Nothing Special   »   [go: up one dir, main page]

JP2004169249A - Non-woven fabric and wiping material using the same - Google Patents

Non-woven fabric and wiping material using the same Download PDF

Info

Publication number
JP2004169249A
JP2004169249A JP2002339583A JP2002339583A JP2004169249A JP 2004169249 A JP2004169249 A JP 2004169249A JP 2002339583 A JP2002339583 A JP 2002339583A JP 2002339583 A JP2002339583 A JP 2002339583A JP 2004169249 A JP2004169249 A JP 2004169249A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
fibers
tow
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002339583A
Other languages
Japanese (ja)
Other versions
JP4158499B2 (en
Inventor
Satohiko Tsutsui
聡彦 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2002339583A priority Critical patent/JP4158499B2/en
Publication of JP2004169249A publication Critical patent/JP2004169249A/en
Application granted granted Critical
Publication of JP4158499B2 publication Critical patent/JP4158499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Nonwoven Fabrics (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-woven fabric capable of capturing from relatively large dust to small dust, and a wiping material using the same. <P>SOLUTION: This non-woven fabric comprising a divided type composite long fiber tow having 0.5-20 dtex single fiber fineness and 10,000-300,000 dtex total denier with crimps, without interlacing the fibers constituting the non-woven fabric each other three dimensionally or only slightly even if they are interlacing three dimensionally, heat-adhering at least a part of the fibers each other and containing at least 5 % fibers divided and finely separated as fine fibers having <0.5 dtex, based on their dividing ratio. The wiping material is obtained by using the non-woven fabric. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は分割型複合長繊維トウを用いた不織布に関する。さらに詳しくはワイピング材に好適に使用できる不織布に関する。
【0002】
【従来の技術】
合成繊維からなるトウは、棒状や不織布状に加工して、フェルトペン(商標名「マジックインキ」)のインクタンク用詰物やタバコ用のフィルター、更にはワイピング材などに使用されている。分割型複合繊維からなるトウを不織布状に加工したものとして、分割型複合繊維からなるトウを水流交絡させ、極細繊維同士が交絡した不織布が知られている。(例えば特許文献1参照。)しかしこの不織布は繊維が三次元に交絡しており、トウの特徴である繊維の高度な配向が利用できず、また繊維自体の自由度が制限され、例えばワイピング材に用いた場合、通常のステープルファイバーが分割細繊化された不織布となんら変わるものではなく、特に繊維の自由度が小さく制限されるため、比較的大きな塵や髪の毛等を確実に捕捉することが難しく、ワイピング材としては向いていなかった。
【0003】
【特許文献1】
特開平4−65567号公報(第1頁「特許請求の範囲」、第3頁「実施例」)
【0004】
【発明が解決しようとする課題】
本発明の課題は、比較的大きなゴミから小さなゴミまで捕捉できる不織布およびこれを用いたワイピング材を提供することである。
【0005】
【課題を解決するための手段】
本発明者は、前記課題を解決するために鋭意検討した結果、単糸繊度が0.5〜20dtex、全繊度が1万〜30万dtexである捲縮を有する分割型複合長繊維トウからなる不織布であって、該不織布を構成する繊維同士が三次元交絡していないかまたは三次元交絡していても僅かであり、かつ少なくとも1部分の繊維同士が熱接着され、0.5dtex未満の分割細繊化した繊維が分割率にして少なくとも5%含まれた不織布にすることにより、前記課題を解決できることを知り、これらの知見に基づき本発明を完成するに至った
【0006】
本発明は、以下の構成からなる。
(1)単糸繊度が0.5〜20dtex、全繊度が1万〜30万dtexである捲縮を有する分割型複合長繊維トウからなる不織布であって、該不織布を構成する繊維同士が三次元交絡していないかまたは三次元交絡していても僅かであり、かつ少なくとも1部分の繊維同士が熱接着され、0.5dtex未満の分割細繊化した繊維が分割率にして少なくとも5%含まれていることを特徴とする不織布。
【0007】
(2)不織布の分割型複合長繊維トウは、開繊されて繊維軸方向に配列されている前記(1)項に記載の不織布。
【0008】
(3)不織布の交絡度が30未満である前記(1)項または(2)項のいずれか1項に記載の不織布。
【0009】
(4)前記(1)項〜(3)項のいずれか1項に記載の不織布を用いたワイピング材。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の不織布を構成するトウは、熱可塑性樹脂からなる分割型複合長繊維からなり、該繊維は捲縮を有し、全繊度が1万〜30万dtexであり、該分割型複合長繊維の未分割状態の単糸繊度は0.5〜20dtexからなるものである。本発明のトウに用いる繊維を形成する熱可塑性樹脂は、溶融紡糸工程で繊維成形性を有するものであれば特に限定されない。例えば、ポリプロピレン、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、プロピレンとエチレンの共重合体、プロピレン−エチレン−ブテン−1共重合体、プロピレンと他のαオレフィンとの2〜3元共重合体等をはじめとするチーグラーナッタ触媒やメタロセン触媒を用いて重合されたポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、酸成分としてテレフタル酸以外にイソフタル酸を併用して共重合した低融点ポリエステル等のポリエステル系樹脂、ナイロン−6、ナイロン−66等のポリアミド系樹脂、アタクチックポリスチレン、シンジオタクチックポリスチレン等のポリスチレン系樹脂、ポリウレタンエラストマー、ポリエステルエラストマー等のエラストマー系樹脂、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートテレフタレート、ポリブチレンテレフタレートアジペート等の生分解性樹脂、ポリフッ化ビニリデン等のフッ素系樹脂、ポリフェニレンスルフィド、ポリケトン等の樹脂が挙げられる。また前記以外の熱可塑性樹脂としては、例えばビニル系重合体が挙げられ、具体的には、エチレンビニルアルコール共重合体、ポリ酢酸ビニル、ポリアクリル酸エステル、エチレン酢酸ビニル共重合体、エチレン無水マレイン酸グラフト共重合体も使用することができる。
【0011】
本発明に使用する熱可塑性樹脂には、本発明の効果を妨げない範囲内でさらに、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、エポキシ安定剤、滑剤、抗菌剤、難燃剤、帯電防止剤、顔料、可塑剤などの添加剤を適宜必要に応じて添加しても良い。
【0012】
本発明の不織布を構成するトウは、分割型複合長繊維から構成され、該分割型複合長繊維の断面構造は、例えば前記熱可塑性樹脂の異なる二成分が交互に配列された断面構造を有する図1〜7に例示した構造を挙げることができる。例えば図1及び図2に例示したように各成分が交互に配列された放射状分割型断面、図3及び4に例示したように各成分が交互に配置された中空状分割型断面、図5及び6に例示したように各成分が交互に層状に配置された層状分割型断面、図7は各成分が交互に配列されて繊維断面が屈曲、湾曲もしくは扁平形状となった分割型断面形状を例示することができる。もちろん、多成分の樹脂から構成される分割型複合長繊維にあっては、同成分が隣り合うことなく多成分が配列した断面構造を形成する。なお図1〜7に例示した該複合繊維の断面構造及び形状はモデル図であり、実際の繊維製造時には、該複合繊維は種々の外部応力を受け断面形状が変形する場合があるが実用上、特に問題はない。
【0013】
前記分割型複合長繊維の樹脂の組み合わせは、前記熱可塑性樹脂の任意の組み合わせが可能であるが、ポリエステル系樹脂/ポリアミド系樹脂、ポリアミド系樹脂/ポリオレフィン系樹脂、ポリエステル系樹脂/ポリオレフィン系樹脂、ポリオレフィン系樹脂/ポリオレフィン系樹脂が例示されるが、例えば高温条件下で使用する場合は、ポリエチレンテレフタレート樹脂/ナイロン66樹脂、ポリエチレンテレフタレート樹脂/ポリプロピレン樹脂等が例示され、また耐薬品性、油吸着が要求される分野には、ポリプロピレン樹脂/ポリエチレン樹脂の組み合わせが例示され、ヒートシール性が求められる場合には、組み合わされる2成分の樹脂の融点差は大きい方が良く、例えばポリエチレンテレフタレート樹脂/ポリエチレン樹脂等が例示できる。前記分割型複合長繊維において、2成分の熱可塑性樹脂より構成される複合繊維の複合比は、容量比で10/90〜90/10の範囲で、より好ましくは30/70〜70/30である。
【0014】
前記分割型複合長繊維の分割前の単糸繊度は、細すぎると溶融紡糸工程での曳糸性が低下する傾向にある。その観点から、0.5dtex以上の単糸繊度が好ましく、1dtexならばさらに好ましい。また、単糸繊度が太すぎると得られたトウの収束性が低くなって生産性が低下する。その観点から、20dtex以下の単糸繊度が好ましく、10dtexならばさらに好ましい。
【0015】
本発明の不織布を構成するトウの全繊度は、これが大きすぎる場合、小さすぎる場合のいずれもトウの収束性が得られず、トウが細かく割れたり、単糸が過剰に絡みすぎたり、開繊工程での開繊が難しくなる。この観点から、好ましいトウの全繊度は1万dtex以上であり、さらに好ましくは5万dtex以上である。同様に、30万dtex以下が好ましく、20万dtex以下ならばさらに好ましい。
【0016】
前記トウの密度は、小さすぎるとトウの収束性が失われ易い。この観点から、トウの密度は1000dtex/mm以上が好ましく、1500dtex/mm以上ならばさらに好ましい。また、トウの密度が高すぎると、捲縮を均一に付与することが難しくなる傾向にあり、開繊工程での開繊が難しくなる。この観点から、トウの密度は8000dtex/mm以下であることが好ましく、5000dtex/mm以下ならばさらに好ましい。
【0017】
前記トウは捲縮を有するものであるが、この捲縮は顕在捲縮及びまたは潜在捲縮のいずれであっても良く、捲縮形状は山谷状のジグザグ型、U字型、スパイラル型トウのいずれであっても良い。捲縮を付与する方法は、スタッファーボックス型捲縮機を用いる方法や高温高圧蒸気や加熱加圧空気を利用する気体押込みによる方法、更には高速クリンパーのような一対の高速回転体の間にトウを押し込み、捲縮を付与する方法等を挙げることができる。
【0018】
前記トウを構成する繊維の捲縮数は、少なすぎるとトウの収束性が悪くなる。この観点から、トウを構成する繊維が3山/25mm以上の捲縮数を持つことが好ましく、4山/25mm以上であればさらに、また5山/25mm以上であればなおさらに好ましい。また、捲縮数が多すぎると、繊維同士が過度に絡み合い、トウの開繊性が低下する。この観点からは、トウを構成する繊維が30山/25mm以下の捲縮数を持つことが好ましく、25山/25mm以下であればさらに、20山/25mm以下であればなおさらに好ましい。
【0019】
本発明の不織布を構成するトウは、分割型複合長繊維と、1種類以上の前記熱可塑性樹脂からなる別の繊維が併用(混綿、混繊)されていても良い。混綿される熱可塑性樹脂からなる繊維の種類は特に限定されることはなく、例えば成分単一型の繊維、複合型の繊維を例示することができる。接着または溶着成分として混綿する場合には、分割型複合繊維を接着し、不織布とするために、分割型複合長繊維を構成している熱可塑性樹脂と同種類の樹脂を含む繊維であることが好ましい。また混綿した繊維を熱処理により溶融し、接着加工する場合は、該分割型複合長繊維の低融点樹脂よりも低い温度で溶融する樹脂を接着成分とすることにより該分割型複合長繊維の構成成分樹脂が溶融することなく不織布を成形でき分割細繊化も進み易くなる。更に接着繊維として複合型の繊維を用いると不織布の強度を更に高くすることもできる。繊維の断面形状は、円形、異形、また中空形状、中実形状のいずれであっても良く、また複合型の繊維(複合繊維)の断面形状は鞘芯型、偏心鞘芯型、並列型、多層型、海島型、放射状型、中空放射状型等のいずれであっても良い。前記分割型複合長繊維トウの分割率は、ワイピング材の性能向上には高いほど良いが、開繊工程での加工性を考慮すると下記分割率測定方法に準拠して求めたトウの分割率は50%未満であることが好ましい。
【0020】
不織布に親水性を付与させたい場合や、親水性の薬剤を含浸させたい場合には、親水性繊維を混繊しても良いし、親水化剤の樹脂への練り込み、或いは親水性を示す界面活性剤の繊維表面への塗布を利用することもできる。ここで親水性繊維とは、親水性を示す繊維であれば限定されることはなく、例えばレーヨン、キュブラなどの再生繊維、アセテート、トリアセテートなどの半合成繊維、ポリアミド、アクリルなどの合成繊維、綿、羊毛、麻などの天然繊維などが挙げられる。
【0021】
親水化剤とは、ポリオレフィン系樹脂のような疎水性の樹脂に練り込んだ場合にも親水性を付与できるものであれば特に限定されることはないが、例えばアルキルスルフォネートNa塩、フッ素系化合物、脂肪酸グリセリド、アルコキシ化アルキルフェノール、ポリオキシアルキレン脂肪酸エステル、脂肪酸アミド、エチレングリコールのエーテル類等の界面活性剤が例示できる。この場合、界面活性剤は1成分でも良いし、複数の成分を混合したものでも良い。
【0022】
本発明の不織布は、前記トウを更にトウ開繊機等で開繊してウェブとし、少なくとも1部分の繊維同士が熱接着されることにより、不織布の形態は維持しながら繊維個々の自由度を高く維持し、ワイピング材として使用した時の払拭性を高度に発現させることができる。
【0023】
ここで熱接着とは、加熱によりウェブを構成する繊維の低融点成分の1部分が溶融して、それが接着剤となって繊維間が結合された状態をいう。熱接着は従来公知の方法を採用することができるが、例えば、熱風循環法(スルーエアー法)、ポイントボンド法、カレンダー法、ヒートシール法などが挙げられる。
【0024】
本発明の不織布は、前記分割型複合長繊維及び分割細繊化された繊維同士が三次元交絡していないかまたは三次元交絡していても僅かであって、実質的には三次元交絡しておらず、かつ繊維同士が熱接着されていることが重要である。繊維が短繊維からなる通常のスパンレース不織布のように繊維同士が三次元交絡していると、不織布強度、形態安定性には優れるが、その反面、繊維の自由度は低く、ワイピング材として用いた場合に大きなゴミから小さなゴミまで効率良く掻き取ることが難しくなる。そのため、不織布の形態安定性、不織布の強度は繊維同士の熱接着により確保する。ここで三次元交絡とは、繊維がニードルやステッチ、高圧空気流、高圧水流等により、隣接する繊維同士が上下左右に強固に絡み合った状態をいい、このような交絡のみで不織布の形態を維持できるものを指す。
【0025】
更に詳しくは、不織布の交絡度により三次元交絡の度合を判断できる。繊維の三次元交絡が強固(交絡度が高い)であると細かなゴミなどは払拭できるものの、比較的大きなゴミを確実に払拭することが難しくなる。この場合の交絡度とは以下の評価法で測定される値である。従来、不織布の三次元交絡の様子は、目視または顕微鏡等によって観察することはできたが、これを定量的な値として示すことは困難であった。しかし、この方法で測定される値が、不織布の三次元交絡の度合いと明らかな相関関係があることが判明したので、本発明ではこの値をもって交絡度とした。本発明の場合、この値が30未満であることが好ましく、より好ましくは20未満であり、最も好ましくは15未満である。
不織布の繊維交絡度:不織布をフラジール型通気度試験機に固定し、該不織布に垂直に直径2mmの鉄製円棒を装着したプッシュプルゲージを速度(3mm/秒)で降下させ、不織布を貫通した時の突刺し強度を測定する。以下の式より交絡度を算出する。更に以下のような判断で繊維の交絡度を判断した。
交絡度={突刺し強度(N)/不織布目付(g/m)}×100
【0026】
本発明の不織布を構成する分割型複合長繊維の分割細繊化法は特に限定されることはないが、例えば捲縮付与時の応力でクリンプエッジ部が部分的に分割しても良いし、マイルドな水流処理により繊維を分割させた後、捲縮を付与してトウとしても良い。またトウまたは不織布を2つのロールで挟み込み、応力を加えて部分的に分割細繊化させることもできる。ロールの組み合わせとしては、例えば金属ロールと金属ロール、金属ロールとゴムロール、ゴムロールとゴムロールが例示できる。またロール表面は、平面であっても、凹凸状であっても良い。凹凸形状には、ロール回転方向に直交した直線状、或いは波線状等の凸部を有するものなどを例示することができる。これらのロールのなかで好ましいものとして、表面が平面である金属ロール同士の組み合わせ、及び一方が平面、他方が凹凸状面の金属ロールの組み合わせを例示できる。
【0027】
前記分割型複合長繊維が分割細繊化した繊維の繊度は0.5dtex未満であることが好ましく、更に好ましくは0.3dtex未満まで分割細繊化されることが好ましい。分割細繊化後の繊度が細いと同一目付における繊維構成本数が多くなり、ゴミの捕集には好ましく作用する。該分割型複合長繊維の分割セグメント数は、分割細繊化されて得られる極細繊維の平均繊度が0.5dtex未満となるように決めればよく、分割型複合長繊維のセグメント数が多ければ分割後の繊度が小さくなる利点があるが、実際には繊維製造上の容易さから4〜32セグメント数とすることが好ましい。また個々のセグメントの繊度は同一である必要はなく、分割型複合長繊維が完全に細繊度まで分割していない場合には、未分割の分割型複合長繊維と完全に分割した極細繊維との中間に複数の異なった繊度の繊維が混在していても良い。本発明において、0.5dtex未満の分割細繊化した繊維が分割率にして少なくとも5%含まれている必要がある。これはワイピング材として用いた時のゴミの捕集効率に影響する。特に細かい部分や凹凸を掃除する掃除用に使用する場合には、本発明の不織布が好適に使用されるが、汚れを掻き取る時に掛かる応力で分割は更に進行し、汚れを掻き取るほど分割は進行し、結果として掻き取り性能は更に向上する。
【0028】
本発明では、例えば水流交絡によりトウ、不織布または不織布を作製する前段階の開繊したウェブ状物を分割細繊化する場合、繊維が三次元交絡することを極力抑える必要がある。そのためには、繊維に張力をかけることが重要である。例えばトウの場合には、繊維に張力をかけた状態でマイルドな水流処理を行う。また不織布の場合には、予め熱接着により繊維間を充分接着してからマイルドな水流処理を行う。更に開繊したウェブ状物の場合にも繊維に張力をかけることにより、繊維同士が交絡していないかまたは交絡していても僅かであり、三次元交絡を抑えて分割細繊化が可能となる。
【0029】
本発明の不織布をワイピング材として使用する場合、特に分割型複合長繊維トウが開繊されて繊維軸方向に配列された状態のものが望ましい。掃除開始時には分割細繊化した繊維の割合が少なく、繊維の自由度も大きいため、比較的大きなゴミを捕捉するのに優れる。更にワイピング材として使用している間に床や壁などの清掃面と繊維軸方向が垂直に作用するので擦り付ける物理的な応力により、分割細繊化はより進行して次第に極細繊維の割合が増えてくる。このように経時的に構成する繊維の繊度が変化するため、大きなごみを捕捉した後に、繊度が細くなるに連れて更に小さなゴミも掻き取ることができる。これに対し始めから極細繊維への分割が進みすぎた不織布では、細かなゴミは捕捉できるものの比較的大きなゴミを捕捉することが難しい。更にトウから構成された不織布の場合には、繊維が連続しているため、起毛処理を行っても不織布からの繊維の脱落は非常に少なく、ワイピング材として好適に使用することができる。
【0030】
本発明の不織布は、前記トウ及び前記トウを開繊してウェブ状にしたものに、他の親水性または撥水性の短繊維または長繊維のいずれかから構成された不織布或いはウェブ状物を積層することもできる。積層は開繊したトウの繊維軸方向でもクロス方向のいずれでも良い。該繊維が長繊維であればスパンボンド法、トウ開繊法、メルトブローン法等で得られた長繊維ウェブ、また短繊維であればカーディング、エアレイ、湿式積層などの方法でウェブを作成し、繊維交点を熱処理により接着することで不織布にすることができる。また、本発明の不織布は他の布帛(織物、編物)などを積層しても良い。
【0031】
本発明の不織布を構成する分割型複合長繊維の製造方法の一例として、ポリプロピレン樹脂と高密度ポリエチレン樹脂の2成分を組み合わせた分割型複合長繊維の製造方法を例示する。
前記2成分を通常の溶融紡糸機により長繊維として紡出する。紡糸に際し、紡糸温度は180〜300℃の範囲で紡糸することが好ましく、引き取り速度は40m/分〜1500m/分程度とするのが良い。延伸は必要に応じて多段延伸を行っても良く、延伸倍率は通常3〜9倍程度とするのが良い。更に得られたトウは必要に応じて捲縮を付与してもよい。分割型複合繊維の分割細繊化は前記工程中の任意の場所でトウに物理的応力を与えることにより行うことができる。またトウを採取後改めて金属ロール等に高圧で挟み込むことにより物理的応力を付与して分割細繊化を行うことができる。
【0032】
かかる工程において、繊維を紡出後、繊維の静電気防止、繊維成形体への加工性向上、平滑性付与、親水性の付与等などを目的として界面活性剤や練り込みの親水化剤を用いることができる。界面活性剤の種類、濃度は用途に合わせて適宜調整する。付着の方法は、ローラ法、浸漬法などを用いることができる。付着は、紡糸工程、延伸工程、捲縮工程のいずれで付着させても差し支えない。さらに紡糸工程、延伸工程、捲縮工程以外の、例えば繊維成形体に成形後、界面活性剤を付着させることもできる。
【0033】
次に本発明の不織布製造方法の一例を示す。前記分割型複合繊維トウを用いて、ピンチロール型開繊機等を用いてウェブ状とし、繊維を構成する低融点樹脂が溶融する温度で熱処理を行い、不織布を作製する。この時にウェブに予めウェブを構成する繊維よりも低融点で融解する樹脂パウダーを混ぜでおき、スライバーにした後、該パウダーが融解する温度で、筒状容器内で熱処理した後、取り出し不織布に成形することもできる。更に不織布加工工程中の任意の場所で高圧水流処理や金属ロール、スクレイパー等の物理的応力を不織布に作用させることにより分割細繊化を行うことができる。
【0034】
更に本発明の不織布に機能剤を付着または包含させることにより前記分割型複合長繊維にさらなる付加的な機能を付与することができる。機能剤としては従来公知のものを使用することがきる。例えば抗菌防臭剤、消臭剤、流動パラフィンなどを例示できる。例えば前記機能剤が溶液の場合は、多孔質基材に含浸して使用しても良いし、直接塗布しても良い。多孔質基材としては、アロフェン、イモゴライト、人工ゼオライト、天然ゼオライト、合成ゼオライト、活性炭等が例示できる。
【0035】
抗菌防臭、防カビ剤としては、銀、銅、亜鉛に代表される無機系抗菌剤、塩化ベンザルコニウム、有機シリコン系第4級アンモニウム塩、ポリヘキサメチレンビグアニジン塩酸塩、グルコン酸クロルヘキシジンに代表される有機系抗菌剤、キチンキトサン、ポリリジン、ヒバ油、ユーカリ、カテキン、アロエ等の天然系抗菌剤が例示できる。消臭剤は、ベタイン系両面活性剤、カルボニル系化合物、二酸化チタンに代表される光触媒、活性炭、ゼオライト、カテキン、無機系消臭剤、銅−フタロシアニン、鉄−フタロシアニン、金属イオン等が例示できる。
【0036】
本発明のトウ及び不織布は、分割型複合長繊維トウからなるため、繊維の構成本数を多くすることができ、また繊維同士は交絡していないかまたは交絡していても僅かであるため、繊維の自由度が高く、大きなゴミから小さなゴミ、更には油膜等まで払拭することができ、ワイピング材として好適に使用することができる。
【0037】
【実施例】
以下、本発明を実施例、比較例によって説明するが、本発明はこれらにより限定されるものではない。尚実施例、比較例における用語と物性の測定方法は以下の通りである。
【0038】
(a)融点:
TAインスツルメント社製熱分析装置DSC Q10を用い、JIS K 7122に準拠して測定を行った。
【0039】
(b)メルトフローレート(MFR):JIS K 7210に準拠して測定した。
原料ポリプロピレン樹脂:該JIS表1の条件14
原料ポリエチレン樹脂:該JIS表1の条件4
【0040】
(c)密度:JIS K 6760に準拠して密度勾配管による測定を行った。
【0041】
(d)ポリエチレンテレフタレートの固有粘度: フェノールと四塩化エタンの等重量混合溶媒を用い、濃度0.5g/100ml、温度20℃で測定した。
【0042】
(e)分割率:不織布をワックスにて包含し、ミクロトームで繊維軸に対して直角にスライスして試料片を作成する。これを顕微鏡で観察し、繊維の断面像を画像処理して、分割型複合繊維の分割可能なセグメントのうち、部分的にでも分割された繊維の総面積(A)と未分割繊維の総断面積(B)を測定し、以下の式で算出した。
分割率(%)={A/(A+B)}×100
【0043】
(f)払拭性能:5人のモニターにより実際に拭き取った時の払拭性能の評価を行う。サンプルとして各実施例で得た不織布を20cm×20cmの正方形に切断したもの及び水分を含ませたもの、更に油状物を付着したものを用意する。正方形のフローリング板(50cm×50cm)の30cm×30cmの正方形のエリアに10cmの毛髪10本と、JIS Z 8901の第7種の試験用ダスト1gを均一に撒き、用意したサンプルで拭き取ってもらう。フローリング上面の払拭状態を優秀、良、普通、やや不良、不良との5段階の基準を設け、これを各モニターの視点で対比判断してもらい、3回の試験を行って5人のモニターの平均値で表し評価した。数値が大きいほど優れており、3点以上を合格とした。尚、水分は不織布重量に対して150重量%、油状物には63mPa・sの鉱物油(流動パラフィン)を用い、付着量は6重量%とした。
【0044】
(g)開繊係数:トウをピンチロール型開繊機で速度60m/分、倍率1.5倍で延伸開繊した時のトウ幅を開繊処理前のトウ幅で除した時の数値を開繊係数とした。開繊係数が3〜25の範囲にあるトウは、開繊性が良好である。開繊係数が3未満の場合は、高速生産における均一開繊性に劣り、一方、開繊係数が25を越える場合は、開繊機で開繊処理をする工程でトウの割れが生じている。
【0045】
(h)トウ収束性:トウ長1m当りのトウ割れの状態と個所を観察した。判断基準は、トウ割れして完全に分離している個所が0〜1個の場合は良好、2個以上ある場合は不良とした。
【0046】
(i)捲縮数:JIS L 1015の方法に準拠して測定した(単位:山/25mm)。
【0047】
(j)不織布の繊維交絡度:不織布をフラジール型通気度試験機(東洋精機製、資料固定台の内径:70mm)に固定する。該不織布に垂直にプッシュプルゲージ(株式会社イマダ、メカニカルフォースゲージ、PS−50N、直径2mmの鉄製円棒を装着)を速度(3mm/秒)で降下させ、不織布を貫通した時の突刺し強度を測定する。以下の式より交絡度を算出する。更に以下のような判断で繊維の交絡度を判断した。
交絡度={突刺し強度(N)/不織布目付(g/m)}×100
交絡度30未満:実質的に繊維は三次元交絡していない
交絡度30以上:繊維は互いに三次元交絡している
【0048】
実施例1
(トウ製造方法)
ポリプロピレン樹脂(単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、単糸デニール15dtexの未延伸糸を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を120℃、5倍で延伸して延伸糸トウを得た。
(不織布製造方法)
トウを開繊機で開繊してウェブとし、同様に開繊したウェブを双方のウェブの繊維軸方向に対して平行に重なる様に並べ、幅20cmのウェブを作製する。該ウェブを表面が平滑な金属ロールを圧力100N/cmで加圧し、分割細繊化を行った。更に繊維並び方向と垂直方向に溶着幅3mmで加工温度145℃、加圧時間0.5sec、加圧3kg重/cmでヒートシールを行った。同様に5cm間隔でヒートシールを行い不織布を作製した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0049】
実施例2
(トウ製造方法)
固有粘度0.60のポリエチレンテレフタレート(鐘紡(株)製、K101)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、容積比率50/50、単糸デニール10.5dtexの分割型複合長繊維を紡出した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を120℃、3.5倍で延伸して延伸糸トウを得た。捲縮付与時の応力でクリンプのエッジ部は分割が進行していた。
(不織布製造方法)
実施例1に準拠して作製した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0050】
実施例3
(トウ製造方法)
ポリプロピレン樹脂(単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR26g/10分)とエチレン無水マレイン酸グラフト共重合体(密度0.931g/cm、グラフト率0.15モル/kg、MFR14g/10min)を重量比80/20でブレンドした樹脂をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、単糸デニール15dtexの未延伸糸を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を90℃、5倍で延伸して延伸糸トウを得た。
(不織布製造方法)
実施例1に準拠して作製した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0051】
実施例4
(トウ製造方法)
ポリプロピレン樹脂(単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、単糸デニール90dtexの未延伸糸を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を120℃、5倍で延伸し、クリンパーと延伸ロールの間で延伸糸にテンション(1万dtex当り20N)が張られた状態で、水流処理を行い、分割細繊化を促進させ、延伸糸トウを得た。
水流処理は以下の方法で行った。トウの進行方向に対して直角に配列した3列のノズル(ノズル径0.1mm、ノズルピッチ1mm、100ホール)から8MPaの高圧水流を噴射し、30m/分の速度でその直下を通過させて分割細繊化を促進させた。
(不織布製造方法)
トウを開繊機で開繊してウェブとし、同様に開繊したウェブを部分的に重なる様に並べ、幅20cmのウェブを作製する。更に繊維並び方向と垂直方向に溶着幅3mmで加工温度145℃、加圧時間0.5sec、加圧3kg重/cmでヒートシールを行った。同様に5cm間隔でヒートシールを行い、不織布を作製した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0052】
実施例5
(不織布製造方法)
実施例1で得た延伸糸トウを開繊機で開繊してウェブとし、同様に開繊したウェブを双方のウェブの繊維軸方向に対して平行に重なる様に並べ、幅20cmのウェブを作製する。更に繊維並び方向と垂直方向に1mm幅で加工温度145℃、加圧時間0.5sec、加圧3kg重/cmでヒートシールを行った。同様に2cm間隔でヒートシールを行い、不織布を作製した。トウのテンション(1万dtex当り20N)を張った状態で、弱い水流処理を行い、分割細繊化を促進させた。水流処理は以下の方法で行った。100メッシュの平織りからなるコンベアーベルト上に載せ、コンベアコンベアネット速度5m/分で、ノズル径0.1mm、ノズルピッチ1mmのノズル直下を通過させ、高圧水流を噴射した。まず、3MPaを1段、5MPaを4段処理した。ここで段とは、ノズル直下を通過した回数のことである。該不織布は水流処理の前段階で熱処理により繊維同士が固定され張力がかかった状態となっている。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0053】
実施例6
(不織布製造方法)
実施例1で作製したトウを開繊機で開繊してウェブとし、同様に開繊したウェブを双方のウェブの繊維軸方向に対して平行に重なる様に並べ、幅20cmのウェブを作製する。該ウェブを表面が平滑な金属ロールを圧力100N/cmで加圧し、分割細繊化を行った。更に前記ウェブにポリプロピレンスパンボンド不織布(繊度2.2dtex、目付20g/m)を積層し、繊維並び方向と垂直方向に溶着幅3mmで加工温度145℃、加圧時間0.5sec、加圧3kg重/cmでヒートシールを行った。同様に5cm間隔でヒートシールを行い不織布を作製した。作製した不織布の非溶着部分を挟みで切断し、起毛を発現させた。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0054】
実施例7
(トウ製造方法)
固有粘度0.60のポリエチレンテレフタレート(鐘紡(株)製、K101)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)に炭素数14のアルキルスルフォネートNa塩を4重量%添加したものをB成分とし、容積比率50/50、単糸デニール10.5dtexの分割型複合長繊維を紡出した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を120℃、3.5倍で延伸して延伸糸トウを得た。捲縮付与時の応力でクリンプのエッジ部は分割が進行していた。
(不織布製造方法)
実施例1に準拠して作製した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0055】
比較例1
ポリプロピレン樹脂(単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、芯鞘型複合繊維用口金を用いて、容積比率50/50、単糸デニール15dtexの未延伸糸を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を120℃、5倍で延伸して鞘芯型複合繊維の延伸糸トウを得た。
(不織布製造方法)
実施例1に準拠して、分割細繊化処理をしないで作製した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0056】
比較例2
(トウ製造方法)
ポリプロピレン樹脂(単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、単糸デニール10.5dtexの未延伸糸を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を90℃、3.5倍で延伸して延伸糸トウを得た。
(不織布製造方法)
実施例1に準拠して、分割細繊化処理をしないで作製した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0057】
比較例3
ポリプロピレン樹脂(単独重合体、融点163℃、MFR16g/10分)をA成分、高密度ポリエチレン樹脂(融点131℃、MFR16g/10分)をB成分とし、分割型複合繊維用口金を用いて、容積比率50/50、単糸デニール200dtexの未延伸糸を紡糸した。引き取り工程において、アルキルフォスフェートカリウム塩を付着させた。得られた未延伸糸を120℃、8.5倍で延伸して延伸糸トウを得た。
(不織布製造方法)
実施例1に準拠して作製した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0058】
比較例4
実施例1で得たトウを開繊機で開繊してウェブとし、同様に開繊したウェブを双方のウェブの繊維軸方向に対して平行に重なる様に並べ、幅20cmのウェブを作製する。更に80メッシュの平織りからなるコンベアーベルト上に載せ、コンベアコンベアネット速度5m/分で、ノズル径0.1mm、ノズルピッチ1mmのノズル直下を通過させ、高圧水流を噴射した。まず、4MPaを1段、8MPaを4段処理した。同様に裏面も処理し、繊維が三次元交絡された不織布を作製した。該不織布に熱処理は一切行わず不織布化した。以下ワイピング材を主体とした評価を行い、結果を表1、表2に示した。
【0059】
以上、実施例1〜8、比較例1〜4からわかるように本発明の不織布は、ワイピング剤に用いた場合に大きなゴミから小さなゴミまで効率良く払拭することができる。
【0060】
【表1】

Figure 2004169249
【0061】
【表2】
Figure 2004169249
【0062】
【発明の効果】
本発明の不織布は、分割型複合長繊維トウからなるため、分割細繊化することにより表面積が大きくなり、かつ分割細繊化した繊維の自由度が大きいため、髪の毛等の比較的大きなゴミから小さなゴミまで払拭性に優れ、ワイピング材に好適に使用することができる。
【図面の簡単な説明】
【図1】本発明で使用する分割型複合繊維の断面の1模式図である。
【図2】本発明で使用する分割型複合繊維の断面の1模式図である。
【図3】本発明で使用する分割型複合繊維の断面の1模式図である。
【図4】本発明で使用する分割型複合繊維の断面の1模式図である。
【図5】本発明で使用する分割型複合繊維の断面の1模式図である。
【図6】本発明で使用する分割型複合繊維の断面の1模式図である。
【図7】本発明で使用する分割型複合繊維の断面の1模式図である。
【符号の説明】
1:中空部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonwoven fabric using a splittable composite long fiber tow. More specifically, the present invention relates to a nonwoven fabric that can be suitably used as a wiping material.
[0002]
[Prior art]
The tow made of synthetic fiber is processed into a rod shape or a non-woven fabric shape, and is used as a filler for an ink tank of a felt pen (trade name “Magic Ink”), a filter for a cigarette, and a wiping material. BACKGROUND ART As a tow made of a splittable conjugate fiber processed into a nonwoven fabric, a nonwoven fabric in which ultrafine fibers are entangled by hydroentanglement of a tow made of a splittable conjugate fiber is known. (For example, see Patent Document 1.) However, in this nonwoven fabric, fibers are three-dimensionally entangled, a high degree of orientation of the fibers, which is a characteristic of tow, cannot be used, and the degree of freedom of the fibers themselves is limited. When used for normal staple fiber, it is not different from non-woven fabric divided and fined at all, especially since the degree of freedom of the fiber is limited small, it is possible to reliably capture relatively large dust and hair etc. It was difficult and not suitable as a wiping material.
[0003]
[Patent Document 1]
JP-A-4-65567 (Page 1 "Claims", Page 3 "Examples")
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a nonwoven fabric capable of capturing relatively large dust to small dust and a wiping material using the same.
[0005]
[Means for Solving the Problems]
The inventor of the present invention has conducted intensive studies in order to solve the above-described problems, and as a result, has a single-filament fineness of 0.5 to 20 dtex, and has a total fineness of 10,000 to 300,000 dtex. A non-woven fabric, wherein the fibers constituting the non-woven fabric are not three-dimensionally entangled or even if they are three-dimensionally entangled, and at least one part of the fibers is heat-bonded to each other, and a division of less than 0.5 dtex It was found that the above problem could be solved by forming a nonwoven fabric containing finely divided fibers in a splitting ratio of at least 5%, and the present invention was completed based on these findings.
[0006]
The present invention has the following configurations.
(1) A nonwoven fabric made of a split-type composite long fiber tow having a crimp having a single yarn fineness of 0.5 to 20 dtex and a total fineness of 10,000 to 300,000 dtex, wherein the fibers constituting the nonwoven fabric are tertiary. Original entangled or three-dimensional entangled is slight, and at least one part of the fibers is heat-bonded to each other, and contains at least 5% of divided fine fibers having a division ratio of less than 0.5 dtex. Non-woven fabric characterized by being made.
[0007]
(2) The nonwoven fabric according to the above (1), wherein the split type composite long fiber tow of the nonwoven fabric is spread and arranged in the fiber axis direction.
[0008]
(3) The nonwoven fabric according to any one of the above (1) or (2), wherein the degree of entanglement of the nonwoven fabric is less than 30.
[0009]
(4) A wiping material using the nonwoven fabric according to any one of the above items (1) to (3).
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The tow constituting the nonwoven fabric of the present invention is made of splittable conjugate long fibers made of a thermoplastic resin, the fibers have crimps, and have a total fineness of 10,000 to 300,000 dtex. The undivided single yarn fineness is 0.5 to 20 dtex. The thermoplastic resin forming the fiber used for the tow of the present invention is not particularly limited as long as it has fiber formability in the melt spinning step. For example, polypropylene, low-density polyethylene, high-density polyethylene, linear low-density polyethylene, a copolymer of propylene and ethylene, a propylene-ethylene-butene-1 copolymer, and a two- or three-component copolymer of propylene and another α-olefin. Polyolefin resins polymerized using Ziegler-Natta catalysts and metallocene catalysts including polymers, polyethylene terephthalate, polybutylene terephthalate, low-melting polyesters copolymerized with isophthalic acid in addition to terephthalic acid as the acid component, etc. Polyester resins, polyamide resins such as nylon-6, nylon-66, atactic polystyrene, polystyrene resins such as syndiotactic polystyrene, polyurethane elastomers, elastomer resins such as polyester elastomers, Biodegradable resins such as lactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene succinate terephthalate, polybutylene terephthalate adipate, fluorine-based resins such as polyvinylidene fluoride, resins such as polyphenylene sulfide, and polyketone. . Examples of the thermoplastic resin other than those described above include, for example, vinyl polymers, and specifically, ethylene vinyl alcohol copolymer, polyvinyl acetate, polyacrylate, ethylene vinyl acetate copolymer, ethylene anhydride maleic anhydride. Acid graft copolymers can also be used.
[0011]
The thermoplastic resin used in the present invention further includes an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizing agent, a nucleating agent, an epoxy stabilizer, a lubricant, and an antibacterial agent as long as the effects of the present invention are not impaired. Additives such as agents, flame retardants, antistatic agents, pigments, and plasticizers may be added as needed.
[0012]
The tow constituting the nonwoven fabric of the present invention is composed of splittable conjugate long fibers, and the sectional structure of the splittable conjugate long fibers has, for example, a cross-sectional structure in which two different components of the thermoplastic resin are alternately arranged. Structures exemplified in 1 to 7 can be mentioned. For example, as shown in FIGS. 1 and 2, a radial split cross section in which each component is alternately arranged, as shown in FIGS. 3 and 4, a hollow split cross section in which each component is alternately arranged, FIGS. 5 and As shown in Fig. 6, a laminar divided cross section in which each component is alternately arranged in a layer form, and Fig. 7 illustrates a divided cross sectional shape in which each component is alternately arranged and a fiber cross section is bent, curved, or flat. can do. Of course, in the case of a splittable conjugate long fiber composed of a multi-component resin, the cross-section structure in which the same components are arranged without being adjacent to each other is formed. Note that the cross-sectional structure and shape of the composite fiber illustrated in FIGS. 1 to 7 are model diagrams. During actual fiber production, the composite fiber may be subjected to various external stresses and may have a deformed cross-sectional shape. There is no particular problem.
[0013]
The combination of resins of the splittable composite long fiber can be any combination of the thermoplastic resins, but polyester resin / polyamide resin, polyamide resin / polyolefin resin, polyester resin / polyolefin resin, Polyolefin-based resins / polyolefin-based resins are exemplified. For example, when used under high-temperature conditions, polyethylene terephthalate resin / nylon 66 resin, polyethylene terephthalate resin / polypropylene resin, etc. are exemplified. In the required field, a combination of polypropylene resin / polyethylene resin is exemplified. When heat sealing property is required, the difference between the melting points of the two components to be combined is preferably large. For example, polyethylene terephthalate resin / polyethylene resin Etc. It can be shown. In the splittable composite long fiber, the composite ratio of the composite fiber composed of the two-component thermoplastic resin is in the range of 10/90 to 90/10, more preferably 30/70 to 70/30 by volume ratio. is there.
[0014]
If the single-filament fineness of the splittable conjugate long fibers before splitting is too small, the spinnability in the melt spinning step tends to decrease. From that viewpoint, a single yarn fineness of 0.5 dtex or more is preferable, and 1 dtex is more preferable. On the other hand, if the single-fiber fineness is too large, the convergence of the obtained tow is reduced, and the productivity is reduced. From that viewpoint, a single yarn fineness of 20 dtex or less is preferable, and 10 dtex is more preferable.
[0015]
When the total fineness of the tow constituting the nonwoven fabric of the present invention is too large or too small, the convergence of the tow is not obtained in any case, the tow is finely broken, the single yarn is excessively entangled, or the fiber is opened. Opening in the process becomes difficult. In this respect, the total fineness of the tow is preferably 10,000 dtex or more, and more preferably 50,000 dtex or more. Similarly, 300,000 dtex or less is preferable, and 200,000 dtex or less is more preferable.
[0016]
If the density of the tow is too low, the convergence of the tow tends to be lost. In this respect, the density of the tow is preferably equal to or greater than 1000 dtex / mm, and more preferably equal to or greater than 1500 dtex / mm. On the other hand, if the density of the tow is too high, it tends to be difficult to apply crimp uniformly, and it is difficult to spread the fibers in the fiber opening step. In this respect, the tow density is preferably equal to or less than 8000 dtex / mm, and more preferably equal to or less than 5000 dtex / mm.
[0017]
The tow has a crimp, but this crimp may be any of an actual crimp and / or a potential crimp, and the crimp shape is a zigzag shape having a mountain-valley shape, a U-shape, and a spiral tow. Either may be used. The method of applying crimp includes a method using a stuffer box-type crimping machine, a method using gas indentation using high-temperature and high-pressure steam or heated pressurized air, and a tow between a pair of high-speed rotating bodies such as a high-speed crimper. To give a crimp.
[0018]
If the number of crimps of the fibers constituting the tow is too small, the convergence of the tow deteriorates. From this viewpoint, the fiber constituting the tow preferably has a number of crimps of 3 ridges / 25 mm or more, more preferably 4 ridges / 25 mm or more, and even more preferably 5 ridges / 25 mm or more. On the other hand, if the number of crimps is too large, the fibers are excessively entangled with each other, and the openability of the tow is reduced. From this viewpoint, the fiber constituting the tow preferably has a number of crimps of 30 ridges / 25 mm or less, more preferably 25 ridges / 25 mm or less, and still more preferably 20 ridges / 25 mm or less.
[0019]
In the tow constituting the nonwoven fabric of the present invention, a splittable conjugate long fiber and another fiber made of at least one kind of the thermoplastic resin may be used in combination (mixed cotton, mixed fiber). The type of the fiber made of the thermoplastic resin to be mixed is not particularly limited, and examples thereof include a single component type fiber and a composite type fiber. When mixing as a bonding or welding component, in order to bond the splittable conjugate fiber and form a nonwoven fabric, the fiber may be a fiber containing the same type of thermoplastic resin as the splittable conjugate long fiber. preferable. In the case where the mixed fiber is melted by heat treatment and bonded, a resin that is melted at a temperature lower than the low melting point resin of the split type composite filament is used as an adhesive component, thereby forming the component of the split type composite filament. The nonwoven fabric can be formed without melting the resin, and the division and fineness can be easily promoted. Further, when a composite fiber is used as the adhesive fiber, the strength of the nonwoven fabric can be further increased. The cross-sectional shape of the fiber may be any of a circular shape, an irregular shape, a hollow shape, and a solid shape. The cross-sectional shape of the composite fiber (composite fiber) is a sheath-core type, an eccentric sheath-core type, a parallel type, Any of a multilayer type, a sea-island type, a radial type, a hollow radial type and the like may be used. The splitting ratio of the split-type composite long fiber tow is higher as the performance of the wiping material is higher, but considering the workability in the opening process, the tow splitting ratio determined based on the splitting ratio measuring method described below is Preferably it is less than 50%.
[0020]
When it is desired to impart hydrophilicity to the nonwoven fabric, or when it is desired to impregnate a hydrophilic agent, the fibers may be mixed with hydrophilic fibers, or a hydrophilic agent is kneaded into the resin, or shows hydrophilicity. The application of a surfactant to the fiber surface can also be used. Here, the hydrophilic fiber is not limited as long as it is a fiber showing hydrophilicity.For example, regenerated fibers such as rayon and cuvula, semi-synthetic fibers such as acetate and triacetate, synthetic fibers such as polyamide and acrylic, and cotton. And natural fibers such as wool and hemp.
[0021]
The hydrophilizing agent is not particularly limited as long as it can impart hydrophilicity even when kneaded into a hydrophobic resin such as a polyolefin-based resin. Examples thereof include an alkyl sulfonate Na salt and fluorine. Examples include surfactants such as system compounds, fatty acid glycerides, alkoxylated alkylphenols, polyoxyalkylene fatty acid esters, fatty acid amides, and ethers of ethylene glycol. In this case, the surfactant may be a single component or a mixture of a plurality of components.
[0022]
In the nonwoven fabric of the present invention, the tow is further opened by a tow opener or the like to form a web, and at least a part of the fibers is thermally bonded to each other, so that the degree of freedom of each fiber is increased while maintaining the form of the nonwoven fabric. It is possible to maintain and to exhibit a high wiping property when used as a wiping material.
[0023]
Here, the thermal bonding refers to a state in which a portion of the low melting point component of the fibers constituting the web is melted by heating, and the melted adhesive serves as an adhesive to bond the fibers. For the heat bonding, a conventionally known method can be employed, and examples thereof include a hot air circulation method (through air method), a point bonding method, a calendar method, and a heat sealing method.
[0024]
The nonwoven fabric of the present invention is such that the splittable conjugate long fibers and the split fine fibers are not three-dimensionally entangled or are slightly three-dimensionally entangled, and are substantially three-dimensionally entangled. It is important that the fibers are not thermally bonded to each other. When fibers are three-dimensionally entangled like ordinary spunlaced nonwoven fabric consisting of short fibers, nonwoven fabric strength and shape stability are excellent, but on the other hand, the degree of freedom of the fiber is low and it is used as a wiping material. In such a case, it becomes difficult to efficiently scrape from large trash to small trash. Therefore, the form stability of the nonwoven fabric and the strength of the nonwoven fabric are ensured by thermal bonding between the fibers. Here, three-dimensional entanglement refers to a state in which adjacent fibers are tightly entangled up, down, left, and right by needles, stitches, high-pressure air flow, high-pressure water flow, and the like. Refers to what can be done.
[0025]
More specifically, the degree of three-dimensional entanglement can be determined from the degree of entanglement of the nonwoven fabric. If the three-dimensional entanglement of the fibers is strong (the degree of entanglement is high), fine dust can be wiped off, but it becomes difficult to reliably wipe relatively large dust. The confounding degree in this case is a value measured by the following evaluation method. Conventionally, the state of three-dimensional confounding of the nonwoven fabric could be observed visually or by a microscope, but it was difficult to show this as a quantitative value. However, it has been found that the value measured by this method has a clear correlation with the degree of three-dimensional entanglement of the nonwoven fabric. Therefore, in the present invention, this value is used as the degree of entanglement. For the present invention, this value is preferably less than 30, more preferably less than 20, and most preferably less than 15.
Degree of fiber entanglement of non-woven fabric: The non-woven fabric was fixed to a Frazier-type air permeability tester, and a push-pull gauge equipped with a steel rod having a diameter of 2 mm was vertically lowered on the non-woven fabric at a speed (3 mm / sec) to penetrate the non-woven fabric. Measure the piercing strength at the time. The confounding degree is calculated from the following equation. Further, the degree of entanglement of the fibers was determined by the following judgment.
Degree of confounding = {piercing strength (N) / weight of nonwoven fabric (g / m 2 )} × 100
[0026]
There is no particular limitation on the method of splitting and dividing the splittable conjugate long fibers constituting the nonwoven fabric of the present invention.For example, the crimp edge portion may be partially split by stress during crimping, After splitting the fibers by a mild water flow treatment, the fibers may be crimped to form a tow. Alternatively, the tow or the nonwoven fabric may be sandwiched between two rolls, and stress may be applied to partially divide and finely divide the tow or the nonwoven fabric. Examples of the roll combination include a metal roll and a metal roll, a metal roll and a rubber roll, and a rubber roll and a rubber roll. The roll surface may be flat or uneven. Examples of the concavo-convex shape include those having a convex portion such as a straight line or a wavy line orthogonal to the roll rotation direction. Preferred examples of these rolls include a combination of metal rolls having a flat surface, and a combination of metal rolls having one flat surface and the other having an uneven surface.
[0027]
The fineness of the fiber obtained by splitting and dividing the splittable conjugate long fibers is preferably less than 0.5 dtex, more preferably less than 0.3 dtex. If the fineness after the division and fineness is small, the number of fibers constituting the same basis weight increases, which is effective for collecting dust. The number of segments of the splittable conjugate long fibers may be determined so that the average fineness of the ultrafine fibers obtained by splitting and finening is less than 0.5 dtex. Although there is an advantage that the subsequent fineness is reduced, the number of segments is preferably 4 to 32 in terms of ease of fiber production. Also, the fineness of each segment does not need to be the same, and when the splittable conjugate filaments are not completely divided into fine deniers, the undivided splittable conjugate filaments and the completely split ultrafine fibers are combined. A plurality of fibers of different fineness may be mixed in the middle. In the present invention, it is necessary that at least 5% of the divided fine fibers having a division ratio of less than 0.5 dtex be contained. This affects the efficiency of collecting dust when used as a wiping material. Especially when used for cleaning to clean fine parts and irregularities, the nonwoven fabric of the present invention is preferably used, but the division further progresses due to the stress applied when scraping the dirt, and the more the dirt is scraped, the more the division As a result, the scraping performance is further improved.
[0028]
In the present invention, for example, in the case where the opened web-like material in the stage before the production of the tow, the nonwoven fabric or the nonwoven fabric by hydroentanglement is divided into small pieces, it is necessary to minimize the three-dimensional entanglement of the fibers. For that purpose, it is important to apply tension to the fiber. For example, in the case of tow, mild water flow treatment is performed while tension is applied to the fiber. In the case of a nonwoven fabric, the fibers are sufficiently bonded in advance by thermal bonding, and then a mild water flow treatment is performed. Further, even in the case of an opened web, by applying tension to the fibers, the fibers are not entangled with each other, or even if they are entangled, it is possible to suppress three-dimensional entanglement and make it possible to split finely. Become.
[0029]
When the nonwoven fabric of the present invention is used as a wiping material, it is particularly desirable that the split type composite long fiber tow is opened and arranged in the fiber axis direction. At the start of cleaning, the ratio of fibers divided and finely divided is small, and the degree of freedom of fibers is large, so that it is excellent in capturing relatively large dust. Furthermore, while using as a wiping material, the fiber surface direction acts perpendicular to the cleaning surface such as floors and walls, so the physical stress rubbing causes the division and fineness to progress more, and the proportion of ultrafine fibers gradually increases. come. As described above, the fineness of the constituent fibers changes over time, so that after capturing large dust, smaller dust can be scraped off as the fineness becomes thinner. On the other hand, in a nonwoven fabric in which the division into ultrafine fibers has progressed from the beginning, fine dust can be captured, but it is difficult to capture relatively large dust. Further, in the case of a nonwoven fabric composed of a tow, since the fibers are continuous, the fibers do not drop off from the nonwoven fabric very much even when a raising treatment is performed, and can be suitably used as a wiping material.
[0030]
The nonwoven fabric of the present invention is obtained by laminating a nonwoven fabric or a web made of any of other hydrophilic or water-repellent short fibers or long fibers on the tow and the web formed by opening the tow. You can also. Lamination may be performed in either the fiber axis direction or the cross direction of the opened tow. If the fiber is a long fiber, a spun bond method, a tow opening method, a long fiber web obtained by a melt blown method, etc., or a short fiber, a carding, an air lay, a web is prepared by a method such as wet lamination, A nonwoven fabric can be formed by bonding the fiber intersections by heat treatment. Further, the nonwoven fabric of the present invention may be laminated with another fabric (woven fabric, knitted fabric) or the like.
[0031]
As an example of a method for producing a splittable conjugate long fiber constituting the nonwoven fabric of the present invention, a method for producing a splittable conjugate long fiber combining two components of a polypropylene resin and a high-density polyethylene resin will be exemplified.
The two components are spun out as long fibers by a conventional melt spinning machine. In spinning, the spinning temperature is preferably in the range of 180 to 300 ° C., and the take-off speed is preferably about 40 m / min to 1500 m / min. Stretching may be performed in multiple stages as necessary, and the stretching ratio is usually preferably about 3 to 9 times. Further, the obtained tow may be crimped as required. The splitting of the splittable conjugate fiber can be performed by applying a physical stress to the tow at any place in the above process. Further, after the tow is collected, it is again sandwiched between metal rolls or the like at a high pressure, so that a physical stress can be applied to perform fine splitting.
[0032]
In this step, after spinning the fiber, use of a surfactant or a kneading hydrophilic agent for the purpose of preventing static electricity of the fiber, improving the processability of the fiber molded article, imparting smoothness, imparting hydrophilicity, and the like. Can be. The type and concentration of the surfactant are appropriately adjusted according to the application. As a method of attachment, a roller method, an immersion method, or the like can be used. The attachment may be performed in any of the spinning step, the stretching step, and the crimping step. Further, other than the spinning step, the stretching step, and the crimping step, for example, after molding on a fiber molded body, a surfactant can be attached.
[0033]
Next, an example of the nonwoven fabric manufacturing method of the present invention will be described. A web is formed using the splittable composite fiber tow using a pinch roll type opening machine or the like, and a heat treatment is performed at a temperature at which the low melting point resin constituting the fiber is melted to produce a nonwoven fabric. At this time, a resin powder that melts at a lower melting point than the fibers constituting the web is mixed into the web in advance, and then slivered. After the powder is heat-treated in a cylindrical container at a temperature at which the powder melts, the web is taken out and formed into a nonwoven fabric. You can also. Further, fine splitting can be performed by applying high-pressure water flow treatment or physical stress of a metal roll, a scraper or the like to the nonwoven fabric at an arbitrary place in the nonwoven fabric processing step.
[0034]
Further, by attaching or including a functional agent to the nonwoven fabric of the present invention, a further additional function can be imparted to the splittable conjugate long fiber. Conventionally known functional agents can be used. For example, antibacterial deodorants, deodorants, liquid paraffin and the like can be exemplified. For example, when the functional agent is a solution, it may be used by impregnating a porous substrate, or may be directly applied. Examples of the porous substrate include allophane, imogolite, artificial zeolite, natural zeolite, synthetic zeolite, activated carbon, and the like.
[0035]
Antibacterial and antifungal agents include inorganic antibacterial agents such as silver, copper and zinc, benzalkonium chloride, organic silicon quaternary ammonium salts, polyhexamethylene biguanidine hydrochloride, and chlorhexidine gluconate. And natural antibacterial agents such as chitin chitosan, polylysine, hiba oil, eucalyptus, catechin, and aloe. Examples of the deodorant include a betaine-based surfactant, a carbonyl compound, a photocatalyst represented by titanium dioxide, activated carbon, zeolite, catechin, an inorganic deodorant, copper-phthalocyanine, iron-phthalocyanine, and metal ions.
[0036]
Since the tow and the nonwoven fabric of the present invention are made of split-type composite long-fiber tow, the number of fibers can be increased, and the fibers are not entangled with each other or are slightly entangled. It has a high degree of freedom, and can wipe large to small dusts and even oil films, and can be suitably used as a wiping material.
[0037]
【Example】
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The terms used in the examples and comparative examples and methods for measuring physical properties are as follows.
[0038]
(A) Melting point:
The measurement was performed according to JIS K 7122 using a thermal analyzer DSC Q10 manufactured by TA Instruments.
[0039]
(B) Melt flow rate (MFR): Measured according to JIS K7210.
Raw material polypropylene resin: Condition 14 of the JIS Table 1
Raw material polyethylene resin: Condition 4 in JIS Table 1
[0040]
(C) Density: Measurement was performed using a density gradient tube according to JIS K 6760.
[0041]
(D) Intrinsic viscosity of polyethylene terephthalate: Measured at a concentration of 0.5 g / 100 ml at a temperature of 20 ° C. using an equal weight mixed solvent of phenol and ethane tetrachloride.
[0042]
(E) Division ratio: A nonwoven fabric is covered with wax, and sliced at right angles to the fiber axis with a microtome to prepare a sample piece. This is observed with a microscope, and the cross-sectional image of the fiber is image-processed, and among the dividable segments of the splittable conjugate fiber, the total area (A) of the partially split fiber and the total cut of the undivided fiber are obtained. The area (B) was measured and calculated by the following equation.
Division ratio (%) = {A / (A + B)} × 100
[0043]
(F) Wiping performance: The wiping performance when wiping was actually performed is evaluated by five monitors. Samples are prepared by cutting the nonwoven fabric obtained in each example into a square of 20 cm × 20 cm, containing moisture, and further attaching an oily substance. 10 hairs of 10 cm and 1 g of JIS Z 8901 type 7 test dust are uniformly spread on a 30 cm × 30 cm square area of a square flooring board (50 cm × 50 cm), and the sample is wiped off with a prepared sample. The wiping condition on the top of the flooring is set as excellent, good, normal, slightly poor, and defective, and five criteria are set. These are compared from the viewpoint of each monitor, and three tests are performed. The average value was evaluated. The larger the numerical value, the better, and a score of 3 or more was accepted. The water content was 150% by weight based on the weight of the nonwoven fabric, the oily substance was 63 mPa · s of mineral oil (liquid paraffin), and the adhesion amount was 6% by weight.
[0044]
(G) Spreading coefficient: The value obtained by dividing the tow width when the tow is stretched and spread with a pinch roll type spreader at a speed of 60 m / min and a magnification of 1.5 times by the tow width before the spread processing is opened. The fiber coefficient was used. A tow having an opening coefficient in the range of 3 to 25 has good opening properties. When the fiber opening coefficient is less than 3, the uniform fiber opening property in high-speed production is inferior. On the other hand, when the fiber opening coefficient exceeds 25, cracking of the tow occurs in the step of performing the fiber opening process with the fiber opening machine.
[0045]
(H) Tow convergence: The state and location of tow cracks per 1 m of tow length were observed. The criterion was “good” when the number of tow cracks and completely separated was 0 to 1, and “poor” when there were 2 or more.
[0046]
(I) Number of crimps: Measured according to the method of JIS L 1015 (unit: peak / 25 mm).
[0047]
(J) Degree of fiber entanglement of non-woven fabric: The non-woven fabric is fixed to a Frazier-type air permeability tester (manufactured by Toyo Seiki Co., Ltd., inner diameter of a sample fixing table: 70 mm). A push-pull gauge (Imada Co., Ltd., Mechanical Force Gauge, PS-50N, equipped with a 2 mm-diameter iron circular bar) is vertically dropped on the nonwoven fabric at a speed (3 mm / sec) to pierce the nonwoven fabric. Is measured. The confounding degree is calculated from the following equation. Further, the degree of entanglement of the fibers was determined by the following judgment.
Degree of confounding = {piercing strength (N) / weight of nonwoven fabric (g / m 2 )} × 100
Entanglement degree less than 30: the fiber is not substantially three-dimensionally entangled
Entanglement degree 30 or more: fibers are three-dimensionally entangled with each other
[0048]
Example 1
(Tow manufacturing method)
Using a polypropylene resin (homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as an A component and a high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as a B component, use a splittable composite fiber die to determine the volume. An undrawn yarn having a ratio of 50/50 and single yarn denier of 15 dtex was spun. In the take-off step, the alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 120 ° C. and 5 times to obtain a drawn yarn tow.
(Nonwoven fabric manufacturing method)
The tow is opened by a spreader to form a web, and the opened webs are similarly arranged so as to overlap in parallel with the fiber axis direction of both webs, thereby producing a web having a width of 20 cm. The web was pressurized with a metal roll having a smooth surface at a pressure of 100 N / cm, and divided into fine fibers. Further, the welding temperature is 145 ° C., the pressing time is 0.5 sec, the pressing pressure is 3 kgf / cm, and the welding width is 3 mm in the direction perpendicular to the fiber arrangement direction. 2 Was used for heat sealing. Similarly, heat sealing was performed at 5 cm intervals to produce a nonwoven fabric. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0049]
Example 2
(Tow manufacturing method)
A component is polyethylene terephthalate (K101, manufactured by Kanebo Co., Ltd.) having an intrinsic viscosity of 0.60, and B component is a high-density polyethylene resin (melting point: 131 ° C., MFR: 16 g / 10 minutes), volume ratio: 50/50, single yarn denier: 10 A split type composite continuous fiber of 0.5 dtex was spun. In the take-off step, the alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 120 ° C. and 3.5 times to obtain a drawn yarn tow. Due to the stress at the time of the crimping, the edge portion of the crimp was divided.
(Nonwoven fabric manufacturing method)
It was produced in accordance with Example 1. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0050]
Example 3
(Tow manufacturing method)
Component A is a polypropylene resin (homopolymer, melting point 163 ° C., MFR 16 g / 10 min), and a high-density polyethylene resin (melting point 131 ° C., MFR 26 g / 10 min) and ethylene-maleic anhydride graft copolymer (density 0.931 g / cm) 3 , A graft ratio of 0.15 mol / kg, MFR of 14 g / 10 min) blended at a weight ratio of 80/20 as the B component, and using a split type composite fiber die, a volume ratio of 50/50 and a single yarn denier of 15 dtex. An undrawn yarn was spun. In the take-off step, the alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 90 ° C. and 5 times to obtain a drawn yarn tow.
(Nonwoven fabric manufacturing method)
It was produced in accordance with Example 1. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0051]
Example 4
(Tow manufacturing method)
Using a polypropylene resin (homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as an A component and a high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as a B component, use a splittable composite fiber die to determine the volume. An undrawn yarn having a ratio of 50/50 and a single denier of 90 dtex was spun. In the take-off step, the alkyl phosphate potassium salt was deposited. The obtained unstretched yarn is stretched at 120 ° C., 5 times, and subjected to water flow treatment with tension (20 N per 10,000 dtex) applied to the stretched yarn between the crimper and the stretching roll, and the fiber is divided into fine fibers. Was promoted to obtain a drawn yarn tow.
The water flow treatment was performed by the following method. A high-pressure water stream of 8 MPa is jetted from three rows of nozzles (nozzle diameter: 0.1 mm, nozzle pitch: 1 mm, 100 holes) arranged at right angles to the traveling direction of the tow, and passes immediately below the nozzle at a speed of 30 m / min. The division and fineness were promoted.
(Nonwoven fabric manufacturing method)
The tow is opened by a spreader to form a web, and the opened webs are similarly arranged so as to partially overlap to produce a web having a width of 20 cm. Further, the welding temperature is 145 ° C., the pressing time is 0.5 sec, the pressing pressure is 3 kgf / cm, and the welding width is 3 mm in the direction perpendicular to the fiber arrangement direction. 2 Was used for heat sealing. Similarly, heat sealing was performed at 5 cm intervals to produce a nonwoven fabric. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0052]
Example 5
(Nonwoven fabric manufacturing method)
The drawn yarn tow obtained in Example 1 is spread by a spreader to form a web. Similarly, the spread webs are arranged so as to overlap in parallel with the fiber axis direction of both webs, thereby producing a web having a width of 20 cm. I do. Further, the processing temperature is 145 ° C., the pressing time is 0.5 sec, the pressing pressure is 3 kgf / cm in a width of 1 mm in the direction perpendicular to the fiber arrangement direction. 2 Was used for heat sealing. Similarly, heat sealing was performed at 2 cm intervals to produce a nonwoven fabric. With the tow tension (20N per 10,000 dtex) applied, a weak water flow treatment was performed to promote fine splitting. The water flow treatment was performed by the following method. It was placed on a 100-mesh plain weave conveyor belt, and was passed directly under a nozzle having a nozzle diameter of 0.1 mm and a nozzle pitch of 1 mm at a conveyor conveyor net speed of 5 m / min, thereby jetting a high-pressure water stream. First, 3 MPa was processed in one stage and 5 MPa was processed in four stages. Here, the stage refers to the number of times that the ink has passed just below the nozzle. In the nonwoven fabric, the fibers are fixed by heat treatment at a stage prior to the water flow treatment and tension is applied. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0053]
Example 6
(Nonwoven fabric manufacturing method)
The tow produced in Example 1 is opened by a spreader to form a web, and the opened webs are similarly arranged so as to overlap in parallel with the fiber axis direction of both webs, thereby producing a web having a width of 20 cm. The web was pressurized with a metal roll having a smooth surface at a pressure of 100 N / cm, and divided into fine fibers. Further, a polypropylene spunbond nonwoven fabric (fineness: 2.2 dtex, basis weight: 20 g / m2) 2 ) Are laminated, the welding width is 3 mm in the direction perpendicular to the fiber arrangement direction, the processing temperature is 145 ° C., the pressing time is 0.5 sec, the pressing pressure is 3 kgf / cm 2 Was used for heat sealing. Similarly, heat sealing was performed at 5 cm intervals to produce a nonwoven fabric. The non-welded portion of the produced non-woven fabric was cut by sandwiching, and the raised fabric was developed. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0054]
Example 7
(Tow manufacturing method)
A component is polyethylene terephthalate having an intrinsic viscosity of 0.60 (K101, manufactured by Kanebo Co., Ltd.), and 4% by weight of a sodium salt of an alkylsulfonate having 14 carbon atoms in a high-density polyethylene resin (melting point: 131 ° C., MFR: 16 g / 10 minutes). The added component was used as the component B, and a splittable conjugate long fiber having a volume ratio of 50/50 and single yarn denier of 10.5 dtex was spun. In the take-off step, the alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 120 ° C. and 3.5 times to obtain a drawn yarn tow. Due to the stress at the time of the crimping, the edge portion of the crimp was divided.
(Nonwoven fabric manufacturing method)
It was produced in accordance with Example 1. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0055]
Comparative Example 1
Using a polypropylene resin (homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as an A component, a high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as a B component, and using a core-sheath type composite fiber die, An undrawn yarn having a volume ratio of 50/50 and single yarn denier of 15 dtex was spun. In the take-off step, the alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 120 ° C. and 5 times to obtain a drawn yarn tow of a sheath-core composite fiber.
(Nonwoven fabric manufacturing method)
In accordance with Example 1, it was produced without performing the split fine treatment. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0056]
Comparative Example 2
(Tow manufacturing method)
Using a polypropylene resin (homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as an A component and a high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as a B component, use a splittable composite fiber die to determine the volume. An undrawn yarn having a ratio of 50/50 and a single yarn denier of 10.5 dtex was spun. In the take-off step, the alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 90 ° C. and 3.5 times to obtain a drawn yarn tow.
(Nonwoven fabric manufacturing method)
In accordance with Example 1, it was produced without performing the split fine treatment. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0057]
Comparative Example 3
Using a polypropylene resin (homopolymer, melting point 163 ° C., MFR 16 g / 10 min) as an A component and a high-density polyethylene resin (melting point 131 ° C., MFR 16 g / 10 min) as a B component, use a splittable composite fiber die to determine the volume. An undrawn yarn having a ratio of 50/50 and a single denier of 200 dtex was spun. In the take-off step, the alkyl phosphate potassium salt was deposited. The obtained undrawn yarn was drawn at 120 ° C. and 8.5 times to obtain a drawn yarn tow.
(Nonwoven fabric manufacturing method)
It was produced in accordance with Example 1. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0058]
Comparative Example 4
The tow obtained in Example 1 is opened by a spreader to form a web, and the opened webs are similarly arranged so as to overlap in parallel with the fiber axis direction of both webs to produce a web having a width of 20 cm. Further, it was placed on a conveyor belt of 80 mesh plain weave, and passed under a nozzle having a nozzle diameter of 0.1 mm and a nozzle pitch of 1 mm at a conveyor conveyor speed of 5 m / min. First, 1 stage was processed at 4 MPa, and 4 stages were processed at 8 MPa. Similarly, the back surface was treated to produce a three-dimensionally entangled nonwoven fabric. The non-woven fabric was made into a non-woven fabric without any heat treatment. Hereinafter, the evaluation was performed mainly with the wiping material, and the results are shown in Tables 1 and 2.
[0059]
As described above, as can be seen from Examples 1 to 8 and Comparative Examples 1 to 4, the nonwoven fabric of the present invention can efficiently wipe large to small dust when used as a wiping agent.
[0060]
[Table 1]
Figure 2004169249
[0061]
[Table 2]
Figure 2004169249
[0062]
【The invention's effect】
Since the nonwoven fabric of the present invention is made of split-type composite long fiber tow, the surface area is increased by splitting and fineness, and the degree of freedom of split finely divided fibers is large, so that relatively large dust such as hair can be removed. It is excellent in wiping even small dust and can be suitably used as a wiping material.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
FIG. 2 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
FIG. 3 is a schematic view of a section of a splittable conjugate fiber used in the present invention.
FIG. 4 is a schematic view of a section of a splittable conjugate fiber used in the present invention.
FIG. 5 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
FIG. 6 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
FIG. 7 is a schematic diagram of a cross section of a splittable conjugate fiber used in the present invention.
[Explanation of symbols]
1: hollow

Claims (4)

単糸繊度が0.5〜20dtex、全繊度が1万〜30万dtexである捲縮を有する分割型複合長繊維トウからなる不織布であって、該不織布を構成する繊維同士が三次元交絡していないかまたは三次元交絡していても僅かであり、かつ少なくとも1部分の繊維同士が熱接着され、0.5dtex未満の分割細繊化した繊維が分割率にして少なくとも5%含まれていることを特徴とする不織布。A nonwoven fabric comprising a split type composite long fiber tow having a crimp having a single yarn fineness of 0.5 to 20 dtex and a total fineness of 10,000 to 300,000 dtex, wherein the fibers constituting the nonwoven fabric are three-dimensionally entangled. If the fibers are not entangled or are three-dimensionally entangled, the amount is small, and at least one part of the fibers is heat-bonded to each other, and contains at least 5% of divided fine fibers having a division ratio of less than 0.5 dtex. Nonwoven fabric characterized by the above. 不織布の分割型複合長繊維トウは、開繊されて繊維軸方向に配列されている請求項1に記載の不織布。The nonwoven fabric according to claim 1, wherein the split type composite long fiber tow of the nonwoven fabric is spread and arranged in the fiber axis direction. 不織布の繊維交絡度が30未満である請求項1項または2項のいずれか1項に記載の不織布。3. The nonwoven fabric according to claim 1, wherein the nonwoven fabric has a fiber entanglement degree of less than 30. 4. 請求項1項〜3項のいずれか1項に記載の不織布を用いたワイピング材。A wiping material using the nonwoven fabric according to any one of claims 1 to 3.
JP2002339583A 2002-11-22 2002-11-22 Nonwoven fabric and wiping material using the same Expired - Fee Related JP4158499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339583A JP4158499B2 (en) 2002-11-22 2002-11-22 Nonwoven fabric and wiping material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339583A JP4158499B2 (en) 2002-11-22 2002-11-22 Nonwoven fabric and wiping material using the same

Publications (2)

Publication Number Publication Date
JP2004169249A true JP2004169249A (en) 2004-06-17
JP4158499B2 JP4158499B2 (en) 2008-10-01

Family

ID=32702504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339583A Expired - Fee Related JP4158499B2 (en) 2002-11-22 2002-11-22 Nonwoven fabric and wiping material using the same

Country Status (1)

Country Link
JP (1) JP4158499B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119171A (en) * 2006-11-10 2008-05-29 Kao Corp Cleaning article and its manufacturing method
WO2008117805A1 (en) * 2007-03-26 2008-10-02 Mitsui Chemicals, Inc. Mixed continuous fiber nonwoven fabric and process for manufacturing the same
JP2012180631A (en) * 2012-05-24 2012-09-20 Daiwabo Holdings Co Ltd Splittable conjugate fiber
JP2016527410A (en) * 2013-07-03 2016-09-08 ボナー ベスローテン フェンノートシャップBonar B.V. Nonwoven material
JP2018064723A (en) * 2016-10-18 2018-04-26 ユニ・チャーム株式会社 Wiping sheet
JP2019077968A (en) * 2017-10-26 2019-05-23 紘邦 張本 Fiber assembly, oil-absorbing material using the same, and method for producing fiber assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119171A (en) * 2006-11-10 2008-05-29 Kao Corp Cleaning article and its manufacturing method
WO2008117805A1 (en) * 2007-03-26 2008-10-02 Mitsui Chemicals, Inc. Mixed continuous fiber nonwoven fabric and process for manufacturing the same
JP5450055B2 (en) * 2007-03-26 2014-03-26 三井化学株式会社 Mixed long fiber nonwoven fabric and method for producing the same
JP2012180631A (en) * 2012-05-24 2012-09-20 Daiwabo Holdings Co Ltd Splittable conjugate fiber
JP2016527410A (en) * 2013-07-03 2016-09-08 ボナー ベスローテン フェンノートシャップBonar B.V. Nonwoven material
JP2018064723A (en) * 2016-10-18 2018-04-26 ユニ・チャーム株式会社 Wiping sheet
JP2019077968A (en) * 2017-10-26 2019-05-23 紘邦 張本 Fiber assembly, oil-absorbing material using the same, and method for producing fiber assembly

Also Published As

Publication number Publication date
JP4158499B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
DE68915314T2 (en) Non-elastic, non-woven, sheet-like composite material and method for its production.
JP6080319B2 (en) Nonwoven fabric, method for producing the same, and wiping material
JP5450055B2 (en) Mixed long fiber nonwoven fabric and method for producing the same
JP4976675B2 (en) Non-woven fabric for wipers
DE10080786B3 (en) Cleavable multicomponent fiber and fibrous article comprising it
JP2010535294A (en) Mixed fiber and non-woven fabric made therefrom
JP6643494B2 (en) Non-woven fabric with improved feel
EP3341514A1 (en) Cleaning textile
JP4158499B2 (en) Nonwoven fabric and wiping material using the same
JP2011117095A (en) Nonwoven fabric and wiping material using the same
JP3912177B2 (en) Brushed nonwoven fabric, method for producing the same, and textile product using the same
JP3910738B2 (en) Perforated nonwoven fabric and method for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
JP2002263043A (en) Nonwoven fabric for wiping
JP4728160B2 (en) Split composite fiber, fiber assembly and non-woven fabric
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JPH1037055A (en) Composite nonwoven fabric
JP7260081B2 (en) LAMINATED NONWOVEN FABRIC AND MANUFACTURING METHOD THEREOF, AND WIPER
CN112251826B (en) Irregularly shaped polymer fibers
JP3318833B2 (en) Splittable conjugate fiber and fiber molded product using the same
JP2023537508A (en) Nonwovens containing fibers formed from post-consumer recycled plastics
JP2002088580A (en) Dividable fiber and fabric using the same
JP2024146925A (en) Nonwoven fabric and wiping sheet containing same
JP2000328348A (en) Splittable type conjugate fiber and formed fiber product using the same
JP2001049529A (en) Polyolefin-based splittable type conjugated fiber and nonwoven fabric using the same fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees