【0001】
【発明の属する技術分野】
本発明は、ヒートポンプサイクルを用いて給湯用の水を加熱し、その加熱された水を貯湯タンク上部より蓄えるようにしたヒートポンプ式給湯装置に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ式給湯装置においては、ヒートポンプサイクルを用いて貯湯水を加熱する場合、貯湯用熱交換器への入水温度が高くなると、加熱効率が低下するため、貯湯用熱交換器への入水温度が高くなると、ヒートポンプ装置による加熱動作を停止し、貯湯タンク上部に内蔵した熱源に通電している。(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−221501号公報(第3−6頁、図6−8)
【0004】
【発明が解決しようとする課題】
従来のヒートポンプ式給湯装置では、ヒートポンプ運転による加熱と熱源による加熱動作の併用で深夜時間帯に貯湯タンクを所定温度(例えば90℃)で沸き上げ、貯湯用熱交換器への入水温度が所定温度(例えば60℃)に達すると、ヒートポンプ運転による加熱動作を停止して、以後、貯湯タンクの上部に内蔵した熱源で高温に沸き上げるようにしているので、熱源への通電が多くなり、電気代が高くなる。また、暖房器等(外部熱負荷)との接続において、暖房器等に供給する液体温度を高くする必要がある場合(例えば、浴室暖房器、パネルヒータ等)には、貯湯タンク内の熱源で沸き上げるので、それらの暖房器の加熱性能を確保することはできるが、供給する液体の温度が低くてよい場合(例えば、床暖房等)には、貯湯タンク上部の貯湯水を高温に保つ必要はないにも係わらず、貯湯タンク内の熱源で高温に沸き上げてしまい、余分な沸き上げを行って電気代が高くなる。
【0005】
本発明は上記のような課題を解消するためになされたもので、暖房器等の外部熱負荷との接続において、外部熱負荷の加熱性能を確保しながら電気代の低減を図ることができるヒートポンプ式給湯装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係るヒートポンプ式給湯装置は、上部に補助加熱装置を具備した貯湯タンクと、この貯湯タンク内の水を下部より取り出し、貯湯タンク上部に戻す循環回路と、この循環回路を流れる水をヒートポンプサイクルを用いて加熱する加熱装置と、前記貯湯タンク上部より貯湯水を取り出し、この取り出し部よりも下部で貯湯タンクに戻す貯湯水循環回路と、この貯湯水循環回路に設けた循環ポンプと、前記貯湯水循環回路を循環する貯湯水と暖房器等の外部熱負荷に供給する外部液体との間で熱交換する外部熱負荷用熱交換器と、この外部熱負荷用熱交換器の出口側外部液体温度を検出する温度検出手段と、この温度検出手段が検出する前記外部熱負荷用熱交換器の出口側外部液体温度を所定温度以上に保つように前記補助加熱装置への通電を制御する制御手段を備えたもののである。
【0007】
【発明の実施の形態】
実施の形態1.
図1は本発明の実施の形態1を示すヒートポンプ式給湯装置の構成図、図2はヒートポンプ装置の構成図である。
図1において、給湯器本体1内には上部に補助加熱装置19を内蔵した貯湯タンク2が配設されている。貯湯タンク2の下部には減圧弁3aを具備する給水管3が接続されている。前記貯湯タンク2の上部には逃し弁5aを具備した給湯管5が接続されている。貯湯タンク2の上下部で貯湯水循環回路6が接続されている。この貯湯水循環回路6は貯湯タンク2内に貯湯されたお湯と外部熱負荷としての浴室暖房器10に供給される液体との間で熱交換する外部熱負荷用熱交換器7、循環ポンプ8、循環流量を調整する流量調整弁9で構成される。浴室暖房器10は外部液体循環回路11に接続され、外部液体循環回路11には浴室暖房器10に供給する外部液体を循環させる循環ポンプ12が設けられている。
【0008】
貯湯タンク2の外側面には内部の湯の温度を検出する温度センサ14a,14bが所定間隔を有して取り付けられており、そのうち、一方の温度センサ14aは補助加熱装置19の近傍に位置して取り付けられている。
貯湯水循環回路6には外部熱負荷用熱交換器7への貯湯水入口温度を検出する温度センサ15aと外部熱負荷用熱交換器7からの貯湯水出口温度を検出する温度センサ15bが設けられている。また、外部液体循環回路11には外部熱負荷用熱交換器7への外部液体入口温度を検出する温度センサ15cと外部熱負荷用熱交換器7からの外部液体出口温度を検出する温度センサ15dが設けられている。
【0009】
制御手段50は前記各温度センサ14a,14b,15a,15b,15c,15dの検出値を読込み、設定手段60の設定に基づいて補助加熱装置19,循環ポンプ8,12、循環流量調整弁9、後述するヒートポンプ装置100の運転を制御する。設定手段60は沸き上げ温度、各循環回路6、11の循環流量、各温度センサ14a,14b,15a,15b,15c,15dの検出温度等を適宜設定する。
ヒートポンプ装置100は、図2に示すように、圧縮機101、圧縮機101より吐出された高圧ガス冷媒と給湯用の水との間で熱交換する貯湯用熱交換器102、膨張弁103、吸熱用熱交換器104、アキュームレータ105、吸熱用熱交換器104に吸熱するためのファン106、貯湯タンク2の上下部とヒートポンプ装置100とが接続された加熱循環回路107で構成される。
加熱循環回路107には、循環ポンプ16、ヒートポンプ装置100の加熱動作を停止するための貯湯用熱交換器102への入口温度を検出する温度センサ13、出口温度を検出する沸き上げ温度センサ110が設けられている。
【0010】
ここで、以下の説明の為、外部熱負荷用熱交換器7の貯湯水入口温度センサ15aの検出温度である入力値をThi、貯湯水出口温度センサ15bの検出温度である入力値をTho、外部熱負荷用熱交換器7の外部液体入口温度センサ15cの検出温度である入力値をTci、外部熱負荷用熱交換器7の外部液体出口温度センサ15dの検出温度である入力値をTcoと定義する。
【0011】
浴室暖房器10の暖房能力を変化させるには、流量調整弁9を調整して貯湯水循環回路6の貯湯水の循環量を変化させる。同時に貯湯タンク2への戻り温度も変化する。例えば、浴室暖房器10の暖房能力を運転開始時に最大(約5KW)にする場合は、流量調整弁9を全開にすると、貯湯水循環回路6の循環流量は最大になるので(約10L/分)、貯湯タンク2への戻り温度、すなわち、Thoが高くなる。一方、浴室暖房器10の暖房能力を安定時に小さく(約3KW)する場合は、流量調整弁9を絞ると、貯湯水循環回路6の貯湯水の循環流量は少なくなり(約4L/分)、貯湯タンク2への戻り温度、すなわち、Thoが低くなる。
【0012】
次に、上記実施の形態1におけるヒートポンプ式給湯装置の動作について説明する。
給水管3から給水された水は所定圧に減圧弁3aで減圧され、貯湯タンク2に給水される。そして、貯湯タンク2内は常に満水状態となっている。
まず、ヒートポンプサイクルによる沸き上げ動作について説明すると、貯湯タンク2内の水は循環ポンプ16の運転により、貯湯タンク2の下部から加熱循環回路107に取り出されて貯湯用熱交換器102に導かれ、貯湯用熱交換器102で熱交換されることで、加熱昇温され、貯湯タンク2の上部に戻される。ここで、加熱循環回路107を流れる流量は、沸き上げ温度センサ110が設定手段60で設定された温度(例えば90℃)になるように、循環ポンプ16で調整される。これにより、貯湯タンク2の上部より90℃のお湯が少量ずつ貯湯されていく。
【0013】
ここで、ヒートポンプ方式による沸き上げは、温度センサ13の温度が一定温度(例えば60℃)以上になったら、貯湯タンク2が全量沸き上がったと判断して、終了する。
この時、ヒートポンプ方式による沸き上げ加熱性能は、貯湯用熱交換器102に入る水の温度が低いときは、沸き上げの加熱効率が高い(約300%)が、貯湯用熱交換器102に入る水の温度が高いときは、沸き上げの加熱効率は低下(100%以下)する特性をもっている。
なお、沸き上げ時の貯湯タンク2の膨張水は逃し弁5aより排出される。
一般の蛇口などに給湯する場合は、蛇口を開くことによって、給湯管5を通して水源水圧の力で給湯され、貯湯タンク2下部に水が供給される。
【0014】
次に、浴室暖房器10の運転動作と補助加熱装置19による沸き上げ動作について説明する。
設定手段60により浴室暖房器10の運転開始の指示を受けると、暖房運転が開始される。暖房運転が開始されると、まず循環ポンプ12が動作して浴室暖房器10内の液体が外部液体循環回路11に導かれ、外部熱負荷用熱交換器7を通って浴室暖房器10内に戻される。一方、循環ポンプ8も動作して貯湯タンク2の上部より高温の貯湯水が貯湯水循環回路6に導かれ、外部熱負荷用熱交換器7、循環流量調整弁9を通って貯湯タンク2下部に戻される。この時、外部熱負荷用熱交換器7は、貯湯タンク2内に貯湯された高温の貯湯水から低温の浴室暖房器に熱交換(伝熱)することで、浴室内を暖房することができる。
【0015】
ここで、浴室暖房器10の暖房能力を所定能力以上に確保するためには、浴室暖房器10に供給される外部液体の温度は所定温度(例えば80℃)以上としなければならない。
外部熱負荷用熱交換器7の外部液体出口温度センサ15dが所定温度(例えば80℃)以下を検出した場合、又は、貯湯タンク2内の残湯温度を検出する温度センサ14aが所定温度(例えば80℃)より低い温度を検出した場合は、暖房性能が低下すると考えられるため、制御手段50は補助加熱装置19に通電して貯湯タンク2上部の貯湯水を沸き上げる。そして、外部熱負荷用熱交換器7の外部液体出口温度センサ15dが所定温度(例えば80℃)以上を検出するか、又は、貯湯タンク2上部をすばやく高温度(例えば約90℃)に沸き上げて、貯湯タンク2に取り付けてある温度センサ14aが約90℃を検出すると、補助加熱装置19への通電を停止する。
【0016】
また、貯湯タンク2内の残湯温度を温度センサ14a、14bで検出し、貯湯タンク2内の残湯温度が約60℃以上である場合、貯湯タンク2内に多量の中温水が残っているので、ヒートポンプ方式による沸き上げでは加熱性能が低下するから、制御手段50はヒートポンプ方式による沸き上げを停止して、補助加熱装置19に通電することとしている。
一方、貯湯タンク2内の湯を給湯に使用して、温度センサ14a、又は14bで貯湯タンク2内の残湯温度が45℃以下を検出した場合は、貯湯タンク2内の残湯が少なく、貯湯タンク2内下部に多量の水が供給されているので、ヒートポンプ方式による沸き上げ加熱効率が補助加熱装置19の加熱効率(約95%)よりも非常に高いため、制御手段50は補助加熱装置19への通電を禁止して、ヒートポンプ方式による沸き上げを行なうこととしている。
【0017】
このように、実施の形態1によれば、設定手段60によって浴室暖房器10に供給する液体温度を所定温度(例えば80℃)以上と設定したときに、外部熱負荷用熱交換器7の外部液体出口温度センサ15dが所定温度(80℃)以下を検出した場合、又は、貯湯タンク2内の残湯温度を検出する温度センサ14aが所定温度(80℃)より低い温度を検出した場合は、補助加熱装置19に通電し、貯湯タンク2上部をすばやく所定温度(約90℃)に沸き上げるので、浴室暖房器10の暖房性能を確保できる一方、ヒートポンプ方式による沸き上げ加熱効率が良好な場合には、補助加熱装置19への通電を禁止して、必要以上の沸き上げを行わないので、補助加熱装置19への通電が少なくなり、電気代を低減できる。
【0018】
なお、実施の形態1では、外部熱負荷として、供給する液体温度を高くする必要がある浴室暖房器を例について説明したが、外部熱負荷が床暖房等の場合は、床からの伝熱とふく射熱による暖房なので、床の表面温度は約30℃程度あればよいため、液体温度が低くてもよく(例えば約50℃)、貯湯タンク2内の残湯温度が低下しても暖房性能を確保できるので、補助加熱装置19への通電の必要はより少なくなり、補助加熱装置19への通電を禁止して、より電気代の低減を図ることができる。
また、実施の形態1では、設定手段60によって浴室暖房器10に供給する液体温度を設定できるしているが、製造時に、予め所定温度を設定しておいてもよく、所定温度の値も80℃に限定されるものではない。
【0019】
【発明の効果】
以上のように、本発明に係るヒートポンプ式貯湯装置によれば、ヒートポンプサイクルを用いて給湯用の水を加熱し、その加熱された水を貯湯タンク上部より蓄えるようにしたヒートポンプ式給湯装置において、暖房器等の外部熱負荷との接続において、外部熱負荷へ供給する液体温度を高くする必要がある場合にのみ、貯湯タンク内上部に設けた補助加熱装置に通電して沸き上げるので、外部熱負荷の加熱性能を確保しながら電気代の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1を示すヒートポンプ式給湯装置の構成図である。
【図2】本発明の実施の形態1を示すヒートポンプ本体の構成図である。
【符号の説明】
1 給湯器本体
2 貯湯タンク
6 貯湯水循環回路
7 外部熱負荷用熱交換器
8 循環ポンプ
9 流量調整弁
10 浴室暖房器(外部熱負荷)
11 外部液体循環回路
12 循環ポンプ
15a 貯湯水入口温度センサ
15b 貯湯水出口温度センサ
15c 外部液体入口温度センサ
15d 外部液体出口温度センサ
19 補助加熱装置
50 制御手段
60 設定手段
100 ヒートポンプ装置(加熱装置)
102 貯湯用熱交換器
107 加熱循環回路。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a heat pump type hot water supply apparatus in which water for hot water supply is heated using a heat pump cycle, and the heated water is stored from an upper portion of a hot water storage tank.
[0002]
[Prior art]
In a conventional heat pump hot water supply apparatus, when heating hot water using a heat pump cycle, if the temperature of incoming water to the heat exchanger for hot water storage increases, the heating efficiency decreases, and the temperature of incoming water to the heat exchanger for hot water storage increases. When the temperature rises, the heating operation by the heat pump device is stopped, and the heat source built in the upper part of the hot water storage tank is energized. (For example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-221501 A (page 3-6, FIG. 6-8)
[0004]
[Problems to be solved by the invention]
In a conventional heat pump type hot water supply apparatus, the hot water storage tank is heated at a predetermined temperature (for example, 90 ° C.) at midnight by using both the heating by the heat pump operation and the heating operation by the heat source. When the temperature reaches 60 ° C. (for example, 60 ° C.), the heating operation by the heat pump operation is stopped, and thereafter, the heat source built in the upper part of the hot water storage tank is heated to a high temperature. Will be higher. When it is necessary to increase the temperature of the liquid supplied to the heater or the like (for example, a bathroom heater or a panel heater) in connection with the heater or the like (external heat load), the heat source in the hot water storage tank is used. Since the water is heated, the heating performance of those heaters can be secured, but if the temperature of the liquid to be supplied is low (for example, floor heating), it is necessary to keep the temperature of the hot water above the hot water storage tank high. Despite the lack of water, the water is heated to a high temperature by the heat source in the hot water storage tank, and extra heating is performed to increase the electricity bill.
[0005]
The present invention has been made in order to solve the above-described problems, and in connection with an external heat load such as a heater, a heat pump capable of reducing the electricity bill while securing the heating performance of the external heat load. It is an object of the present invention to provide a hot water supply apparatus.
[0006]
[Means for Solving the Problems]
A heat pump type hot water supply apparatus according to the present invention includes a hot water storage tank having an auxiliary heating device in an upper part, a circulation circuit for taking out water in the hot water storage tank from a lower part and returning the water to an upper part of the hot water storage tank, and a heat pump for flowing water flowing in the circulation circuit. A heating device for heating using a cycle, a hot water circulation circuit for taking out hot water from the upper portion of the hot water tank and returning the hot water to the hot water tank below the take-out portion, a circulation pump provided in the hot water circulation circuit, and the hot water circulation. An external heat load heat exchanger for exchanging heat between the hot water circulating in the circuit and an external liquid supplied to an external heat load such as a heater, and an outlet side external liquid temperature of the external heat load heat exchanger. Temperature detecting means for detecting, and the auxiliary heating device is connected to the auxiliary heating device such that the temperature of the external liquid on the outlet side of the heat exchanger for external heat load detected by the temperature detecting means is maintained at a predetermined temperature or higher. It is despite a control means for controlling the electric.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a heat pump type hot water supply device showing a first embodiment of the present invention, and FIG. 2 is a configuration diagram of a heat pump device.
In FIG. 1, a hot water storage tank 2 having a built-in auxiliary heating device 19 is provided in the upper part of the water heater main body 1. A water supply pipe 3 having a pressure reducing valve 3a is connected to a lower portion of the hot water storage tank 2. A hot water supply pipe 5 having a relief valve 5a is connected to an upper portion of the hot water storage tank 2. A hot water circulation circuit 6 is connected to upper and lower portions of the hot water storage tank 2. The hot water circulation circuit 6 exchanges heat between hot water stored in the hot water storage tank 2 and a liquid supplied to the bathroom heater 10 as an external heat load, a heat exchanger 7 for external heat load, a circulation pump 8, It comprises a flow control valve 9 for adjusting the circulation flow. The bathroom heater 10 is connected to an external liquid circulation circuit 11, and the external liquid circulation circuit 11 is provided with a circulation pump 12 for circulating an external liquid supplied to the bathroom heater 10.
[0008]
Temperature sensors 14a and 14b for detecting the temperature of the internal hot water are mounted on the outer surface of the hot water storage tank 2 at a predetermined interval, and one of the temperature sensors 14a is located near the auxiliary heating device 19. Attached.
The hot water circulation circuit 6 is provided with a temperature sensor 15a for detecting a hot water inlet temperature to the external heat load heat exchanger 7 and a temperature sensor 15b for detecting a hot water outlet temperature from the external heat load heat exchanger 7. ing. The external liquid circulation circuit 11 has a temperature sensor 15c for detecting an external liquid inlet temperature to the external heat load heat exchanger 7 and a temperature sensor 15d for detecting an external liquid outlet temperature from the external heat load heat exchanger 7. Is provided.
[0009]
The control means 50 reads the detected values of the respective temperature sensors 14a, 14b, 15a, 15b, 15c, 15d, and based on the setting of the setting means 60, the auxiliary heating device 19, the circulation pumps 8, 12, the circulation flow regulating valve 9, The operation of a heat pump device 100 described later is controlled. The setting means 60 appropriately sets the boiling temperature, the circulation flow rate of each of the circulation circuits 6 and 11, the detection temperature of each of the temperature sensors 14a, 14b, 15a, 15b, 15c, and 15d.
As shown in FIG. 2, the heat pump device 100 includes a compressor 101, a hot-water storage heat exchanger 102 that exchanges heat between high-pressure gas refrigerant discharged from the compressor 101 and water for hot water supply, an expansion valve 103, The heat exchanger 104 includes a heat exchanger 104, an accumulator 105, a fan 106 for absorbing heat to the heat exchanger 104 for absorbing heat, and a heating circulation circuit 107 in which the upper and lower portions of the hot water storage tank 2 and the heat pump device 100 are connected.
The heating circulation circuit 107 includes a circulation pump 16, a temperature sensor 13 for detecting an inlet temperature to the hot water storage heat exchanger 102 for stopping the heating operation of the heat pump device 100, and a boiling temperature sensor 110 for detecting an outlet temperature. Is provided.
[0010]
Here, for the following description, the input value which is the detected temperature of the hot water inlet temperature sensor 15a of the heat exchanger 7 for external heat load is Thi, and the input value which is the detected temperature of the hot water outlet temperature sensor 15b is Th. The input value which is the detected temperature of the external liquid inlet temperature sensor 15c of the heat exchanger for external heat load 7 is Tci, and the input value which is the detected temperature of the external liquid outlet temperature sensor 15d of the heat exchanger for external heat load 7 is Tco. Define.
[0011]
To change the heating capacity of the bathroom heater 10, the flow rate adjusting valve 9 is adjusted to change the circulation amount of the stored hot water in the stored hot water circulation circuit 6. At the same time, the return temperature to the hot water storage tank 2 also changes. For example, when the heating capacity of the bathroom heater 10 is maximized (about 5 KW) at the start of operation, the circulation flow rate of the hot water circulation circuit 6 is maximized when the flow rate regulating valve 9 is fully opened (about 10 L / min). Then, the return temperature to the hot water storage tank 2, that is, Tho increases. On the other hand, when the heating capacity of the bathroom heater 10 is reduced during stable operation (about 3 KW), when the flow control valve 9 is throttled, the circulation flow rate of the hot water in the hot water circulation circuit 6 decreases (about 4 L / min), The return temperature to the tank 2, that is, Tho, decreases.
[0012]
Next, the operation of the heat pump hot water supply apparatus according to Embodiment 1 will be described.
The water supplied from the water supply pipe 3 is reduced to a predetermined pressure by the pressure reducing valve 3 a and supplied to the hot water storage tank 2. And the inside of hot water storage tank 2 is always full.
First, the boiling operation by the heat pump cycle will be described. Water in the hot water storage tank 2 is taken out from the lower part of the hot water storage tank 2 to the heating circulation circuit 107 by the operation of the circulation pump 16 and guided to the hot water storage heat exchanger 102, The heat is exchanged by the hot water storage heat exchanger 102, so that the temperature of the hot water is raised and returned to the upper portion of the hot water storage tank 2. Here, the flow rate flowing through the heating circulation circuit 107 is adjusted by the circulation pump 16 so that the temperature of the boiling temperature sensor 110 becomes the temperature set by the setting means 60 (for example, 90 ° C.). Thereby, 90 ° C. hot water is stored little by little from the upper part of the hot water storage tank 2.
[0013]
Here, when the temperature of the temperature sensor 13 becomes equal to or higher than a predetermined temperature (for example, 60 ° C.), it is determined that the hot water storage tank 2 has completely boiled, and the boiling by the heat pump method is ended.
At this time, when the temperature of the water entering the heat exchanger 102 for hot water storage is low, the heating efficiency of the boiling water is high (about 300%), but the heating performance of the heat pump system is high. When the temperature of water is high, the heating efficiency of boiling is reduced (100% or less).
The expansion water in the hot water storage tank 2 at the time of boiling is discharged from the relief valve 5a.
When hot water is supplied to a general faucet or the like, the faucet is opened, hot water is supplied through the hot water supply pipe 5 by the power of the water source water pressure, and water is supplied to the lower part of the hot water storage tank 2.
[0014]
Next, an operation of the bathroom heater 10 and a boiling operation by the auxiliary heating device 19 will be described.
When the setting means 60 receives an instruction to start the operation of the bathroom heater 10, the heating operation is started. When the heating operation is started, first, the circulation pump 12 operates, and the liquid in the bathroom heater 10 is guided to the external liquid circulation circuit 11, and passes through the external heat load heat exchanger 7 into the bathroom heater 10. Will be returned. On the other hand, the circulation pump 8 is also operated, and the hot water stored in the hot water is guided from the upper part of the hot water storage tank 2 to the hot water storage circuit 6, passes through the heat exchanger for external heat load 7, and the circulation flow rate regulating valve 9 to the lower part of the hot water storage tank 2. Will be returned. At this time, the heat exchanger for external heat load 7 can heat the bathroom by performing heat exchange (heat transfer) from the high-temperature hot water stored in the hot-water storage tank 2 to the low-temperature bathroom heater. .
[0015]
Here, in order to secure the heating capacity of the bathroom heater 10 at or above a predetermined capacity, the temperature of the external liquid supplied to the bathroom heater 10 must be at least a predetermined temperature (for example, 80 ° C.).
When the external liquid outlet temperature sensor 15d of the external heat load heat exchanger 7 detects a predetermined temperature (for example, 80 ° C.) or lower, or when the temperature sensor 14a for detecting the remaining hot water temperature in the hot water storage tank 2 is a predetermined temperature (for example, If a temperature lower than 80 ° C. is detected, the heating performance is considered to be reduced, so the control means 50 supplies power to the auxiliary heating device 19 to boil the hot water stored in the upper part of the hot water storage tank 2. Then, the external liquid outlet temperature sensor 15d of the external heat load heat exchanger 7 detects a predetermined temperature (for example, 80 ° C.) or higher, or quickly raises the upper part of the hot water storage tank 2 to a high temperature (for example, about 90 ° C.). When the temperature sensor 14a attached to the hot water storage tank 2 detects about 90 ° C., the power supply to the auxiliary heating device 19 is stopped.
[0016]
Further, the temperature of the remaining hot water in the hot water storage tank 2 is detected by the temperature sensors 14a and 14b, and when the temperature of the remaining hot water in the hot water storage tank 2 is about 60 ° C. or more, a large amount of medium-temperature water remains in the hot water storage tank 2. Therefore, the heating performance is reduced in the heating by the heat pump method, so that the control means 50 stops the heating by the heat pump method and supplies power to the auxiliary heating device 19.
On the other hand, when the hot water in the hot water storage tank 2 is used for hot water supply and the temperature sensor 14a or 14b detects the remaining hot water temperature in the hot water storage tank 2 at 45 ° C. or less, the remaining hot water in the hot water storage tank 2 is small, Since a large amount of water is supplied to the lower part of the hot water storage tank 2, the heating efficiency by the heat pump method is much higher than the heating efficiency of the auxiliary heating device 19 (about 95%). The energization to the heat pump 19 is prohibited, and the heating is performed by the heat pump method.
[0017]
As described above, according to the first embodiment, when the setting unit 60 sets the temperature of the liquid supplied to the bathroom heater 10 to a predetermined temperature (for example, 80 ° C.) or higher, the external heat load heat exchanger 7 When the liquid outlet temperature sensor 15d detects a temperature lower than the predetermined temperature (80 ° C.), or when the temperature sensor 14a detecting the remaining hot water temperature in the hot water storage tank 2 detects a temperature lower than the predetermined temperature (80 ° C.), When the auxiliary heating device 19 is energized and the upper part of the hot water storage tank 2 is quickly heated to a predetermined temperature (about 90 ° C.), the heating performance of the bathroom heater 10 can be ensured. Since the power supply to the auxiliary heating device 19 is prohibited and the heating is not performed more than necessary, the power supply to the auxiliary heating device 19 is reduced, and the electricity bill can be reduced.
[0018]
In the first embodiment, as an example of the external heat load, a bathroom heater that needs to increase the temperature of the supplied liquid has been described. However, when the external heat load is floor heating or the like, heat transfer from the floor is not sufficient. Since the heating is by radiant heat, the floor surface temperature need only be about 30 ° C., so the liquid temperature may be low (for example, about 50 ° C.), and the heating performance is ensured even if the remaining hot water temperature in the hot water storage tank 2 decreases. Therefore, the necessity of energizing the auxiliary heating device 19 is reduced, and the energization of the auxiliary heating device 19 is prohibited, so that the electricity cost can be further reduced.
Further, in the first embodiment, the temperature of the liquid to be supplied to bathroom heater 10 can be set by setting means 60, but a predetermined temperature may be set in advance at the time of manufacture, and the value of the predetermined temperature may be set to 80. It is not limited to ° C.
[0019]
【The invention's effect】
As described above, according to the heat pump hot water storage device according to the present invention, in the heat pump hot water supply device that heats water for hot water supply using a heat pump cycle and stores the heated water from an upper portion of the hot water storage tank, Only when it is necessary to increase the temperature of the liquid supplied to the external heat load in connection with an external heat load such as a heater, the auxiliary heating device provided in the upper part of the hot water storage tank is energized and boiled. Electricity cost can be reduced while ensuring the heating performance of the load.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump hot water supply apparatus according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a heat pump main body according to the first embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hot water heater main body 2 Hot water storage tank 6 Hot water circulation circuit 7 Heat exchanger for external heat load 8 Circulation pump 9 Flow control valve 10 Bathroom heater (external heat load)
11 External liquid circulation circuit 12 Circulating pump 15a Hot water inlet temperature sensor 15b Hot water outlet temperature sensor 15c External liquid inlet temperature sensor 15d External liquid outlet temperature sensor 19 Auxiliary heating device 50 Control means 60 Setting means 100 Heat pump device (heating device)
102 Hot water storage heat exchanger 107 Heating circulation circuit.