Nothing Special   »   [go: up one dir, main page]

JP2004198682A - Multiple wavelength signal light source, method for generating multiple wavelength signal light, optical wavelength conversion device, and method for converting optical wavelength - Google Patents

Multiple wavelength signal light source, method for generating multiple wavelength signal light, optical wavelength conversion device, and method for converting optical wavelength Download PDF

Info

Publication number
JP2004198682A
JP2004198682A JP2002366273A JP2002366273A JP2004198682A JP 2004198682 A JP2004198682 A JP 2004198682A JP 2002366273 A JP2002366273 A JP 2002366273A JP 2002366273 A JP2002366273 A JP 2002366273A JP 2004198682 A JP2004198682 A JP 2004198682A
Authority
JP
Japan
Prior art keywords
optical
signal
wavelength
modulator
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002366273A
Other languages
Japanese (ja)
Other versions
JP3996843B2 (en
Inventor
Hidekazu Yamada
英一 山田
Yuzo Yoshikuni
裕三 吉國
Hiroaki Sanjo
広明 三条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002366273A priority Critical patent/JP3996843B2/en
Publication of JP2004198682A publication Critical patent/JP2004198682A/en
Application granted granted Critical
Publication of JP3996843B2 publication Critical patent/JP3996843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple wavelength signal light source which generates multiple wavelength signal light by inputting an optical signal of an arbitrary modulation format and an arbitrary bit rate into an optical modulator driven by an electric signal applied from the outside and outputs wavelength conversion light, a method for generating the multiple wavelength signal light, an optical wavelength conversion device and a method for converting an optical wavelength. <P>SOLUTION: The multiple wavelength signal light source is provided with: the optical modulator to which the optical signal modulated with B [bit/s] transmission rate is inputted and which modulates the optical signal with the electric signal applied from the outside; and a repeating signal generator which generates an electric signal with a repeating frequency f [Hz] higher than the bandwidth of the optical signal and applies the resultant signal to the optical modulator. The multiple wavelength signal light with frequency interval f [Hz] is outputted from the optical modulator driven with f [Hz] modulation frequency by application of the electric signal. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、外部から印加される電気信号によって駆動される光変調器を用いて所定の波長の光信号から複数の波長の光信号を生成する多波長信号光源および多波長信号光発生方法、およびその多波長信号光源を用いて所定の波長の光信号を別の波長の光信号に変換する光波長変換器および光波長変換方法に関する。
【0002】
【従来の技術】
光通信の分野では、光ファイバの伝送容量を増大させるとともに柔軟なネットワークを構築するために、波長多重伝送方式を基礎としたフォトニックネットワークの研究開発が進められている。フォトニックネットワークでは、光の波長を変換して光の経路を切り替える光クロスコネクトや、光の波長をラベルとして経路を決定(波長ルーティング)する光パケット転送が用いられる。このようなフォトニックネットワークでは、伝送されてきた光信号の波長を別の波長に変換する光波長変換の技術が重要になっている。なお、ここでの光波長変換技術とは、ある波長の光信号に含まれる情報を別の波長の光に乗せかえることである。従来は光信号を電気信号に変換し、その電気信号で別の波長の光搬送波を変調する方法がとられていたが、近年では電気信号に変換することなく光波長変換する技術の開発が進められている。
【0003】
電気信号に変換しない従来の光波長変換技術としては、四光波混合、相互位相変調、相互利得変調などの光と光の相互作用を利用した多くの光波長変換技術(ここでは「全光波長変換技術」という)が報告されている。例えば、半導体光増幅器の相互利得変調を利用した全光波長変換技術では、半導体光増幅器の利得飽和を利用して制御光(入力信号光)で外部連続光をスイッチすることにより、入力信号光の情報を外部光に乗せかえる光波長変換を実現している。しかし、全光波長変換技術では、入力信号光の他に外部光源が必要であり、また入力信号光の強度や波長に応じた調整が必要であった。
【0004】
この全光波長変換技術に対して、光と電気の相互作用(電気光学効果、フランツケルディッシュ効果、QCSEなど)による光変調器を用いた光波長変換技術は、外部光源が不要でシンプルな構成になり、また入力信号光に応じた調整が不要である優れた特徴を有している。なお、光変調器とは、物質の屈折率の実数部(位相)あるいは虚数部(吸収)を電気信号によって変化させることにより光の位相あるいは強度を変化させるものであり、電気光学効果による光位相変調器が典型であるが、本発明で用いる光変調器は電気光学効果によるものに限らない。ここで、電気光学効果を用いた光変調器による光波長変換技術の例としては、非特許文献1に記載の集積光SSB変調器/周波数シフタがある。その構成例を図6に示す。
【0005】
この集積光SSB変調器/周波数シフタは、角周波数Ωの正弦波を印加する光位相変調器21と、入力信号光に0、π/2、π、3π/2の位相シフトを与えて各光位相変調器に入力する位相シフタ22および分岐/合流手段23により構成される。各光位相変調器では入力光からΩだけ離れた1次のサイドバンドを発生させ、一方のサイドバンドおよび入力光が打ち消し合うことにより、他方のサイドバンド(SSB)のみを発生させることにより、入力光の波長(光周波数)を変調角周波数Ωだけシフトさせることができる。
【0006】
しかし、この光周波数シフト量は光位相変調器に印加する電気信号の周波数に等しく、電気回路が実現できないような高い周波数の光周波数シフトは実現できない。また、角周波数−3Ω成分がスプリアスとして発生すること、光位相変調器が完全にバランスしていないと本来打ち消し合うはずの片側のサイドバンドや入力光が残留して出力されるなどの問題があった。さらに、非特許文献1では、入力光は連続光を想定しており、情報がのった信号光を入力してその波長(光周波数)を変換することは想定されていない。
【0007】
また、電気光学効果を用いた光変調器により多波長光を一括発生する技術として、特許文献1に記載の多波長一括発生光源がある。この構成例を図7に示す。この多波長一括発生光源は、単一の中心波長を有する連続光(CW光)を発生する連続光光源24と、その連続光を振幅変調または位相変調を行う複数の光変調器25と、所定の繰り返し周波数の信号を発生する繰り返し信号発生器26と、所定の繰り返し周期信号電圧を調整して各光変調器25に印加するパワー調整器27から構成される。各光変調器では、単一の中心波長を有する連続光の振幅および位相を変調する関数を適宜設定し、これに従って信号電圧のパワー調整とバイアス設定により振幅変調と位相変調を行うことにより、容易に出力光スペクトルの平坦度を向上させた多波長光を一括発生することができる。
【0008】
しかし、この多波長一括発生光源は、単一波長の連続光から多波長光を一括発生するものであり、変調された信号光を入力して多波長光を発生させることは想定されていない。
【0009】
それに対して、光ファイバに光パルス信号を入力し、光ファイバの非線形光学効果によって発生する白色パルス光から任意の波長を切り出すことにより、入力した光パルス信号の波長変換を行う光波長変換装置が提案されている(特許文献2)。この構成例を図8に示す。この光波長変換装置は、光パルス信号を入力して白色パルス光を発生する光ファイバ28と、白色パルス光から任意の波長を切り出す光フィルタ29により構成される。ここで、光パルス信号とは、パルスの有無に情報の1,0を対応させた信号である。
【0010】
【非特許文献1】
M.Izutsu, S.Shikama, and T.Sueta,"Integrated Optical SSB Modulator/Frequency Shifter", IEEE Journal of Quantum Electronics, Vol.QE-17, No.11, pp.2225-2227, 1998
【特許文献1】
特開2002−82323号公報
【特許文献2】
特開平8−122833号公報
【0011】
【発明が解決しようとする課題】
従来の電気光学効果を用いた光変調器による光波長変換装置あるいは多波長一括発生光源は、入力光として単一波長の連続光が想定されており、変調された信号光を入力して波長変換あるいは多波長光を発生させることは想定されていなかった。そのため、信号光の帯域幅と印加する電気信号の変調周波数の関係については検討がなされていなかった。
【0012】
一方、光ファイバの非線形光学効果による広帯域光スペクトルを用いた光波長変換装置では、入力信号が光パルス信号に限られており、任意の変調フォーマット(例えばNRZ符号)の光信号を波長変換することはできない。また、パルス列の繰り返し周波数と符号変調の速度(ビットレート)が一致しなければならず、さらに非線形光学効果を生じさせるために高パワーの入力信号が必要であった。
【0013】
本発明は、外部から印加される電気信号によって駆動される光変調器に、任意の変調フォーマット、任意のビットレートの光信号を入力して多波長信号光を発生させ、さらに波長変換光を取り出すことができる多波長信号光源および多波長信号光発生方法、ならびに光波長変換器および光波長変換方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の多波長信号光源は、伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される電気信号によってその光信号を変調する光変調器と、光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号を発生し、光変調器に印加する繰り返し信号発生器とを備え、電気信号の印加により変調周波数f[Hz]で駆動される光変調器から周波数間隔f[Hz]の多波長信号光を出力する構成である(請求項1)。
【0015】
本発明の多波長信号光源の光変調器は、光強度変調器または光位相変調器、または光強度変調器と光位相変調器の組み合わせである(請求項2)。
【0016】
本発明の光波長変換器は、伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される電気信号によってその光信号を変調する光変調器と、光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号を発生して光変調器に印加する繰り返し信号発生器と、変調周波数f[Hz]で駆動される光変調器から出力される周波数間隔f[Hz]の多波長信号光を入力して所定の波長の光信号を分波し、光変調器に入力された光信号に対する波長変換光として出力する光波長分波手段とを備える(請求項3)。
【0017】
この光波長分波手段が多波長信号光から各波長の光信号を分波する構成であるときに、分波する光周波数間隔がf[Hz]である(請求項4)。
【0018】
本発明の光波長変換器は、伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される電気信号によってその光信号を変調する光変調器と、光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号を発生して光変調器に印加する繰り返し信号発生器と、変調周波数f[Hz]で駆動される光変調器から出力される周波数間隔f[Hz]の多波長信号光を入力して各波長の光信号を分波し、各波長の光信号から所定の波長の光信号を選択し、光変調器に入力された光信号に対する波長変換光として出力する波長選択手段とを備える(請求項5)。
【0019】
この波長選択手段が多波長信号光から各波長の光信号を分波する構成であるときに、分波する光周波数間隔がf[Hz]である(請求項6)。
【0020】
また、本発明の光波長変換器の光変調器は、光強度変調器または光位相変調器、または光強度変調器と光位相変調器の組み合わせである(請求項7)。
【0021】
本発明の多波長信号光発生方法は、伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号によって光信号を変調し、周波数間隔f[Hz]の多波長信号光を出力する(請求項8)。
【0022】
本発明の光波長変換方法は、伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号によって光信号を変調し、周波数間隔f[Hz]の多波長信号光を出力し、多波長信号光を入力して所定の波長の光信号を分波し、入力された光信号に対する波長変換光として出力する(請求項9)。
【0023】
本発明の光波長変換方法は、伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号によって光信号を変調し、周波数間隔f[Hz]の多波長信号光を出力し、多波長信号光を入力して各波長の光信号を分波し、各波長の光信号から所定の波長の光信号を選択し、入力された光信号に対する波長変換光として出力する(請求項10)。
【0024】
【発明の実施の形態】
(多波長信号光源の実施形態)
図1は、本発明の多波長信号光源の実施形態を示す。図において、本発明の多波長信号光源は、電気光学効果を用いた光変調器1と、光変調器1に印加する繰り返し信号を発生する繰り返し信号発生器2により構成される。
【0025】
伝送速度B[bit/s ]で変調された光信号aは光変調器1に入力される。繰り返し信号発生器2は、光信号aの帯域幅(例えば2B[Hz])より高い繰り返し周波数f[Hz]の電気信号(例えば正弦波)を発生し、光変調器1に印加する。光変調器1では、この電気信号により光信号aを変調すると、その光スペクトルに変調周波数f[Hz]の間隔ごとに入力光信号の複製が発生し、これが多波長信号光bとして出力される。この多波長信号光bの光周波数間隔(f[Hz])は入力光信号の帯域幅よりも広くなるので、互いに信号成分が重なることはなく、光フィルタ等で分離することが可能になる。
【0026】
光変調器1は、光強度変調器または光位相変調器のいずれか、あるいはその組み合わせ(順序は任意)でもよく、さらに複数個の組み合わせ(順序は任意)でもよい。ここで、光変調器1を光強度変調器と光位相変調器の組み合わせで構成した場合には、光強度変調器と光位相変調器への印加電圧を最適化することにより、光信号の複製の各々の光強度が揃った平坦な多波長信号光bが得られる。また、その光スペクトルの広がり、すなわち波長数は光位相変調器の変調度に比例する。
【0027】
また、一般的な用途としては入力する光信号aの短波長側および長波長側の両波長側に均等に光スペクトルが発生することが望ましいが、本発明は両波長側に均等に広がる場合に限定されない。特に、短波長側(あるいは長波長側)に発生させたい場合には、光強度変調器と光位相変調器の印加電圧の位相を90度ずらすことにより、一方の波長側により多くの光信号成分を発生させることができる。さらに、光強度変調器と光位相変調器の印加電圧およびその位相を制御することにより、特定波長の光信号強度を大きくすることなどが可能である。また、繰り返し周波数f[Hz]の電気信号は正弦波に限定されず、三角波やガウス型パルス波形など高次の周波数成分を含むものでもよい。この場合には、電気信号の波形に応じて発生する光スペクトルの形状を変化させることができる。
【0028】
入力する光信号aには帯域が存在するので、特許文献1の連続光から多波長キャリアを発生する場合と異なり、光変調器1における変調周波数fには制限が存在する。すなわち、発生した多波長信号光の各光信号成分が互いに重なると光フィルタ等で分離できなくなるので、光変調器1の変調周波数f(繰り返し信号発生器2で発生する繰り返し信号の繰り返し周波数)は、光信号aの帯域幅よりも高くする必要があり、本発明はここに着目したものである。
【0029】
例えば、伝送速度B[bit/s ]で変調された光信号aの帯域幅を2B[Hz]程度とすると、多波長信号光bの各光信号成分が互いに重ならないようにするには、変調周波数fを2B[Hz]よりも高く設定する必要がある。さらに、光フィルタで各光信号成分を分離するためには、光フィルタの透過特性が矩形のように急峻でなくガウス型やローレンツ型など裾を引くことを考慮すると、多波長信号光bの光周波数間隔に対応する変調周波数fを例えば 2.5B[Hz]程度に設定する必要がある。
【0030】
また、現在の光通信の光信号波長はITU−Tによってその絶対値と間隔の標準が定められている。したがって、ITU−Tグリッドに沿って光信号を配置する場合には、変調周波数fはITU−Tグリッド幅に設定すればよい。
【0031】
図2は、本発明の多波長信号光源の動作を確認する実験結果を示す。9.95328 Gbit/s でNRZ変調された波長1553.73 nmの光信号を光変調器(光強度変調器と光位相変調器)に入力し、この光変調器を25GHzの正弦波で駆動すると、図2に示すような多波長信号光が発生する。各光信号成分は、帯域が重なっていないため光フィルタで分離することが可能であり、本発明の目的である多波長信号光源が実現することがわかる。
【0032】
(光波長変換器の第1の実施形態)
図3は、本発明の光波長変換器の第1の実施形態を示す。本実施形態の光波長変換器は、図1に示す多波長信号光源から出力される多波長信号光bを所定の波長の光信号c、あるいは各波長の光信号c1 〜cn に分波する構成である。ここでは、光変調器1は光強度変調器11と光位相変調器12により構成されるものとする。多波長信号光bを分波する構成例を図3(1),(2),(3) に示す。
【0033】
(1) は、多波長信号光bから所定の波長の光信号cを分波する光フィルタ3を用いた構成である。ここでは、入力する光信号aから光フィルタ3の透過波長に応じた光信号cが波長変換光として分波される。なお、光フィルタ3は、所定の波長の光信号を1つだけ分波するものであるから、光フィルタの帯域幅は所定の波長の光信号の帯域幅より広く、かつ多波長信号光の光周波数間隔f[Hz]より狭い。また、片側帯波のみを取り出したいなど特殊な場合を除いて、光フィルタの中心周波数は所定の波長の光信号の中心周波数に等しい。さらに、光フィルタの中心周波数を光周波数間隔f[Hz]単位で変化させることにより、波長変換光の波長を変化させることができる。
【0034】
(2) は、多波長信号光bをn分岐する光分岐器4と、n分岐された各多波長信号光bから各波長の光信号c1 〜cn を分波する光フィルタ3−1〜3−nを用いた構成である。ここでは、入力する光信号aから各光フィルタの透過波長に応じた複数の波長の光信号c1 〜cn が波長変換光として分波される。
【0035】
(3) は、多波長信号光bから各波長の光信号c1 〜cn を分波する光波長分波器5を用いた構成である。光波長分波器3の透過波長間隔と光変調器1の変調周波数f(繰り返し信号発生器2で発生する繰り返し信号の繰り返し周波数)を一致させることにより、各波長の光信号c1 〜cn をそれぞれ取り出すことができる。この各波長の光信号c1 〜cn が入力する光信号aに対する波長変換光となる。
【0036】
なお、多波長信号光bの光スペクトルの広がり、すなわち波長数は光位相変調器12の変調度に比例するので、波長変換光数nおよび最大光周波数シフト量も変調度に比例する。
【0037】
図4は、本発明の光波長変換器の動作を確認する実験結果を示す。ここでは、光波長分波器5として用いたアレイ導波路回折格子(AWG)から出力された各波長の光信号の光スペクトルを同一の図に示している。9.95328 Gbit/s でNRZ変調された光周波数192.95THzの光信号を光変調器(光強度変調器と光位相変調器)に入力し、この光変調器を25GHzの正弦波で駆動すると、図4に示すように光周波数192.85THzから193.05THzまで25GHz間隔で波長変換された光信号が得られる。本実験において、波長変換された光信号と入力された光信号の時間波形を比較したところ同一であることが実証された。
【0038】
ところで、深く強度変調された信号はパルス列になる。本発明の多波長信号光源および光波長変換器の特徴は、符号変調とパルス列が同期している必要がないことである。符号変調とパルス列が同期している場合(RZ変調)では、特許文献2に示すようにスペクトル幅を拡大した多波長信号光から各波長の光信号を分波する構成が知られている。また、この構成では、符号変調周波数(パルス列の繰り返し周波数)と光波長分波器の周波数間隔は無関係であり、さらに我々の検討によれば、符号変調した信号を非同期にパルス列化した信号のスペクトルを拡大した場合は、波長変換された光信号は入力光信号に比べて著しく劣化し、入力光信号と同一の情報を有する波長変換光信号を得ることはできなかった。一方、本発明の光波長変換器では、符号変調した信号を非同期にパルス列化した場合でも、繰り返し周波数に等しい周波数間隔の光波長分波器による分波により、入力光信号と異なる波長で同一の情報を有する波長変換光信号が得られることが確認された。また、入力信号光の変調フォーマットや伝送速度に依存しないことが確認された。
【0039】
また、光通信の伝送速度は高速化が進み、同時に光変調器は改良されて動作が高速化された。したがって、各時代における光伝送速度と光変調器の動作帯域は等しい。しかし、電気光学効果を用いた光波長変換では、光スペクトルの重なりを考慮すれば、入力光の伝送速度は光変調器の動作周波数の半分以下にする必要があった。すなわち、通常の伝送速度の半分以下にせざるをえず、電気光学効果を用いた光波長変換は実用的価値が低いとされてきた。一方、本発明の実験では、単純な繰り返し信号、特に正弦波で光変調器の動作速度を超える周波数の電気信号を大電力で入力すると、変調効率が低下するものの光変調器は動作し、多波長信号光が発生することが確認された。したがって、本発明の光波長変換器は通常の速度の光信号の波長変換に用いることができる。
【0040】
また、本発明は、光変調器の変調度に比例して繰り返し周波数の波長間隔で多波長信号光を発生させることができるので、従来の集積光SSB変調器/周波数シフタに比べて光周波数シフト量が大きい特徴がある。また、光フィルタを用いて変換波長以外の光信号成分を取り除いているために、不要な光信号の発生を防ぐことができる。
【0041】
(光波長変換器の第2の実施形態)
図5は、本発明の光波長変換器の第2の実施形態を示す。本実施形態の光波長変換器は、図1に示す多波長信号光源から出力される多波長信号光bを光波長分波器5で各波長の光信号に分波し(ここまでは図3(3) の構成)、各波長の光信号をそれぞれ光スイッチ6を介して光合波器7に接続する構成である。各光スイッチ6は光スイッチ制御回路8により開閉制御され、光波長分波器5、光スイッチ6および光合波器7が波長選択手段として機能する構成になっている。すなわち、光スイッチ6および光スイッチ制御回路8により選択された波長の光信号が光合波器7を介して出力される。この波長選択手段は、個別の光部品を組み合わせて構成してもよいし、1枚の基板上に光部品を集積化して構成してもよい。また、複数の光部品を一体化したハイブリッド型波長セレクタを構成してもよい。
【0042】
ここで、ある波長λ1 に対応する光スイッチ6のみをオンとした状態から、その光スイッチ6をオフとし、他の波長λ2 に対応する光スイッチ6をオンにすると、光合波器7の出力では波長λ1 からλ2 への高速波長変換が実現する。すなわち、本実施形態の光波長変換器における波長変換速度は、光スイッチ6の速度によって決定されるので、半導体光増幅器を用いた光スイッチなど高速光スイッチを用いれば高速波長変換が可能になる。
【0043】
【発明の効果】
以上説明したように、本発明は、入力光信号の帯域幅より高い繰り返し周波数の電気信号で変調する構成であるので、発生した多波長信号光のスペクトルが互いに重なることがなく、光フィルタ等で分離可能な多波長信号光源を実現することができる。また、この多波長信号光から光フィルタ等で任意の波長の光信号を分離することにより、入力光信号に対して波長変換を行う光波長変化器を実現することができる。
【図面の簡単な説明】
【図1】本発明の多波長信号光源の実施形態を示す図。
【図2】本発明の多波長信号光源の実験結果を示す図。
【図3】本発明の光波長変換器の第1の実施形態を示す図。
【図4】本発明の光波長変換器の実験結果を示す図。
【図5】本発明の光波長変換器の第2の実施形態を示す図。
【図6】集積光SSB変調器/周波数シフタの構成例を示す図。
【図7】多波長一括発生光源の構成例を示す図。
【図8】光ファイバの非線形光学効果を用いた光波長変換装置の構成例を示す図。
【符号の説明】
1 光変調器
11 光強度変調器
12 光位相変調器
2 繰り返し信号発生器
3 光フィルタ
4 光分岐器
5 光波長分波器
6 光スイッチ
7 光合波器
8 光スイッチ制御回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a multi-wavelength signal light source and a multi-wavelength signal light generation method for generating an optical signal of a plurality of wavelengths from an optical signal of a predetermined wavelength using an optical modulator driven by an externally applied electric signal, and The present invention relates to an optical wavelength converter and an optical wavelength conversion method for converting an optical signal of a predetermined wavelength into an optical signal of another wavelength using the multi-wavelength signal light source.
[0002]
[Prior art]
In the field of optical communication, research and development of a photonic network based on a wavelength division multiplexing transmission method is being promoted in order to increase the transmission capacity of an optical fiber and to construct a flexible network. In a photonic network, an optical cross-connect that switches a light path by converting a light wavelength, and an optical packet transfer that determines a path using the light wavelength as a label (wavelength routing) are used. In such a photonic network, an optical wavelength conversion technology for converting the wavelength of a transmitted optical signal into another wavelength has become important. Here, the optical wavelength conversion technique is to change information included in an optical signal of a certain wavelength to light of another wavelength. Conventionally, optical signals have been converted to electrical signals, and the optical signals have been used to modulate optical carriers of different wavelengths.In recent years, technology has been developed for converting optical wavelengths without converting them to electrical signals. Have been.
[0003]
Conventional optical wavelength conversion technologies that do not convert to electrical signals include many optical wavelength conversion technologies that use light-to-light interaction such as four-wave mixing, cross-phase modulation, and cross-gain modulation (here, "all-optical wavelength conversion"). Technology). For example, in the all-optical wavelength conversion technology using the mutual gain modulation of the semiconductor optical amplifier, the external continuous light is switched by the control light (input signal light) using the gain saturation of the semiconductor optical amplifier, so that the input signal light is converted. It realizes optical wavelength conversion that transfers information to external light. However, the all-optical wavelength conversion technique requires an external light source in addition to the input signal light, and requires adjustment according to the intensity and wavelength of the input signal light.
[0004]
In contrast to the all-optical wavelength conversion technology, the optical wavelength conversion technology using an optical modulator based on the interaction between light and electricity (electro-optic effect, Franz-Keldysh effect, QCSE, etc.) has a simple configuration that does not require an external light source. And has an excellent feature that adjustment according to the input signal light is unnecessary. The optical modulator changes the phase or intensity of light by changing the real part (phase) or the imaginary part (absorption) of the refractive index of a substance by an electric signal. Although a modulator is typical, the optical modulator used in the present invention is not limited to an electro-optic effect. Here, as an example of an optical wavelength conversion technique using an optical modulator using the electro-optic effect, there is an integrated optical SSB modulator / frequency shifter described in Non-Patent Document 1. FIG. 6 shows an example of the configuration.
[0005]
The integrated optical SSB modulator / frequency shifter applies an optical phase modulator 21 for applying a sine wave having an angular frequency Ω, and applies a phase shift of 0, π / 2, π, and 3π / 2 to the input signal light so that each light is applied. It is composed of a phase shifter 22 and a branching / combining means 23 input to the phase modulator. Each optical phase modulator generates a primary sideband separated from the input light by Ω, and cancels one sideband and the input light to generate only the other sideband (SSB). The wavelength (light frequency) of light can be shifted by the modulation angular frequency Ω.
[0006]
However, this optical frequency shift amount is equal to the frequency of the electric signal applied to the optical phase modulator, and a high frequency optical frequency shift that cannot be realized by an electric circuit cannot be realized. In addition, there is a problem that an angular frequency of -3Ω component is generated as spurious, and one side band or input light which is supposed to cancel if the optical phase modulator is not completely balanced remains and is output. Was. Further, Non-Patent Document 1 assumes that continuous light is used as input light, and does not assume that signal light with information is input and the wavelength (optical frequency) is converted.
[0007]
As a technique for collectively generating multi-wavelength light using an optical modulator using an electro-optic effect, there is a multi-wavelength collective light source described in Patent Document 1. FIG. 7 shows an example of this configuration. The multi-wavelength collective light source includes a continuous light source 24 that generates continuous light (CW light) having a single center wavelength, a plurality of optical modulators 25 that perform amplitude modulation or phase modulation on the continuous light, and a predetermined light source. And a power adjuster 27 that adjusts a predetermined repetition period signal voltage and applies it to each optical modulator 25. In each optical modulator, a function for modulating the amplitude and phase of continuous light having a single center wavelength is appropriately set, and the amplitude modulation and the phase modulation are performed by adjusting the power of the signal voltage and setting the bias in accordance with the function. Thus, multi-wavelength light with improved flatness of the output light spectrum can be generated at once.
[0008]
However, the multi-wavelength collective generation light source collectively generates multi-wavelength light from single-wavelength continuous light, and it is not assumed that a modulated signal light is input to generate multi-wavelength light.
[0009]
On the other hand, an optical wavelength converter that inputs an optical pulse signal to an optical fiber and cuts out an arbitrary wavelength from white pulse light generated by the nonlinear optical effect of the optical fiber to convert the wavelength of the input optical pulse signal is used. It has been proposed (Patent Document 2). FIG. 8 shows an example of this configuration. This optical wavelength converter includes an optical fiber 28 that receives an optical pulse signal and generates white pulse light, and an optical filter 29 that extracts an arbitrary wavelength from the white pulse light. Here, the optical pulse signal is a signal in which the presence or absence of a pulse corresponds to information 1 or 0.
[0010]
[Non-patent document 1]
M.Izutsu, S.Shikama, and T.Sueta, "Integrated Optical SSB Modulator / Frequency Shifter", IEEE Journal of Quantum Electronics, Vol.QE-17, No.11, pp.2225-2227, 1998
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-82323 [Patent Document 2]
JP-A-8-122833
[Problems to be solved by the invention]
Conventional optical wavelength converters using an optical modulator using the electro-optic effect or a multi-wavelength batch generation light source are supposed to be continuous light of a single wavelength as input light. Alternatively, generation of multi-wavelength light was not assumed. Therefore, the relationship between the bandwidth of the signal light and the modulation frequency of the applied electric signal has not been studied.
[0012]
On the other hand, in an optical wavelength converter using a broadband optical spectrum due to the nonlinear optical effect of an optical fiber, an input signal is limited to an optical pulse signal, and an optical signal of an arbitrary modulation format (for example, NRZ code) is wavelength-converted. Can not. In addition, the repetition frequency of the pulse train must match the code modulation speed (bit rate), and a high-power input signal is required to cause a nonlinear optical effect.
[0013]
According to the present invention, an optical signal having an arbitrary modulation format and an arbitrary bit rate is input to an optical modulator driven by an externally applied electric signal to generate multi-wavelength signal light, and further take out wavelength-converted light. It is an object of the present invention to provide a multi-wavelength signal light source and a multi-wavelength signal light generation method, and an optical wavelength converter and an optical wavelength conversion method that can perform the method.
[0014]
[Means for Solving the Problems]
A multi-wavelength signal light source according to the present invention receives an optical signal modulated at a transmission rate B [bit / s], modulates the optical signal with an externally applied electric signal, and a bandwidth of the optical signal. A repetition signal generator for generating an electric signal having a repetition frequency f [Hz] higher than the width and applying the same to the optical modulator, wherein the frequency is supplied from the optical modulator driven at the modulation frequency f [Hz] by application of the electric signal. It is configured to output multi-wavelength signal light at an interval of f [Hz] (claim 1).
[0015]
The optical modulator of the multi-wavelength signal light source according to the present invention is an optical intensity modulator or an optical phase modulator, or a combination of an optical intensity modulator and an optical phase modulator.
[0016]
An optical wavelength converter according to the present invention receives an optical signal modulated at a transmission rate B [bit / s], modulates the optical signal with an externally applied electric signal, and an optical signal band. A repetition signal generator for generating an electric signal having a repetition frequency f [Hz] higher than the width and applying the same to the optical modulator, and a frequency interval f [Hz] output from the optical modulator driven at the modulation frequency f [Hz] Optical wavelength demultiplexing means for inputting the multi-wavelength signal light, demultiplexing an optical signal having a predetermined wavelength, and outputting the wavelength-converted light for the optical signal input to the optical modulator (claim 3). .
[0017]
When the optical wavelength demultiplexing means is configured to demultiplex an optical signal of each wavelength from multi-wavelength signal light, an optical frequency interval for demultiplexing is f [Hz].
[0018]
An optical wavelength converter according to the present invention receives an optical signal modulated at a transmission rate B [bit / s], modulates the optical signal with an externally applied electric signal, and an optical signal band. A repetition signal generator for generating an electric signal having a repetition frequency f [Hz] higher than the width and applying the same to the optical modulator, and a frequency interval f [Hz] output from the optical modulator driven at the modulation frequency f [Hz] ], The optical signal of each wavelength is demultiplexed by inputting the multi-wavelength signal light, and an optical signal of a predetermined wavelength is selected from the optical signal of each wavelength, and is converted into a wavelength conversion light for the optical signal input to the optical modulator. And a wavelength selecting means for outputting.
[0019]
When the wavelength selecting means is configured to split the optical signal of each wavelength from the multi-wavelength signal light, the optical frequency interval for splitting is f [Hz].
[0020]
The optical modulator of the optical wavelength converter according to the present invention is an optical intensity modulator or an optical phase modulator, or a combination of an optical intensity modulator and an optical phase modulator.
[0021]
According to the multi-wavelength signal light generation method of the present invention, an optical signal modulated at a transmission rate B [bit / s] is input and an electric signal having a repetition frequency f [Hz] higher than the bandwidth of an optical signal applied from the outside. And modulates the optical signal to output multi-wavelength signal light having a frequency interval of f [Hz].
[0022]
According to the optical wavelength conversion method of the present invention, an optical signal modulated at a transmission rate B [bit / s] is input, and the optical signal is converted to an electrical signal having a repetition frequency f [Hz] higher than the bandwidth of an optical signal applied from the outside. The signal is modulated, a multi-wavelength signal light having a frequency interval of f [Hz] is output, the multi-wavelength signal light is input, and an optical signal of a predetermined wavelength is demultiplexed, and output as wavelength conversion light for the input optical signal. (Claim 9).
[0023]
According to the optical wavelength conversion method of the present invention, an optical signal modulated at a transmission rate B [bit / s] is input, and the optical signal is converted to an electrical signal having a repetition frequency f [Hz] higher than the bandwidth of an optical signal applied from the outside. The signal is modulated, a multi-wavelength signal light having a frequency interval of f [Hz] is output, the multi-wavelength signal light is input, and an optical signal of each wavelength is demultiplexed, and an optical signal of a predetermined wavelength is converted from the optical signal of each wavelength. Is selected and output as wavelength-converted light for the input optical signal (claim 10).
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment of multi-wavelength signal light source)
FIG. 1 shows an embodiment of the multi-wavelength signal light source of the present invention. In the figure, the multi-wavelength signal light source of the present invention includes an optical modulator 1 using an electro-optic effect and a repetitive signal generator 2 for generating a repetitive signal applied to the optical modulator 1.
[0025]
The optical signal a modulated at the transmission rate B [bit / s] is input to the optical modulator 1. The repetitive signal generator 2 generates an electric signal (for example, a sine wave) having a repetition frequency f [Hz] higher than the bandwidth (for example, 2 B [Hz]) of the optical signal a, and applies the signal to the optical modulator 1. In the optical modulator 1, when the optical signal a is modulated by the electric signal, a duplicate of the input optical signal is generated in the optical spectrum at every interval of the modulation frequency f [Hz], and this is output as the multi-wavelength signal light b. . Since the optical frequency interval (f [Hz]) of the multi-wavelength signal light b is wider than the bandwidth of the input optical signal, the signal components do not overlap each other and can be separated by an optical filter or the like.
[0026]
The optical modulator 1 may be either an optical intensity modulator or an optical phase modulator, or a combination thereof (arbitrary order), or a combination of a plurality of optical modulators (arbitrary order). Here, when the optical modulator 1 is configured by a combination of the optical intensity modulator and the optical phase modulator, the voltage applied to the optical intensity modulator and the optical phase modulator is optimized to copy the optical signal. Are obtained, a flat multi-wavelength signal light b having the same light intensity is obtained. The spread of the light spectrum, that is, the number of wavelengths is proportional to the modulation degree of the optical phase modulator.
[0027]
In addition, as a general application, it is desirable that an optical spectrum is uniformly generated on both the short wavelength side and the long wavelength side of the input optical signal a. Not limited. In particular, when it is desired to generate the signal on the short wavelength side (or the long wavelength side), by shifting the phase of the applied voltage between the optical intensity modulator and the optical phase modulator by 90 degrees, more optical signal components are provided on one wavelength side. Can be generated. Further, by controlling the applied voltage and the phase of the optical intensity modulator and the optical phase modulator, it is possible to increase the intensity of an optical signal of a specific wavelength. Further, the electric signal having the repetition frequency f [Hz] is not limited to a sine wave, and may include a higher-order frequency component such as a triangular wave or a Gaussian pulse waveform. In this case, the shape of the light spectrum generated according to the waveform of the electric signal can be changed.
[0028]
Since the input optical signal a has a band, the modulation frequency f in the optical modulator 1 is limited, unlike the case where a multi-wavelength carrier is generated from continuous light in Patent Document 1. That is, if the optical signal components of the generated multi-wavelength signal light overlap each other, they cannot be separated by an optical filter or the like. Therefore, the modulation frequency f of the optical modulator 1 (the repetition frequency of the repetition signal generated by the repetition signal generator 2) is , Must be higher than the bandwidth of the optical signal a, and the present invention focuses on this.
[0029]
For example, assuming that the bandwidth of the optical signal a modulated at the transmission rate B [bit / s] is about 2 B [Hz], the modulation must be performed so that the optical signal components of the multi-wavelength signal light b do not overlap each other. It is necessary to set the frequency f higher than 2B [Hz]. Furthermore, in order to separate each optical signal component with an optical filter, considering that the transmission characteristic of the optical filter is not steep like a rectangle but a skirt such as a Gaussian type or a Lorentzian type, the light of the multi-wavelength signal light b is considered. It is necessary to set the modulation frequency f corresponding to the frequency interval to, for example, about 2.5 B [Hz].
[0030]
The standard of the absolute value and the interval of the optical signal wavelength of the current optical communication is defined by ITU-T. Therefore, when arranging optical signals along the ITU-T grid, the modulation frequency f may be set to the ITU-T grid width.
[0031]
FIG. 2 shows experimental results for confirming the operation of the multi-wavelength signal light source of the present invention. When an optical signal having a wavelength of 1553.73 nm, which is NRZ-modulated at 9.95328 Gbit / s, is input to an optical modulator (an optical intensity modulator and an optical phase modulator), and the optical modulator is driven by a sine wave of 25 GHz, FIG. The multi-wavelength signal light as shown is generated. Since each optical signal component has no overlapping band, it can be separated by an optical filter, and it can be seen that the multi-wavelength signal light source which is the object of the present invention is realized.
[0032]
(First Embodiment of Optical Wavelength Converter)
FIG. 3 shows a first embodiment of the optical wavelength converter of the present invention. Optical wavelength converter of the present embodiment, demultiplexing the optical signal c or optical signals c 1 to c n of each wavelength, the multi-wavelength signal light b a predetermined wavelength output from the multi-wavelength signal light source shown in FIG. 1 Configuration. Here, it is assumed that the optical modulator 1 includes an optical intensity modulator 11 and an optical phase modulator 12. 3 (1), 3 (2), and 3 (3) show configuration examples for demultiplexing the multi-wavelength signal light b.
[0033]
(1) is a configuration using an optical filter 3 for splitting an optical signal c having a predetermined wavelength from the multi-wavelength signal light b. Here, an optical signal c corresponding to the transmission wavelength of the optical filter 3 is demultiplexed from the input optical signal a as wavelength-converted light. Since the optical filter 3 separates only one optical signal of a predetermined wavelength, the bandwidth of the optical filter is wider than the bandwidth of the optical signal of the predetermined wavelength, and the optical wavelength of the multi-wavelength signal light is increased. It is narrower than the frequency interval f [Hz]. The center frequency of the optical filter is equal to the center frequency of an optical signal having a predetermined wavelength, except in special cases such as when only one sideband is to be extracted. Further, the wavelength of the wavelength-converted light can be changed by changing the center frequency of the optical filter in units of the optical frequency interval f [Hz].
[0034]
(2) is an optical splitter 4 for n-branching the multi-wavelength signal light b, and an optical filter 3-1 for demultiplexing the optical signals c 1 to c n of each wavelength from the n-branched multi-wavelength signal light b. 3−3-n. Here, the optical signal c 1 to c n of a plurality of wavelengths corresponding the input optical signal a to the transmission wavelengths of the optical filter is demultiplexed as the wavelength conversion light.
[0035]
(3) is a configuration using an optical wavelength demultiplexer 5 for demultiplexing the optical signals c 1 to c n of each wavelength from the multi-wavelength signal light b. By making the transmission wavelength interval of the optical wavelength demultiplexer 3 and the modulation frequency f of the optical modulator 1 (the repetition frequency of the repetition signal generated by the repetition signal generator 2) coincide, the optical signals c 1 to c n of each wavelength are obtained. Can be taken out. The wavelength-converted light to light signal a light signal c 1 to c n of each wavelength is input.
[0036]
Since the spread of the optical spectrum of the multi-wavelength signal light b, that is, the number of wavelengths is proportional to the degree of modulation of the optical phase modulator 12, the number n of wavelength converted light and the maximum optical frequency shift amount are also proportional to the degree of modulation.
[0037]
FIG. 4 shows experimental results for confirming the operation of the optical wavelength converter of the present invention. Here, the same diagram shows the optical spectrum of the optical signal of each wavelength output from the arrayed waveguide grating (AWG) used as the optical wavelength demultiplexer 5. When an optical signal having an optical frequency of 192.95 THz, which is NRZ-modulated at 9.95328 Gbit / s, is input to an optical modulator (optical intensity modulator and optical phase modulator) and this optical modulator is driven by a 25 GHz sine wave, FIG. As shown in (1), an optical signal whose wavelength has been converted from an optical frequency of 192.85 THz to 193.05 THz at an interval of 25 GHz can be obtained. In this experiment, when the time waveforms of the wavelength-converted optical signal and the input optical signal were compared, it was proved that they were the same.
[0038]
By the way, a deeply intensity-modulated signal becomes a pulse train. A feature of the multi-wavelength signal light source and the optical wavelength converter of the present invention is that the code modulation and the pulse train do not need to be synchronized. In the case where the code modulation and the pulse train are synchronized (RZ modulation), a configuration is known in which an optical signal of each wavelength is demultiplexed from a multi-wavelength signal light whose spectrum width is expanded as shown in Patent Document 2. Further, in this configuration, the code modulation frequency (repetition frequency of the pulse train) and the frequency interval of the optical wavelength demultiplexer are irrelevant, and according to our study, the spectrum of the signal obtained by asynchronously forming the code-modulated signal into a pulse train is considered. In the case where is expanded, the wavelength-converted optical signal is significantly deteriorated as compared with the input optical signal, and a wavelength-converted optical signal having the same information as the input optical signal cannot be obtained. On the other hand, in the optical wavelength converter of the present invention, even when the code-modulated signal is asynchronously converted into a pulse train, the same wavelength at a different wavelength from the input optical signal is obtained by the demultiplexing by the optical wavelength demultiplexer having the frequency interval equal to the repetition frequency. It was confirmed that a wavelength-converted optical signal having information was obtained. In addition, it was confirmed that it did not depend on the modulation format or transmission speed of the input signal light.
[0039]
In addition, the transmission speed of optical communication has been increasing, and at the same time, the operation of optical modulators has been improved and improved. Therefore, the optical transmission rate in each era is equal to the operating band of the optical modulator. However, in the optical wavelength conversion using the electro-optic effect, the transmission speed of the input light needs to be less than half the operating frequency of the optical modulator in consideration of the overlap of the optical spectrum. In other words, it has been necessary to reduce the transmission speed to less than half the normal transmission speed, and it has been considered that optical wavelength conversion using the electro-optic effect has low practical value. On the other hand, in the experiment of the present invention, when a simple repetitive signal, particularly an electric signal having a frequency exceeding the operation speed of the optical modulator in the form of a sine wave, is input with a large power, the optical modulator operates but the modulation efficiency is reduced. It was confirmed that wavelength signal light was generated. Therefore, the optical wavelength converter of the present invention can be used for wavelength conversion of an optical signal having a normal speed.
[0040]
Further, the present invention can generate multi-wavelength signal light at wavelength intervals of the repetition frequency in proportion to the degree of modulation of the optical modulator, so that the optical frequency shift is smaller than that of the conventional integrated optical SSB modulator / frequency shifter. There is a feature that the amount is large. Further, since optical signal components other than the converted wavelength are removed using the optical filter, generation of unnecessary optical signals can be prevented.
[0041]
(Second Embodiment of Optical Wavelength Converter)
FIG. 5 shows a second embodiment of the optical wavelength converter according to the present invention. The optical wavelength converter of the present embodiment separates the multi-wavelength signal light b output from the multi-wavelength signal light source shown in FIG. 1 into optical signals of respective wavelengths by the optical wavelength demultiplexer 5 (up to here, FIG. Configuration (3)), the optical signals of each wavelength are connected to the optical multiplexer 7 via the optical switch 6, respectively. The opening and closing of each optical switch 6 is controlled by an optical switch control circuit 8, and the optical wavelength demultiplexer 5, the optical switch 6, and the optical multiplexer 7 function as wavelength selecting means. That is, an optical signal of the wavelength selected by the optical switch 6 and the optical switch control circuit 8 is output via the optical multiplexer 7. This wavelength selection means may be configured by combining individual optical components, or may be configured by integrating optical components on one substrate. Further, a hybrid wavelength selector in which a plurality of optical components are integrated may be configured.
[0042]
Here, when only the optical switch 6 corresponding to a certain wavelength λ 1 is turned on, the optical switch 6 is turned off, and the optical switch 6 corresponding to another wavelength λ 2 is turned on. At the output, high-speed wavelength conversion from wavelength λ 1 to λ 2 is realized. That is, since the wavelength conversion speed in the optical wavelength converter of the present embodiment is determined by the speed of the optical switch 6, high-speed wavelength conversion becomes possible by using a high-speed optical switch such as an optical switch using a semiconductor optical amplifier.
[0043]
【The invention's effect】
As described above, the present invention is configured to modulate with an electric signal having a repetition frequency higher than the bandwidth of the input optical signal. A separable multi-wavelength signal light source can be realized. Further, by separating an optical signal of an arbitrary wavelength from the multi-wavelength signal light by an optical filter or the like, an optical wavelength changer that performs wavelength conversion on an input optical signal can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a multi-wavelength signal light source according to the present invention.
FIG. 2 is a diagram showing experimental results of a multi-wavelength signal light source according to the present invention.
FIG. 3 is a diagram showing a first embodiment of the optical wavelength converter according to the present invention.
FIG. 4 is a view showing experimental results of the optical wavelength converter of the present invention.
FIG. 5 is a diagram showing a second embodiment of the optical wavelength converter according to the present invention.
FIG. 6 is a diagram showing a configuration example of an integrated optical SSB modulator / frequency shifter.
FIG. 7 is a diagram illustrating a configuration example of a multi-wavelength collectively generated light source.
FIG. 8 is a diagram showing a configuration example of an optical wavelength conversion device using a nonlinear optical effect of an optical fiber.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 optical modulator 11 optical intensity modulator 12 optical phase modulator 2 repetitive signal generator 3 optical filter 4 optical splitter 5 optical wavelength demultiplexer 6 optical switch 7 optical multiplexer 8 optical switch control circuit

Claims (10)

伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される電気信号によってその光信号を変調する光変調器と、
前記光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号を発生し、前記光変調器に印加する繰り返し信号発生器とを備え、
前記電気信号の印加により変調周波数f[Hz]で駆動される前記光変調器から周波数間隔f[Hz]の多波長信号光を出力する構成である
ことを特徴とする多波長信号光源。
An optical modulator that receives an optical signal modulated at a transmission rate B [bit / s] and modulates the optical signal with an externally applied electric signal;
A repetition signal generator that generates an electric signal having a repetition frequency f [Hz] higher than the bandwidth of the optical signal and applies the signal to the optical modulator;
A multi-wavelength signal light source having a configuration in which multi-wavelength signal light having a frequency interval of f [Hz] is output from the optical modulator driven at a modulation frequency f [Hz] by application of the electric signal.
前記光変調器は、光強度変調器または光位相変調器、または光強度変調器と光位相変調器の組み合わせである
ことを特徴とする請求項1に記載の多波長信号光源。
The multi-wavelength signal light source according to claim 1, wherein the optical modulator is an optical intensity modulator or an optical phase modulator, or a combination of an optical intensity modulator and an optical phase modulator.
伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される電気信号によってその光信号を変調する光変調器と、
前記光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号を発生して前記光変調器に印加する繰り返し信号発生器と、
変調周波数f[Hz]で駆動される前記光変調器から出力される周波数間隔f[Hz]の多波長信号光を入力して所定の波長の光信号を分波し、前記光変調器に入力された光信号に対する波長変換光として出力する光波長分波手段と
を備えたことを特徴とする光波長変換器。
An optical modulator that receives an optical signal modulated at a transmission rate B [bit / s] and modulates the optical signal with an externally applied electric signal;
A repetition signal generator that generates an electric signal having a repetition frequency f [Hz] higher than the bandwidth of the optical signal and applies the electric signal to the optical modulator;
A multi-wavelength signal light having a frequency interval of f [Hz] output from the optical modulator driven at a modulation frequency f [Hz] is input, and an optical signal of a predetermined wavelength is demultiplexed, and input to the optical modulator. An optical wavelength demultiplexer for outputting the converted optical signal as wavelength converted light.
前記光波長分波手段が前記多波長信号光から各波長の光信号を分波する構成であるときに、分波する光周波数間隔がf[Hz]である
ことを特徴とする請求項3に記載の光波長変換器。
4. The optical frequency demultiplexing means according to claim 3, wherein, when the optical wavelength demultiplexing means is configured to demultiplex an optical signal of each wavelength from the multi-wavelength signal light, an optical frequency interval for demultiplexing is f [Hz]. The optical wavelength converter according to the above.
伝送速度B[bit/s ]で変調された光信号を入力し、外部から印加される電気信号によってその光信号を変調する光変調器と、
前記光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号を発生して前記光変調器に印加する繰り返し信号発生器と、
変調周波数f[Hz]で駆動される前記光変調器から出力される周波数間隔f[Hz]の多波長信号光を入力して各波長の光信号を分波し、各波長の光信号から所定の波長の光信号を選択し、前記光変調器に入力された光信号に対する波長変換光として出力する波長選択手段と
を備えたことを特徴とする光波長変換器。
An optical modulator that receives an optical signal modulated at a transmission rate B [bit / s] and modulates the optical signal with an externally applied electric signal;
A repetition signal generator that generates an electric signal having a repetition frequency f [Hz] higher than the bandwidth of the optical signal and applies the electric signal to the optical modulator;
A multi-wavelength signal light with a frequency interval f [Hz] output from the optical modulator driven at a modulation frequency f [Hz] is input, and the optical signal of each wavelength is demultiplexed. Wavelength selecting means for selecting an optical signal having a wavelength of (i) and outputting the selected signal as wavelength-converted light for the optical signal input to the optical modulator.
前記波長選択手段が前記多波長信号光から各波長の光信号を分波する構成であるときに、分波する光周波数間隔がf[Hz]である
ことを特徴とする請求項5に記載の光波長変換器。
6. An optical frequency interval for demultiplexing is f [Hz] when the wavelength selecting means is configured to demultiplex an optical signal of each wavelength from the multi-wavelength signal light. Optical wavelength converter.
前記光変調器は、光強度変調器または光位相変調器、または光強度変調器と光位相変調器の組み合わせである
ことを特徴とする請求項3または請求項5に記載の光波長変換器。
The optical wavelength converter according to claim 3, wherein the optical modulator is an optical intensity modulator, an optical phase modulator, or a combination of an optical intensity modulator and an optical phase modulator.
伝送速度B[bit/s ]で変調された光信号を入力し、
外部から印加される前記光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号によって前記光信号を変調し、周波数間隔f[Hz]の多波長信号光を出力する
ことを特徴とする多波長信号光発生方法。
An optical signal modulated at a transmission rate B [bit / s] is input,
The optical signal is modulated by an electric signal having a repetition frequency f [Hz] higher than the bandwidth of the optical signal applied from the outside, and a multi-wavelength signal light having a frequency interval of f [Hz] is output. Wavelength signal light generation method.
伝送速度B[bit/s ]で変調された光信号を入力し、
外部から印加される前記光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号によって前記光信号を変調し、周波数間隔f[Hz]の多波長信号光を出力し、
前記多波長信号光を入力して所定の波長の光信号を分波し、前記入力された光信号に対する波長変換光として出力する
ことを特徴とする光波長変換方法。
An optical signal modulated at a transmission rate B [bit / s] is input,
Modulating the optical signal with an electric signal having a repetition frequency f [Hz] higher than the bandwidth of the optical signal applied from the outside, and outputting a multi-wavelength signal light having a frequency interval f [Hz];
An optical wavelength conversion method, comprising: inputting the multi-wavelength signal light, demultiplexing an optical signal having a predetermined wavelength, and outputting the wavelength-converted light with respect to the input optical signal.
伝送速度B[bit/s ]で変調された光信号を入力し、
外部から印加される前記光信号の帯域幅より高い繰り返し周波数f[Hz]の電気信号によって前記光信号を変調し、周波数間隔f[Hz]の多波長信号光を出力し、
前記多波長信号光を入力して各波長の光信号を分波し、各波長の光信号から所定の波長の光信号を選択し、前記入力された光信号に対する波長変換光として出力する
ことを特徴とする光波長変換方法。
An optical signal modulated at a transmission rate B [bit / s] is input,
Modulating the optical signal with an electric signal having a repetition frequency f [Hz] higher than the bandwidth of the optical signal applied from the outside, and outputting a multi-wavelength signal light having a frequency interval f [Hz];
Inputting the multi-wavelength signal light, demultiplexing the optical signal of each wavelength, selecting an optical signal of a predetermined wavelength from the optical signal of each wavelength, and outputting the selected optical signal as wavelength-converted light for the input optical signal. Characteristic light wavelength conversion method.
JP2002366273A 2002-12-18 2002-12-18 Multi-wavelength signal light source, multi-wavelength signal light generating method, optical wavelength converter, and optical wavelength conversion method Expired - Fee Related JP3996843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366273A JP3996843B2 (en) 2002-12-18 2002-12-18 Multi-wavelength signal light source, multi-wavelength signal light generating method, optical wavelength converter, and optical wavelength conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366273A JP3996843B2 (en) 2002-12-18 2002-12-18 Multi-wavelength signal light source, multi-wavelength signal light generating method, optical wavelength converter, and optical wavelength conversion method

Publications (2)

Publication Number Publication Date
JP2004198682A true JP2004198682A (en) 2004-07-15
JP3996843B2 JP3996843B2 (en) 2007-10-24

Family

ID=32763526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366273A Expired - Fee Related JP3996843B2 (en) 2002-12-18 2002-12-18 Multi-wavelength signal light source, multi-wavelength signal light generating method, optical wavelength converter, and optical wavelength conversion method

Country Status (1)

Country Link
JP (1) JP3996843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171788A (en) * 2009-01-23 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical signal transmission method, optical communication system, optical transmitter, and optical receiver
CN113037423A (en) * 2021-03-12 2021-06-25 广东科学技术职业学院 Elastic optical network communication system, channel conversion device thereof and channel conversion method of elastic optical network communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171788A (en) * 2009-01-23 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical signal transmission method, optical communication system, optical transmitter, and optical receiver
CN113037423A (en) * 2021-03-12 2021-06-25 广东科学技术职业学院 Elastic optical network communication system, channel conversion device thereof and channel conversion method of elastic optical network communication system

Also Published As

Publication number Publication date
JP3996843B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US6643046B2 (en) Apparatus and method for optical modulation
US7577367B2 (en) Optical communication using duobinary modulation
JP4086912B2 (en) Control device for optical modulator
US5953138A (en) All-optical processing in communications systems
JP3975810B2 (en) Optical single sideband transmitter
WO2003049333A8 (en) Modulation control
JP5585589B2 (en) Light modulation apparatus and light modulation method
JP2001147411A (en) Optical modulator
JP5786565B2 (en) Optical multiplexer and optical network system
CN102356572A (en) Optical single-sideband transmitter
JP4889661B2 (en) Optical multicarrier generator and optical multicarrier transmitter using the same
JP2005241902A (en) Optical device for optical communication
US7024056B2 (en) Electro-optic gating arrangement with improved duty cycle
JP3996843B2 (en) Multi-wavelength signal light source, multi-wavelength signal light generating method, optical wavelength converter, and optical wavelength conversion method
JP3447664B2 (en) Optical transmitter and optical transmitter control method
JPH0779212A (en) Light wavelength multiplex optical transmitter
JP3843322B2 (en) Optical wavelength division multiplexing FSK modulation method
JP3786901B2 (en) Optical transmitter and optical transmission system
JP3563027B2 (en) Optical RZ signal generation device and optical RZ signal generation method
JP4555978B2 (en) Optical wavelength division multiplexing FSK modulation system using optical phase modulation and optical FSK modulation
JP3845606B2 (en) Light modulation apparatus and light modulation method
JP4665102B2 (en) Optical intensity modulation and optical frequency shift keying modulation system
US20070183710A1 (en) Device for temporal subsampling of an otdm optical signal, otdm-wdm converter comprising same and otdm-wdm converter
JP2007094398A (en) Optical phase modulation system
JP2004310137A (en) Multi-wavelength batch generating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070803

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees