH−10、旭電化工業株式会社製アデカリアソープSR−10N、SR−20N、ER−10、20、30、40、花王株式会社製ラテムルPD−104等)がある。
【0033】
乳化重合に際しては、これらの1種または2種以上を混合して使用することができる。これら乳化剤は、重合性紫外線安定剤、シクロアルキル基を有するシランカップリング剤、後述するラジカル重合性不飽和単量体、後述するように必要に応じて使用し得る重合性紫外線吸収剤及び後述するように必要に応じて使用し得るアルコキシシリル基を有する重合性単量体の合計100重量部に対し、0.1〜10重量部であることが好ましい。10重量部を越えると粒子径は小さくなるが、多量の乳化剤を使用するため、その悪影響として被膜の耐水性が悪くなる傾向にある。尚、本発明でいうラジカル重合性不飽和単量体の中には、反応性乳化剤は、含めないものとする。
【0034】
本発明は多段乳化重合の最終段階において、一般式(2)で示される重合性紫外線吸収剤をさらに共重合せしめることが好ましい。
【0035】
【化6】
Figure 2004292748
【0036】
(式中、R7は水素原子又はメチル基を表し、Yは炭素数1〜6のアルキレン基を表す)。
【0037】
本発明における重合性紫外線吸収性単量体の具体例としては、 2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシメチル)フェニル〕−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル〕−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシプロピル)フェニル〕−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシヘキシル)フェニル〕−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−3’−t−ブチル−5’−(メタクリロイルオキシエチル)フェニル〕−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−t−ブチル−3’−(メタクリロイルオキシエチル)フェニル〕−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル〕−5−クロロ−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル〕−5−メトキシ−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル〕−5−シアノ−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル〕−5−t−ブチル−2H−ベンゾトリアゾール、2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシエチル)フェニル〕−5−ニトロ−2H−ベンゾトリアゾール等が挙げられる。これらは1種類のみを用いてもよく、2種類以上を適宜混合して用いてもよい。
このような化合物としては、特に2−〔2’−ヒドロキシ−5’−(メタクリロイルオキシメチル)フェニル〕−2H−ベンゾトリアゾールが好ましい。
【0038】
前記重合性紫外線吸収剤の含有率は、重合性紫外線吸収剤、重合性紫外線安定剤、シクロアルキル基を有するシランカップリング剤、後述するラジカル重合性重合性不飽和単量体及び後述するように必要に応じて使用し得るアルコキシシリル基を有する重合性単量体の合計100重量%中に、0.1〜10重量%、好ましくは0.2〜5重量%であるのがよい。重合性紫外線吸収剤の含有率が、0.1重量%未満であると、耐侯性の相乗向上効果が現れにくい。一方、10重量%を越えると、重合安定性が悪く、しかも一般に重合性紫外線吸収剤は高価であり、コスト的に不利となるため、好ましくない。
【0039】
本発明において、コーティング膜に架橋構造を導入して各種物性を向上させ、かつ、シクロアルキル基を有するシランカップリング剤と、重合性紫外線安定剤やラジカル重合性不飽和単量体等との相溶性を高め、耐候性向上の相乗効果を現すために、重合の際にアルコキシシリル基を有する重合性単量体を使用することができる。
アルコキシシリル基を有する重合性単量体の具体例としては、ビニルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、アリルトリエトキシシラン、トリメトキシシリルプロピルアリルアミン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン等が挙げられる。これらは1種類のみを用いてもよく、2種類以上を適宜混合して用いてもよい。
【0040】
前記アルコキシシリル基を有する重合性単量体の含有率は、アルコキシシリル基を有する重合性単量体、重合性紫外線安定剤、シクロアルキル基を有するシランカップリング剤、後述するラジカル重合性重合性不飽和単量体及び必要に応じて使用し得る重合性紫外線吸収剤の合計100重量%中に、0.1〜5重量%、好ましくは0.3〜3重量%であるのがよい。アルコキシシリル基を有する重合性単量体の含有率が、0.1重量%未満であると、耐侯性の相乗向上効果が現れにくいくく、一方、5重量%を越えると、塗膜が脆くなりやすく、貯蔵中に物性が変化しやすくなるため、好ましくない。尚、本発明でいうラジカル重合性不飽和単量体の中には、アルコキシシリル基を有する重合性単量体は、含めないものとする。
【0041】
ラジカル重合性不飽和単量体としては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ジアリルフタレート、ジビニルベンゼン、アリルメタクリレート、グリシジルメタクリレート等のコーティング膜に架橋構造を導入することが可能な多官能の重合性不飽和単量体を使用することができる。
【0042】
また、コーティング膜の帯電防止能力を向上させ汚染物質を吸着させにくくするために、アクリル酸ジメチルアミノメチル、アクリル酸ジメチルアミノエチル、メタクリル酸酸ジメチルアミノメチル、メタクリル酸ジメチルアミノエチル、ジメチルアミノエチルアクリルアミド、ジメチルアミノエチルメタクリルアミド、ビニルピリジン、ビニルイミダゾール、ビニルピロリドン等に代表される塩基性重合性不飽和単量体を使用することができる。
同様にコーティング膜の帯電防止能力を向上させ汚染物質を吸着させにくくするために、スチレンスルフォン酸ナトリウムに代表されるスルホン酸系の重合性不飽和単量体やリン酸モノ(2−ヒドロキシエチル)メタクリルエステルなどのリン酸系の重合性不飽和単量体を使用することができる。
【0043】
その他のラジカル重合性不飽和単量体として具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸n−アミル、アクリル酸イソアミル、アクリル酸n−ヘキシル、アクリル酸シクロヘキシル、アクリル酸2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸デシル、アクリル酸ドデシルなどのアクリル酸エステル類、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−アミル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸n−オクチル、メタクリル酸デシル、メタクリル酸ドデシルなどのメタクリル酸エステル類、スチレン、ビニルトルエン、2−メチルスチレン、t−ブチルスチレン、クロルスチレンなどのスチレン系モノマー、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピルなどのヒドロキシ基含有モノマー、N−メチロールアクリルアミド、N−ブトキシメチルアクリルアミド、N−メチロールメタアクリルアミド、N−ブトキシメチルメタアクリルアミドなどのN−置換アクリル、メタクリル系モノマー、並びにアクリロニトリルなどの1種または2種以上から選択することができる。
【0044】
さらに、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸などの重合性不飽和カルボン酸およびそれらの無水物は、重合時あるいは水性樹脂分散体の保存安定性を保つため併用することが好ましい。この目的のために重合性不飽和カルボン酸は、重合性紫外線安定剤、シクロアルキル基を有するシランカップリング剤、ラジカル重合性重合性不飽和単量体、必要に応じて使用し得る重合性紫外線吸収剤及び必要に応じて使用し得るアルコキシシリル基を有する重合性単量体の合計100重量%中に、0.05〜5重量%を使用することができる。
【0045】
本発明の重合体水性分散体は、上記したように重合性紫外線安定剤とシクロアルキル基を有するシランカップリング剤とを重合体粒子の最外層に共存させ、かつガラス転移温度[一段目]Tgが、最終段階の重合に用いられるラジカル重合性不飽和単量体から求められるガラス転移温度[最終]Tgよりも50℃以上、好ましくは80℃以上、さらに好ましくは100℃以上低くすることにより、相溶性に優れた均質なコーティング膜が得られ、耐候性、特に、長期における光沢保持性をさらに向上させることができ、かつ耐汚染性、塗膜の凍結融解安定性に優れたコーティング膜を得ることができる。
従って、重合体全体のガラス転移温度、[全]Tgが−10〜60℃であって、[一段目]Tgが[最終]Tgよりも50℃以上低くくても、重合性紫外線安定剤とシクロアルキル基を有するシランカップリング剤とを重合体粒子の最外層に共存させない場合、例えば重合性紫外線安定剤又はシクロアルキル基を有するシランカップリング剤のいずれか一方を重合体粒子の最外層形成に用いたり、あるいはいずれも用いなかったりした場合には、耐候性が悪化し長期耐久性を満たすことができない。
【0046】
また、重合性紫外線安定剤とシクロアルキル基を有するシランカップリング剤とを重合体粒子の最外層に共存させ、[一段目]Tgを[最終]Tgよりも50℃以上低くしても、重合体全体のガラス転移温度、[全]Tgが−10未満だと、良好な耐汚染性と耐候性は得られず、一方[全]Tgが60℃を超えると塗膜の凍結融解安定性が悪化する。
さらに、重合性紫外線安定剤とシクロアルキル基を有するシランカップリング剤とを重合体粒子の最外層に共存させ、[全]Tgが−10〜60℃であっても、[一段目]Tgが[最終]Tgよりも50℃以上低くない場合、例えば[一段目]Tgが[最終]Tgよりも高いが、その差が50℃よりも小さい場合や、[一段目]Tgが[最終]Tgよりも低い場合は良好な耐汚染性は得られず、塗膜の凍結融解安定性が悪化する。
【0047】
尚、本発明にいうTgとは各単量体から形成され得る各ホモポリマーTg、重合に供される各単量体の重量分率から以下の式に基づいて求めることができる。
1/Tg=Σ(Wn/Tgn)
Tg :重合体の計算Tg(絶対温度)
Wn :単量体nの重量分率(%)
Tgn:単量体nのホモポリマーのガラス転移温度(絶対温度)
【0048】
また、コーティング膜の親水化や硬度を上昇させるために乳化重合時に各種コロイダルシリカを添加することができる。具体的にはアルカリ性安定型や酸性安定型、広pH領域で安定なものなどを使用することができる。
【0049】
乳化重合時に使用する開始剤としては、アンモニウムパーサルフェイト、ソディウムパーサルフェイト等の無機系過酸化物重合開始剤や水溶性アゾ系開始剤を使用する。場合によればベンゾイルパーオキサイド、アゾビスイソブチロニトリルなどの油溶性の開始剤を併用することもできる。これら開始剤は単独で使用することもできるが、エリソルビン酸ナトリウム、二亜硫酸ナトリウム、二酸化チオ尿素、ロンガリット等の還元剤との併用によるレドックス型で使用してもよい。
【0050】
また乳化重合中に、硫酸第二銅、塩化第二銅等の銅イオンや、硫酸第二鉄、塩化第二鉄等の鉄イオンなどの遷移金属イオンを重合系に10−7〜10−5モル/リットルの範囲で添加することができる。これら遷移金属イオンは、重合反応をスムーズに開始する一種の触媒的な機能を担う。
【0051】
さらに緩衝剤として酢酸ナトリウム、クエン酸ナトリウム、重炭酸ナトリウム等が、また保護コロイドとしてのポリビニルアルコール、水溶性セルロース誘導体等が、連鎖移動剤としてのステアリルメルカプタン、t−ドデシルメルカプタン、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル等のメルカプタン類が使用できる。
【0052】
本発明の重合体の水性分散体は、長期耐候性に優れたコーティング膜を形成することができ、各種コーティング剤として使用することができる。
コーティング剤の具体例としては紙、フィルム、金属、ガラス、木材、皮革などの各種基材に使用することのできる塗料やインキが挙げられる。
また本発明のコーティング剤には、顔料、染料等の着色剤やフィラー、微粉末シリカ等のチキソ性調整剤、アルミナゾル、ポリビニルピロリドン、ポリビニルアルコール、水溶性ポリエステル樹脂、水溶性または水分散性ポリウレタン樹脂、乳化剤、消泡剤、レベリング剤、滑り剤、粘着性付与剤、防腐剤、防黴剤、造膜助剤としての有機溶剤などを必要に応じて配合してもよい。
【0053】
【実施例】
以下実施例により、本発明を説明する。例中、部とは重量部を、%とは重量%をそれぞれ表す。
【0054】
[実施例1]
1.水性樹脂分散体の合成
一段目の乳化重合として、攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、
イオン交換水292部及び表1に示すあらかじめ混合しておいた一段目用プレエマルジョンのうちの5%を仕込んだ。内温を80℃に昇温し十分に窒素置換した後、過硫酸カリウムの5%水溶液4.5部を添加し重合を開始した。反応系内を80℃で5分間保持した後、内温を80℃に保ちながら一段目用プレエマルジョンの残りを90分間かけて滴下し、さらにその温度で0.5時間反応した後、25%アンモニア水を2部添加し、pHが4.0を越えるように生成エマルジョンを中和した。
次に表1に示すあらかじめ混合しておいた2段目用のプレエマルジョンを90分間かけて上記中和後のエマルジョンに滴下し、さらに80℃で2時間反応させた。冷却後、25%アンモニア水1.5部を添加して、固形分45.3%、粘度300mPa・s、pH8.3、粒子径150nm、MFT65℃の水分散 体を得た。
【0055】
【表1】
Figure 2004292748
【0056】
[実施例2〜11]
表2に示す組成を実施製造例1と同様の方法で重合して、それぞれの水性樹脂分散体を得た。
【0057】
【表2】
Figure 2004292748
【0058】
[比較例1〜13]
表3に示す組成を実施製造例1と同様の方法で重合して、それぞれの水性樹脂分散体を得た。
【0059】
【表3】
Figure 2004292748
【0060】
なお、計算Tg値は、以下の計算式で算出した。
1/Tg=Σ(Wn/Tgn)
Tg :重合体の計算Tg(絶対温度)
Wn :単量体nの重量分率(%)
Tgn:単量体nのホモポリマーのガラス転移温度(絶対温度)
【0061】
上記Tg値の算出に用いた単量体のホモポリマーのガラス転移温度(Tgn)は、以下の通りである。
Figure 2004292748
以上は文献値
Figure 2004292748
*1:DSCでのホモポリマーの実測値
【0062】
[水性樹脂分散体の評価]
【0063】
<重合安定性>:実施例1〜14、比較例1〜8の得られた各ポリマーエマルジョンを100メッシュ濾過布でろ過し、濾過布上に残った残滓の乾燥重量を下記の基準で評価した。
○=ポリマーエマルジョン1Kgあたり0.1g未満
△=ポリマーエマルジョン1Kgあたり0.1g以上〜1.0g未満
×=ポリマーエマルジョン1Kgあたり1.0g以上
【0064】
MFT(最低造膜温度)の測定:JIS−K−6828の試験方法に準じて、得られた各ポリマーエマルジョンをガラス板に0.3mmの厚さに塗布し、これを一方の端を高温に、他の端を低温にした熱板上にのせ、均一な乾燥塗膜を形成し得る最低の温度を求めた。
【0065】
<保存安定性>:密閉したガラス容器に実施例1〜14、比較例1〜8で得た水性樹脂分散体をいれて50℃で1カ月保存し、粘度の変化率を測定した。さらに、ガラス容器の底の凝集物について目視で評価した。なお、評価基準は次のとおりである。
◎:粘度変化率 ≦±10%、凝集物は認められない。
○:粘度変化率 ≦±10%、凝集物がわずかに認められる。
△:粘度変化率 ±10%〜±30%、もしくは凝集物が一部認められる。
×:粘度変化率 ≧±30%、もしくはかなりの沈降が認められる。
【0066】
<耐水白化性>:実施例1〜11、比較例1〜10で得た水性樹脂分散体100部に対してブチルセロソルブ(成膜助剤)をMFTが0℃になるように添加し、これを黒色アクリル板上に、10milのアプリケーターで塗布し、100℃の熱風乾燥機にて10分間乾燥して成膜させたものを試験体とした。試験体を60℃の温水中に24時間放置したときの塗膜の白化程度を目視で評価した。なお、評価は5点評価で行った。
5点:全く白化していない。
1点:全面に著しい白化が認められる。
【0067】
[実施例12〜21、および比較例11〜23]
実施例1〜10、および比較例1〜13の水性樹脂分散体を用いて下記塗料化処方で塗料を作成した。
得られた塗料を、フレシキブルスレート板にはけにて100g/m/wetになるように塗布し室温にて7日間乾燥し、促進耐侯性、耐汚染性、凍結融解安定性試験用の試験体とした。
【0068】
塗料化処方
1.実施例1〜10、比較例1〜13の各水性樹脂分散体:100重量部
2.タイペーク CR−97(石原産業社製酸化チタン):40重量部
3.デモールEP(花王(株)製 分散剤):1重量部
4.エチレングリコール:5重量部
5.プライマル ASE−60(日本アクリル(株)製 増粘剤):1重量部
6.CS−12 (チッソ(株)製 成膜助剤):15重量部
7.SNデフォーマー−364(サンノプコ(株)製 消泡剤):0.5部重量部
8.アンモニア(水):0.2重量部
9.水:7重量部
【0069】
[実施例22]
比較例2において得られた水性樹脂分散体100部に対し、実施例11で得られた水性樹脂分散体2部を添加したもの100重量部を、実施例1で得た水性樹脂分散体100重量部の代わりに用いた以外は実施例1と同様にして塗料及び試験体を作成した。
【0070】
[実施例23]
比較例3において得られた水性樹脂分散体100部に対し、実施例11で得られた水性樹脂分散体2部を添加したもの100重量部を、実施例1で得た水性樹脂分散体100重量部の代わりに用いた以外は実施例1と同様にして塗料及び試験体を作成した。
【0071】
[促進耐侯性試験]:
試験機:QUV/Spray 耐候試験機(Q−Panel Lab Products社製)
ランプ:UVB−313
試験サイクル;照射65℃ 8時間、シャワー:5分間、結露:50℃ 3時間55分
試験時間:5000時間
【0072】
<光沢>:5000時間の試験前後の塗膜の光沢を日本電色(株)製変角光沢度計にて、照射角度60゜,受光角度60゜で測定し、光沢保持率を求めた。
【0073】
<クラック>:5000時間の試験後の塗膜のクラックの有無を目視評価した。
○:クラックなし、△:微小クラック有り、×:クラック有り
【0074】
<チョーキング>:5000時間の試験後の塗膜のチョーキング状態を目視評価した。
○:異常なし、△:わずかにチョーキング、×:かなりチョーキング
【0075】
<耐汚染性>
カーボンブラックの水分散体であるリオファーストEM−BLACK K−16(東洋インキ製造(株)製)の10%水希釈液を塗膜上にたらしそれを50℃2時間乾燥後、水で表面に残っているカーボンを洗い流した。室温で乾燥後、カーボンブラックの水分散体をたらした部分の試験前と試験後の色差(△E)で評価した。
【0076】
<コーティング膜の凍結融解安定性>
水中(20℃)で2時間浸漬した後、大気中(−20℃)で2時間放置した。その後再び及びを繰り返し合計200サイクル行った。200サイクル後の塗膜の表面状態を30倍拡大鏡で観察し、以下の通り評価した。
◎・・・全くクラックの発生はなく、試験前と塗膜の変化は認められなかった。
○・・・わずかに微少クラックが発生した。
△・・・ところどころにクラックが発生した。
×・・・塗膜全面にクラックが発生した。
【0077】
【表4】
Figure 2004292748
【0078】
【発明の効果】
多段乳化重合法においてヒンダードアミン及びシクロアルキル基を有するシランカップリング剤をエマルジョン粒子の最外層に局在化させ、重合に用いられる全単量体から形成され得る重合体及び重合の最初と最後に用いられる単量体から形成され得るそれぞれの重合体のガラス転移温度を特定の範囲にコントロールすることによって、相溶性に優れた均質なコーティング膜が得られ耐候性及び耐汚染性向上し、かつコーティング膜の凍結融解安定性に優れたコーティング膜を形成することができる乳化重合型樹脂を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aqueous dispersion of a polymer obtained by emulsion polymerization of a radical polymerizable monomer. More specifically, the present invention relates to an aqueous dispersion of a polymer which is also effective in improving weather resistance, stain resistance and freeze-thaw stability in applications of coating agents such as architectural paints and printing inks.
[0002]
[Prior art]
In recent years, organic solvent-based paints have been replaced with water-based paints, especially water-based emulsion paints, for reasons of resource saving, problems of global environmental pollution, and safety of workability.
However, ordinary water-based emulsion-type paints are required to be less dense than organic solvent-type paints because the emulsion-polymerized resin dispersed in water is fused when dried to form a film. Among the performances, there was a defect that the water resistance and weather resistance of the film were particularly poor.
[0003]
Therefore, a method of post-adding a known ultraviolet absorber or a hindered amine-based radical scavenger to an emulsion polymerization-based resin in order to improve this drawback is known. However, these compounds have low molecular weights, so long-term weatherability has a large decrease in gloss retention and changes in color difference due to volatilization, bleed-out, and decomposition of ultraviolet absorbers and hindered amines. No resin is obtained.
[0004]
In order to solve such a problem, an emulsion polymerization type resin obtained by copolymerizing a polymerizable hindered amine-based monomer is disclosed in Patent Document 1: Japanese Patent Application Laid-Open No. 3-128789, and Patent Document 2: Japanese Patent Application Laid-Open No. 10-60023. JP, JP-A-10-60024, JP-A-2000-351886, JP-A-2000-351908, JP-A-2001-115080 And so on.
The emulsion polymerization type resin obtained by copolymerizing the hindered amine monomer does not volatilize or bleed out from the formed coating film because the hindered amine is bonded to the resin.
[0005]
In addition, an emulsion aimed at improving the stain resistance, moisture permeability and elasticity of a coating film is disclosed in Patent Document 7: Japanese Patent Application Laid-Open No. 11-92708 to improve the water resistance and blocking resistance of the coating film. Japanese Patent Application Laid-Open No. 2000-355602 discloses an aqueous resin dispersion for the purpose of improving the water resistance, blocking resistance, weather resistance, and freeze-thaw resistance of a coating film. The liquid is disclosed in Patent Document 9: JP-A-2002-12601, respectively.
[0006]
However, according to the methods proposed in Patent Documents 1 to 6, a completely uniform coating film cannot be obtained due to poor compatibility between hindered amine and other monomers, and microscopic phase separation occurs. Therefore, after the weather resistance test, fine cracks are generated on the film surface and choking occurs, and as a result, the gloss of the film is lowered, so that the long-term weather resistance cannot always be satisfied.
[0007]
Further, in the emulsion proposed in Patent Document 7, a large amount of a hydrophilic component is introduced at the particle interface, so that a coating film satisfying water resistance, weather resistance and stain resistance cannot be formed. In the method proposed in Patent Document 8, the stain resistance is not improved, and the freeze-thaw stability of the coating film is deteriorated, so that sufficient durability cannot be satisfied. Moreover, the freeze-thaw stability is extremely poor. On the other hand, the aqueous polymer dispersion proposed in Patent Document 9 is intended to improve the water resistance, blocking resistance, weather resistance, and freeze-thaw resistance of a coating film. With the proposed aqueous polymer dispersion, the stain resistance of the coating film deteriorates and the long-term durability cannot be satisfied.
[0008]
Further, when a large amount of a monomer having a cycloalkyl group is copolymerized in order to improve weather resistance, the volatility of the film forming aid is poor, and blocking or cracks may occur at the time of coating film formation. As a result, the gloss decreases and a film having good weather resistance cannot be obtained.
Further, with the demand for weather resistance becoming more severe, emulsion polymerization type resins obtained by copolymerizing the above-mentioned hindered amine-based monomers are no longer able to meet the demand.
[0009]
Therefore, an aqueous dispersion of a polymer which is excellent in long-term weather resistance, specifically, can form a coating film excellent in gloss retention, crack resistance, yellowing resistance, water resistance and the like has been proposed. No. 2002-168103). The aqueous dispersion of the polymer can form a coating film excellent in long-term weather resistance in terms of gloss retention, crack resistance, yellowing resistance, water resistance and the like. However, the contaminants easily settle on the coating film, and once the contaminants adhere, it is difficult to remove the dirt from the surface of the coating film, which is not satisfactory from the viewpoint of stain resistance.
[0010]
[Patent Document 1]
JP-A-3-12897
[Patent Document 2]
JP-A-10-60023
[Patent Document 3]
JP-A-10-60024
[Patent Document 4]
JP 2000-351886 A
[Patent Document 5]
JP 2000-351908 A
[Patent Document 6]
JP-A-2001-115080
[Patent Document 7]
JP-A-11-92708
[Patent Document 8]
JP 2000-355602 A
[Patent Document 9]
JP-A-2002-012601
[0011]
[Problems to be solved by the invention]
The present invention has excellent long-term weather resistance and excellent long-term stain resistance.Specifically, gloss retention, crack resistance, yellowing resistance, water resistance, etc. are excellent, and it is difficult for contaminants to adhere, Another object of the present invention is to provide an emulsion polymerization type resin capable of forming a coating film having excellent freeze-thaw resistance.
[0012]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in order to solve the above-mentioned problems.
As a result, in a multi-stage emulsion polymerization method, a silane coupling agent having a hindered amine and a cycloalkyl group is localized in the outermost layer of the emulsion particles, and a polymer that can be formed from all monomers used for the polymerization and the beginning of the polymerization are obtained. By controlling the glass transition temperature of each polymer that can be formed from the finally used monomer to a specific range, a homogeneous coating film with excellent compatibility is obtained, and weather resistance and stain resistance are improved, It has also been found that the coating film has a remarkable effect in securing the freeze-thaw stability.
[0013]
That is, the first invention is an aqueous dispersion of a polymer obtained by multi-stage emulsion polymerization of a radical polymerizable unsaturated monomer capable of forming a polymer having a glass transition temperature in the range of -10 to 60 ° C. hand,
The glass transition temperature [first stage] Tg determined from the radical polymerizable unsaturated monomer used in the first stage polymerization is the glass transition temperature determined from the radical polymerizable unsaturated monomer used in the final stage polymerization. The temperature [final] is lower by at least 50 ° C. than Tg,
A polymer obtained by polymerizing a monomer containing a polymerizable ultraviolet stabilizer represented by the general formula (1) as an essential component in a final stage in the presence of a silane coupling agent having a cycloalkyl group. Is an aqueous dispersion of
[0014]
Embedded image
Figure 2004292748
[0015]
(Where R 1 Represents a hydrogen atom or a cyano group; 2 , R 3 Each independently represents a hydrogen atom, a methyl group or an ethyl group; 4 Is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, -CO-C (R 5 ) = CH (CR 6 X represents an imino group or an oxygen atom. R 5 , R 6 Each independently represents a hydrogen atom, a methyl group or an ethyl group. )
[0016]
A second invention is the aqueous dispersion of the polymer according to claim 1, wherein the aqueous dispersion is obtained using a reactive emulsifier having an unsaturated double bond capable of radical polymerization.
According to a third aspect of the present invention, a polymerizable ultraviolet absorber represented by the following formula (2) is used in combination when a monomer having a polymerizable ultraviolet stabilizer represented by the formula (1) as an essential component is polymerized in the final stage. An aqueous dispersion of the polymer according to the first or second aspect of the present invention.
[0017]
Embedded image
Figure 2004292748
[0018]
(Wherein, R 7 represents a hydrogen atom or a methyl group, and Y represents an alkylene group having 1 to 6 carbon atoms)
[0019]
A fourth invention is an aqueous dispersion of a polymer according to any one of the first to third inventions, wherein the cycloalkyl group is a cyclohexyl group and a silane coupling agent having no cyclic ether structure is used. It is.
[0020]
A fifth invention is a coating agent containing an aqueous dispersion of the polymer according to any one of the first to fourth inventions.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The aqueous polymer dispersion of the present invention is obtained by multi-stage emulsion polymerization of a radical polymerizable unsaturated monomer capable of forming a polymer having a glass transition temperature in the range of -10 to 60 ° C. The glass transition temperature [first stage] Tg determined from the radical polymerizable unsaturated monomer used in the second polymerization is the glass transition temperature [final] determined from the radical polymerizable unsaturated monomer used in the final stage polymerization. ] In the presence of a silane coupling agent having a temperature lower than Tg by 50 ° C. or more and having a cycloalkyl group, a monomer having a polymerizable ultraviolet stabilizer represented by the general formula (1) as an essential component is subjected to final multistage emulsion polymerization. It is obtained by polymerizing at a stage.
Incidentally, the multistage emulsion polymerization referred to in the invention is a kind of emulsion polymerization and comprises two or more different polymerization stages. That is, it is a polymerization method that involves a plurality of polymerization steps that differ in the monomers used, emulsifiers, polymerization initiators, and the like.
[0022]
Embedded image
Figure 2004292748
[0023]
(Where R 1 Represents a hydrogen atom or a cyano group; 2 , R 3 Each independently represents a hydrogen atom, a methyl group or an ethyl group; 4 Is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, -CO-C (R 5 ) = CH (CR 6 X represents an imino group or an oxygen atom. R 5 , R 6 Each independently represents a hydrogen atom, a methyl group or an ethyl group. )
[0024]
Specific examples of the polymerizable ultraviolet stabilizer in the present invention include 4- (meth) acryloyloxy-2,2,6,6-tetramethylpiperidine and 4- (meth) acryloylamino-2,2,6,6- Tetramethylpiperidine, 4- (meth) acryloyloxy-1,2,2,6,6-pentamethylpiperidine, 4- (meth) acryloylamino-1,2,2,6,6-pentamethylpiperidine, 4- Cyano-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-2,2,6,6-tetramethylpiperidine, 4-crotonoylamino-2,2 6,6-tetramethylpiperidine, 1- (meth) acryloyl-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 1- (meth) Acryloyl-4-cyano-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 1-crotonoyl-4-crotonoyloxy-2,2,6,6-tetramethylpiperidine and the like. Can be One of these may be used alone, or two or more of them may be appropriately mixed and used.
[0025]
In the present invention, among the polymerizable ultraviolet stabilizers exemplified above, particularly, in the general formula (1), R 1 Is a hydrogen atom, and R 2 Is a methyl group, and R 3 Is a hydrogen atom, and R 4 Is a hydrogen atom or a methyl group, and a compound wherein X is an oxygen atom is particularly preferred. As such compounds, specifically, for example, 4- (meth) acryloyloxy-2,2,6,6-tetramethylpiperidine, 4- (meth) acryloyloxy-1,2,2,6, 6-pentamethylpiperidine and the like.
[0026]
The content of the polymerizable ultraviolet stabilizer is in a total of 100% by weight of the polymerizable ultraviolet stabilizer, a silane coupling agent having a cycloalkyl group described below, and a radical polymerizable polymerizable unsaturated monomer described below (described later). In the case where a polymerizable ultraviolet absorber or a polymerizable monomer having an alkoxysilyl group is used, the content is preferably 0.1 to 60.0% by weight (based on a total of 100% by weight). If the amount of the polymerizable ultraviolet stabilizer is less than 0.1% by weight, it is difficult to sufficiently exert the effect of improving the weather resistance. On the other hand, if it exceeds 60% by weight, the polymerization reaction hardly proceeds, and a large amount of unreacted monomer is generated. In addition, polymerization stability is reduced during emulsion polymerization, and aggregates are generated. The radical polymerizable unsaturated monomer referred to in the present invention does not include a polymerizable ultraviolet stabilizer, a polymerizable ultraviolet absorber described below, and a polymerizable monomer having an alkoxysilyl group.
[0027]
In the present invention, as described later, it is preferable that a polymerizable unsaturated carboxylic acid such as acrylic acid is polymerized before the final polymerization. In such a case, -COOH derived from the polymerizable unsaturated carboxylic acid is neutralized with a neutralizing agent such as aqueous ammonia before the polymerizable ultraviolet stabilizer is emulsion-polymerized in the final stage, and the pH is adjusted to 4. It is preferable to adjust so as to exceed 0. If the pH is not adjusted, the polymerization stability tends to deteriorate.
[0028]
The polymer aqueous dispersion of the present invention can be used in various ways depending on the content of the polymerizable ultraviolet stabilizer used.
That is, when the content of the polymerizable ultraviolet stabilizer is 0.1 to 10.0% by weight, a coating film having excellent long-term weather resistance can be obtained by using the aqueous dispersion of the polymer itself as a coating agent.
When the content of the polymerizable ultraviolet stabilizer is 10.0 to 60.0% by weight, the solid content of the aqueous dispersion of various polymers such as acrylic, urethane, polyester, epoxy and alkyd is 100% by weight. By adding 0.5 to 5.0 parts by weight of the polymer aqueous dispersion of the present invention in terms of solid content to the parts, the composition can be used as an additive for improving long-term weather resistance.
[0029]
Specific examples of the silane coupling agent having a cycloalkyl group in the present invention include cyclohexyldimethylchlorosilane, cyclohexylethyldimethoxysilane, cyclohexylmethyldichlorosilane, cyclohexylmethyldimethoxysilane, (cyclohexylmethyl) trichlorosilane, cyclohexyltrichlorosilane, and cyclohexyltrichlorosilane. Methoxysilane, cyclooctyltrichlorosilane, cyclopentyltrichlorosilane, cyclopentyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like. . One of these may be used alone, or two or more of them may be appropriately mixed and used.
[0030]
In the present invention, among the silane coupling agents having a cycloalkyl group exemplified above, particularly preferred compounds include a cyclohexyl group, and a compound having no cyclic ether structure, such as cyclohexylethyldimethoxysilane, cyclohexylmethyldimethoxysilane, and cyclohexyl. Trimethoxysilane, cyclopentyltrimethoxysilane and the like.
It has a cyclic ether structure such as 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the cyclic ether structure When the ring is simply opened without reacting with COOH, the hydroxyl group generated by the ring opening may deteriorate the water resistance of the coating film. Therefore, it is preferable to use a silane coupling agent having a cyclohexyl group and not having a cyclic ether structure.
[0031]
The content of the silane coupling agent having a cycloalkyl group includes a silane coupling agent having a cycloalkyl group, a polymerizable ultraviolet stabilizer, a polymerizable unsaturated monomer described below, and a polymerizable ultraviolet ray that can be used as necessary. 0.1 to 10.0% by weight, preferably 0.2 to 5.0% by weight, based on a total of 100% by weight of the absorbent and the polymerizable monomer having an alkoxysilyl group that can be used as required. There should be. If the content of the silane coupling agent having a cycloalkyl group is less than 0.1% by weight, the effect of improving weather resistance and compatibility is unlikely to be exhibited. This is not preferred because the properties tend to decrease.
[0032]
In the multistage emulsion polymerization in the present invention, various emulsifiers can be used, but from the viewpoint of improving the water resistance of the coating film, a so-called reactive emulsifier having both a radical polymerizability and a function as an emulsifier is used. Is preferred.
The reactive emulsifier preferably used in the present invention includes an anionic or nonionic emulsifier having one or more radically polymerizable unsaturated double bonds in a molecule having a non-nonylphenol structure. For example, sulfosuccinates (commercially available, such as, for example, Latemul S-120, S-180P, S-180A manufactured by Kao Corporation, Eleminol JS-2 manufactured by Sanyo Chemical Co., Ltd.) and alkyl ethers (commercially available) For example, Aqualon KH-05, KH-10 manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Adecaria Soap SR-10N, SR-20N, ER-10, ER-10, 20, 30, 40 manufactured by Asahi Denka Kogyo KK, Latemul manufactured by Kao Corporation PD-104).
[0033]
At the time of emulsion polymerization, one or more of these can be used as a mixture. These emulsifiers include a polymerizable ultraviolet stabilizer, a silane coupling agent having a cycloalkyl group, a radical polymerizable unsaturated monomer described below, a polymerizable ultraviolet absorber that can be used as necessary as described below, and a polymerizable ultraviolet absorber described below. As described above, the amount is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the polymerizable monomer having an alkoxysilyl group that can be used as needed. When the amount exceeds 10 parts by weight, the particle diameter becomes small, but since a large amount of emulsifier is used, the water resistance of the coating tends to be deteriorated as an adverse effect thereof. Incidentally, the reactive emulsifier is not included in the radical polymerizable unsaturated monomer in the present invention.
[0034]
In the present invention, it is preferable to further copolymerize the polymerizable ultraviolet absorber represented by the general formula (2) in the final stage of the multistage emulsion polymerization.
[0035]
Embedded image
Figure 2004292748
[0036]
(Wherein, R 7 represents a hydrogen atom or a methyl group, and Y represents an alkylene group having 1 to 6 carbon atoms).
[0037]
Specific examples of the polymerizable ultraviolet absorbing monomer in the present invention include 2- [2'-hydroxy-5 '-(methacryloyloxymethyl) phenyl] -2H-benzotriazole and 2- [2'-hydroxy-5 '-(Methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5'- (Methacryloyloxyhexyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-t-butyl-5 '-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'- Hydroxy-5′-t-butyl-3 ′-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, -[2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxyethyl) phenyl] -5-methoxy- 2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-cyano-2H-benzotriazole, 2- [2'-hydroxy-5'-(methacryloyloxyethyl) phenyl ] -5-t-butyl-2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-nitro-2H-benzotriazole, and the like. One of these may be used alone, or two or more of them may be appropriately mixed and used.
As such a compound, 2- [2'-hydroxy-5 '-(methacryloyloxymethyl) phenyl] -2H-benzotriazole is particularly preferable.
[0038]
The content of the polymerizable ultraviolet absorber is, as described below, a polymerizable ultraviolet absorber, a polymerizable ultraviolet stabilizer, a silane coupling agent having a cycloalkyl group, a radical polymerizable polymerizable unsaturated monomer described below, and The content is preferably 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, based on 100% by weight of the polymerizable monomer having an alkoxysilyl group that can be used as required. When the content of the polymerizable ultraviolet absorber is less than 0.1% by weight, a synergistic improvement effect of weather resistance is difficult to appear. On the other hand, if it exceeds 10% by weight, the polymerization stability is poor and the polymerizable ultraviolet absorber is generally expensive and disadvantageous in terms of cost.
[0039]
In the present invention, a crosslinked structure is introduced into a coating film to improve various physical properties, and a phase of a silane coupling agent having a cycloalkyl group with a polymerizable ultraviolet stabilizer, a radical polymerizable unsaturated monomer, or the like. A polymerizable monomer having an alkoxysilyl group can be used at the time of polymerization in order to enhance the solubility and exhibit a synergistic effect of improving the weather resistance.
Specific examples of the polymerizable monomer having an alkoxysilyl group include vinyltrimethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, allyltriethoxysilane, trimethoxysilylpropylallylamine, vinyltriethoxysilane, and vinyltris. (Β-methoxyethoxy) silane, γ- (meth) acryloxypropyltriethoxysilane and the like. One of these may be used alone, or two or more of them may be appropriately mixed and used.
[0040]
The content of the polymerizable monomer having an alkoxysilyl group is a polymerizable monomer having an alkoxysilyl group, a polymerizable ultraviolet stabilizer, a silane coupling agent having a cycloalkyl group, and a radical polymerizable polymerizable compound described below. The content is 0.1 to 5% by weight, preferably 0.3 to 3% by weight, based on 100% by weight of the total of the unsaturated monomer and the polymerizable ultraviolet absorber that can be used as required. When the content of the polymerizable monomer having an alkoxysilyl group is less than 0.1% by weight, a synergistic improvement effect of weather resistance is unlikely to appear, and when it exceeds 5% by weight, the coating film becomes brittle. It is not preferable because the physical properties tend to change during storage. The radical polymerizable unsaturated monomer referred to in the present invention does not include a polymerizable monomer having an alkoxysilyl group.
[0041]
As a radical polymerizable unsaturated monomer, it is possible to introduce a crosslinked structure into coating films such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, diallyl phthalate, divinylbenzene, allyl methacrylate, and glycidyl methacrylate. Various polyfunctional polymerizable unsaturated monomers can be used.
[0042]
In order to improve the antistatic ability of the coating film and make it difficult to adsorb contaminants, dimethylaminomethyl acrylate, dimethylaminoethyl acrylate, dimethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylamide And basic polymerizable unsaturated monomers represented by dimethylaminoethyl methacrylamide, vinylpyridine, vinylimidazole, vinylpyrrolidone and the like.
Similarly, in order to improve the antistatic ability of the coating film and to make it difficult to adsorb contaminants, a sulfonic acid-based polymerizable unsaturated monomer represented by sodium styrene sulfonate or mono (2-hydroxyethyl) phosphate is used. Phosphoric acid-based polymerizable unsaturated monomers such as methacrylic esters can be used.
[0043]
Specific examples of other radically polymerizable unsaturated monomers include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, n-amyl acrylate, Acrylic esters such as isoamyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, decyl acrylate, dodecyl acrylate, methyl methacrylate, propyl methacrylate, methacrylic acid n-butyl, isobutyl methacrylate, t-butyl methacrylate, n-amyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, decyl methacrylate, methacrylic acid Methacrylic esters such as dodecyl acrylate, styrene monomers such as styrene, vinyl toluene, 2-methylstyrene, t-butylstyrene and chlorostyrene, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, methacrylic acid A hydroxy group-containing monomer such as hydroxypropyl, N-methylol acrylamide, N-butoxymethyl acrylamide, N-methylol methacrylamide, N-substituted acryl such as N-butoxymethyl methacrylamide, one kind such as methacrylic monomer, and acrylonitrile; Two or more types can be selected.
[0044]
Further, acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, polymerizable unsaturated carboxylic acids such as crotonic acid and their anhydrides are used together during polymerization or to maintain the storage stability of the aqueous resin dispersion. Is preferred. For this purpose, polymerizable unsaturated carboxylic acids include a polymerizable ultraviolet stabilizer, a silane coupling agent having a cycloalkyl group, a radical polymerizable polymerizable unsaturated monomer, and a polymerizable ultraviolet 0.05 to 5% by weight can be used in the total of 100% by weight of the absorbent and the polymerizable monomer having an alkoxysilyl group that can be used as required.
[0045]
As described above, the polymer aqueous dispersion of the present invention has a polymerizable ultraviolet stabilizer and a silane coupling agent having a cycloalkyl group in the outermost layer of polymer particles, and has a glass transition temperature [first stage] Tg. However, by lowering the glass transition temperature [final] Tg required from the radical polymerizable unsaturated monomer used in the final stage polymerization by 50 ° C. or more, preferably 80 ° C. or more, more preferably 100 ° C. or more, A homogeneous coating film with excellent compatibility can be obtained, and the weather resistance, especially the long-term gloss retention can be further improved, and a coating film with excellent stain resistance and freeze-thaw stability of the coating film can be obtained. be able to.
Therefore, even if the glass transition temperature of the whole polymer, [Total] Tg is -10 to 60 ° C and the [first-stage] Tg is 50 ° C or more lower than the [final] Tg, the polymerizable ultraviolet stabilizer and When a silane coupling agent having a cycloalkyl group and the silane coupling agent having a cycloalkyl group are not allowed to coexist in the outermost layer of the polymer particles, for example, one of a polymerizable ultraviolet stabilizer and a silane coupling agent having a cycloalkyl group is formed as the outermost layer of the polymer particles. When used or when none is used, the weather resistance deteriorates and the long-term durability cannot be satisfied.
[0046]
Further, even when a polymerizable ultraviolet stabilizer and a silane coupling agent having a cycloalkyl group coexist in the outermost layer of the polymer particles and the [first-stage] Tg is lower by 50 ° C. or more than the [final] Tg, If the glass transition temperature and [Total] Tg of the whole coalesced are less than -10, good stain resistance and weather resistance cannot be obtained. On the other hand, if the [Total] Tg exceeds 60 ° C, the freeze-thaw stability of the coating film becomes poor. Getting worse.
Furthermore, a polymerizable ultraviolet stabilizer and a silane coupling agent having a cycloalkyl group are allowed to coexist in the outermost layer of the polymer particles, and even if the [all] Tg is -10 to 60 ° C, the [first-stage] Tg is When the temperature is not lower than [final] Tg by 50 ° C. or more, for example, [first stage] Tg is higher than [final] Tg, but the difference is smaller than 50 ° C., or [first stage] Tg is [final] Tg. If it is lower than this, good stain resistance cannot be obtained, and the freeze-thaw stability of the coating film deteriorates.
[0047]
The Tg in the present invention can be determined from each homopolymer Tg that can be formed from each monomer and the weight fraction of each monomer used for polymerization based on the following formula.
1 / Tg = Σ (Wn / Tgn)
Tg: calculated Tg of polymer (absolute temperature)
Wn: weight fraction (%) of monomer n
Tgn: glass transition temperature (absolute temperature) of homopolymer of monomer n
[0048]
In addition, various types of colloidal silica can be added at the time of emulsion polymerization in order to increase the hydrophilicity and the hardness of the coating film. Specifically, an alkaline stable type, an acidic stable type, and a stable type in a wide pH range can be used.
[0049]
As an initiator used at the time of emulsion polymerization, an inorganic peroxide polymerization initiator such as ammonium persulfate and sodium persulfate and a water-soluble azo initiator are used. In some cases, an oil-soluble initiator such as benzoyl peroxide and azobisisobutyronitrile can be used in combination. These initiators can be used alone, or may be used in a redox form in combination with a reducing agent such as sodium erythorbate, sodium disulfite, thiourea dioxide, and Rongalite.
[0050]
Also, during the emulsion polymerization, transition metal ions such as copper ions such as cupric sulfate and cupric chloride and iron ions such as ferric sulfate and ferric chloride are added to the polymerization system. -7 -10 -5 It can be added in the range of mol / liter. These transition metal ions have a kind of catalytic function to smoothly start the polymerization reaction.
[0051]
Further, sodium acetate, sodium citrate, sodium bicarbonate and the like as a buffer, polyvinyl alcohol and a water-soluble cellulose derivative as a protective colloid, stearyl mercaptan, t-dodecyl mercaptan, and methoxybutyl mercaptopropionate as a chain transfer agent. And mercaptans such as octyl mercaptopropionate.
[0052]
The aqueous dispersion of the polymer of the present invention can form a coating film having excellent long-term weather resistance and can be used as various coating agents.
Specific examples of the coating agent include paints and inks that can be used for various substrates such as paper, film, metal, glass, wood, and leather.
The coating agent of the present invention includes pigments, dyes and other coloring agents and fillers, thixotropic modifiers such as finely divided silica, alumina sol, polyvinylpyrrolidone, polyvinyl alcohol, water-soluble polyester resins, water-soluble or water-dispersible polyurethane resins. If necessary, an emulsifier, an antifoaming agent, a leveling agent, a slipping agent, a tackifier, a preservative, an antifungal agent, an organic solvent as a film-forming aid, and the like may be added.
[0053]
【Example】
Hereinafter, the present invention will be described with reference to examples. In the examples, “parts” means “parts by weight” and “%” means “% by weight”.
[0054]
[Example 1]
1. Synthesis of aqueous resin dispersion
As the first-stage emulsion polymerization, a stirrer, a thermometer, a dropping funnel, a reaction vessel equipped with a reflux device,
292 parts of ion-exchanged water and 5% of the premixed first-stage pre-emulsion shown in Table 1 were charged. After the internal temperature was raised to 80 ° C. and the atmosphere was sufficiently replaced with nitrogen, 4.5 parts of a 5% aqueous solution of potassium persulfate was added to initiate polymerization. After maintaining the inside of the reaction system at 80 ° C. for 5 minutes, the remaining portion of the pre-emulsion for the first stage was added dropwise over 90 minutes while maintaining the internal temperature at 80 ° C., and further reacted at that temperature for 0.5 hour. Two parts of aqueous ammonia were added to neutralize the resulting emulsion so that the pH exceeded 4.0.
Next, the premixed second-stage pre-emulsion shown in Table 1 was added dropwise to the neutralized emulsion over 90 minutes, and further reacted at 80 ° C. for 2 hours. After cooling, 1.5 parts of 25% aqueous ammonia was added to obtain an aqueous dispersion having a solid content of 45.3%, a viscosity of 300 mPa · s, a pH of 8.3, a particle diameter of 150 nm, and an MFT of 65 ° C.
[0055]
[Table 1]
Figure 2004292748
[0056]
[Examples 2 to 11]
The compositions shown in Table 2 were polymerized in the same manner as in Example 1 to obtain respective aqueous resin dispersions.
[0057]
[Table 2]
Figure 2004292748
[0058]
[Comparative Examples 1 to 13]
The compositions shown in Table 3 were polymerized in the same manner as in Example 1 to obtain respective aqueous resin dispersions.
[0059]
[Table 3]
Figure 2004292748
[0060]
The calculated Tg value was calculated by the following calculation formula.
1 / Tg = Σ (Wn / Tgn)
Tg: calculated Tg of polymer (absolute temperature)
Wn: weight fraction (%) of monomer n
Tgn: glass transition temperature (absolute temperature) of homopolymer of monomer n
[0061]
The glass transition temperature (Tgn) of the homopolymer of the monomer used for calculating the Tg value is as follows.
Figure 2004292748
The above are literature values
Figure 2004292748
* 1: Actual measured value of homopolymer by DSC
[0062]
[Evaluation of aqueous resin dispersion]
[0063]
<Polymerization stability>: The obtained polymer emulsions of Examples 1 to 14 and Comparative examples 1 to 8 were filtered with a 100-mesh filter cloth, and the dry weight of the residue remaining on the filter cloth was evaluated according to the following criteria. .
== less than 0.1 g per 1 kg of polymer emulsion
Δ = 0.1 g or more to less than 1.0 g per 1 kg of polymer emulsion
× = 1.0 g or more per 1 kg of polymer emulsion
[0064]
Measurement of MFT (minimum film forming temperature): According to the test method of JIS-K-6828, each of the obtained polymer emulsions was applied to a glass plate to a thickness of 0.3 mm, and one end thereof was heated to a high temperature. The other end was placed on a hot plate having a low temperature, and the lowest temperature at which a uniform dried coating film was formed was determined.
[0065]
<Storage stability>: The aqueous resin dispersions obtained in Examples 1 to 14 and Comparative Examples 1 to 8 were placed in a sealed glass container and stored at 50 ° C for one month, and the rate of change in viscosity was measured. Further, the aggregate at the bottom of the glass container was visually evaluated. The evaluation criteria are as follows.
:: rate of change in viscosity ≦ ± 10%, no aggregates were observed.
:: Viscosity change rate ≦ ± 10%, and slight aggregation is observed.
Δ: Viscosity change rate ± 10% to ± 30%, or some aggregates were observed.
×: Change in viscosity ≧ ± 30% or considerable sedimentation is observed.
[0066]
<Water resistance to whitening>: To 100 parts of the aqueous resin dispersions obtained in Examples 1 to 11 and Comparative Examples 1 to 10, butyl cellosolve (film forming aid) was added so that the MFT was 0 ° C., and this was added. A test piece was formed by applying a 10 mil applicator on a black acrylic plate, drying the coating with a hot air dryer at 100 ° C. for 10 minutes, and forming a film. The degree of whitening of the coating film when the test body was left in warm water at 60 ° C. for 24 hours was visually evaluated. In addition, evaluation was performed by five-point evaluation.
5 points: No whitening.
1 point: Significant whitening is observed on the entire surface.
[0067]
[Examples 12 to 21 and Comparative Examples 11 to 23]
Using the aqueous resin dispersions of Examples 1 to 10 and Comparative Examples 1 to 13, paints were prepared according to the following paint formulation.
100 g / m of the obtained coating material was applied to a flexible slate plate by brushing. 2 / Wet and dried at room temperature for 7 days to obtain a test specimen for accelerated weather resistance, stain resistance, and freeze-thaw stability test.
[0068]
Paint formulation
1. Aqueous resin dispersions of Examples 1 to 10 and Comparative Examples 1 to 13: 100 parts by weight
2. Taipaque CR-97 (Titanium oxide manufactured by Ishihara Sangyo): 40 parts by weight
3. Demol EP (dispersing agent manufactured by Kao Corporation): 1 part by weight
4. Ethylene glycol: 5 parts by weight
5. Primal ASE-60 (Nippon Acrylic Co., Ltd. thickener): 1 part by weight
6. CS-12 (film-forming aid manufactured by Chisso Corporation): 15 parts by weight
7. SN Deformer-364 (San Nopco Co., Ltd. antifoaming agent): 0.5 parts by weight
8. Ammonia (water): 0.2 parts by weight
9. Water: 7 parts by weight
[0069]
[Example 22]
100 parts by weight of the aqueous resin dispersion obtained in Example 11 was added to 100 parts by weight of the aqueous resin dispersion obtained in Example 11 and 100 parts by weight of the aqueous resin dispersion obtained in Example 11 were added to 100 parts of the aqueous resin dispersion obtained in Comparative Example 2. A coating material and a test piece were prepared in the same manner as in Example 1 except that parts were used instead of parts.
[0070]
[Example 23]
To 100 parts of the aqueous resin dispersion obtained in Comparative Example 3, 100 parts by weight of 2 parts of the aqueous resin dispersion obtained in Example 11 was added, and 100 parts by weight of the aqueous resin dispersion obtained in Example 1 A coating material and a test piece were prepared in the same manner as in Example 1 except that parts were used instead of parts.
[0071]
[Accelerated weathering test]:
Testing machine: QUV / Spray weather tester (manufactured by Q-Panel Lab Products)
Lamp: UVB-313
Test cycle; irradiation 65 ° C for 8 hours, shower: 5 minutes, dew condensation: 50 ° C for 3 hours 55 minutes
Test time: 5000 hours
[0072]
<Gloss>: The gloss of the coating film before and after the test for 5000 hours was measured with a variable angle gloss meter manufactured by Nippon Denshoku Co., Ltd. at an irradiation angle of 60 ° and a light receiving angle of 60 °, and the gloss retention was determined.
[0073]
<Cracks>: The presence or absence of cracks in the coating film after the test for 5000 hours was visually evaluated.
○: No cracks, △: Minor cracks, ×: Cracks
[0074]
<Chalking>: The choking state of the coating film after the test for 5000 hours was visually evaluated.
:: No abnormality, わ ず か: Slight chalking, ×: Quite chalking
[0075]
<Stain resistance>
A 10% water-diluted solution of Riofast EM-BLACK K-16 (manufactured by Toyo Ink Mfg. Co., Ltd.), which is an aqueous dispersion of carbon black, is applied onto the coating film, dried at 50 ° C. for 2 hours, and then dried with water. The remaining carbon was washed away. After drying at room temperature, the color difference (ΔE) between the portion before and after the test where the aqueous dispersion of carbon black was applied was evaluated.
[0076]
<Freeze-thaw stability of coating film>
After being immersed in water (20 ° C.) for 2 hours, it was left in the air (−20 ° C.) for 2 hours. Thereafter, and were repeated again for a total of 200 cycles. The surface state of the coating film after 200 cycles was observed with a 30-fold magnifier and evaluated as follows.
A: No crack was generated at all, and no change in the coating film was observed before the test.
・ ・ ・: Slight cracks occurred.
Δ: Cracks occurred in some places.
C: Cracks occurred on the entire coating film.
[0077]
[Table 4]
Figure 2004292748
[0078]
【The invention's effect】
In the multi-stage emulsion polymerization method, a silane coupling agent having a hindered amine and a cycloalkyl group is localized in the outermost layer of the emulsion particles, and a polymer which can be formed from all monomers used in the polymerization and used at the beginning and the end of the polymerization. By controlling the glass transition temperature of each polymer that can be formed from the resulting monomer to a specific range, a homogeneous coating film with excellent compatibility can be obtained, weather resistance and stain resistance are improved, and the coating film is improved. Can provide an emulsion polymerization type resin capable of forming a coating film having excellent freeze-thaw stability.

Claims (5)

ガラス転移温度が−10〜60℃の範囲にある重合体を形成し得るラジカル重合性不飽和単量体を多段乳化重合してなる重合体の水性分散体であって、
第一段目の重合に用いられるラジカル重合性不飽和単量体から求められるガラス転移温度[一段目]Tgが、最終段階の重合に用いられるラジカル重合性不飽和単量体から求められるガラス転移温度[最終]Tgよりも50℃以上低く、
シクロアルキル基を有するシランカップリング剤の存在下に、一般式(1)で示される重合性紫外線安定剤を必須成分とする単量体を最終段階で重合せしめてなることを特徴とする重合体の水性分散体。
Figure 2004292748
(式中、Rは水素原子又はシアノ基を表し、R、Rはそれぞれ独立して水素原子、メチル基又はエチル基を表し、Rは水素原子、炭素数1〜18のアルキル基、−CO−C(R)=CH(CR)を表し、Xはイミノ基又は酸素原子を表す。R、Rはそれぞれ独立して水素原子、メチル基又はエチル基を表わす。)
An aqueous dispersion of a polymer obtained by multi-stage emulsion polymerization of a radical polymerizable unsaturated monomer capable of forming a polymer having a glass transition temperature in the range of -10 to 60 ° C,
The glass transition temperature [first stage] Tg determined from the radical polymerizable unsaturated monomer used in the first stage polymerization is the glass transition temperature determined from the radical polymerizable unsaturated monomer used in the final stage polymerization. The temperature [final] is lower by at least 50 ° C. than Tg,
A polymer obtained by polymerizing a monomer containing a polymerizable ultraviolet stabilizer represented by the general formula (1) as an essential component in a final stage in the presence of a silane coupling agent having a cycloalkyl group. Aqueous dispersion of
Figure 2004292748
(Wherein, R 1 represents a hydrogen atom or a cyano group, R 2 and R 3 each independently represent a hydrogen atom, a methyl group or an ethyl group, R 4 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms. , -CO-C (R 5) = represents CH (CR 6), X is .R 5 representing an imino group or an oxygen atom, R 6 each independently represent a hydrogen atom, a methyl group or an ethyl group.)
ラジカル重合可能な不飽和二重結合を有する反応性乳化剤を用いてなることを特徴とする請求項1記載の重合体の水性分散体。The aqueous dispersion of a polymer according to claim 1, wherein a reactive emulsifier having a radically polymerizable unsaturated double bond is used. 式(1)で示される重合性紫外線安定剤を必須成分とする単量体を最終段階で重合せしめる際に、下記式(2)で示される重合性紫外線吸収剤を併用してなることを特徴とする請求項1又は請求項2記載の重合体の水性分散体。
Figure 2004292748
(式中、R7は水素原子又はメチル基を表し、Yは炭素数1〜6のアルキレン基を表す)
When a monomer having a polymerizable ultraviolet stabilizer represented by the formula (1) as an essential component is polymerized in the final stage, a polymerizable ultraviolet absorber represented by the following formula (2) is used in combination. An aqueous dispersion of the polymer according to claim 1 or 2.
Figure 2004292748
(Wherein, R 7 represents a hydrogen atom or a methyl group, and Y represents an alkylene group having 1 to 6 carbon atoms)
シクロアルキル基がシクロヘキシル基であり、環状エーテル構造を有しないシランカップリング剤を用いることを特徴とする請求項1ないし3いずれか記載の重合体の水性分散体。The aqueous dispersion of a polymer according to any one of claims 1 to 3, wherein the cycloalkyl group is a cyclohexyl group, and a silane coupling agent having no cyclic ether structure is used. 請求項1ないし4いずれか記載の重合体の水性分散体を含有することを特徴とするコーティング剤。A coating agent comprising an aqueous dispersion of the polymer according to any one of claims 1 to 4.
JP2003090150A 2003-03-28 2003-03-28 Aqueous polymer dispersion and coating agent containing the dispersion Pending JP2004292748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090150A JP2004292748A (en) 2003-03-28 2003-03-28 Aqueous polymer dispersion and coating agent containing the dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090150A JP2004292748A (en) 2003-03-28 2003-03-28 Aqueous polymer dispersion and coating agent containing the dispersion

Publications (1)

Publication Number Publication Date
JP2004292748A true JP2004292748A (en) 2004-10-21

Family

ID=33403842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090150A Pending JP2004292748A (en) 2003-03-28 2003-03-28 Aqueous polymer dispersion and coating agent containing the dispersion

Country Status (1)

Country Link
JP (1) JP2004292748A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219512A (en) * 2005-02-08 2006-08-24 Daicel Chem Ind Ltd Water-dispersible resin treating agent for metal surface and surface-treated metal plate
JP2006328228A (en) * 2005-05-26 2006-12-07 Mitsubishi Rayon Co Ltd Water-based covering material
JP2006342280A (en) * 2005-06-10 2006-12-21 Asahi Kasei Chemicals Corp Aqueous covering composition for preventing contamination
JP2007119699A (en) * 2005-09-30 2007-05-17 Sumitomo Chemical Co Ltd Manufacturing method of inorganic substance particle-containing methacrylic resin
JP2007154027A (en) * 2005-12-05 2007-06-21 Sk Kaken Co Ltd Method for producing emulsion, and coating using it
JP2007231164A (en) * 2006-03-01 2007-09-13 Mitsubishi Rayon Co Ltd Weather resistance improving material for water-based paint
JP2007291211A (en) * 2006-04-24 2007-11-08 Tohpe Corp Nontacky aqueous undercoat material for leather
CN100434487C (en) * 2005-12-28 2008-11-19 武汉大学 Aqueous plastic printing ink for food indirect contact and preparation method thereof
US8202581B2 (en) 2007-02-16 2012-06-19 Valspar Sourcing, Inc. Treatment for cement composite articles
CN102533032A (en) * 2010-12-10 2012-07-04 深圳市嘉达高科产业发展有限公司 Automatic indoor humidity adjusting coating
US8277934B2 (en) 2006-01-31 2012-10-02 Valspar Sourcing, Inc. Coating system for cement composite articles
US8658286B2 (en) 2006-06-02 2014-02-25 Valspar Sourcing, Inc. High performance aqueous coating compositions
US8932718B2 (en) 2006-07-07 2015-01-13 Valspar Sourcing, Inc. Coating systems for cement composite articles
US8993110B2 (en) 2005-11-15 2015-03-31 Valspar Sourcing, Inc. Coated fiber cement article with crush resistant latex topcoat
US9133064B2 (en) 2008-11-24 2015-09-15 Valspar Sourcing, Inc. Coating system for cement composite articles
US9175187B2 (en) 2008-08-15 2015-11-03 Valspar Sourcing, Inc. Self-etching cementitious substrate coating composition
US9783622B2 (en) 2006-01-31 2017-10-10 Axalta Coating Systems Ip Co., Llc Coating system for cement composite articles
US10968299B2 (en) 2014-12-12 2021-04-06 Adeka Corporation Copolymer and aqueous coating composition using same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219512A (en) * 2005-02-08 2006-08-24 Daicel Chem Ind Ltd Water-dispersible resin treating agent for metal surface and surface-treated metal plate
JP2006328228A (en) * 2005-05-26 2006-12-07 Mitsubishi Rayon Co Ltd Water-based covering material
JP2006342280A (en) * 2005-06-10 2006-12-21 Asahi Kasei Chemicals Corp Aqueous covering composition for preventing contamination
JP2007119699A (en) * 2005-09-30 2007-05-17 Sumitomo Chemical Co Ltd Manufacturing method of inorganic substance particle-containing methacrylic resin
US8993110B2 (en) 2005-11-15 2015-03-31 Valspar Sourcing, Inc. Coated fiber cement article with crush resistant latex topcoat
JP2007154027A (en) * 2005-12-05 2007-06-21 Sk Kaken Co Ltd Method for producing emulsion, and coating using it
CN100434487C (en) * 2005-12-28 2008-11-19 武汉大学 Aqueous plastic printing ink for food indirect contact and preparation method thereof
US8277934B2 (en) 2006-01-31 2012-10-02 Valspar Sourcing, Inc. Coating system for cement composite articles
US9783622B2 (en) 2006-01-31 2017-10-10 Axalta Coating Systems Ip Co., Llc Coating system for cement composite articles
US8293361B2 (en) 2006-01-31 2012-10-23 Valspar Sourcing, Inc. Coating system for cement composite articles
JP2007231164A (en) * 2006-03-01 2007-09-13 Mitsubishi Rayon Co Ltd Weather resistance improving material for water-based paint
JP2007291211A (en) * 2006-04-24 2007-11-08 Tohpe Corp Nontacky aqueous undercoat material for leather
US8658286B2 (en) 2006-06-02 2014-02-25 Valspar Sourcing, Inc. High performance aqueous coating compositions
US9359520B2 (en) 2006-06-02 2016-06-07 Valspar Sourcing, Inc. High performance aqueous coating compositions
US8932718B2 (en) 2006-07-07 2015-01-13 Valspar Sourcing, Inc. Coating systems for cement composite articles
US9593051B2 (en) 2006-07-07 2017-03-14 Valspar Sourcing, Inc. Coating systems for cement composite articles
US10640427B2 (en) 2006-07-07 2020-05-05 Axalta Coating Systems IP Co. LLC Coating systems for cement composite articles
US8202581B2 (en) 2007-02-16 2012-06-19 Valspar Sourcing, Inc. Treatment for cement composite articles
US9175187B2 (en) 2008-08-15 2015-11-03 Valspar Sourcing, Inc. Self-etching cementitious substrate coating composition
US9133064B2 (en) 2008-11-24 2015-09-15 Valspar Sourcing, Inc. Coating system for cement composite articles
CN102533032A (en) * 2010-12-10 2012-07-04 深圳市嘉达高科产业发展有限公司 Automatic indoor humidity adjusting coating
US10968299B2 (en) 2014-12-12 2021-04-06 Adeka Corporation Copolymer and aqueous coating composition using same

Similar Documents

Publication Publication Date Title
JP5290951B2 (en) Water-based resin composition for paint
JP2004292748A (en) Aqueous polymer dispersion and coating agent containing the dispersion
JP4499896B2 (en) (Meth) acrylic ester resin composition
JP5468802B2 (en) Aqueous paint composition and topcoat paint
JP3988544B2 (en) Aqueous dispersion of polymer and coating agent containing the dispersion
JP5089114B2 (en) Aqueous resin composition, method for producing the same, and aqueous coating composition
JP4947764B2 (en) Water-based coating material
JP4522659B2 (en) Water-based low-contamination coating material
JP4690227B2 (en) Aqueous dispersion and paint using the same
JP2008239779A (en) Low staining aqueous coating composition and object coated with the same
JP2003073611A (en) Water coating composition
JP2005029685A (en) Water-based coating material for protecting soft groundwork
JP5566442B2 (en) Aqueous resin composition, method for producing the same, and aqueous coating composition
JP4829531B2 (en) Water-based coating material
JP5336816B2 (en) Aqueous coating material and method for producing emulsion
JP4522656B2 (en) Water-based low-contamination coating material
JP2003096261A (en) Cyclohexyl acrylate water-based resin dispersion composition
JP2006249183A (en) Aqueous resin dispersion
JP4537552B2 (en) (Meth) acrylic ester resin composition
JP3643304B2 (en) Method for producing aqueous resin dispersion
JP2010059267A (en) Preparation method of polymer emulsion and water-based coating material
JP2010138256A (en) Method for producing emulsion, and aqueous coating material
JP5469812B2 (en) Water dispersible resin composition and paint
JP4886258B2 (en) Water-dispersible low-contamination paint resin composition and water-dispersible low-contamination paint using the same
JP5001829B2 (en) Aqueous resin dispersion, aqueous resin composition, and method for producing aqueous resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106