【0001】
【発明の属する技術分野】
本発明は、負荷トルクが頻繁に変動するモータの運転制御装置に関するものである。
【0002】
【従来の技術】
ブラシレスDCモータを回転数制御するモータ運転制御装置として、従来120゜通電方式と、正弦波180゜通電方式のものとがある。
【0003】
120゜通電方式は、誘起電圧のゼロクロス信号を直接検出する方式であり、それを検出するために、インバータ相電圧と基準電圧との比較を行っている。このゼロクロス信号に基づいて、転流信号を変化させている。このゼロクロス信号は、モータ1回転中に12回発生し、機械角30゜、すなわち電気角60゜毎に発生する(例えば、特許文献1参照)。
【0004】
また、180゜通電方式は、モータ巻線の中性点電位と、3相のインバータ出力電圧に対して3相Y結線した抵抗の中性点電位との差分電圧を増幅し、それを積分回路に入力し、その積分回路の出力信号と、その出力信号をフィルタ回路により処理し直流カットしたローパス信号との比較により、誘起電圧に対応する位置検知信号を得ている。この位置検知信号は、モータ1回転中に12回発生し、機械角30゜、すなわち電気角60゜毎に発生する。この方式においては、積分回路を通すため、位相補正制御が必要である(例えば特許文献2〜3参照)。
【0005】
【特許文献1】
特許第2642357号公報
【特許文献2】
特開平7−245982号公報
【特許文献3】
特開平7−337079号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来の技術では以下のような課題を有していた。
【0007】
図11は従来の120°通電方式のモータ制御装置の制御ブロック図である。この方式では、誘起電圧部分のゼロクロスの比較を行っているため、モータ負荷の急変や電源電圧の急変の場合、誘起電圧のゼロクロス信号がインバータ出力電圧領域内に隠れてしまい、検出できなくなることがある。このような状態になると、まず脱調現象が発生し、インバータシステムが停止してしまう。
【0008】
また、1相当たり誘起電圧が電気角60゜連続して確認できるが、モータ運転時の音・振動を軽減しようとして、通電角を150゜程度に設定して運転させようとすると、1相当たり誘起電圧が電気角30゜分しか連続確認できず、通常運転時においても脱調する危険性が増加し、また乱調等の不安定現象も発生し易くなる傾向があった。
【0009】
また、図12(a)は120゜通電制御の相電流波形と誘起電圧波形との関係図である。通常運転時には誘起電圧10に対して相電流11の位置に設定し、最高回転数を増加させる場合には相電流12の位置まで進角させる。しかし、相電流12の位置より進角させることは困難であるため、最高回転数も低くなり、限定された速度範囲しか運転できない課題がある。
【0010】
図12(b)は180゜通電制御の相電流波形と誘起電圧波形との関係図である。180゜通電方式は、積分回路を通すため、誘起電圧のゼロクロス位置を絶対値での的確な把握ができず、運転状態によってはゼロクロス位置と位置検知信号の位相差が大きく変化するため、位相補正等の複雑な制御が必要となり、その位相補正調整が困難であったり、制御演算が複雑になる。また、モータに中性点出力端子が必要、誘起電圧波形の3次高調波成分を利用しているため正弦波着磁マグネットを使用したモータでは使用不可能という課題を有していた。
【0011】
また、電流フィードバック方式によるセンサレス正弦波180゜通電方式では、モータの磁極位置をモータ電流とモータ電気的定数とにより推定演算するため演算誤差が大きくなり、モータ電流の進角制御の限界点が早く、最高回転数も位置センサ付制御に対しどうしても遠く及ばない課題があった。通常運転時には誘起電圧10に対して相電流13の位置に設定し、最高回転数を増加させる場合には相電流14の方向へ進角させる。
【0012】
本発明は、上記課題を解決すべきなされたものであり、その目的とするところは、機械的電磁ピックアップセンサの必要としない誘起電圧フィードバック制御の方式により、位置センサ付正弦波180゜通電と同等レベルの高速性能を実現し、さらには安価かつ信頼性の高いモータの運転制御装置を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するために本発明は、ブラシレスDCモータと、スイッチング素子を含み該スイッチング素子の開閉により直流電圧をPWM信号に基づき交流電圧に変換し前記ブラシレスDCモータに供給する直流交流変換手段と、前記ブラシレスDCモータの誘起電圧を検出する誘起電圧検出手段と、前記直流電圧を検出する直流電圧検出手段と、前記誘起電圧検出手段から出力される磁極位置情報と前記直流電圧検出手段の出力に基づいて電圧波形を出力する電圧制御手段と、前記電圧波形を前記PWM信号に変換するモータの運転制御装置において、前記モータ回転数の全領域を3つの領域に分け、前記モータ回転数が最も低い領域である第1の回転数の範囲では所定の第1の電圧波形を電圧制御手段により出力し、前記モータ回転数が中間の領域である第2の回転数の範囲では所定の第2の電圧波形を出力し、前記モータ回転数が最も高い領域である第3の回転数の範囲では誘起電圧に対する前記ブラシレスDCモータに流れる電流位相角を所定の第1の物理量により決定し、0°〜60°の範囲にあるα°だけ進角させると共に、電気角1周期の所定の部分を正弦波状にした所定の第3の電圧波形を出力するものである。
【0014】
また、1ピストンロータリーコンプレッサー及び熱交換器を有する空気調和機に搭載され、複数の温度検出手段を有し、前記温度検出手段がそれぞれ熱交換器の温度Thと外気温度Toを検出し、Th−ToおよびTlが所定の値の範囲であるものである。
【0015】
また、所定の第1の物理量は、誘起電圧検出手段の出力であるものである。
【0016】
また、所定の第1の物理量は、1ピストンロータリーコンプレッサーの本体、またはその周辺の振動または音を検出し出力する振動検出手段または音検出手段の出力であるものである。
【0017】
また、振動検出手段に、トルクゲージあるいは振動ピックアップを用いたものである。
【0018】
また、音検出手段に、音検知センサを用いたものである。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0020】
(実施の形態1)
図1〜図6を用いて本発明の第1の実施の形態を説明する。
【0021】
図1は、1ピストンロータリーコンプレッサを搭載した空気調和機に本発明を応用した第1の実施の形態の制御ブロック図である。
【0022】
同図に示すように、ブラシレスDCモータ1を搭載した1ピストンロータリーコンプレッサ7と、スイッチング素子を内蔵し、このスイッチング素子の開閉によりPWM信号に基づき直流電圧を交流電圧に変換しブラシレスDCモータ1に供給する直流交流変換手段2と、DCブラシレスモータ1の誘起電圧を検出する誘起電圧検出手段3と、直流電圧検出手段30を設け、直流電圧情報31と誘起電圧検出手段3から出力される磁極位置情報8に基づいて所定の電圧波形を出力する電圧制御手段4と、所定の電圧波形を前記PWM信号に変換するPWM制御手段5とを有するモータの運転制御装置である。
【0023】
図2は、本発明の180°部分正弦波通電を電気角と振幅により示したものである。同図に示すように、180°通電部分正弦波通電時の誘起電圧16と、相電流17と、誘起電圧16に対し相電流を進角させた相電流19と、誘起電圧16のゼロクロス点15である。
【0024】
また、図3は、モータの回転数に対する電圧制御手段4の出力する電圧波形を示す図である。同図に示すように、ブラシレスDCモータ1の速度領域を示し左端を0Hzとした横軸20と、電圧制御手段4の出力が公知のトルク制御相電流となる電圧波形Aの出力区間と、電圧制御手段4の出力が公知の120°通電相電流から180°部分正弦波通電の相電流17となる電圧波形Bの出力区間と、電圧制御手段4の出力が180°部分正弦波通電の相電流17を誘起電圧16に対し進角させた相電流19となる電圧波形Cの出力区間と、トルク制御の最低駆動回転数28、電圧波形Aと電圧波形Bの切り替え点24(モータの回転数:ft)と電圧波形Bと電圧波形Cの切り替え点25(モータの回転数:fw)を示しており、このときftとfwの関係は、0<ft<fwと表される。
【0025】
図4は、トルク制御ゲインGtとモータの回転数の相関を示す図である。
同図は、ftにおいてGt=0となる、ゲインカーブ27と、前出のトルク制御の最低駆動回転数28を表している。
【0026】
次に図1の構成における運転方法を説明する。
起動より特定の回転数までは磁極位置情報8を検出することが困難なため、公知の同期運転によりブラシレスDCモータ1の運転を開始し特定の回転数まで加速させ、それ以上のブラシレスDCモータ1の低速領域では電圧制御手段4は電圧波形Aを出力し公知のトルク制御により1ピストンロータリーコンプレッサー7の低速回転領域の音、振動の低減を行っている。電圧制御手段4は、トルク制御と120°通電の混在度合いを設定するトルク制御ゲインGt(0%≦Gt≦100%)と、磁極位置情報8との図13の選択テーブルにより、ftでトルク制御ゲイン=0%、つまり120°通電のみにする制御を行うことで、脱調が発生することなく安定した電圧波形Aから電圧波形Bへの切り替えを実現している。
【0027】
電圧波形Bの出力区間では、磁極位置情報8を基に電圧制御手段4の出力dutyを100%まで増加させ、相電流17の振幅を増加した後、電圧制御手段4の出力を電気角180°毎のゼロクロス点15で通電を行うことのない電圧波形Cの180°部分正弦波になるように通電角を120°から通電角180°にまで広げ、fwにおいて通電角180°となる制御を行うことで、180°通電しつつも磁極位置情報8を安定して得ることを実現している。
【0028】
電圧波形Cの区間では、誘起電圧10に対し相電流11を磁極位置情報8を基に演算されるα°(0≦α≦60)進角させることで、高速領域までの運転を実現している。
【0029】
本制御を行うとき、ブラシレスDCモータ1の負荷が増大すると、PWM信号のデューティを100%まで増加させてもモータ回転数が増加せず電圧波形Bの区間が狭くなり、さらには0<ft<fwの関係が成り立たなくなる可能性があり、このような場合トルク制御と進角制御を同時に行うこととなり脱調現象の発生は免れない。また、直流電圧の減少によりブラシレスDCモータ1の回転数が急激に低下した場合においても、トルク制御と進角制御が同時に行われる可能性がある。
【0030】
電圧制御手段4は図5(a)に表すように、0<X≦fwのときα=0、fw<X≦ft1のときα=bX(bは傾きを表す定数と定義する)、ft1<Xのとき、α=α1で表される1次関数によって増減し、常に0<ft<fwの関係を満足する。負荷が増大した場合、前記の通りft>fwとなりうるが、図5(b)のようにftとなった時α=0°とすることにより進角制御が入らないよう制御を行うことで、安定した1ピストンロータリーコンプレッサーのトルク制御運転を行うことができる。
【0031】
また、この構成は、直流電圧検出手段30を設け、直流電圧情報31を電圧制御手段4にフィードバックする。PWM信号のデューティを100%まで増加させてもモータ回転数が増加せず0<ft<fwを満足しない場合、図6のように直流電圧がVLまで低下した時、α=0とすることで直流電圧の低下によらず安定した1ピストンロータリーコンプレッサーのトルク制御運転を行うことができる。
【0032】
(実施の形態2)
図2〜図4及び、図7〜図8を用いて本発明の第2の実施の形態を説明する。図2〜図4は実施の形態1での説明の通りである。
【0033】
図7は、第2の実施の形態の制御ブロック図である。この構成は、実施の形態1の構成に、熱交換器41の温度検出手段40と、外気温度検出手段42を設けたものである。熱交換器温度43をTh、外気温度44をToする。
【0034】
実施の形態2の温度検出手段40と、外気温検出手段42はサーミスタと抵抗の分圧により、電圧を検知する。
【0035】
また、基本制御は実施の形態1と同様のため、説明は省略する。
図8は熱交換器温度と室外気温から求まる負荷の領域図およびこの負荷に応じた進角図である。(a)に示すように、熱交換器温度Thと室外気温Toから両者の差Tlを求め、TlとToの座標上で図中TOの範囲を過負荷の領域とする。すなわち、
Tl≧−aTo+b (a、b:定数)
Tol≦To≦Tomax
Tl1≦Tl≦Tlmax
を満たす領域である。そして、負荷がTOの範囲にある場合、ブラシレスDCモータ1の負荷が過負荷であると判断し、図8(b)に示すように進角α=0とする。これにより、安定した1ピストンロータリーコンプレッサーのトルク制御運転を行うことができる。
【0036】
(実施の形態3)
図2〜図4および、図9〜図10を用いて本発明の第3の実施の形態を説明する。図2〜図4は実施の形態1の通りであるので説明を省略する。
図9は、実施の形態3の制御ブロック図である。
【0037】
同図において、実施の形態1の構成に対し、直流電圧検出手段30の代りに、1ピストンロータリーコンプレッサー7の振動を検出する振動検出手段であるトルクゲージ52を備えたものであり、振動情報53を電圧制御手段4にフィードバックする。
【0038】
図3の電圧波形Cの区間における進角α°(0≦α≦60)を進角制御中に発生するDCブラシレスモータ1の振動情報53を基に図1 0(a)に示すように、
振動情報53が所定の振動値A以下でαを増減させるというステップ制御を行うことで負荷によってαの微調整を行うことが出来、高速領域までの安定した運転を実現している。
【0039】
また、振動とともに発生する音をフィードバックし、図10(b)に示すように、所定の音圧B以下でステップ制御によりαを増減させることにより同様の効果が得られる。
【0040】
その他の基本制御は実施の形態1と同様のため、説明は省略する。
【0041】
【発明の効果】
以上のことから明らかなように、ブラシレスDCモータの相電流に所定の非通電期間を設け、磁極位置情報のゼロクロス点を除き、部分正弦波状とすることで、高速性能を実現する。さらに本発明を公知のトルク制御と同時に行う区間を排除し、さらに磁極位置情報により誘起電圧に対する相電流の進角を調整することで、機械的電磁ピックアップや積分回路を搭載することなく、信頼性の高いモータの運転制御装置を提供できる。
【0042】
また、温度によりブラシレスDCモータの過負荷を検知し、ft<fwを常に満足することで信頼性の高いモータの運転制御装置を提供できる。
【0043】
また、直流電圧を検出することで、直流電圧の急変時にもft<fwを常に満足する信頼性の高いモータの運転制御装置を提供できる。
【0044】
また、1ピストンロータリーコンプレッサーの振動、音を検知することで、進角制御を可能とするモータの運転制御装置を提供できる。
【図面の簡単な説明】
【図1】本願発明のブラシレスDCモータの制御ブロック図
【図2】実施の形態1の180°部分正弦波通電の電気角に対する相電流と誘起電圧図
【図3】モータの回転数に対する電圧制御手段4の出力する電圧波形図
【図4】実施の形態1の回転数に対するゲイン図
【図5】実施の形態1のブラシレスDCモータのモータ回転数と進角αの関係図
【図6】実施の形態1の直流電圧と進角αの関係図
【図7】実施の形態2の制御ブロック図
【図8】(a)は実施の形態2の熱交換器と外気の温度差と、負荷相関図
(b)は実施の形態2の負荷と進角αの関係図
【図9】実施の形態3の制御ブロック図
【図10】(a)は実施の形態3の振動値と進角αの関係図
(b)は実施の形態3の音圧と進角αの関係図
【図11】従来の制御ブロック図
【図12】(a)は120゜通電方式の相電流波形と誘起電圧波形の関係図
(b)は180゜通電方式の相電流波形と誘起電圧波形の関係図
【符号の説明】
1 DCブラシレスモータ
2 直流交流変換手段
3 誘起電圧検出手段
4 電圧制御手段
5 PWM制御手段
6 直流電圧
7 1ピストンロータリーコンプレッサー
8 磁極位置情報
10 誘起電圧
21 電圧波形A
22 電圧波形B
23 電圧波形C
24 ft切り替え点
25 fw切り替え点
30 直流電圧検出手段
31 直流電圧情報
40 温度検出手段
41 熱交換器
42 外気温検出手段
43 熱交換器温度
44 外気温度
50 振動検出手段
52 トルクゲージ
53 振動情報[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an operation control device for a motor in which a load torque frequently changes.
[0002]
[Prior art]
As a motor operation control device for controlling the number of revolutions of a brushless DC motor, there are a conventional 120 ° energizing type and a sine wave 180 ° energizing type.
[0003]
The 120 ° energization method is a method of directly detecting a zero-cross signal of an induced voltage. In order to detect this, a comparison is made between an inverter phase voltage and a reference voltage. The commutation signal is changed based on the zero cross signal. This zero-cross signal is generated 12 times during one rotation of the motor, and is generated every mechanical angle of 30 °, that is, every electrical angle of 60 ° (for example, see Patent Document 1).
[0004]
The 180 ° conduction method amplifies the difference voltage between the neutral point potential of the motor winding and the neutral point potential of a three-phase Y-connected resistor with respect to the three-phase inverter output voltage, and integrates the amplified voltage. To obtain a position detection signal corresponding to the induced voltage by comparing the output signal of the integration circuit with a low-pass signal obtained by processing the output signal by a filter circuit and cutting the direct current. This position detection signal is generated 12 times during one rotation of the motor, and is generated every mechanical angle of 30 °, that is, every electrical angle of 60 °. In this method, phase correction control is required to pass through the integration circuit (for example, refer to Patent Documents 2 and 3).
[0005]
[Patent Document 1]
Japanese Patent No. 2642357 [Patent Document 2]
Japanese Patent Application Laid-Open No. 7-245882 [Patent Document 3]
JP-A-7-337079
[Problems to be solved by the invention]
However, the conventional technology has the following problems.
[0007]
FIG. 11 is a control block diagram of a conventional 120 ° conduction type motor control device. In this method, the zero-crossing of the induced voltage part is compared, so in the case of a sudden change in the motor load or the power supply voltage, the zero-crossed signal of the induced voltage is hidden in the inverter output voltage region and cannot be detected. is there. In such a state, a step-out phenomenon occurs first, and the inverter system stops.
[0008]
In addition, the induced voltage per phase can be confirmed continuously at an electrical angle of 60 °. However, if the motor is operated with the energization angle set to about 150 ° to reduce noise and vibration during motor operation, it can be confirmed that The induced voltage can be continuously confirmed only for an electrical angle of 30 °, and the risk of step-out increases during normal operation, and unstable phenomena such as turbulence tend to easily occur.
[0009]
FIG. 12A is a relationship diagram between the phase current waveform and the induced voltage waveform of the 120 ° conduction control. At the time of normal operation, the position is set to the position of the phase current 11 with respect to the induced voltage 10, and when the maximum rotation speed is increased, the angle is advanced to the position of the phase current 12. However, since it is difficult to advance the angle from the position of the phase current 12, the maximum number of revolutions is also low, and there is a problem that only a limited speed range can be operated.
[0010]
FIG. 12B is a relationship diagram between the phase current waveform and the induced voltage waveform of the 180 ° conduction control. In the 180 ° energization method, the zero cross position of the induced voltage cannot be accurately grasped in absolute value because it passes through the integration circuit, and the phase difference between the zero cross position and the position detection signal greatly changes depending on the operation state. And other complicated controls are required, and the phase correction adjustment is difficult, and the control calculation becomes complicated. Further, there is a problem that the motor requires a neutral point output terminal and cannot be used in a motor using a sine wave magnetized magnet because the third harmonic component of the induced voltage waveform is used.
[0011]
Further, in the sensorless sine wave 180 ° energization method using the current feedback method, the calculation of the magnetic pole position of the motor is performed based on the motor current and the motor electrical constant. However, there is a problem that the maximum number of revolutions is far from the control with the position sensor. During normal operation, the position is set to the phase current 13 with respect to the induced voltage 10, and when the maximum rotation speed is increased, the angle is advanced in the direction of the phase current 14.
[0012]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has an object to achieve the same effect as a sine wave 180 ° energization with a position sensor by a method of induced voltage feedback control that does not require a mechanical electromagnetic pickup sensor. It is an object of the present invention to provide a low-cost and highly reliable motor operation control device that realizes high-speed performance at a level.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a brushless DC motor, and a DC / AC converter that includes a switching element, converts a DC voltage into an AC voltage based on a PWM signal by opening and closing the switching element, and supplies the AC voltage to the brushless DC motor. An induced voltage detecting means for detecting an induced voltage of the brushless DC motor; a DC voltage detecting means for detecting the DC voltage; magnetic pole position information output from the induced voltage detecting means and an output of the DC voltage detecting means. A voltage control unit that outputs a voltage waveform based on the voltage, and a motor operation control device that converts the voltage waveform into the PWM signal, wherein the entire region of the motor speed is divided into three regions, and the motor speed is the lowest. A predetermined first voltage waveform is output by the voltage control means in a range of the first rotation speed which is a region, and the motor rotation speed is controlled. A predetermined second voltage waveform is output in the range of the second rotation speed which is an intermediate region, and the brushless DC motor with respect to the induced voltage is output in the range of the third rotation speed where the motor rotation speed is the highest. The phase angle of the flowing current is determined by a predetermined first physical quantity, and is advanced by α ° in the range of 0 ° to 60 °, and a predetermined portion of one cycle of the electrical angle is formed into a sine wave predetermined third. It outputs a voltage waveform.
[0014]
The air conditioner having a one-piston rotary compressor and a heat exchanger has a plurality of temperature detecting means, and the temperature detecting means detects the temperature Th of the heat exchanger and the outside air temperature To, respectively. To and Tl are within a predetermined value range.
[0015]
Further, the predetermined first physical quantity is an output of the induced voltage detecting means.
[0016]
Further, the predetermined first physical quantity is an output of a vibration detecting means or a sound detecting means for detecting and outputting vibration or sound of the main body of the one-piston rotary compressor or its surroundings.
[0017]
Further, a torque gauge or a vibration pickup is used as the vibration detecting means.
[0018]
Further, a sound detection sensor is used as the sound detection means.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS.
[0021]
FIG. 1 is a control block diagram of a first embodiment in which the present invention is applied to an air conditioner equipped with a one-piston rotary compressor.
[0022]
As shown in FIG. 1, a one-piston rotary compressor 7 equipped with a brushless DC motor 1 and a switching element are incorporated, and a DC voltage is converted into an AC voltage based on a PWM signal by opening and closing the switching element, and the brushless DC motor 1 A DC / AC converter 2 to be supplied, an induced voltage detector 3 for detecting an induced voltage of the DC brushless motor 1, and a DC voltage detector 30 are provided. DC voltage information 31 and a magnetic pole position output from the induced voltage detector 3 are provided. This is a motor operation control device having a voltage control means 4 for outputting a predetermined voltage waveform based on information 8 and a PWM control means 5 for converting a predetermined voltage waveform into the PWM signal.
[0023]
FIG. 2 shows the 180 ° partial sine wave energization of the present invention in terms of electrical angle and amplitude. As shown in the drawing, an induced voltage 16 when a 180 ° energized partial sine wave is applied, a phase current 17, a phase current 19 obtained by advancing the phase current with respect to the induced voltage 16, and a zero crossing point 15 of the induced voltage 16 It is.
[0024]
FIG. 3 is a diagram showing a voltage waveform output from the voltage control means 4 with respect to the number of rotations of the motor. As shown in the drawing, a horizontal axis 20 indicating the speed region of the brushless DC motor 1 and the left end being 0 Hz, an output section of a voltage waveform A in which the output of the voltage control means 4 is a known torque control phase current, The output section of the voltage waveform B in which the output of the control means 4 becomes the phase current 17 of 180 ° partial sine wave conduction from the known 120 ° conduction phase current, and the phase current of 180 ° partial sine wave conduction output of the voltage control means 4 The output section of the voltage waveform C, which becomes the phase current 19 obtained by advancing the induction voltage 17 with respect to the induced voltage 16, the minimum drive rotation speed 28 of the torque control, and the switching point 24 between the voltage waveform A and the voltage waveform B (the rotation speed of the motor: ft) and a switching point 25 (motor rotation speed: fw) between the voltage waveform B and the voltage waveform C. At this time, the relationship between ft and fw is expressed as 0 <ft <fw.
[0025]
FIG. 4 is a diagram showing a correlation between the torque control gain Gt and the rotation speed of the motor.
This figure shows the gain curve 27 where Gt = 0 at ft, and the minimum drive speed 28 of the torque control described above.
[0026]
Next, an operation method in the configuration of FIG. 1 will be described.
Since it is difficult to detect the magnetic pole position information 8 from the start until a specific rotation speed, the operation of the brushless DC motor 1 is started by a known synchronous operation, accelerated to a specific rotation speed, and the brushless DC motor 1 In the low speed region, the voltage control means 4 outputs the voltage waveform A, and reduces the sound and vibration of the one-piston rotary compressor 7 in the low speed rotation region by the known torque control. The voltage control means 4 performs torque control in ft based on the torque control gain Gt (0% ≦ Gt ≦ 100%) for setting the degree of mixture of torque control and 120 ° conduction and the magnetic pole position information 8 in FIG. By performing the control of the gain = 0%, that is, the control of only the 120 ° conduction, a stable switching from the voltage waveform A to the voltage waveform B without step-out is realized.
[0027]
In the output section of the voltage waveform B, the output duty of the voltage control means 4 is increased to 100% based on the magnetic pole position information 8 and the amplitude of the phase current 17 is increased. The energizing angle is widened from 120 ° to 180 ° so that the 180 ° partial sine wave of the voltage waveform C does not energize at each zero-cross point 15, and the control is performed such that the energizing angle is 180 ° at fw. As a result, it is possible to stably obtain the magnetic pole position information 8 while energizing 180 °.
[0028]
In the section of the voltage waveform C, the phase current 11 is advanced by α ° (0 ≦ α ≦ 60) calculated based on the magnetic pole position information 8 with respect to the induced voltage 10, thereby realizing the operation up to the high-speed region. I have.
[0029]
When performing this control, if the load of the brushless DC motor 1 increases, even if the duty of the PWM signal is increased to 100%, the motor rotation speed does not increase and the section of the voltage waveform B becomes narrower, and furthermore, 0 <ft < There is a possibility that the relationship of fw does not hold. In such a case, the torque control and the advance angle control are performed at the same time, and the occurrence of the step-out phenomenon is inevitable. Further, even when the rotation speed of the brushless DC motor 1 suddenly decreases due to the decrease in the DC voltage, the torque control and the advance angle control may be performed simultaneously.
[0030]
As shown in FIG. 5A, the voltage control means 4 is configured such that when 0 <X ≦ fw, α = 0, when fw <X ≦ ft1, α = bX (b is defined as a constant representing the slope), ft1 < At the time of X, it is increased or decreased by a linear function represented by α = α1, and always satisfies the relationship of 0 <ft <fw. When the load increases, ft> fw can be satisfied as described above. However, by performing α = 0 ° when ft is satisfied as shown in FIG. A stable one-piston rotary compressor torque control operation can be performed.
[0031]
In this configuration, a DC voltage detecting means 30 is provided, and DC voltage information 31 is fed back to the voltage control means 4. When the motor rotation speed does not increase even if the duty of the PWM signal is increased to 100% and 0 <ft <fw is not satisfied, when the DC voltage decreases to VL as shown in FIG. A stable torque control operation of the one-piston rotary compressor can be performed regardless of a decrease in the DC voltage.
[0032]
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIGS. 2 to 4 and FIGS. 2 to 4 are as described in the first embodiment.
[0033]
FIG. 7 is a control block diagram of the second embodiment. In this configuration, the temperature detection unit 40 of the heat exchanger 41 and the outside air temperature detection unit 42 are provided in the configuration of the first embodiment. The heat exchanger temperature 43 is set to Th, and the outside air temperature 44 is set to To.
[0034]
The temperature detecting means 40 and the outside air temperature detecting means 42 according to the second embodiment detect a voltage based on a thermistor and a partial pressure of a resistor.
[0035]
Further, the basic control is the same as that of the first embodiment, and the description is omitted.
FIG. 8 is a region diagram of a load obtained from the heat exchanger temperature and the outdoor air temperature, and an advancing diagram corresponding to the load. As shown in (a), the difference Tl between the two is determined from the heat exchanger temperature Th and the outdoor temperature To, and the range of TO in the figure on the coordinates of Tl and To is defined as an overload area. That is,
Tl ≧ −aTo + b (a, b: constant)
Tol ≦ To ≦ Tomax
Tl1 ≦ Tl ≦ Tlmax
Is the region that satisfies If the load is within the range of TO, it is determined that the load of the brushless DC motor 1 is overloaded, and the advance angle α is set to 0 as shown in FIG. 8B. Thereby, stable torque control operation of the one-piston rotary compressor can be performed.
[0036]
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIGS. 2 to 4 and FIGS. 2 to 4 are the same as in the first embodiment, and a description thereof will be omitted.
FIG. 9 is a control block diagram according to the third embodiment.
[0037]
In the figure, a torque gauge 52 as vibration detecting means for detecting the vibration of the one-piston rotary compressor 7 is provided instead of the DC voltage detecting means 30 in the configuration of the first embodiment, and vibration information 53 is provided. Is fed back to the voltage control means 4.
[0038]
As shown in FIG. 10A, the advance angle α ° (0 ≦ α ≦ 60) in the section of the voltage waveform C in FIG. 3 is generated based on the vibration information 53 of the DC brushless motor 1 generated during the advance control.
By performing the step control of increasing or decreasing α when the vibration information 53 is equal to or less than the predetermined vibration value A, fine adjustment of α can be performed by the load, and stable operation up to a high-speed region is realized.
[0039]
A similar effect can be obtained by feeding back the sound generated along with the vibration and increasing or decreasing α by step control at a predetermined sound pressure B or lower as shown in FIG. 10B.
[0040]
The other basic control is the same as that of the first embodiment, and the description is omitted.
[0041]
【The invention's effect】
As is clear from the above description, high-speed performance is realized by providing a predetermined non-energization period for the phase current of the brushless DC motor and making it partially sinusoidal except for the zero cross point of the magnetic pole position information. Furthermore, by eliminating the section in which the present invention is performed simultaneously with the known torque control, and further adjusting the advance angle of the phase current with respect to the induced voltage based on the magnetic pole position information, the reliability can be reduced without mounting a mechanical electromagnetic pickup or an integrating circuit. And a motor operation control device with high performance can be provided.
[0042]
Further, by detecting an overload of the brushless DC motor based on the temperature and always satisfying ft <fw, a highly reliable motor operation control device can be provided.
[0043]
Further, by detecting the DC voltage, it is possible to provide a highly reliable motor operation control device that always satisfies ft <fw even when the DC voltage changes suddenly.
[0044]
Further, it is possible to provide a motor operation control device capable of controlling the advance angle by detecting the vibration and sound of the one-piston rotary compressor.
[Brief description of the drawings]
FIG. 1 is a control block diagram of a brushless DC motor according to the present invention; FIG. 2 is a diagram showing a phase current and an induced voltage with respect to an electrical angle of 180 ° partial sine wave energization according to the first embodiment; FIG. FIG. 4 is a gain diagram with respect to the number of revolutions of the first embodiment. FIG. 5 is a diagram showing the relationship between the number of revolutions of the brushless DC motor and the advance angle α of the first embodiment. FIG. 7 is a control block diagram of a second embodiment. FIG. 8A is a diagram showing a temperature difference between a heat exchanger and the outside air of the second embodiment and a load correlation. FIG. 9B is a diagram showing the relationship between the load and the advance angle α of the second embodiment. FIG. 9 is a control block diagram of the third embodiment. FIG. 10A is a diagram showing the relationship between the vibration value and the advance angle α of the third embodiment. FIG. 11B is a relationship diagram between the sound pressure and the advance angle α according to the third embodiment. FIG. 11 is a conventional control block diagram. ] (A) the relationship diagram of the phase current waveform and induced voltage waveform of the 120 ° energization method (b) relationship diagram of the phase current waveform and induced voltage waveform of the 180 ° energization method EXPLANATION OF REFERENCE NUMERALS
REFERENCE SIGNS LIST 1 DC brushless motor 2 DC / AC conversion means 3 Induced voltage detecting means 4 Voltage control means 5 PWM control means 6 DC voltage 7 1 Piston rotary compressor 8 Magnetic pole position information 10 Induced voltage 21 Voltage waveform A
22 Voltage waveform B
23 Voltage waveform C
24 ft switching point 25 fw switching point 30 DC voltage detecting means 31 DC voltage information 40 Temperature detecting means 41 Heat exchanger 42 Outside air temperature detecting means 43 Heat exchanger temperature 44 Outside air temperature 50 Vibration detecting means 52 Torque gauge 53 Vibration information