JP2004111359A - Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution - Google Patents
Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution Download PDFInfo
- Publication number
- JP2004111359A JP2004111359A JP2003181702A JP2003181702A JP2004111359A JP 2004111359 A JP2004111359 A JP 2004111359A JP 2003181702 A JP2003181702 A JP 2003181702A JP 2003181702 A JP2003181702 A JP 2003181702A JP 2004111359 A JP2004111359 A JP 2004111359A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- carbonate
- secondary battery
- negative electrode
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、非水系電解液二次電池、およびそれに用いる非水電解液に関するものである。詳しくは、高容量で、保存特性、負荷特性およびサイクル特性に優れ、ガス発生の少ない非水液系電解液二次電池、ならびにそれに用いる非水電解液に関するものである。
【0002】
【従来の技術】
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度を持つリチウム二次電池の開発が進められている。また、リチウム二次電池の適用分野の拡大にともない電池特性の改善が要望されている。
金属リチウムを負極とする二次電池が、高容量化を達成できる電池として盛んに研究されている。しかしながら、金属リチウムには、充放電の繰り返しにより金属リチウムがデンドライト状に成長し、これが正極に達し電池内部での短絡が生じてしまうという問題があり、これが金属リチウムを負極とするリチウム二次電池を実用化する際の最大の障害となっている。
【0003】
負極に、金属リチウムに代えてコークス、人造黒鉛または天然黒鉛等のリチウムを吸蔵・放出することが可能な炭素質材料を用いた非水系電解液二次電池が提案されている。このような非水系電解液二次電池では、リチウムがデンドライト状に成長しないため、電池寿命と安全性とを向上させることができる。特に、人造黒鉛や天然黒鉛等の黒鉛系炭素質材料を用いた非水系電解液二次電池は、高容量化の要求に応え得るものとして注目されている。
【0004】
しかしながら、黒鉛のような結晶化度の高い炭素質材料を負極に用いると、非水溶媒の分解や炭素質材料の剥離などが生じ、不可逆容量が増大することがある。特に、非水溶媒としてプロピレンカーボネートを用いた場合には、黒鉛表面でプロピレンカーボネートが速やかに分解され、電池特性が低下するという問題が生じることが知られている。したがって、黒鉛を含有する炭素質負極を用いた非水系電解液二次電池では、通常、エチレンカーボネートを含む非水溶媒が使用されるが、なお黒鉛表面での分解反応を完全に抑えることはできない。一方、エチレンカーボネートにリチウム塩を溶解させた電解液は、粘度が高いため正極と負極とを隔離するセパレーターや電極等、特に表面自由エネルギーが小さい部材への含浸性が低い。その結果、これらの部材に電解液を含浸させるのに長時間を要することになり、電池の生産性が低下し、十分な電池特性も得られなくなる。
【0005】
最近、電池の高容量化の一方法として、電極の製造に際し、機械的に加圧して高密度化することにより単位体積あたりの電極活物質量を増加させることが試みられている。ところが、電極を高密度化すると電極内部の空隙が減少するため、電極への電解液の含浸性が低下し、十分な電池特性が得られにくくなる。また、電池を高容量化していくと、電池内の空隙の減少により、電解液の分解で発生するガスがわずかであっても電池内圧は顕著に上昇してしまうという問題もある。特に電池を停電時のバックアップ電源や、ポータブル機器の電源として用いる場合に、電池の自己放電を補うために常に微弱電流を流し、充電状態に保持する連続充電方法が用いられる。こうした連続充電状態では電極の活性が常に高い状態であるので、電池の容量劣化が促進されたり、電解液の分解によりガスが発生しやすくなる。ガスの発生量が多くなると、過充電により内圧が異常に上昇したときにこれを感知して安全弁を作動させる円筒電池では、安全弁が作動してしまうことがある。また、安全弁のない角形電池では、電池が膨張したり、更には破裂することもある。
したがって、リチウム二次電池においては、高容量、高温保存特性、サイクル特性だけでなく、連続充電特性についても改良が求められる。連続充電特性としては容量劣化が少ないことだけでなく、ガス発生を抑制することが強く求められている。
【0006】
【発明が解決しようとする課題】
本発明は、高容量で、保存特性、負荷特性およびサイクル特性に優れ、ガス発生の少ない非水液系電解液二次電池を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために種々の検討を重ねた結果、フッ素原子を有していてもよい炭素数7以上20以下の鎖状炭化水素化合物および/またはフッ素原子を有していてもよい炭素数6以上20以下の非芳香族環状炭化水素化合物を含有する電解液を負極層の密度が高い電池に用いると、高容量で、保存特性、負荷特性およびサイクル特性に優れ、ガス発生の少ない電池を得ることができることを見いだした。
【0008】
本発明は、このような知見に基づいて完成されたものであり、本発明に係る非水系電解液二次電池は、リチウムを吸蔵・放出することが可能な負極および正極、ならびに非水溶媒およびリチウム塩を含有する電解液を有する非水系電解液二次電池において、負極が黒鉛を含有し、かつ負極層の密度が1.45g/cm3以上のものであり、非水溶媒が一般式(1)
【0009】
【化3】
CaH2a+2−bFb (1)
(式中、aおよびbは、7≦a≦20,a>b≧0を満たす整数を表す。)で表されるフッ素原子を有していてもよい鎖状炭化水素化合物および/または一般式(2)
【0010】
【化4】
CnHmFl (2)
(式中、n,mおよびlは、6≦n≦20,m≧n>l≧0を満たす整数を表す。)で表されるフッ素原子を有していてもよい非芳香族環状炭化水素化合物を、0.01重量%以上5重量%以下含有するものであることを特徴とするものである。
【0011】
【発明の実施の形態】
本発明に係る非水系二次電池には、黒鉛を含有し、かつ負極層の密度が1.45g/cm3以上の負極を用いる。このような負極では、電極内部の空隙が減少しており電極への電解液の含浸性が低下しているので、本発明の効果が顕著に表れる。
【0012】
非水溶媒としては、一般式(1)で表されるフッ素原子を有していてもよい鎖状炭化水素化合物および/または一般式(2)で表されるフッ素を含有していてもよい非芳香族環状炭化水素化合物を含むものを用いる。
一般式(1)で表されるフッ素原子を有していてもよい鎖状炭化水素化合物は、直鎖状または分岐状のいずれでもよく、フッ素原子が鎖状炭化水素化合物の任意の水素原子と置換していてもよい。炭素数が7未満の鎖状炭化水素化合物、またはフッ素原子の数が炭素原子の数以上の鎖状炭化水素化合物は、いずれも沸点が低いため取り扱いにくく、また高温保存時に電池内の圧力が上昇することがあるので好ましくない。また、炭素数が20を超えると、電池部材への含浸性が低くなるので好ましくない。
【0013】
一般式(1)で表されるフッ素原子を有していてもよい鎖状炭化水素化合物としては、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、2−メチルヘキサン、3−メチルヘキサン、2,2−ジメチルペンタン、2,3−ジメチルペンタン、2,4−ジメチルペンタン、3,3−ジメチルペンタン、2,2,3−トリメチルブタン、2−メチルヘプタン、3−メチルヘプタン、4−メチルヘプタン、2,2−ジメチルヘキサン、2,3−ジメチルヘキサン、2,4−ジメチルヘキサン、および3,4−ジメチルヘキサン等の炭化水素化合物;1−フルオロヘプタン、1−フルオロオクタン、1−フルオロノナン、および1−フルオロデカン等のフッ素原子を有する炭化水素化合物が挙げられる。
【0014】
一般式(2)で表されるフッ素原子を有していてもよい非芳香族環状炭化水素化合物は、側鎖を有していてもよく、フッ素原子が非芳香環状炭化水素化合物の任意の水素原子と置換していてよい。炭素数が6未満の非芳香族環状炭化水素化合物、またはフッ素原子の数が炭素原子の数以上の鎖状炭化水素化合物は、いずれも沸点が低いため取り扱いにくく、また高温保存時に電池内の圧力が上昇することがあるので好ましくない。また、炭素数が20を超えると、電池部材への含浸性が低くなるので好ましくない。
【0015】
一般式(2)で表されるフッ素原子を有していてもよい非芳香族環状炭化水素化合物としては、シクロヘキサン、シクロへプタン、シクロオクタン、シクロノナン、シクロデカン、メチルシクロペンタン、エチルシクロペンタン、メチルシクロヘキサン、エチルシクロへキサン、n−プロピルシクロヘキサン、n−ブチルシクロへキサン、t−ブチルシクロへキサン、1,2−ジメチルシクロヘキサン、1−エチル―2―メチルシクロヘキサン、ジシクロヘキシル、デカリン、パーハイドロフルオレンおよび1,2−ジシクロヘキシルエタン等の非芳香族環状炭化水素化合物;フルオロシクロヘキサン、フルオロシクロヘプタン、フルオロシクロオクタン等のフッ素原子を有する非芳香族環状化合物が挙げられる。このうち、炭素数7以上のものが好ましく、炭素数9以上のものがより好ましい。
【0016】
一般式(1)で表されるフッ素原子を有していてもよい鎖状炭化水素化合物および一般式(2)で表されるフッ素を含有していてもよい非芳香族環状炭化水素化合物は、複数種を併用することができる。
なお、フッ素原子を有していてもよい鎖状炭化水素化合物および/またはフッ素原子を有していてもよい非芳香環状炭化水素化合物が、非水系電解液二次電池の電解液に用いられることは公知である。例えば、特開平10−172605号公報には、炭素数7〜25の鎖式炭化水素を電解液に含ませることが記載されている。特開平10−189046号公報には、融点が10℃以下の化合物を非水溶媒に含ませることが記載されており、融点が10℃以下の化合物の例として、ヘキサン等の炭化水素が記載されている。特開平11−283666号公報および同11−317241号公報には、電解液溶媒に添加してもよい溶媒の一つとしてヘキサン等の炭化水素が記載されている。また、特開2000−149984号公報、同2000−223151号公報および同2001−143749号公報には、ハロゲン化炭化水素を含有する電解液が記載されている。しかしながら、これら公報には、本発明の目的としている電池部材、特に密度が高い負極層への電解液の含浸性を向上させることについては全く記載されていない。なお、特開2001−143749号公報には、密度が1.5g/cm3の負極を有し、非水溶媒にフッ素原子を有する炭化水素化合物を用いた電池が記載されている。本発明者らの検討によれば、電解液に同公報に記載されているようなフッ素原子数が炭素原子数よりも大きい化合物を含ませると、高温保存時に電池の内圧が上昇しやすくなるので好ましくないことが判明した。
【0017】
一般式(1)で表されるフッ素を含有していてもよい鎖状炭化水素化合物および/または一般式(2)で表されるフッ素を含有していてもよい非芳香族環状炭化水素化合物は、非水溶媒中に0.01重量%以上5重量%以下の範囲で用いられる。0.01重量%未満では本発明の効果が十分に得られず、5重量%を超えると非水溶媒の主成分に相溶しにくくなり、電池の負荷特性が低下してしまう。下限は0.02重量%以上、特に0.1重量%以上が好ましい。上限は4重量%以下、特に2重量%以下が好ましい。なお、フッ素を含有しない鎖状炭化水素化合物は非水溶媒の主成分との相溶性が低いので、1.8重量%以下、特に1.5重量%以下の濃度で用いるのが好ましい。
【0018】
上記電解液を使用することにより電池特性が向上する理由は、明確ではないが、以下のように推定している。すなわち、一般式(1)で表されるフッ素を含有していてもよい鎖状炭化水素化合物および/または一般式(2)で表されるフッ素を含有していてもよい非芳香族環状炭化水素化合物は、黒鉛を含む負極層とのなじみがよく、負極層への電解液の含浸性を向上させ、電極活物質が本来有している性能を引き出すことが可能になる。また、これらの化合物は酸化および還元に対して安定なため、これらの化合物が正極および負極表面の活性点に存在すると、高温状態での電解液成分と電極活物質との副反応を抑制し、大電流放電特性を向上させることができる。
【0019】
非水溶媒の主成分としては、上述の一般式(1)および/または一般式(2)の化合物に相溶するものであれば、非水系電解液二次電池の溶媒として用いることが知られている任意のものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート等のジアルキル(炭素数1〜4のものが好ましい)カーボネート;テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル;ジメトキシエタン、ジメトキシメタン等の鎖状エーテル;γ−ブチロラクトン、γ−バレロラクトン等のラクトン;酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状カルボン酸エステル;リン酸トリメチル、リン酸トリエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸エチレンメチル、リン酸エチレンエチル等の含燐有機溶媒等が挙げられる。これらは2種類以上を併用してもよい。
【0020】
好ましい非水溶媒の一つは、アルキレンカーボネートとジアルキルカーボネートとを主体とするものである。中でも、炭素数2〜4のアルキレン基を有するアルキレンカーボネートを下限としては10容量%以上、中でも20容量%以上、上限としては45容量%以下、および炭素数1〜4のアルキル基を有するジアルキルカーボネートを下限としては50容量%以上、上限としては90容量%以下、中でも80容量%以下で含有する混合物に、一般式(1)で表されるフッ素を含有していてもよい鎖状炭化水素化合物および/または一般式(2)で表されるフッ素を含有していてもよい非芳香族環状炭化水素化合物を含有させた非水溶媒にリチウム塩を溶解して電解液とすると、電解液の電気伝導率が高く、サイクル特性と大電流放電特性が高くなる。
【0021】
炭素数2〜4のアルキレン基を有するアルキレンカーボネートとしては、エチレンカーボネート、プロピレンカーボネートおよびブチレンカーボネート等が挙げられる。これらの中で、エチレンカーボネートまたはプロピレンカーボネートが好ましい。
炭素数1〜4のアルキル基を有するジアルキルカーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートおよびエチル−n−プロピルカーボネート等が挙げられる。これらの中で、ジメチルカーボネート、ジエチルカーボネートまたはエチルメチルカーボネートが好ましい。
アルキレンカーボネートとジアルキルカーボネートの好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
これらのエチレンカーボネートとジアルキルカーボネートとの組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。
プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの容量比は、通常99:1〜40:60、好ましくは95:5〜50:50である。
これらの中で、非対称ジアルキルカーボネートであるエチルメチルカーボネートを含有するものが更に好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートのエチレンカーボネートと対称ジアルキルカーボネートと非対称ジアルキルカーボネートを含有するものが、サイクル特性と大電流放電特性のバランスが良いので好ましい。
【0022】
非水溶媒として好ましいものの他の例は、比誘電率25以上の有機溶媒を60容量%以上、好ましくは85容量%以上含有するものである。この非水溶媒にリチウム塩を溶解した電解液は、高温で使用しても溶媒の蒸発や液漏れが少ない。比誘電率25以上の有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトンおよびγ−バレロラクトン等が挙げられる。中でも、エチレンカーボネート5容量%以上45容量%以下とγ−ブチロラクトン55容量%以上95容量%以下とを含む混合物、またはエチレンカーボネート30容量%以上60容量%以下とプロピレンカーボネート30容量%以上70容量%以下とを含む混合物に、一般式(1)で表されるフッ素を含有していてもよい鎖状炭化水素化合物および/または一般式(2)で表されるフッ素を含有していてもよい非芳香族環状炭化水素化合物を含有させた非水溶媒にリチウム塩を溶解させた電解液が、サイクル特性と大電流放電特性等のバランスがよいので好ましい。
【0023】
また、非水溶媒中に、分子内に炭素−炭素不飽和結合を有する環状カーボネートを含有させると、電池のサイクル特性を向上させることができるので好ましい。
分子内に炭素−炭素不飽和結合を有する環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネート等のビニレンカーボネート化合物;4−ビニルエチレンカーボネート、4−メチル−4−ビニルエチレンカーボネート、4−エチル−4−ビニルエチレンカーボネート、4−n−プロピル−4−ビニルエチレンカーボネート、5−メチル−4−ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート等のビニルエチレンカーボネート化合物;4,4−ジメチル−5−メチレンエチレンカーボネート、4,4−ジエチル−5−メチレンエチレンカーボネート等のメチレンエチレンカーボネート化合物などが挙げられる。このうち、ビニレンカーボネート、4−ビニルエチレンカーボネート、4−メチル−4−ビニルエチレンカーボネートまたは4,5−ジビニルエチレンカーボネート、特にビニレンカーボネートまたは4−ビニルエチレンカーボネートが好ましい。これらの2種類以上を併用してもよい。
【0024】
分子内に炭素−炭素不飽和結合を有する環状カーボネートは、非水溶媒中に0.01重量%以上5重量%以下、好ましくは0.1重量%以上3重量%以下となるように含有させる。5重量%を超えると保存後の電池特性が低下したり、ガス発生により電池の内圧が上昇する場合がある。一方、0.01重量%未満では、十分にサイクル特性を向上させることができない。
【0025】
更に、非水溶媒中には、必要に応じて他の有用な化合物、例えば従来公知の添加剤、脱水剤、脱酸剤、過充電防止剤等を含有させてもよい。
添加剤としては、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート、エリスリタンカーボネートおよびスピロ−ビス−ジメチレンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物およびフェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィドおよびテトラメチルチウラムモノスルフィド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノンおよびN−メチルスクシイミド等の含窒素化合物;フルオロベンゼン等の炭化水素化合物などが挙げられる。これらを非水溶媒中に0.1以上5重量%以下含有させると、高温保存後の容量維持特性やサイクル特性が良好となる。
【0026】
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ベンゾフランおよびジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の芳香族化合物のフッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソールおよび2,6−ジフルオロアニソ−ル等の含フッ素アニソール化合物などが挙げられる。非水系電解液が過充電防止剤を含有する場合、その濃度は、通常0.1〜5重量%である。非水系電解液に過充電防止剤を含有させることは、過充電による電池の破裂・発火を抑制することができ、電池の安全性が向上するので好ましい。
【0027】
本発明に係る非水系電解液の溶質であるリチウム塩としては、任意のものを用いることができる。例えば、LiClO4、LiPF6およびLiBF4等の無機リチウム塩;LiCF3SO3、LiN(CF3SO2)2 、LiN(C2F5SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(CF3SO2)3、LiPF4(CF3)2、LiPF4(C2F5)2、LiPF4(CF3SO2)2、LiPF4(C2F5SO2)2、LiBF2(CF3)2、LiBF2(C2F5)2、LiBF2(CF3SO2)2およびLiBF2(C2F5SO2)2等の含フッ素有機酸リチウム塩などが挙げられる。これらのうち、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2 またはLiN(C2F5SO2)2、特にLiPF6またはLiBF4が好ましい。また、LiPF6またはLiBF4等の無機リチウム塩と、LiCF3SO3、LiN(CF3SO2)2 またはLiN(C2F5SO2)2等の含フッ素有機リチウム塩とを併用すると、高温保存した後の劣化が少なくなるので、好ましい。
【0028】
なお、非水溶媒がγ−ブチロラクトンを55容量%以上含むものである場合には、LiBF4がリチウム塩全体の50重量%以上を占めることが好ましい。リチウム塩中、LiBF4が50〜95重量%、LiPF6、LiCF3SO3、LiN(CF3SO2)2およびLiN(C2F5SO2)2よりなる群から選ばれるリチウム塩が5〜50重量%占めるものが特に好ましい。
【0029】
電解液中のリチウム塩濃度は、0.5〜3モル/リットルであるのが好ましい。この範囲以外では、電解液の電気伝導率が低くなり、電池性能が低下してしまう。
本発明に係る電池を構成する負極の材料としては、その成分として黒鉛を含むものを用いる。黒鉛は、リチウムを吸蔵・放出することができるものであれば任意のものを用いることができる。例えば、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛、精製天然黒鉛、またはこれらの黒鉛に種々の表面処理を施したものなどが挙げられる。これらの黒鉛材料は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.338nm、特に0.335〜0.337nmであるものが好ましい。灰分は、通常1重量%以下である。0.5重量%以下、特に0.1重量%以下であるのが好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常30nm以上である。50nm以上、特に100nm以上であるのが好ましい。
【0030】
レーザー回折・散乱法による炭素質材料粉体のメジアン径は、通常1〜100μmである。3〜50μm、特に5〜40μmが好ましく、最も好ましいのは7〜30μmである。BET法比表面積は、通常0.3〜25.0m2/gである。0.5〜20.0m2/g、特に0.7〜15.0m2/gが好ましく、最も好ましいのは0.8〜10.0m2/gである。また、アルゴンイオンレーザー光を用いたラマンスペクトルで分析したとき、1570〜1620cm−1の範囲のピークPA(ピーク強度IA)および1300〜1400cm−1の範囲のピークPB(ピーク強度IB)の強度比R=IB/IAは0.01〜0.7が好ましく、1570〜1620cm−1の範囲のピークの半値幅は26cm−1以下、特に25cm−1以下であるのが好ましい。
【0031】
特に好ましい黒鉛材料は、X線回折における格子面(002面)のd値が0.335〜0.338nmである炭素質材料を核材とし、その核材の表面に前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料が付着しており、かつ核材と前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料の割合が重量比で99/1〜80/20であるものである。この黒鉛材料を用いると、高い容量で、かつ電解液と反応しにくい負極を製造することができる。
【0032】
負極の製造は、常法によればよい。例えば、負極材料に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
負極層の密度は、1.45g/cm3以上とする。1.55g/cm3以上、特に1.60g/cm3以上とすると、電池の容量が増加するので好ましい。なお、本明細書において、負極層の密度とは電池に組み立てる時点での密度をいう。
【0033】
結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン−アクリル酸共重合体およびエチレン−メタクリル酸共重合体等が挙げられる。
【0034】
増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコ−ル、酸化スターチ、リン酸化スターチおよびガゼイン等が挙げられる。
導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料などが挙げられる。
【0035】
負極用集電体の材質としては、銅、ニッケルまたはステンレス等が挙げられる。これらのうち、薄膜に加工しやすいという点およびコストの点から銅箔が好ましい。
電池を構成する正極の材料としては、リチウムコバルト酸化物、リチウムニッケル酸化物およびリチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料などのリチウムを吸蔵および放出可能な材料が挙げられる。
【0036】
電池を構成する正極の材料としては、リチウムコバルト酸化物、リチウムニッケル酸化物およびリチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料などのリチウムを吸蔵および放出可能な材料が挙げられる。リチウム遷移金属複合酸化物は、コバルト、ニッケル、またはマンガンの一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr等の他の金属で置き換えることにより、その構造が安定化させることができるので好ましい。
正極は、負極に準じて製造することができる。例えば、正極材料に必要に応じて結着剤、導電材、溶媒等を加えて混合後、集電体に塗布し、乾燥した後にプレスにより高密度化して正極とする方法が挙げられる。正極層の密度は3.0g/cm3以上に設定した場合が、電池とした場合の容量が増加するので好ましい。
【0037】
正極用集電体の材質としては、アルミニウム、チタンもしくはタンタル等の金属またはその合金が挙げられる。これらのうち、アルミニウムまたはその合金が、好ましい。
本発明に係る電池に使用するセパレーターの材質や形状は、電解液に安定であり、かつ保液性に優れていれば任意である。ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シ−トまたは不織布等が好ましい。
【0038】
電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレーターの形状および構成は、それぞれの電池の形状に応じて変更して使用することができる。
【0039】
【実施例】
以下に、実施例および比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
(実施例1)
X線回折における格子面(002面)のd値が0.336nm、結晶子サイズ(Lc)が652nm、灰分が0.07重量%、レーザー回折・散乱法によるメジアン径が12μm、BET法比表面積が7.5m2/g、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1570〜1620cm−1の範囲のピークPA(ピーク強度IA)および1300〜1400cm−1の範囲のピークPB(ピーク強度IB)の強度比R=IB/IAが0.12、ならびに1570〜1620cm−1の範囲のピークの半値幅が19.9cm−1である天然黒鉛粉末を負極活物質として用いた。この黒鉛粉末94重量部にポリフッ化ビニリデン6重量部を混合し、N−メチル−2−ピロリドンで分散させスラリー状とした。これを負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、プレス機により負極層密度が1.5g/cm3になるようにプレスし、直径12.5mmの円盤状に打ち抜いて負極とした。
【0040】
正極活物質としてはLiCoO2を用いた。このもの85重量部にカーボンブラック6重量部およびポリフッ化ビニリデンKF−1000(呉羽化学社製、商品名)9重量部を加え混合し、N−メチル−2−ピロリドンで分散し、スラリー状としたものを、正極集電体である厚さ20μmのアルミニウム箔上に均一に塗布した。乾燥後、プレス機により正極層密度が3.0g/cm3になるようにプレスし、直径12.5mmの円盤状に打ち抜いて正極とした。
【0041】
乾燥アルゴン雰囲気下、エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)97.5重量部に、ビニレンカーボネート1重量部およびヘプタン1.5重量部を添加し、次いで十分に乾燥したLiPF6を1モル/リットルとなるように溶解させて電解液とした。
正極導電体を兼ねるステンレス鋼製の缶体に電解液を含浸させた正極を収容し、その上に電解液を含浸させたセパレーターを介して負極を載置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封し、コイン型電池を作製した。
【0042】
(比較例1)
エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)99重量部に、ビニレンカーボネート1重量部を添加し、次いでLiPF6を1モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。
【0043】
(実施例2)
エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)98.5重量部に、ビニレンカーボネート1重量部およびヘプタン0.5重量部を添加し、次いでLiPF6を1モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。
【0044】
(実施例3)
エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)97.5重量部に、ビニレンカーボネート1重量部およびドデカン1.5重量部を添加し、次いでLiPF6を1モル/リットルなるように溶解して電解液とした。この電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。
【0045】
(実施例4)
エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)97重量部に、ビニレンカーボネート1重量部および1−フルオロヘプタン2重量部を添加し、次いでLiPF6を1モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。
【0046】
(実施例5)
エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)97重量部に、ビニレンカーボネート1重量部およびフルオロシクロヘキサン2重量部を添加し、次いでLiPF6を1モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。
【0047】
(実施例6)
X線回折における格子面(002面)のd値が0.336nm、結晶子サイズ(Lc)が652nm、灰分が0.07重量%、レーザー回折・散乱法によるメジアン径が12μm、BET法比表面積が7.5m2/g、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1580〜1620cm−1の範囲のピークPA(ピーク強度IA)および1350〜1370cm−1の範囲のピークPB(ピーク強度IB)の強度比R=IB/IAが0.12、ならびに1580〜1620cm−1の範囲のピークの半値幅が19.9cm−1である天然黒鉛粉末2Kgと石油系ピッチ0.5Kgとを混合し、得られたスラリー状の混合物を回分式加熱炉で不活性雰囲気下で1100℃まで2時間かけて昇温し、同温度で2時間保持した。放冷後、これを粉砕し、振動式篩いにより粒径を18〜22μmに整えることにより、X線回折における格子面(002面)のd値が0.345nmである非晶質炭素3重量%で天然黒鉛表面を被覆した「非晶質被覆黒鉛系炭素物質」を得た。このものを負極として用いた以外は実施例1と同様にしてコイン型電池を作製した。
【0048】
(実施例7)
エチレンカーボネート、γ−ブチロラクトンおよびエチルメチルカーボネートの混合物(容量比3:6:1)98重量部に、ビニレンカーボネート1重量部、ビニルエチレンカーボネート0.5重量部およびヘプタン0.5重量部を添加し、次いでLiBF4を1.5モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。
【0049】
(比較例2)
エチレンカーボネート、γ−ブチロラクトンおよびエチルメチルカーボネートの混合物(容量比3:6:1)98.5重量部に、ビニレンカーボネート1重量部およびビニルエチレンカーボネート0.5重量部を添加し、次いでLiBF4を1.5モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。
(実施例8)
負極については、実施例1で調製したスラリーを負極集電体である厚さ18μmの銅箔の片面に均一に塗布し、乾燥後、プレス機により負極層の密度が1.55g/cm3になるようにプレスして負極とした。
正極については、実施例1で調製したスラリーを、正極集電体である厚さ20μmのアルミニウム箔の両面に均一に塗布し、乾燥後、プレス機により正極層の密度が3.0g/cm3になるようにプレスして正極とした。
乾燥アルゴン雰囲気下、エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)96重量部に、ビニレンカーボネート2重量部とヘプタン2重量部とを添加し、次いで十分に乾燥したLiPF6を1.0モル/リットルの割合となるように溶解して電解液とした。
上記正極、負極、およびポリエチレン製のセパレーターを、負極、セパレーター、正極、セパレーター、負極の順に積層して電池要素を作製し、この電池要素を正極及び負極の端子が外部にでるようにして、アルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に収容した。次いで、これに電解液を注入したのち、真空封止を行い、シート状電池を作製した。
(実施例9)
エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)96重量部に、ビニレンカーボネート2重量部およびt−ブチルシクロヘキサン2重量部を添加し、次いでLiPF6を1モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例8と同様にしてシート状電池を作製した。
(実施例10)
エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)96重量部に、ビニレンカーボネート2重量部およびジシクロヘキシル2重量部を添加し、次いでLiPF6を1モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例8と同様にしてシート状電池を作製した。
(比較例3)
エチレンカーボネートおよびエチルメチルカーボネートの混合物(容量比3:7)98重量部に、ビニレンカーボネート2重量部を添加し、次いでLiPF6を1モル/リットルとなるように溶解させて電解液とした。この電解液を用いた以外は実施例8と同様にしてシート状電池を作製した。
【0050】
【発明の効果】
実施例1〜7および比較例1、2の電池を、25℃において0.5mAの定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を5サイクル行って安定させた後、充電状態で85℃で3日間保存した。保存後の電池を25℃において0.5mAの定電流で放電終止電圧3Vまで放電させて残存容量を測定し、次に0.5mAの定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を行って保存後の容量を測定した。次に同様の条件で充電した後、2Cに相当する電流値で3Vまで放電させて高負荷放電特性を測定した(ここで1Cとは1時間で満充電できる電流値を表し、2Cとはその2倍の電流値を表す)。保存前の放電容量を100とした場合の保存後の残存容量、保存後の容量および高負荷放電時の容量を表1に示す。
実施例8〜10および比較例3のシート状電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で4.2Vまで充電した後、0.2Cに相当する定電流で3Vまで放電した。これを3サイクル行って電池を安定させ、4サイクル目は、0.5Cの定電流で4.2Vまで充電し、さらに4.2Vの定電圧で電流値が0.05Cになるまで充電を行った後、0.2Cの定電流で3Vまで放電した。
この電池を、エタノール浴中に浸して体積を測定した後、ガラス板に挟んだ状態で、60℃において、0.5Cの定電流で4.25Vに到達した後、定電圧充電に切り替え、1週間連続充電を行った。
電池を冷却させた後、エタノール浴中に浸して体積を測定し、連続充電前後の体積変化から発生したガス発生量を求めた。結果を表2に示す。
【0051】
【表1】
【0052】
【表2】
【0053】
表1から明らかなように、本発明に係る二次電池は、保存前の放電容量に対する保存後の残存容量およびその後の容量が共に向上し、また高負荷放電特性が大きく向上している。
また、実施例1および比較例1のコイン型電池を25℃において0.5mAの定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を5サイクル行って安定させた後、0.7Cに相当する電流で充電終止電圧4.2Vまで充電後、充電電流値が0.05Cに相当する電流値になるまで充電を行う4.2V−CCCV充電後、1Cに相当する定電流で放電終止電圧3Vまで放電させるサイクル試験を実施した。サイクル試験での6サイクル目の放電容量を100とした場合の100サイクル目の容量で表される100サイクル容量維持率は、実施例1の電池では81%、比較例1の電池では77%であった。したがって、本発明に係る二次電池は、サイクル特性が向上していることがわかる。
さらに、表2から明らかなように、本発明に係る二次電池は、ガスの発生量が少ないことがわかる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte used therein. More specifically, the present invention relates to a non-aqueous liquid electrolyte secondary battery having high capacity, excellent storage characteristics, load characteristics, and cycle characteristics, and low gas generation, and a non-aqueous electrolyte used for the same.
[0002]
[Prior art]
With the reduction in weight and size of electric products in recent years, development of lithium secondary batteries having a high energy density has been promoted. In addition, with the expansion of the application field of the lithium secondary battery, improvement in battery characteristics has been demanded.
Secondary batteries using lithium metal as a negative electrode have been actively studied as batteries capable of achieving high capacity. However, metal lithium has a problem that lithium metal grows in a dendrite shape due to repeated charge and discharge, which reaches the positive electrode and causes a short circuit inside the battery. This is a lithium secondary battery using metal lithium as the negative electrode. This is the biggest obstacle to commercializing.
[0003]
Non-aqueous electrolyte secondary batteries using a carbonaceous material, such as coke, artificial graphite or natural graphite, capable of occluding and releasing lithium instead of metal lithium for the negative electrode have been proposed. In such a non-aqueous electrolyte secondary battery, lithium does not grow in a dendrite shape, so that battery life and safety can be improved. In particular, non-aqueous electrolyte secondary batteries using graphite-based carbonaceous materials such as artificial graphite and natural graphite are receiving attention as being able to meet the demand for higher capacity.
[0004]
However, when a highly crystalline carbonaceous material such as graphite is used for the negative electrode, decomposition of the nonaqueous solvent, separation of the carbonaceous material, and the like may occur, and the irreversible capacity may increase. In particular, when propylene carbonate is used as the non-aqueous solvent, it is known that propylene carbonate is rapidly decomposed on the graphite surface, which causes a problem that battery characteristics are deteriorated. Therefore, in a non-aqueous electrolyte secondary battery using a carbonaceous negative electrode containing graphite, a non-aqueous solvent containing ethylene carbonate is usually used, but the decomposition reaction on the graphite surface cannot be completely suppressed. . On the other hand, an electrolytic solution obtained by dissolving a lithium salt in ethylene carbonate has a high viscosity, and therefore has low impregnating property to a member having a small surface free energy, such as a separator or an electrode for separating a positive electrode from a negative electrode. As a result, it takes a long time to impregnate these members with the electrolytic solution, so that the productivity of the battery is reduced and sufficient battery characteristics cannot be obtained.
[0005]
Recently, as one method of increasing the capacity of a battery, it has been attempted to increase the amount of an electrode active material per unit volume by mechanically pressurizing and increasing the density during the production of an electrode. However, when the density of the electrode is increased, voids inside the electrode are reduced, so that the impregnation of the electrode with the electrolytic solution is reduced, and it is difficult to obtain sufficient battery characteristics. Further, when the capacity of the battery is increased, there is also a problem that the internal pressure of the battery is significantly increased even if the amount of gas generated by decomposition of the electrolytic solution is small due to the decrease in the gap in the battery. In particular, when a battery is used as a backup power source during a power failure or as a power source for a portable device, a continuous charging method is used in which a weak current is always supplied to maintain a charged state in order to supplement self-discharge of the battery. In such a continuous charge state, the activity of the electrode is always high, so that the capacity deterioration of the battery is promoted and gas is easily generated due to decomposition of the electrolytic solution. When the amount of generated gas is large, the safety valve may be activated in a cylindrical battery that operates when the internal pressure is abnormally increased due to overcharging and the safety valve is detected. In the case of a prismatic battery without a safety valve, the battery may expand or even burst.
Therefore, in the lithium secondary battery, improvements are required not only in high capacity, high temperature storage characteristics, and cycle characteristics but also in continuous charging characteristics. As the continuous charging characteristics, not only the capacity deterioration is small but also the suppression of gas generation is strongly required.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a non-aqueous liquid electrolyte secondary battery having high capacity, excellent storage characteristics, load characteristics, and cycle characteristics, and low gas generation.
[0007]
[Means for Solving the Problems]
The present inventors have conducted various studies in order to solve the above problems, and as a result, have found that a chain hydrocarbon compound having 7 to 20 carbon atoms and / or a fluorine atom which may have a fluorine atom. When an electrolyte containing a non-aromatic cyclic hydrocarbon compound having 6 to 20 carbon atoms which may be used for a battery having a high density of the negative electrode layer, a high capacity, excellent storage characteristics, excellent load characteristics and excellent cycle characteristics, It has been found that a battery with low gas generation can be obtained.
[0008]
The present invention has been completed based on such findings, the non-aqueous electrolyte secondary battery according to the present invention, a negative electrode and a positive electrode capable of inserting and extracting lithium, and a non-aqueous solvent and In a nonaqueous electrolyte secondary battery having an electrolyte containing a lithium salt, the negative electrode contains graphite, and the density of the negative electrode layer is 1.45 g / cm. 3 Wherein the non-aqueous solvent has the general formula (1)
[0009]
Embedded image
C a H 2a + 2-b F b (1)
(Where a and b represent integers satisfying 7 ≦ a ≦ 20, a> b ≧ 0) and / or a chain hydrocarbon compound which may have a fluorine atom and / or a general formula (2)
[0010]
Embedded image
C n H m F l (2)
(Wherein, n, m and l are integers satisfying 6 ≦ n ≦ 20, m ≧ n> l ≧ 0). A non-aromatic cyclic hydrocarbon optionally having a fluorine atom represented by the following formula: It is characterized by containing a compound in an amount of 0.01% by weight or more and 5% by weight or less.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The non-aqueous secondary battery according to the present invention contains graphite, and the density of the negative electrode layer is 1.45 g / cm. 3 The above negative electrode is used. In such a negative electrode, the voids inside the electrode are reduced, and the impregnation of the electrode with the electrolytic solution is reduced, so that the effect of the present invention is remarkably exhibited.
[0012]
As the non-aqueous solvent, a chain hydrocarbon compound which may have a fluorine atom represented by the general formula (1) and / or a non-aqueous solvent which may contain a fluorine represented by the general formula (2) A material containing an aromatic cyclic hydrocarbon compound is used.
The chain hydrocarbon compound which may have a fluorine atom and represented by the general formula (1) may be linear or branched, and the fluorine atom is the same as any hydrogen atom of the chain hydrocarbon compound. It may be substituted. A chain hydrocarbon compound having less than 7 carbon atoms or a chain hydrocarbon compound having more than the number of fluorine atoms than the number of carbon atoms is difficult to handle because of its low boiling point, and the pressure inside the battery increases during high-temperature storage. It is not preferable because it may be performed. On the other hand, if the number of carbon atoms exceeds 20, the impregnating property of the battery member becomes low, which is not preferable.
[0013]
Examples of the chain hydrocarbon compound which may have a fluorine atom represented by the general formula (1) include heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, 2-methylhexane, -Methylhexane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 2,2,3-trimethylbutane, 2-methylheptane, 3-methylheptane Hydrocarbon compounds such as, 4-methylheptane, 2,2-dimethylhexane, 2,3-dimethylhexane, 2,4-dimethylhexane, and 3,4-dimethylhexane; 1-fluoroheptane, 1-fluorooctane, Hydrocarbon compounds having a fluorine atom such as 1-fluorononane and 1-fluorodecane are listed. It is.
[0014]
The non-aromatic cyclic hydrocarbon compound optionally having a fluorine atom represented by the general formula (2) may have a side chain, and the fluorine atom may be any hydrogen of the non-aromatic cyclic hydrocarbon compound. It may be replaced with an atom. Non-aromatic cyclic hydrocarbon compounds having less than 6 carbon atoms or chain hydrocarbon compounds having more than the number of fluorine atoms are difficult to handle because of their low boiling points, and the pressure inside the battery during high-temperature storage. May increase, which is not preferable. On the other hand, if the number of carbon atoms exceeds 20, the impregnating property of the battery member becomes low, which is not preferable.
[0015]
Examples of the non-aromatic cyclic hydrocarbon compound which may have a fluorine atom represented by the general formula (2) include cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, methylcyclopentane, ethylcyclopentane, methyl Cyclohexane, ethylcyclohexane, n-propylcyclohexane, n-butylcyclohexane, t-butylcyclohexane, 1,2-dimethylcyclohexane, 1-ethyl-2-methylcyclohexane, dicyclohexyl, decalin, perhydrofluorene and 1,2 Non-aromatic cyclic hydrocarbon compounds such as dicyclohexylethane; and non-aromatic cyclic compounds having a fluorine atom such as fluorocyclohexane, fluorocycloheptane and fluorocyclooctane. Among them, those having 7 or more carbon atoms are preferable, and those having 9 or more carbon atoms are more preferable.
[0016]
The chain hydrocarbon compound which may have a fluorine atom represented by the general formula (1) and the non-aromatic cyclic hydrocarbon compound which may contain a fluorine represented by the general formula (2) include: A plurality of types can be used in combination.
In addition, the chain hydrocarbon compound which may have a fluorine atom and / or the non-aromatic cyclic hydrocarbon compound which may have a fluorine atom are used for the electrolyte of the non-aqueous electrolyte secondary battery. Is known. For example, Japanese Patent Application Laid-Open No. H10-172605 describes that a chain hydrocarbon having 7 to 25 carbon atoms is contained in an electrolytic solution. JP-A-10-189046 describes that a compound having a melting point of 10 ° C. or less is contained in a nonaqueous solvent, and a hydrocarbon such as hexane is described as an example of the compound having a melting point of 10 ° C. or less. ing. JP-A-11-283666 and JP-A-11-317241 describe hydrocarbons such as hexane as one of the solvents that may be added to the electrolyte solvent. JP-A-2000-1491984, JP-A-2000-223151 and JP-A-2001-143749 describe an electrolytic solution containing a halogenated hydrocarbon. However, these publications do not disclose at all the object of the present invention to improve the impregnating property of a battery member, particularly a high density negative electrode layer, with an electrolytic solution. Note that Japanese Patent Application Laid-Open No. 2001-143749 discloses that the density is 1.5 g / cm. 3 And a battery using a hydrocarbon compound having a fluorine atom as a non-aqueous solvent. According to the study of the present inventors, if the electrolyte contains a compound having a larger number of fluorine atoms than the number of carbon atoms as described in the publication, the internal pressure of the battery tends to increase during high-temperature storage, It turned out to be undesirable.
[0017]
The chain hydrocarbon compound which may contain fluorine represented by the general formula (1) and / or the non-aromatic cyclic hydrocarbon compound which may contain fluorine represented by the general formula (2) are Used in a nonaqueous solvent in a range of 0.01% by weight to 5% by weight. If the amount is less than 0.01% by weight, the effect of the present invention cannot be sufficiently obtained. If the amount exceeds 5% by weight, it becomes difficult to be compatible with the main component of the non-aqueous solvent, and the load characteristics of the battery deteriorate. The lower limit is preferably at least 0.02% by weight, particularly preferably at least 0.1% by weight. The upper limit is preferably 4% by weight or less, particularly preferably 2% by weight or less. Since the chain hydrocarbon compound containing no fluorine has low compatibility with the main component of the non-aqueous solvent, it is preferably used at a concentration of 1.8% by weight or less, particularly 1.5% by weight or less.
[0018]
The reason why the battery characteristics are improved by using the above electrolyte is not clear, but is estimated as follows. That is, a chain hydrocarbon compound which may contain fluorine represented by the general formula (1) and / or a non-aromatic cyclic hydrocarbon which may contain fluorine represented by the general formula (2) The compound has good compatibility with the negative electrode layer containing graphite, improves the impregnation of the negative electrode layer with the electrolytic solution, and makes it possible to bring out the inherent performance of the electrode active material. In addition, since these compounds are stable to oxidation and reduction, when these compounds are present at active sites on the surfaces of the positive electrode and the negative electrode, side reactions between the electrolyte component and the electrode active material in a high-temperature state are suppressed, Large current discharge characteristics can be improved.
[0019]
As a main component of the non-aqueous solvent, it is known to be used as a solvent for a non-aqueous electrolyte secondary battery as long as it is compatible with the compounds of the above general formulas (1) and / or (2). Any of the above can be used. For example, alkylene carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate; dialkyl (preferably having 1 to 4 carbon atoms) carbonates such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, and ethyl methyl carbonate; tetrahydrofuran, 2 Cyclic ethers such as methyltetrahydrofuran; linear ethers such as dimethoxyethane and dimethoxymethane; lactones such as γ-butyrolactone and γ-valerolactone; linear carboxylic esters such as methyl acetate, methyl propionate and ethyl propionate; Examples of the organic solvent include phosphorus-containing organic solvents such as trimethyl acid, triethyl phosphate, dimethylethyl phosphate, methyl diethyl phosphate, ethylene methyl phosphate, and ethylene ethyl phosphate. These may be used in combination of two or more.
[0020]
One of the preferred non-aqueous solvents is one mainly composed of an alkylene carbonate and a dialkyl carbonate. Above all, the lower limit of the alkylene carbonate having an alkylene group having 2 to 4 carbon atoms is 10% by volume or more, particularly 20% by volume or more, and the upper limit is 45% by volume or less, and dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms. Is a chain hydrocarbon compound which may contain fluorine represented by the general formula (1) in a mixture containing 50% by volume or more as a lower limit and 90% by volume or less as an upper limit, especially 80% by volume or less. And / or dissolving a lithium salt in a non-aqueous solvent containing a non-aromatic cyclic hydrocarbon compound which may contain fluorine represented by the general formula (2) to obtain an electrolyte, High conductivity, high cycle characteristics and high current discharge characteristics.
[0021]
Examples of the alkylene carbonate having an alkylene group having 2 to 4 carbon atoms include ethylene carbonate, propylene carbonate, and butylene carbonate. Of these, ethylene carbonate or propylene carbonate is preferred.
Examples of the dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. Of these, dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate is preferred.
Specific examples of preferred combinations of alkylene carbonate and dialkyl carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and ethyl methyl Examples of the carbonate include ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
A combination obtained by further adding propylene carbonate to these combinations of ethylene carbonate and dialkyl carbonate is also mentioned as a preferable combination.
When propylene carbonate is contained, the volume ratio of ethylene carbonate to propylene carbonate is usually 99: 1 to 40:60, preferably 95: 5 to 50:50.
Among them, those containing ethyl methyl carbonate, which is an asymmetric dialkyl carbonate, are more preferable.Especially, ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate and diethyl Those containing ethylene carbonate of carbonate and ethyl methyl carbonate, symmetric dialkyl carbonate and asymmetric dialkyl carbonate are preferable because of good balance between cycle characteristics and large current discharge characteristics.
[0022]
Another example of a preferable non-aqueous solvent is one containing an organic solvent having a relative dielectric constant of 25 or more by 60% by volume or more, preferably 85% by volume or more. The electrolyte obtained by dissolving the lithium salt in the non-aqueous solvent has little solvent evaporation and liquid leakage even when used at a high temperature. Examples of the organic solvent having a relative dielectric constant of 25 or more include ethylene carbonate, propylene carbonate, γ-butyrolactone, γ-valerolactone, and the like. Among them, a mixture containing 5% to 45% by volume of ethylene carbonate and 55% to 95% by volume of γ-butyrolactone, or 30% to 60% by volume of ethylene carbonate and 30% to 70% by volume of propylene carbonate In a mixture containing the following, a chain hydrocarbon compound which may contain fluorine represented by the general formula (1) and / or a non-chain compound which may contain fluorine represented by the general formula (2) An electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent containing an aromatic cyclic hydrocarbon compound is preferable because it has a good balance between cycle characteristics and large current discharge characteristics.
[0023]
It is preferable that the non-aqueous solvent contains a cyclic carbonate having a carbon-carbon unsaturated bond in the molecule, since the cycle characteristics of the battery can be improved.
Examples of the cyclic carbonate having a carbon-carbon unsaturated bond in the molecule include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethylvinylene carbonate, 4,5-diethylvinylene carbonate, fluorovinylene carbonate, and trifluoromethyl. Vinylene carbonate compounds such as vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylethylene carbonate, 5-methyl- Vinylethylene carbonate compounds such as 4-vinylethylene carbonate, 4,4-divinylethylene carbonate, and 4,5-divinylethylene carbonate; Ren ethylene carbonate, methylene ethylene carbonate compounds such as 4,4-diethyl-5-methylene ethylene carbonate. Among them, vinylene carbonate, 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate or 4,5-divinylethylene carbonate, particularly vinylene carbonate or 4-vinylethylene carbonate is preferred. Two or more of these may be used in combination.
[0024]
The cyclic carbonate having a carbon-carbon unsaturated bond in the molecule is contained in the non-aqueous solvent in an amount of 0.01% by weight to 5% by weight, preferably 0.1% by weight to 3% by weight. If the content exceeds 5% by weight, the battery characteristics after storage may deteriorate, or the internal pressure of the battery may increase due to gas generation. On the other hand, if it is less than 0.01% by weight, the cycle characteristics cannot be sufficiently improved.
[0025]
Further, the non-aqueous solvent may contain other useful compounds, if necessary, for example, conventionally known additives, dehydrating agents, deoxidizing agents, overcharge inhibitors and the like.
As the additives, carbonate compounds such as fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate, erythritan carbonate and spiro-bis-dimethylene carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, Carboxylic anhydrides such as glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; ethylene sulfite, 1,3-propane sultone , 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, diphenyl sulfone, methyl phenyl sulfone, dibutyl disulfide, dicycl Sulfur-containing compounds such as hexyl disulfide and tetramethylthiuram monosulfide; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and Nitrogen-containing compounds such as N-methylsuccinimide; and hydrocarbon compounds such as fluorobenzene. When these are contained in the non-aqueous solvent in an amount of 0.1% by weight or more and 5% by weight or less, capacity retention characteristics and cycle characteristics after high-temperature storage are improved.
[0026]
Examples of the overcharge preventing agent include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, benzofuran and dibenzofuran; Fluorinated aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroanisole And the like. When the non-aqueous electrolyte contains an overcharge inhibitor, its concentration is usually 0.1 to 5% by weight. It is preferable to include an overcharge inhibitor in the non-aqueous electrolyte because the battery can be prevented from bursting or firing due to overcharging, and the safety of the battery is improved.
[0027]
As the lithium salt which is a solute of the non-aqueous electrolyte according to the present invention, any lithium salt can be used. For example, LiClO 4 , LiPF 6 And LiBF 4 Inorganic lithium salt such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 And LiBF 2 (C 2 F 5 SO 2 ) 2 And the like. Of these, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 Or LiN (C 2 F 5 SO 2 ) 2 Especially LiPF 6 Or LiBF 4 Is preferred. Also, LiPF 6 Or LiBF 4 And an inorganic lithium salt such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 Or LiN (C 2 F 5 SO 2 ) 2 It is preferable to use a fluorine-containing organic lithium salt such as described above in combination, since deterioration after storage at a high temperature is reduced.
[0028]
When the non-aqueous solvent contains γ-butyrolactone at 55% by volume or more, LiBF 4 Occupies at least 50% by weight of the entire lithium salt. LiBF in lithium salt 4 Is 50 to 95% by weight, LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 And LiN (C 2 F 5 SO 2 ) 2 Particularly preferred is one in which a lithium salt selected from the group consisting of 5 to 50% by weight occupies.
[0029]
The lithium salt concentration in the electrolyte is preferably 0.5 to 3 mol / l. Outside this range, the electric conductivity of the electrolytic solution is low, and the battery performance is reduced.
As a material of the negative electrode constituting the battery according to the present invention, a material containing graphite as its component is used. Any graphite can be used as long as it can absorb and release lithium. For example, artificial graphite, purified natural graphite produced by high-temperature treatment of graphitic pitch obtained from various raw materials, or those obtained by subjecting these graphites to various surface treatments, and the like can be mentioned. These graphite materials have a lattice plane (002 plane) having a d value (distance between layers) of 0.335 to 0.338 nm, particularly 0.335 to 0.337 nm, determined by X-ray diffraction by the Gakushin method. preferable. Ash content is usually 1% by weight or less. It is preferably at most 0.5% by weight, especially at most 0.1% by weight. The crystallite size (Lc) obtained by X-ray diffraction according to the Gakushin method is usually 30 nm or more. It is preferably at least 50 nm, particularly preferably at least 100 nm.
[0030]
The median diameter of the carbonaceous material powder by the laser diffraction / scattering method is usually 1 to 100 μm. It is preferably from 3 to 50 μm, particularly preferably from 5 to 40 μm, and most preferably from 7 to 30 μm. The BET specific surface area is usually 0.3 to 25.0 m. 2 / G. 0.5-20.0m 2 / G, especially 0.7-15.0 m 2 / G is preferred, and most preferably 0.8 to 10.0 m 2 / G. Further, when analyzed by Raman spectrum using argon ion laser light, 1570 to 1620 cm -1 Peak P in the range A (Peak intensity I A ) And 1300-1400cm -1 Peak P in the range B (Peak intensity I B ) Intensity ratio R = I B / I A Is preferably 0.01 to 0.7, and 1570 to 1620 cm -1 The half width of the peak in the range is 26 cm. -1 Below, especially 25cm -1 It is preferred that:
[0031]
A particularly preferred graphite material is a carbonaceous material having a lattice plane (002 plane) d value of 0.335 to 0.338 nm in X-ray diffraction as a core material, and the surface of the core material is more X-ray than the core material. A carbonaceous material having a large d value of the lattice plane (002 plane) in the diffraction is attached, and a nuclear material and a carbonaceous material having a larger d value of the lattice plane (002 plane) in the X-ray diffraction than the core material. The ratio is 99/1 to 80/20 by weight. When this graphite material is used, a negative electrode having a high capacity and hardly reacting with the electrolytic solution can be manufactured.
[0032]
The production of the negative electrode may be performed according to a conventional method. For example, there is a method in which a binder, a thickener, a conductive material, a solvent, and the like are added to the negative electrode material to form a slurry, the slurry is applied to a current collector, dried, and then pressed to increase the density.
The density of the negative electrode layer is 1.45 g / cm 3 Above. 1.55 g / cm 3 Above, especially 1.60 g / cm 3 This is preferable because the capacity of the battery increases. Note that, in this specification, the density of the negative electrode layer refers to the density at the time of assembling into a battery.
[0033]
As the binder, any material can be used as long as it is a material that is stable with respect to a solvent or an electrolytic solution used in manufacturing an electrode. For example, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer and the like can be mentioned.
[0034]
Examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
Examples of the conductive material include metal materials such as copper and nickel; and carbon materials such as graphite and carbon black.
[0035]
Examples of the material of the current collector for the negative electrode include copper, nickel, and stainless steel. Among these, copper foil is preferred from the viewpoint of easy processing into a thin film and the cost.
Examples of the material of the positive electrode constituting the battery include materials capable of inserting and extracting lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide.
[0036]
Examples of the material of the positive electrode constituting the battery include materials capable of inserting and extracting lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide. The lithium transition metal composite oxide is composed of a part of cobalt, nickel, or manganese, such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, or Zr. Is preferable because the structure can be stabilized.
The positive electrode can be manufactured according to the negative electrode. For example, there is a method in which a binder, a conductive material, a solvent, and the like are added to the positive electrode material as needed, mixed, applied to a current collector, dried, and then densified by pressing to obtain a positive electrode. The density of the positive electrode layer is 3.0 g / cm. 3 The case where the above is set is preferable because the capacity of a battery increases.
[0037]
Examples of the material of the current collector for the positive electrode include metals such as aluminum, titanium, and tantalum, and alloys thereof. Of these, aluminum or its alloys are preferred.
The material and shape of the separator used in the battery according to the present invention are arbitrary as long as they are stable in the electrolytic solution and have excellent liquid retention properties. A porous sheet or non-woven fabric made from a polyolefin such as polyethylene or polypropylene is preferred.
[0038]
The shape of the battery is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate type, a coin shape, and a large size. The shapes and configurations of the positive electrode, the negative electrode, and the separator can be changed according to the shape of each battery.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to these Examples as long as the gist of the present invention is not exceeded.
(Example 1)
The d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 652 nm, the ash content is 0.07% by weight, the median diameter by laser diffraction / scattering method is 12 μm, and the BET specific surface area Is 7.5m 2 / G, 1570-1620 cm in Raman spectrum analysis using argon ion laser light -1 Peak P in the range A (Peak intensity I A ) And 1300-1400cm -1 Peak P in the range B (Peak intensity I B ) Intensity ratio R = I B / I A Is 0.12, and 1570-1620 cm -1 Of the peak in the range of 19.9 cm -1 Was used as a negative electrode active material. 94 parts by weight of this graphite powder was mixed with 6 parts by weight of polyvinylidene fluoride, and dispersed with N-methyl-2-pyrrolidone to form a slurry. This was uniformly coated on a copper foil having a thickness of 18 μm as a negative electrode current collector, dried, and then, after being dried, a negative electrode layer density of 1.5 g / cm. 3 And pressed into a disk having a diameter of 12.5 mm to obtain a negative electrode.
[0040]
LiCoO as the positive electrode active material 2 Was used. 6 parts by weight of carbon black and 9 parts by weight of polyvinylidene fluoride KF-1000 (trade name, manufactured by Kureha Chemical Co., Ltd.) were added to 85 parts by weight, mixed and dispersed with N-methyl-2-pyrrolidone to form a slurry. This was uniformly applied on a 20 μm-thick aluminum foil as a positive electrode current collector. After drying, the positive electrode layer density was 3.0 g / cm by a press machine. 3 And punched out into a disk having a diameter of 12.5 mm to obtain a positive electrode.
[0041]
Under a dry argon atmosphere, 1 part by weight of vinylene carbonate and 1.5 parts by weight of heptane were added to 97.5 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio of 3: 7), and then fully dried LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution.
The positive electrode impregnated with the electrolytic solution was accommodated in a stainless steel can body also serving as the positive electrode conductor, and the negative electrode was placed thereon via a separator impregnated with the electrolytic solution. The can body and the sealing plate also serving as the negative electrode conductor were caulked and sealed via an insulating gasket to produce a coin-type battery.
[0042]
(Comparative Example 1)
To 99 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), 1 part by weight of vinylene carbonate was added, and then LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution. A coin-type battery was produced in the same manner as in Example 1 except that this electrolytic solution was used.
[0043]
(Example 2)
To 98.5 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), 1 part by weight of vinylene carbonate and 0.5 part by weight of heptane are added, and then LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution. A coin-type battery was produced in the same manner as in Example 1 except that this electrolytic solution was used.
[0044]
(Example 3)
To 97.5 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), 1 part by weight of vinylene carbonate and 1.5 parts by weight of dodecane are added, and then LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution. A coin-type battery was produced in the same manner as in Example 1 except that this electrolytic solution was used.
[0045]
(Example 4)
To 97 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), 1 part by weight of vinylene carbonate and 2 parts by weight of 1-fluoroheptane are added, and then LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution. A coin-type battery was produced in the same manner as in Example 1 except that this electrolytic solution was used.
[0046]
(Example 5)
To 97 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), 1 part by weight of vinylene carbonate and 2 parts by weight of fluorocyclohexane were added, and then LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution. A coin-type battery was produced in the same manner as in Example 1 except that this electrolytic solution was used.
[0047]
(Example 6)
The d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 652 nm, the ash content is 0.07% by weight, the median diameter by laser diffraction / scattering method is 12 μm, and the BET specific surface area Is 7.5m 2 / G, 1580-1620 cm in Raman spectrum analysis using argon ion laser light -1 Peak P in the range A (Peak intensity I A ) And 1350-1370 cm -1 Peak P in the range B (Peak intensity I B ) Intensity ratio R = I B / I A Is 0.12, and 1580-1620 cm -1 Of the peak in the range of 19.9 cm -1 Is mixed with 2 kg of natural graphite powder and 0.5 kg of petroleum-based pitch, and the resulting slurry-like mixture is heated in a batch heating furnace to 1100 ° C. over 2 hours under an inert atmosphere, at the same temperature. Hold for 2 hours. After standing to cool, this is pulverized and adjusted to a particle size of 18 to 22 μm by a vibrating sieve, whereby 3% by weight of amorphous carbon having a lattice plane (002 plane) d value of 0.345 nm in X-ray diffraction is 0.345 nm. Thus, an "amorphous coated graphite-based carbon material" having a natural graphite surface coated was obtained. A coin-type battery was produced in the same manner as in Example 1, except that this was used as the negative electrode.
[0048]
(Example 7)
To 98 parts by weight of a mixture of ethylene carbonate, γ-butyrolactone and ethyl methyl carbonate (volume ratio of 3: 6: 1), 1 part by weight of vinylene carbonate, 0.5 part by weight of vinylethylene carbonate and 0.5 part by weight of heptane were added. And then LiBF 4 Was dissolved to 1.5 mol / liter to obtain an electrolyte solution. A coin-type battery was produced in the same manner as in Example 1 except that this electrolytic solution was used.
[0049]
(Comparative Example 2)
To 98.5 parts by weight of a mixture of ethylene carbonate, γ-butyrolactone and ethyl methyl carbonate (volume ratio 3: 6: 1), 1 part by weight of vinylene carbonate and 0.5 part by weight of vinyl ethylene carbonate are added, and then LiBF 4 Was dissolved to 1.5 mol / liter to obtain an electrolyte solution. A coin-type battery was produced in the same manner as in Example 1 except that this electrolytic solution was used.
(Example 8)
For the negative electrode, the slurry prepared in Example 1 was uniformly applied to one surface of a copper foil having a thickness of 18 μm as a negative electrode current collector, dried, and then, after being dried, the density of the negative electrode layer was 1.55 g / cm. 3 To obtain a negative electrode.
With respect to the positive electrode, the slurry prepared in Example 1 was uniformly applied to both surfaces of a 20 μm-thick aluminum foil as a positive electrode current collector, dried, and then, after being pressed, the density of the positive electrode layer was 3.0 g / cm. 3 To obtain a positive electrode.
Under a dry argon atmosphere, 2 parts by weight of vinylene carbonate and 2 parts by weight of heptane were added to 96 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then LiPF was sufficiently dried. 6 Was dissolved at a ratio of 1.0 mol / liter to obtain an electrolytic solution.
The positive electrode, the negative electrode, and a separator made of polyethylene, a negative electrode, a separator, a positive electrode, a separator, and a negative electrode are laminated in this order to produce a battery element. (Thickness: 40 μm) was housed in a bag made of a laminated film in which both surfaces were covered with a resin layer. Next, after injecting an electrolytic solution into this, vacuum sealing was performed to produce a sheet-like battery.
(Example 9)
To 96 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), 2 parts by weight of vinylene carbonate and 2 parts by weight of t-butylcyclohexane were added, and then LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution. A sheet-like battery was produced in the same manner as in Example 8, except that this electrolytic solution was used.
(Example 10)
To 96 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), 2 parts by weight of vinylene carbonate and 2 parts by weight of dicyclohexyl were added, and then LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution. A sheet-like battery was produced in the same manner as in Example 8, except that this electrolytic solution was used.
(Comparative Example 3)
2 parts by weight of vinylene carbonate were added to 98 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7), and then LiPF 6 Was dissolved at a concentration of 1 mol / liter to obtain an electrolyte solution. A sheet-like battery was produced in the same manner as in Example 8, except that this electrolytic solution was used.
[0050]
【The invention's effect】
The batteries of Examples 1 to 7 and Comparative Examples 1 and 2 were stabilized by performing 5 cycles of charge / discharge at 25 ° C. at a constant current of 0.5 mA at a constant current of 0.5 mA and 4.2 V at a discharge end voltage of 3 V for 5 cycles. It was stored at 85 ° C for 3 days. The battery after storage was discharged at 25 ° C. at a constant current of 0.5 mA to a discharge end voltage of 3 V, and the remaining capacity was measured. Then, at a constant current of 0.5 mA, a charge end voltage of 4.2 V and a discharge end voltage of 3 V were applied. The battery was charged and discharged, and the capacity after storage was measured. Next, after charging under the same conditions, the battery was discharged to 3 V at a current value corresponding to 2 C, and the high-load discharge characteristics were measured (here, 1 C indicates a current value that can be fully charged in one hour, and 2 C indicates the current value). 2 times the current value). Table 1 shows the remaining capacity after storage, the capacity after storage, and the capacity during high-load discharge when the discharge capacity before storage was 100.
The sheet-shaped batteries of Examples 8 to 10 and Comparative Example 3 were charged to 4.2 V at 25 ° C. at a constant current corresponding to 0.2 C at a temperature of 25 ° C. in a state sandwiched between glass plates in order to enhance the adhesion between the electrodes. After that, the battery was discharged to 3 V at a constant current corresponding to 0.2 C. This is repeated three cycles to stabilize the battery. In the fourth cycle, the battery is charged at a constant current of 0.5 C to 4.2 V, and further charged at a constant voltage of 4.2 V until the current value becomes 0.05 C. After that, the battery was discharged to 3 V at a constant current of 0.2 C.
The battery was immersed in an ethanol bath to measure the volume, and then reached 4.25 V at a constant current of 0.5 C at 60 ° C. while being sandwiched between glass plates. The battery was charged continuously for a week.
After cooling the battery, the battery was immersed in an ethanol bath to measure the volume, and the amount of gas generated from the volume change before and after continuous charging was determined. Table 2 shows the results.
[0051]
[Table 1]
[0052]
[Table 2]
[0053]
As is evident from Table 1, the secondary battery according to the present invention has improved residual capacity after storage with respect to discharge capacity before storage and the subsequent capacity, and has significantly improved high-load discharge characteristics.
Further, the coin-type batteries of Example 1 and Comparative Example 1 were stabilized at 25 ° C. by performing a charge-discharge voltage of 4.2 V at a constant current of 0.5 mA and a charge-discharge voltage of 5 V at a discharge end voltage of 3 V for 5 cycles. After charging to a charging end voltage of 4.2 V with a current corresponding to 7 C, charging is performed until the charging current value reaches a current value corresponding to 0.05 C. After charging at 4.2 V-CCCV, discharging at a constant current corresponding to 1 C A cycle test for discharging to a final voltage of 3 V was performed. The 100-cycle capacity retention rate expressed by the capacity at the 100th cycle when the discharge capacity at the sixth cycle in the cycle test is 100 is 81% for the battery of Example 1 and 77% for the battery of Comparative Example 1. there were. Therefore, it is understood that the secondary battery according to the present invention has improved cycle characteristics.
Further, as is clear from Table 2, the secondary battery according to the present invention has a small amount of generated gas.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003181702A JP4433701B2 (en) | 2002-07-24 | 2003-06-25 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002214991 | 2002-07-24 | ||
JP2003181702A JP4433701B2 (en) | 2002-07-24 | 2003-06-25 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006161494A Division JP4380664B2 (en) | 2002-07-24 | 2006-06-09 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004111359A true JP2004111359A (en) | 2004-04-08 |
JP4433701B2 JP4433701B2 (en) | 2010-03-17 |
Family
ID=32300489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003181702A Expired - Fee Related JP4433701B2 (en) | 2002-07-24 | 2003-06-25 | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4433701B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006012806A (en) * | 2004-06-21 | 2006-01-12 | Samsung Sdi Co Ltd | Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this |
JP2006120517A (en) * | 2004-10-22 | 2006-05-11 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte battery |
JP2006172775A (en) * | 2004-12-14 | 2006-06-29 | Hitachi Ltd | Energy storage device, its module and automobile using it |
JP2008269982A (en) * | 2007-04-20 | 2008-11-06 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using the same |
WO2009141999A1 (en) | 2008-05-19 | 2009-11-26 | パナソニック株式会社 | Non-aqueous solvent and non-aqueous electrolyte for an electrical storage device, non-aqueous electrical storage device wherein same are used, lithium secondary battery, and electrical double-layer capacitor |
WO2010047092A1 (en) | 2008-10-21 | 2010-04-29 | パナソニック株式会社 | Non-aqueous solvent and non-aqueous electrolytic solution for energy storage device, and energy storage device, lithium secondary battery and electric double-layer capacitor each comprising the non-aqueous solvent or the non-aqueous electrolytic solution |
US7998615B2 (en) * | 2004-01-15 | 2011-08-16 | Panasonic Corporation | Nonaqueous electrolyte for electrochemical devices |
EP2061107A4 (en) * | 2006-08-31 | 2012-02-22 | Toyo Tanso Co | Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery |
WO2012066770A1 (en) | 2010-11-16 | 2012-05-24 | パナソニック株式会社 | Nonaqueous solvent for electricity storage device |
WO2012172723A1 (en) | 2011-06-15 | 2012-12-20 | パナソニック株式会社 | Non-aqueous solvent and non-aqueous electrolytic solution for electrical storage devices, and electrical storage device, lithium secondary battery and electric double-layer capacitor each utilizing said non-aqueous solvent and said non-aqueous electrolytic solution |
US9048508B2 (en) | 2007-04-20 | 2015-06-02 | Mitsubishi Chemical Corporation | Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same |
WO2016027588A1 (en) * | 2014-08-19 | 2016-02-25 | Jx日鉱日石エネルギー株式会社 | Organic electrolyte and organic electrolyte storage battery |
CN114628773A (en) * | 2020-12-14 | 2022-06-14 | 深圳新宙邦科技股份有限公司 | Lithium ion battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140083170A (en) | 2012-12-24 | 2014-07-04 | 삼성에스디아이 주식회사 | Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same |
-
2003
- 2003-06-25 JP JP2003181702A patent/JP4433701B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7998615B2 (en) * | 2004-01-15 | 2011-08-16 | Panasonic Corporation | Nonaqueous electrolyte for electrochemical devices |
JP2006012806A (en) * | 2004-06-21 | 2006-01-12 | Samsung Sdi Co Ltd | Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this |
JP4527605B2 (en) * | 2004-06-21 | 2010-08-18 | 三星エスディアイ株式会社 | Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same |
JP2006120517A (en) * | 2004-10-22 | 2006-05-11 | Gs Yuasa Corporation:Kk | Nonaqueous electrolyte battery |
JP2006172775A (en) * | 2004-12-14 | 2006-06-29 | Hitachi Ltd | Energy storage device, its module and automobile using it |
EP2061107A4 (en) * | 2006-08-31 | 2012-02-22 | Toyo Tanso Co | Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery |
US9048508B2 (en) | 2007-04-20 | 2015-06-02 | Mitsubishi Chemical Corporation | Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same |
JP2008269982A (en) * | 2007-04-20 | 2008-11-06 | Mitsubishi Chemicals Corp | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery using the same |
US9653754B2 (en) | 2007-04-20 | 2017-05-16 | Mitsubishi Chemical Corporation | Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same |
US9231277B2 (en) | 2007-04-20 | 2016-01-05 | Mitsubishi Chemical Corporation | Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same |
WO2009141999A1 (en) | 2008-05-19 | 2009-11-26 | パナソニック株式会社 | Non-aqueous solvent and non-aqueous electrolyte for an electrical storage device, non-aqueous electrical storage device wherein same are used, lithium secondary battery, and electrical double-layer capacitor |
US8211577B2 (en) | 2008-05-19 | 2012-07-03 | Panasonic Corporation | Nonaqueous solvent and nonaqueous electrolytic solution for electricity storage device and nonaqueous electricity storage device, lithium secondary battery and electric double layer capacitor using the same |
US8247118B2 (en) | 2008-10-21 | 2012-08-21 | Panasonic Corporation | Non-aqueous solvent and non-aqueous electrolytic solution for energy storage device, and energy storage device, lithium secondary battery and electric double-layer capacitor each comprising the non-aqueous solvent or the non-aqueous electrolytic solution |
CN102138246A (en) * | 2008-10-21 | 2011-07-27 | 松下电器产业株式会社 | Non-aqueous solvent and non-aqueous electrolytic solution for energy storage device, and energy storage device, lithium secondary battery and electric double-layer capacitor each comprising the non-aqueous solvent or the non-aqueous electrolytic solu |
WO2010047092A1 (en) | 2008-10-21 | 2010-04-29 | パナソニック株式会社 | Non-aqueous solvent and non-aqueous electrolytic solution for energy storage device, and energy storage device, lithium secondary battery and electric double-layer capacitor each comprising the non-aqueous solvent or the non-aqueous electrolytic solution |
WO2012066770A1 (en) | 2010-11-16 | 2012-05-24 | パナソニック株式会社 | Nonaqueous solvent for electricity storage device |
WO2012172723A1 (en) | 2011-06-15 | 2012-12-20 | パナソニック株式会社 | Non-aqueous solvent and non-aqueous electrolytic solution for electrical storage devices, and electrical storage device, lithium secondary battery and electric double-layer capacitor each utilizing said non-aqueous solvent and said non-aqueous electrolytic solution |
WO2016027588A1 (en) * | 2014-08-19 | 2016-02-25 | Jx日鉱日石エネルギー株式会社 | Organic electrolyte and organic electrolyte storage battery |
CN114628773A (en) * | 2020-12-14 | 2022-06-14 | 深圳新宙邦科技股份有限公司 | Lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JP4433701B2 (en) | 2010-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3558007B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP5392259B2 (en) | Nonaqueous electrolyte and lithium battery using the same | |
US8586250B2 (en) | Non-aqueous electrolyte solution for storage battery devices, and storage battery device | |
JP4492023B2 (en) | Non-aqueous electrolyte secondary battery | |
JP7168851B2 (en) | Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same | |
JP5471617B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same | |
JP4380664B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte | |
JP4212301B2 (en) | Non-aqueous electrolyte secondary battery | |
WO2014050877A1 (en) | Nonaqueous electrolyte solution, electrochemical device, lithium ion secondary cell, and module | |
JP4945879B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte | |
JP2011187234A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same | |
JP4433701B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte | |
JP7058652B2 (en) | Electrolytes, electrochemical devices, secondary batteries and modules | |
JP2004259697A (en) | Nonaqueous electrolyte and lithium secondary battery | |
JP2013201142A (en) | Electrochemical device and nonaqueous electrolyte for electrochemical device | |
JP3978882B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP2012204100A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same | |
JP2006049152A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery | |
JP3610948B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
KR101683534B1 (en) | electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
JP5326846B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4525177B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
JP5110057B2 (en) | Lithium secondary battery | |
JP5516677B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP6143410B2 (en) | Electrochemical device and non-aqueous electrolyte for electrochemical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090421 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20090617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4433701 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |