【0001】
【発明の属する技術分野】
本発明は路面状態判定方法および装置、ならびに路面状態判定のプログラムに関する。さらに詳しくは、とくに4輪駆動車において、走行中の路面の状態を判定することができる路面状態判定方法および装置、ならびに路面状態判定のプログラムに関する。
【0002】
【従来の技術】
従来より、タイヤと路面とのあいだの制動力が最大値をこえてタイヤがロック状態になる前に、車輪に作用するブレーキトルクを低下させて車輪のロック状態を防止し、最大制動力が得られる車輪の回転数を制御するアンチロックブレーキ装置などが提案されている。このアンチロックブレーキ装置には、たとえば車両の加速度とスリップ比との関係式を求めたのち、該関係式の傾きと予め設定されたしきい値を比較して、当該比較の結果から路面とタイヤとのあいだの摩擦係数を判定する路面摩擦係数判定方法を用いることができる(特許文献1参照)。
【0003】
【特許文献1】
特開2001−334920号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前記路面摩擦係数判定方法における車両の加速度とスリップ比との関係では、従動輪の回転速度から求められる車両の加速度を用いて、路面とタイヤのμ−s曲線の勾配を求め、路面の滑りやすさを判定しているため、4輪駆動車には適用できないという問題がある。
【0005】
本発明は、叙上の事情に鑑み、4輪駆動車であっても、走行中の路面の状態を判定することができる路面状態判定方法および装置、ならびに路面状態判定のプログラムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の路面状態判定方法は、4輪車両が走行している路面の状態を判定する路面状態判定方法であって、車輪速検出手段から得られる走行中の4輪車両の駆動輪の車輪速回転情報と、水平路面に対する車両の進行方向鉛直面内において、鉛直軸に対して前方に45°方向および後方に45°方向へ向くように設置される直交2軸方向加速度検知手段から得られる加速度情報との関係から、走行中の路面の状態を判定することを特徴とする。
【0007】
また、本発明の路面状態判定装置は、4輪車両が走行している路面の状態を判定する路面状態判定装置であって、車両の駆動輪のタイヤの車輪速回転情報を検出する車輪速検出手段と、水平路面に対する車両の進行方向鉛直面内において、鉛直軸に対して前方に45°方向および後方に45°方向へ向くように設置される直交2軸方向加速度検知手段と、該直交2軸方向加速度検知手段から加速度情報を算出する加速度演算手段と、前記車輪速回転情報と加速度情報との関係から、走行中の路面の状態を判定する路面状態判定手段とを備えることを特徴とする。
【0008】
さらに本発明の路面状態判定のプログラムは、路面の状態を判定するためにコンピュータを、車輪速検出手段から得られる車両の駆動輪のタイヤの車輪速回転情報と、水平路面に対する車両の進行方向鉛直面内において、鉛直軸に対して前方に45°方向および後方に45°方向へ向くように設置される直交2軸方向加速度検知手段から得られる加速度情報との関係から、走行中の路面の状態を判定する路面状態判定手段として機能させることを特徴とする。
【0009】
【発明の実施の形態】
以下、添付図面に基づいて、本発明の路面状態判定方法および装置、ならびに路面状態判定のプログラムを説明する。
【0010】
図1に示されるように、本発明の一実施の形態にかかわる路面状態判定装置は、4輪車両に備えられた4つのタイヤFL、FR、RLおよびRRの車輪速回転情報から走行中の路面の状態を判定するもので、各タイヤにそれぞれ関連して設けられた通常の車輪速検出手段1を備えている。また、車両には、水平路面に対する車両の進行方向鉛直面内において、鉛直軸に対して前方に45°方向および後方に45°方向へ向くように設置される直交2軸方向加速度検知手段(以下、単に加速度センサという)3が搭載されている。
【0011】
前記車輪速検出手段1としては、電磁ピックアップなどを用いて回転パルスを発生させてパルスの数から車輪速回転情報を測定する車輪速センサまたはダイナモのように回転を利用して発電を行ない、この電圧から車輪速回転情報を測定するものを含む角速度センサなどを用いることができる。前記車輪速検出手段1の出力はABSなどのコンピュータである制御ユニット2に与えられる。また、この制御ユニット2には、図2に示されるように、前記加速度センサ3が接続されているとともに、路面の状態(高μ路、中μ路、低μ路)のうち、低μ路をドライバーに知らせる低μ路警報表示器4、たとえば液晶表示素子、プラズマ表示素子またはCRTなどから構成された表示手段が接続されている。
【0012】
制御ユニット2は、図2に示されるように、外部装置との信号の受け渡しに必要なI/Oインターフェイス2aと、演算処理の中枢として機能するCPU2bと、該CPU2bの制御動作プログラムが格納されたROM2cと、前記CPU2bが制御動作を行なう際にデータなどが一時的に書き込まれたり、その書き込まれたデータなどが読み出されるRAM2dとから構成されている。
【0013】
前記車輪速検出手段1では、タイヤの回転数に対応したパルス信号(以下、車輪速パルスという)が出力される。またCPU2bでは、車輪速検出手段1から出力された車輪速パルスに基づき、所定のサンプリング周期ΔT(sec)、たとえばΔT=1秒ごとに各タイヤの回転角速度Fiが算出される。
【0014】
ここで、タイヤは、規格内でのばらつき(初期差異)が含まれて製造されるため、各タイヤの有効転がり半径(一回転により進んだ距離を2πで割った値)は、すべてのタイヤがたとえ正常空気圧であっても、同一とは限らない。そのため、各タイヤの回転角速度Fiはばらつくことになる。そこで、初期差異によるばらつきを打ち消すために補正した回転角速度F1iを算出する。具体的には、
F11=F1
F12=mF2
F13=F3
F14=nF4
と補正される。前記補正係数m、nは、たとえば車両が直線走行していることを条件として回転角速度Fiを算出し、この算出された回転角速度Fiに基づいて、m=F1/F2、n=F3/F4として得られる。そして、前記車輪速回転情報は、車輪速検出手段1の車輪速パルスの周期とパルス数を所定の時間間隔ごとに読み込み、算出される回転速度であり、前記F1iに基づき、各車輪のタイヤの回転速度Viを算出する。
【0015】
本実施の形態では、走行中の4輪車両の駆動輪の回転速度と、加速度センサ3から算出される車両速度とからスリップ率を演算し、該スリップ率と車両速度から算出される加速度との関係から、走行中の路面の状態を判定する。そして、この路面の状態により走行中の路面の滑りやすさを検知し、低μ路である場合、ドライバーに警報を発する。ここで、スリップ率と加速度との関係というのは、一般的なタイヤと路面のμ−s曲線と同じことであり、高μ路、中μ路、低μ路により勾配が変わる。
【0016】
したがって、本実施の形態の路面状態判定装置は、車輪速検出手段1と、加速度センサ3と、該加速度センサ3から加速度情報を算出する加速度演算手段と、前記回転速度と加速度情報との関係から、走行中の路面の状態を判定する路面状態判定手段とから構成されている。また、本実施の形態は、回転速度を算出する速度検知の時間間隔に同期して前記加速度情報の加速度と車両速度を読み込み、ついで前記回転速度と車両速度からスリップ率を演算するスリップ率演算手段を備えている。さらに一定時間間隔ごとに読み込んだ回転速度と加速度に、所定の個数の移動平均処理を施す移動平均処理手段を備えるのが好ましい。
【0017】
また、本実施の形態の路面状態判定のプログラムは、制御ユニット2を、前記回転速度と加速度情報との関係から、走行中の路面の状態を判定する路面状態判定手段として機能させる。また、制御ユニット2を、スリップ率演算手段として機能させ、さらに移動平均処理手段として機能させるのが好ましい。
【0018】
以下、本実施の形態の路面状態判定装置の動作の一例を手順(1)〜(5)に沿って説明する。
【0019】
(1)車両の4輪タイヤのそれぞれの回転速度(V1n、V2n、V3n、V4n)を算出する。
たとえば、ABSセンサなどのセンサから得られた車両の各車輪タイヤのある時点の車輪速データを回転速度V1n、V2n、V3n、V4nとする。
【0020】
(2)ついで車両の駆動輪の回転速度Tfnを演算する。たとえば2輪駆動車の場合、駆動輪の平均回転速度とし、また4輪駆動車の場合、4輪の平均回転速度とすることができる。
【0021】
(3)ついで前記車両の駆動輪の回転加速度Tafnを演算する。
すなわち前記回転速度Tfnより1つ前の車輪速データから、回転速度Tfn−1とすると、車両の駆動輪の回転加速度Tafnはつぎの式(1)で求められる。
Tafn=(Tfn−Tfn−1)/Δt/G ・・・(1)
【0022】
ここで、Δtは車輪速データから算出される平均回転速度TfnとTfn−1の時間間隔(サンプリング時間)であり、Gは重力加速度である。前記サンプリング時間としては、データのばらつきを小さくし、かつ短時間で判別するためには、0.1秒以下である必要がある。より好ましくは、0.05秒以下である。
【0023】
(4)走行中の車両の駆動輪のスリップ率Sをつぎの式(2)で定義する。ここで、Tは駆動輪の回転速度であり、Vは車両の対地速度(車両速度)である。
S=(T−V)/T ・・・(2)
【0024】
(5)ついで車両の駆動輪のスリップ率と車両の加速度の関係を求める。
【0025】
ここで、前記車両の加速度(対地加速度)および加速度センサの値を単にそれぞれVaおよびG1、G2とすると、図3に示されるように、路面の勾配θを走行している車両に対しては、つぎの式(3)および式(4)の関係が成り立つ。なお、Gは重力加速度である。
G1=G×cos(45°+θ)−Va×cos45°・・・(3)
G2=G×cos(45°−θ)+Va×cos45°・・・(4)
この式(1)と式(2)を加算すると、
G1+G2=G×{cos(45°+θ)+cos(45°−θ)}
=G×√2・cosθ
となるので、これから、
θ=cos−1{(G1+G2)/G/√2} ・・・(5)
を求めることができる。
【0026】
また、前記式(1)と式(2)を引き算すると、
G1−G2=G×{cos(45°+θ)−cos(45°−θ)}
−2×Va×cos45°
=G×(−√2×sinθ)−Va×√2
となるので、これから、
Va={(G2−G1)/√2}−G×sinθ ・・・(6)
を求めることができる。
【0027】
ここで、前記駆動輪の回転速度Tを時間で微分することにより、駆動輪の回転加速度Taを求める。ついで前記式(6)の2つの解と回転加速度Taを比較し、その差の小さい方を対地加速度Vaの真値とする。そして、この対地加速度Vaを時間で積分し、車両速度Vを求める。これにより、これら回転速度Tと車両速度Vの値から、前記式(2)のスリップ率Sを算出する。
【0028】
つぎにスリップ率Sと対地加速度Vaとの関係をプロットし、線形近似を行なうことにより、この線形直線の勾配から路面の滑りやすさを判定する。
【0029】
ここで、このスリップ率Sと対地加速度Vaを求めるために、
▲1▼路面の凹凸による回転速度および加速度センサへの外乱を除くため、サンプリング時間ごとに得られた所定の個数のデータ、たとえば50個のデータを移動平均処理する。
データの数を減らさずに、データのばらつきを小さくするために、短時間のサンプリング時間、たとえば数十msごとにデータをサンプリングし、このサンプリング時間で得られたばらつきの大きいデータを移動平均する。
▲2▼ついでスリップ率Sと対地加速度Vaの1次式の関係を得るために、所定の個数、たとえば20個ごとの最小自乗近似法による直線近似を行ない、この処理をサンプリング時間ごとに移動計算する。
▲3▼この結果、サンプリング時間ごとに求まった直線近似式の勾配が路面の滑りやすさに応じた値となる。
【0030】
つぎに本発明を実施例に基づいて説明するが、本発明はかかる実施例のみに限定されるものではない。
【0031】
【実施例】
車両として、4輪駆動車(排気量2.0L)を用意した。タイヤのサイズは205/55R16である。また、車両の走行条件としては、住友ゴム工業株式会社の岡山トラックコースにおいて、セラミックタイル、ドルセットペブルおよびウェットコンクリートの路面μを変えた路面を採用した。また、車両に搭載した加速度センサは、(株)東京測器研究所製AR−2TFであり、3軸のうち、2軸を車両の鉛直軸に対し前後に45°ずつ傾くように取り付けた。サンプリング周波数は50Hzである。
【0032】
ついで前記各種の路面を約10秒間走行した。本実施の形態にかかわる路面状態判定のプログラムを格納した路面状態判定装置を用いて、プロットしたスリップ率と加速度との関係を図4に示す。図4から、路面ごとにその線形近似式の勾配が異なり、低μ路ほど勾配が大きいことがわかる。
【0033】
したがって、車両が走行中の路面の状態を判定して、これを自動変速機の変速制御情報、タイヤ空気圧低下検出装置(DWS)や路面状態判定システムに用いることにより、走行性能および走行安全性を向上させることができる。
【0034】
【発明の効果】
以上説明したとおり、本発明によれば、4輪駆動車における走行中の路面の状態を精度よく判定することができる。また、本発明は、2輪駆動車にも適用することができる。
【図面の簡単な説明】
【図1】本発明の路面状態判定装置の一実施の形態を示すブロック図である。
【図2】図1の路面状態判定装置の電気的構成を示すブロック図である。
【図3】車両が勾配のある路面を走行している状態を説明する模式図である。
【図4】セラミックタイル、ドルセットペブルおよびウェットコンクリートの路面走行のスリップ率と加速度との関係を示す図である。
【符号の説明】
1 車輪速検出手段
2 制御ユニット
3 加速度センサ(直交2軸方向加速度検知手段)
4 低μ路警報表示器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a device for determining a road surface condition and a program for determining a road surface condition. More particularly, the present invention relates to a road surface state determination method and apparatus that can determine the road surface state during traveling, particularly in a four-wheel drive vehicle, and a road surface state determination program.
[0002]
[Prior art]
Conventionally, before the braking force between the tire and the road surface exceeds the maximum value and the tire is locked, the brake torque acting on the wheel is reduced to prevent the wheel from being locked, and the maximum braking force is obtained. For example, an anti-lock brake device that controls the number of rotations of a driven wheel has been proposed. The antilock brake device calculates a relational expression between, for example, vehicle acceleration and a slip ratio, compares the slope of the relational expression with a preset threshold value, and obtains a road surface and a tire from the result of the comparison. (Refer to Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-334920 A
[Problems to be solved by the invention]
However, in the relationship between the vehicle acceleration and the slip ratio in the road surface friction coefficient determination method, the gradient of the μ-s curve between the road surface and the tire is obtained using the vehicle acceleration obtained from the rotation speed of the driven wheel, and the road surface Since the slipperiness is determined, there is a problem that the method cannot be applied to a four-wheel drive vehicle.
[0005]
The present invention has been made in view of the above circumstances, and provides a road surface state determination method and apparatus that can determine the state of a running road surface even in a four-wheel drive vehicle, and a program for road surface state determination. Aim.
[0006]
[Means for Solving the Problems]
The road surface state determination method of the present invention is a road surface state determination method for determining a state of a road surface on which a four-wheeled vehicle is traveling, wherein a wheel speed of a driving wheel of a traveling four-wheeled vehicle obtained from wheel speed detection means. The rotation information and the acceleration obtained from the orthogonal two-axis direction acceleration detecting means installed so as to face 45 ° forward and 45 ° backward with respect to the vertical axis in the traveling direction vertical direction of the vehicle with respect to the horizontal road surface. It is characterized in that the state of the running road surface is determined from the relationship with the information.
[0007]
Further, the road surface state determination device of the present invention is a road surface state determination device that determines a state of a road surface on which a four-wheel vehicle is traveling, and detects wheel speed rotation information of tires of driving wheels of the vehicle. Means for detecting acceleration in a two-axis direction perpendicular to a vertical axis and in a direction of 45 ° rearward with respect to a vertical axis in a vertical plane in a traveling direction of the vehicle with respect to a horizontal road surface; An acceleration calculating means for calculating acceleration information from an axial acceleration detecting means, and a road surface state determining means for determining a road surface state during traveling from a relationship between the wheel speed rotation information and the acceleration information. .
[0008]
Further, the road surface condition determination program according to the present invention includes a computer for determining the road surface condition, the wheel speed rotation information of the tires of the driving wheels of the vehicle obtained from the wheel speed detection means, and the vehicle traveling direction perpendicular to the horizontal road surface. In the plane, from the relationship with acceleration information obtained from orthogonal two-axis direction acceleration detecting means installed so as to face 45 ° forward and 45 ° backward with respect to the vertical axis, the state of the road surface during traveling It is made to function as road surface state determination means for determining
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a road surface state determination method and apparatus and a road surface state determination program according to the present invention will be described with reference to the accompanying drawings.
[0010]
As shown in FIG. 1, a road surface condition determination device according to one embodiment of the present invention is a road surface running on the basis of wheel speed rotation information of four tires FL, FR, RL, and RR provided in a four-wheeled vehicle. And a normal wheel speed detecting means 1 provided in association with each tire. Also, the vehicle is provided with orthogonal two-axis direction acceleration detecting means (hereinafter referred to as an acceleration detecting means) installed in the vehicle in a vertical direction in a traveling direction with respect to a horizontal road surface so as to face 45 ° forward and 45 ° backward with respect to a vertical axis. , Simply referred to as an acceleration sensor) 3.
[0011]
The wheel speed detecting means 1 generates a rotation pulse by using an electromagnetic pickup or the like and measures the wheel speed rotation information from the number of pulses. An angular velocity sensor including one that measures wheel speed rotation information from a voltage can be used. The output of the wheel speed detecting means 1 is given to a control unit 2 which is a computer such as an ABS. As shown in FIG. 2, the control unit 2 is connected to the acceleration sensor 3 and, among the road surface conditions (high μ road, middle μ road, low μ road), the low μ road Is displayed, the display means including a liquid crystal display element, a plasma display element, a CRT, or the like.
[0012]
As shown in FIG. 2, the control unit 2 stores an I / O interface 2a necessary for exchanging signals with an external device, a CPU 2b functioning as a center of arithmetic processing, and a control operation program of the CPU 2b. It comprises a ROM 2c and a RAM 2d from which data and the like are temporarily written when the CPU 2b performs a control operation, and from which the written data and the like are read.
[0013]
The wheel speed detecting means 1 outputs a pulse signal (hereinafter referred to as a wheel speed pulse) corresponding to the number of rotations of the tire. Also the CPU 2b, based on the wheel speed pulse outputted from the wheel speed detection means 1, the predetermined sampling period [Delta] T (sec), for example, the rotational angular velocity F i of each tire in each [Delta] T = 1 second is calculated.
[0014]
Here, since the tires are manufactured by including the variation (initial difference) within the standard, the effective rolling radius of each tire (the value obtained by dividing the distance traveled by one revolution by 2π) is equal to that of all the tires. Even at normal air pressures, they are not always the same. Therefore, the rotational angular velocities F i of respective tires thus vary. Therefore, the rotational angular velocity F1 i corrected to cancel the variation due to the initial difference is calculated. In particular,
F1 1 = F 1
F1 2 = mF 2
F1 3 = F 3
F1 4 = nF 4
Is corrected. The correction factor m, n, for example the vehicle calculates the rotational angular velocity F i under the condition that it is traveling straight, based on the rotational angular velocities F i The calculated, m = F 1 / F 2 , n = Obtained as F 3 / F 4 . Then, the wheel speed rotational information, the period and number of pulses of the wheel speed pulses of the wheel speed detecting means 1 reads the predetermined time intervals, a rotational speed calculated based on the F1 i, tires of the wheels Is calculated.
[0015]
In the present embodiment, the slip rate is calculated from the rotation speed of the driving wheels of the four-wheeled vehicle running and the vehicle speed calculated from the acceleration sensor 3, and the slip rate is calculated based on the slip rate and the acceleration calculated from the vehicle speed. From the relationship, the state of the road surface during traveling is determined. Then, the slipperiness of the running road surface is detected based on the state of the road surface, and if the road is a low μ road, an alarm is issued to the driver. Here, the relationship between the slip ratio and the acceleration is the same as the μ-s curve of a general tire and road surface, and the gradient changes depending on the high μ road, the medium μ road, and the low μ road.
[0016]
Therefore, the road surface condition determination device according to the present embodiment includes a wheel speed detection unit 1, an acceleration sensor 3, an acceleration calculation unit that calculates acceleration information from the acceleration sensor 3, and a relationship between the rotation speed and the acceleration information. And road surface state determination means for determining the state of the road surface during traveling. The present embodiment also includes a slip rate calculating unit that reads the acceleration and the vehicle speed of the acceleration information in synchronization with a time interval of speed detection for calculating a rotation speed, and then calculates a slip rate from the rotation speed and the vehicle speed. It has. Further, it is preferable to provide moving average processing means for performing a predetermined number of moving average processes on the rotational speed and acceleration read at regular time intervals.
[0017]
In addition, the program for determining the road surface state according to the present embodiment causes the control unit 2 to function as road surface state determination means for determining the state of the running road surface from the relationship between the rotation speed and the acceleration information. Further, it is preferable that the control unit 2 functions as a slip ratio calculating means and further functions as a moving average processing means.
[0018]
Hereinafter, an example of the operation of the road surface state determination device of the present embodiment will be described along procedures (1) to (5).
[0019]
(1) Each of the rotational speed of the four wheel tires of a vehicle (V1 n, V2 n, V3 n, V4 n) are calculated.
For example, wheel speed data at a certain point in time for each wheel tire of the vehicle obtained from a sensor such as an ABS sensor is assumed to be rotation speeds V1 n , V2 n , V3 n and V4 n .
[0020]
(2) then calculates the rotational speed Tf n of the drive wheels of the vehicle. For example, in the case of a two-wheel drive vehicle, the average rotational speed of the drive wheels can be used, and in the case of a four-wheel drive vehicle, the average rotational speed of the four wheels can be used.
[0021]
(3) followed calculates the rotational acceleration Taf n of the drive wheels of the vehicle.
That the one from the previous wheel speed data from the speed Tf n, when the rotational speed Tf n-1, determined by the equation of the rotational acceleration Taf n Hatsugi the driving wheels of the vehicle (1).
Taf n = (Tf n -Tf n-1 ) / Δt / G (1)
[0022]
Here, Δt is a time interval (sampling time) between the average rotation speeds Tf n and Tf n−1 calculated from the wheel speed data, and G is a gravitational acceleration. The sampling time needs to be 0.1 second or less in order to reduce data variation and determine in a short time. More preferably, the time is 0.05 seconds or less.
[0023]
(4) The slip ratio S of the driving wheels of the running vehicle is defined by the following equation (2). Here, T is the rotation speed of the drive wheel, and V is the ground speed of the vehicle (vehicle speed).
S = (T−V) / T (2)
[0024]
(5) Next, the relationship between the slip ratio of the drive wheels of the vehicle and the acceleration of the vehicle is determined.
[0025]
Here, assuming that the acceleration (ground acceleration) of the vehicle and the values of the acceleration sensors are simply Va and G1, G2, respectively, as shown in FIG. 3, for a vehicle traveling on a road gradient θ, The following equations (3) and (4) hold. G is the gravitational acceleration.
G1 = G × cos (45 ° + θ) −Va × cos45 ° (3)
G2 = G × cos (45 ° −θ) + Va × cos45 ° (4)
By adding this equation (1) and equation (2),
G1 + G2 = G × {cos (45 ° + θ) + cos (45 ° −θ)}
= G × √2 · cos θ
So, from now on,
θ = cos −1 {(G1 + G2) / G / {2} (5)
Can be requested.
[0026]
Also, when the above equation (1) and equation (2) are subtracted,
G1−G2 = G × {cos (45 ° + θ) −cos (45 ° −θ)}
-2 x Va x cos 45 °
= G × (−√2 × sin θ) −Va × √2
So, from now on,
Va = {(G2−G1) / {2} −G × sin θ (6)
Can be requested.
[0027]
Here, the rotational acceleration Ta of the drive wheel is obtained by differentiating the rotational speed T of the drive wheel with respect to time. Next, the two solutions of the equation (6) are compared with the rotational acceleration Ta, and the smaller of the differences is defined as the true value of the ground acceleration Va. Then, the ground acceleration Va is integrated with time to determine the vehicle speed V. Thus, the slip ratio S in the above equation (2) is calculated from the values of the rotation speed T and the vehicle speed V.
[0028]
Next, the relationship between the slip ratio S and the ground acceleration Va is plotted and linear approximation is performed to determine the slipperiness of the road surface from the gradient of the linear straight line.
[0029]
Here, in order to obtain the slip ratio S and the ground acceleration Va,
{Circle around (1)} In order to eliminate disturbance to the rotation speed and acceleration sensor due to unevenness of the road surface, a predetermined number of data obtained at each sampling time, for example, 50 data, is subjected to a moving average process.
In order to reduce the variation in data without reducing the number of data, data is sampled every short sampling time, for example, every several tens of ms, and the data having large variation obtained in this sampling time is moving averaged.
{Circle around (2)} Then, in order to obtain a linear relationship between the slip ratio S and the ground acceleration Va, linear approximation is performed by a predetermined number of, for example, every 20 least squares approximation methods. I do.
{Circle around (3)} As a result, the gradient of the straight-line approximation formula obtained for each sampling time becomes a value corresponding to the slipperiness of the road surface.
[0030]
Next, the present invention will be described based on examples, but the present invention is not limited to only these examples.
[0031]
【Example】
A four-wheel drive vehicle (displacement 2.0 L) was prepared as a vehicle. The size of the tire is 205 / 55R16. In addition, as a running condition of the vehicle, a road surface in which the road surface μ of ceramic tile, dolset pebble and wet concrete was changed in Okayama truck course of Sumitomo Rubber Industries, Ltd. was adopted. The acceleration sensor mounted on the vehicle was AR-2TF manufactured by Tokyo Sokki Laboratory Co., Ltd., and two of the three axes were mounted so as to be inclined 45 ° forward and backward with respect to the vertical axis of the vehicle. The sampling frequency is 50 Hz.
[0032]
Next, the vehicle traveled on the various road surfaces for about 10 seconds. FIG. 4 shows the relationship between the slip ratio and the acceleration plotted using the road surface condition determination device that stores the road surface condition determination program according to the present embodiment. From FIG. 4, it can be seen that the gradient of the linear approximation equation differs for each road surface, and the gradient increases as the road becomes lower μ.
[0033]
Therefore, by determining the state of the road surface while the vehicle is traveling, and using this information for the shift control information of the automatic transmission, the tire pressure drop detection device (DWS) and the road surface state determination system, the traveling performance and traveling safety are improved. Can be improved.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to accurately determine the state of the road surface during traveling in a four-wheel drive vehicle. Further, the present invention can be applied to a two-wheel drive vehicle.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a road surface condition determination device according to the present invention.
FIG. 2 is a block diagram illustrating an electrical configuration of the road surface condition determination device of FIG. 1;
FIG. 3 is a schematic diagram illustrating a state where a vehicle is traveling on a sloped road surface.
FIG. 4 is a diagram illustrating a relationship between a slip ratio and acceleration of a ceramic tile, a dollar set pebble, and wet concrete on a road surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wheel speed detection means 2 Control unit 3 Acceleration sensor (2-axis orthogonal acceleration detection means)
4 Low μ road alarm display