JP2004018566A - Epoxy compound having charge transporting ability - Google Patents
Epoxy compound having charge transporting ability Download PDFInfo
- Publication number
- JP2004018566A JP2004018566A JP2002171849A JP2002171849A JP2004018566A JP 2004018566 A JP2004018566 A JP 2004018566A JP 2002171849 A JP2002171849 A JP 2002171849A JP 2002171849 A JP2002171849 A JP 2002171849A JP 2004018566 A JP2004018566 A JP 2004018566A
- Authority
- JP
- Japan
- Prior art keywords
- substituted
- group
- unsubstituted
- epoxy compound
- alkyl group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Epoxy Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、電子写真感光体の機械的耐久性(耐摩耗性、耐傷性など)を飛躍的に向上させるとともに電荷輸送材料の析出を抑え、さらに静電的特性も損なわない3次元架橋膜を作成しうる電荷輸送能を有するエポキシ化合物、及びそれらの混合物に関するものである。
【0002】
【従来の技術】
従来、電子写真感光体に用いられる光導電性材料として、セレン、硫化カドミウム、酸化亜鉛等の無機系材料と、ポリ−N−ビニルカルバゾール、トリフェニルアミン化合物(米国特許第3,180,730号)、ベンジジン化合物(米国特許第3,265,496号、特公昭39−11546号公報、特開昭53−27033号公報)等のような有機系材料が提案されている。
無機感光体は、感度や耐久性が良好であるが生産コストが高く、毒性や廃棄性、可とう性などの問題を有することから、現在は安価で取扱い性の良い有機感光体が主流となっている。しかし、有機感光体は無機感光体と比べて、感度や機械的耐久性の点で劣る傾向があり、特に機械的耐久性の向上は強く求められている。
【0003】
現在、有機感光体は、電荷発生層と電荷輸送層からなる機能分離型の積層感光体が多く、機能分離型とすることで静電的特性と機械的耐久性の両立をはかっている。
また、有機感光体には個々の電子写真プロセスに応じた感度、静電的特性、光学的特性のほかに、電気的、機械的ハザード(帯電、露光、現像、転写、クリーニングなど)に対する耐久性も要求される。
【0004】
具体的には、電子写真プロセス中での帯電や酸化性ガス(オゾン、NOx)などによる感光体の静電的劣化(感度低下、電位低下、残留電位上昇等)、摺擦による物理的劣化(摩耗、傷、摩擦係数の上昇)などに対する耐久性向上が要求される。
【0005】
一般に有機感光体の表面層は、バインダー樹脂に電荷輸送物質を分子分散させた樹脂感光層からなる。この電荷輸送物質は可塑剤的な作用を示し、膜強度を低下させるため、感光体の機械的耐久性はバインダー樹脂の種類に大きく依存する。現在、上述の要求を満たす樹脂として、ポリカーボネート樹脂やアクリル樹脂などが実用化されているが、すべての特性を満足していないのが実情である。さらに有機感光体には、保存中に電荷輸送物質が析出してしまうという問題も抱えている。
【0006】
これらの問題を解決する手段として、バインダー樹脂に硬化性樹脂を用いることが、特開平2−127652号公報などに開示されている。しかし、バインダー樹脂に硬化性樹脂を用いると耐摩耗性や耐傷性は大きく向上するが、単純に硬度が高すぎるだけでは電荷輸送能が低くなり易く、繰り返し使用における残留電位が上昇しやすい傾向がある。また、分子分散された電荷輸送物質は、あくまでも可塑剤として作用するので析出などの問題も根本的には解決されないことから、硬化性樹脂と電子写真特性を高いレベルで両立させることが求められている。
【0007】
【発明が解決しようとする課題】
本発明の目的は、従来の電子写真感光体のもつ問題点を解決し、とくに機械的耐久性(耐摩耗性、耐傷性など)を飛躍的に向上させ、かつ電荷輸送物質が析出しない感光層を形成するのに有用な電荷輸送能を有する新規なエポキシ化合物、及びそれらの混合物を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、下記一般式(1)、(2)、(3)、(4)、(5)、(6)及び(7)で表される電荷輸送能を有するエポキシ化合物、及び数平均分子量600〜500000のそれらの混合物が提供される。
【化8】
(式中、R1は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。Ar1は少なくとも1個の3級アミノ基を有するアリール基を表す。Ar2、Ar3は置換もしくは無置換のアリレン基を表す。但し、Ar2とAr3は同一でも異なっていてもよい。nは0〜5000の整数を表す。)
【化9】
(式中、Ar1は少なくとも1個の3級アミノ基を有するアリール基を表す。Ar2、Ar3は置換もしくは無置換のアリレン基を表す。但し、Ar2とAr3は同一でも異なっていてもよい。nは0〜5000の整数を表す。)
【化10】
(式中、R2、R3は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。Ar2〜Ar4は置換もしくは無置換のアリレン基を表す。但し、R2とR3、Ar2〜Ar4は、それぞれ同一でも異なっていてもよい。nは0〜5000の整数を表す。)
【化11】
(式中、R2、R3は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。R4〜R11は水素原子、ハロゲン原子、置換もしくは無置換のアルキル基を表す。Ar4は置換もしくは無置換のアリレン基を表す。但し、R2とR3、R4〜R11はそれぞれ同一でも異なっていてもよい。nは0〜5000の整数を表す。)
【化12】
(式中、R2、R3は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。R4〜R15は水素原子、ハロゲン原子、置換もしくは無置換のアルキル基を表す。但し、R2とR3、R4〜R15はそれぞれ同一でも異なっていてもよい。nは0〜5000の整数を表す。)
【化13】
(式中、R4〜R15は水素原子、ハロゲン原子、置換もしくは無置換のアルキル基を表し、それぞれ同一でも異なっていてもよい。R16〜R25は水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のアリールオキシ基を表し、それぞれ同一でも異なっていてもよい。nは0〜5000の整数を表す。)
【化14】
(式中、R4〜R15は水素原子、ハロゲン原子、置換もしくは無置換のアルキル基を表し、それぞれ同一でも異なっていてもよい。R16〜R25は水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のアリールオキシ基を表し、それぞれ同一でも異なっていてもよい。)
【0009】
【発明の実施の形態】
以下に本発明をさらに詳細に説明する。
本発明の前記一般式(1)〜(7)で表される電荷輸送能を有するエポキシ化合物は、新規物質であり、測鎖部分に3級アミノ基や芳香環以外の炭素−炭素二重結合を有するため、これらエポキシ化合物を用いて感光体を作製した場合、該感光体は帯電時の静電的ハザードに対して耐久性が高く、耐摩耗性に極めて優れたものとなる。これは、主鎖方向での分子切断等が生起しないことによるものと考えられる。
一方、主鎖部分に3級アミノ基や芳香環以外の炭素−炭素二重結合を有する化合物では、帯電時の静電的ハザードに対して該アミノ基や該二重結合部位は切れやすいため、分子量が下がり耐摩耗性が低くなる傾向にある。
また、エポキシ基の硬化反応に光重合を利用する場合、感光体のような大面積の均一架橋膜を得ることは難しく、感光体特性や摩耗特性に不具合を生じやすいため、本発明の電荷輸送能を有するエポキシ化合物は、活性水素基を利用した熱硬化方法を利用することが好ましく、該方法により均一な膜質の大面積の架橋膜を得ることができる。
さらに本発明のようなエポキシ化合物(エポキシ樹脂)を用いて作製した感光体は、従来の熱可塑性樹脂から作製した感光体と異なり、3次元架橋された硬化性樹脂から構成されているために、機械的、静電的ハザードに対して飛躍的に強い。特に、エポキシ樹脂の3次元架橋膜は、他の堅くてもろい3次元架橋膜と異なり、靭性に優れていることから、耐摩耗性にも優れている。
【0010】
本発明の電荷輸送能を有するエポキシ化合物の、前記一般式(1)、(2)、(3)、(4)、(5)、(6)及び(7)で表される電荷輸送能を有するエポキシ化合物において、R1〜R25の置換もしくは無置換のアルキル基とは、炭素数1〜5の直鎖又は分岐鎖のアルキル基であり、ハロゲン原子やフェニル基で置換されていてもよく、該フェニル基は、さらにハロゲン原子や炭素数1〜5のアルキル基などで置換されていてもよい。具体的にはメチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基、s−ブチル基、n−ブチル基、i−ブチル基、n−ペンチル基、トリフルオロメチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基等が挙げられる。
【0011】
また、R1〜R25の置換もしくは無置換のアリール基として、フェニル基、ナフチル基、ビフェニリル基、ターフェニリル基、ピレニル基、フルオレニル基、9,9−ジメチル−2−フルオレニル基、アズレニル基、アントリル基、トリフェニレニル基、クリセニル基等が挙げられ、これらのアリール基にはハロゲン原子や前述のアルキル基、フェニル基等が置換していてもよい。また、下記一般式(8)で表される基も挙げることができる。
【化15】
〔式中、Xは−O−、−S−、−SO−、−SO2−、−CO−及び以下の2価基を表す。
【化16】
【化17】
(ここで、R26、R27は水素原子、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表し、aは1〜12の整数、bは1〜3の整数を表す。)〕
尚、前記一般式(8)中のR26、R27の置換もしくは無置換のアルキル基、及び置換もしくは無置換のアリール基は前記R1〜R3、R16〜R25と、その定義及び具体例は同様である。
【0012】
また前記一般式(6)及び(7)で表される電荷輸送能を有するエポキシ化合物において、R16〜R25の置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリールオキシ基は、それぞれ、前記R1〜R25の説明において挙げた置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基からそれぞれ誘導される基が挙げられる。
【0013】
また前記一般式(1)及び(2)で表される電荷輸送能を有するエポキシ化合物において、Ar1の少なくとも1個の3級アミノ基を有するアリール基の該アリール基としては、前記R1〜R3、R16〜R25の説明において挙げたものと同様のものを挙げることができる。
さらに該3級アミノ基としては、−NR2R3基で表される基が挙げられ、該R2、R3の定義及び具体例は前記したものと同様である。
【0014】
また前記一般式(1)、(2)、(3)及び(4)で表される電荷輸送能を有するエポキシ化合物において、Ar2、Ar3及びAr4の置換もしくは無置換のアリレン基としては、前記Ar1の説明(即ちR1〜R3、R16〜R25の説明)において挙げたアリール基から誘導される2価の基が挙げられる。
さらに該アリレン基の置換基としては、前記R4〜R15の説明において挙げたものと同様のものを挙げることができる。
【0015】
さらにまた、前記各基におけるハロゲン原子の具体例として、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。
【0016】
また本発明の前記一般式(1)〜(7)のいずれかで表される電荷輸送能を有するエポキシ化合物は、それらと他のエポキシ化合物との混合物、またはそれらの混合物、或いはそれらの混合物とさらに他のエポキシ化合物との混合物として用いることも好ましい。
このように混合物として用いることにより、感光体設計(例えば、静電特性、電荷移動度、機械的耐久性、ガラス転移温度など)を容易に、かつ自由に行なうことができる。また市販のエポキシ化合物と組み合わせることにより、感光体を安価に製造できるという利点も有する。
【0017】
さらに本発明の前記一般式(1)〜(6)のいずれかで表される電荷輸送能を有するエポキシ化合物の混合物の数平均分子量は、600〜500000が好ましい。
該数平均分子量が600〜500000の範囲の場合、感光体製造において溶液系塗工が容易であるとともに感光体特性の制御も容易である。
一方、該数平均分子量が500000を越えた場合、溶剤に不溶であったり、溶液に不溶部を有する等の不具合などが生じ、溶液系塗工による均一な感光層の形成が困難となる。
【0018】
本発明の電荷輸送能を有するエポキシ化合物は新規物質であり、以下に一般的な製造方法の例を示すが、これに限定されるものではない。
例えば前記一般式(3)で表される化合物は、下記一般式(9)で表されるヒドロキシ化合物のグリシジル化により合成される。
【化18】
(式中、R2、R3、Ar2、Ar3、Ar4は、前記した定義と同一のものを表す。)
【0019】
ヒドロキシル化合物のグリシジル化による基本反応は、例えば、日刊工業新聞社 新保正樹著の「エポキシ樹脂ハンドブック」P21〜23に記載されている。
このときの反応は、従来公知の方法でよく、例えばトルエン、ジクロロメタン、テトラヒドロフランなどの溶媒もしくは無溶媒下で、ヒドロキシル化合物とエピクロルヒドリンなどのグリシジル化剤を溶解もしくは分散させた後、水酸化カリウム水溶液、水酸化ナトリウム水溶液などのアルカリ物質を少しずつ加え、室温〜150℃付近で反応させることにより容易に合成することができる。また、このときエポキシ基の加水分解を防ぐために反応系内の余分な水分は、エステル菅などを用いて反応系外へ排出する方が望ましい。
【0020】
本発明の電荷輸送能を有するエポキシ化合物は、電子写真感光体に於ける光導電性素材、とくに光導電性を有する硬化型保護層として極めて有用であり、染料やルイス酸などの増感剤によって光学的あるいは化学的に増感される。更にこのものは、有機顔料あるいは無機材料を電荷発生物質とする、いわゆる機能分離型に於ける電荷輸送物質としても有用である。
【0021】
上記増感剤としては、例えば、メチルバイオレット、クリスタルバイオレット等のトリアリールメタン染料、ローズベンガル、エリスロシン、ローダミン等のキサンテン染料、メチレンブルー等のチアジン染料、2,4,7−トリニトロ−9−フルオレノン、2,4−ジニトロ−9−フルオレノン等が挙げられる。
【0022】
また、有機顔料としてはシーアイピグメントブルー25(CI No.21180)、シーアイピグメントレッド41(CI No.21200)、シーアイピグメントレッド3(CI No.45210)等のアゾ顔料、シーアイピグメントブルー16(CI No.74100)等のフタロシアニン系顔料、シーアイバットブラウン5(CI No.73410)、シーアイバットダイ(CINo.73030)等のインジゴ系顔料、アルゴスカーレットB、インダンスレンスカーレッドR等のペリレン系顔料が挙げられる。また、セレン、セレン−テルル、硫化カドミウム、α−シリコン等の無機材料も使用できる。
【0023】
本発明の電荷輸送能を有するエポキシ化合物の具体例を下記の表1及び表2に示す。
尚、表1には前記一般式(1)においてAr1が−Ar4NR2R3基である場合の具体例を示す。また表2には表1中の化合物No.1〜10においてn=0の場合の具体例を示す。
【0024】
【表1】
【0025】
【表2】
【0026】
【実施例】
以下に実施例を示し、本発明を更に具体的に説明する。しかしながら、本発明はこれら実施例に限定されるものではない。
【0027】
実施例1
<化合物No.1の合成>
かき混ぜ装置、温度計、滴下漏斗をつけた反応容器に、4−〔2,2−ビス(4−ヒドロキシフェニル)ビニル〕フェニル−ビス(4−メチルフェニル)アミン9.67g(20.0mmol)とエピクロルヒドリン18.51g(200.0mmol)、トルエン20mlを入れ、窒素気流下、20wt%水酸化ナトリウム水溶液9.60g(48.0mmol)を5分間かけて滴下し、85℃で4時間反応させた。これを室温まで放冷し、過剰のエピクロルヒドリンを減圧回収した後、ジクロロメタンを加えて有機層を水洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下で濃縮した。これをメタノール中で再沈し、濾過して、黄色粉末8.98g(収率75.4%)を得た。融点は非晶質であった。
赤外線吸収スペクトル(NaCl液膜法)を図1に示す。
【0028】
実施例2
<化合物No.11の合成>
かき混ぜ装置、温度計、滴下漏斗およびエピクロルヒドリンと水との共沸混合物を凝縮分離して下層のエピクロルヒドリン層を戻すための装置をつけた反応容器に、4−〔2,2−ビス(4−ヒドロキシフェニル)ビニル〕フェニル−ビス(4−メチルフェニル)アミン19.34g(40.0mmol)とエピクロルヒドリン37.01g(400.0mmol)を入れ、窒素気流下、110℃で加熱攪拌した。これに反応系内の温度が100℃〜120℃を維持するように、20wt%水酸化ナトリウム水溶液19.20g(96.0mmol)を3時間かけて滴下した。反応中に留去された水とエピクロルヒドリンはエピクロルヒドリンのみ反応容器に戻し、水酸化ナトリウム水溶液の滴下終了後、110℃でさらに1時間反応させた。これを室温まで放冷し、過剰のエピクロルヒドリンを減圧回収した後、トルエンを加えて有機層を水洗浄し、無水硫酸マグネシウムで乾燥後、減圧下でトルエン溶媒を留去して、黄色の粗生成物20.75g(収率87.1%)、融点111.0〜116.0℃を得た。これをシリカゲルでカラムクロマト精製(溶離液:トルエン/酢酸エチル=20/1vol.)した後、酢酸エチルとエタノールから再結晶を行って淡黄色針状結晶15.85g(収率66.5%)を得た。融点は128.0〜129.0℃であった。
赤外線吸収スペクトル(NaCl液膜法)を図2に示す。
元素分析結果を以下に示す。
元素分析値(wt%)
【0029】
応用例1
<電子写真感光体の作製>
φ30mmのアルミニウムドラム上に、下記組成の下引き層用塗工液、電荷発生層用塗工液、電荷輸送層用塗工液1、電荷輸送層用塗工液2を順次、塗布乾燥することにより、3.5μmの下引き層、0.2μmの電荷発生層、30±1μmの電荷輸送層1、5±1μmの電荷輸送層2を形成して、電子写真感光体を得た。
〔下引き層用塗工液〕
アルキッド樹脂(ベッコゾール1307−60−EL
大日本インキ化学工業製) 6部
メラミン樹脂(スーパーベッカミンG−821−60
大日本インキ化学工業製) 4部
酸化チタン 40部
メチルエチルケトン 50部
〔電荷発生層用塗工液〕
オキシチタニウムフタロシアニン顔料 3部
ポリビニルブチラール(UCC製:XYHL) 2部
テトラヒドロフラン 95部
〔電荷輸送層用塗工液1〕
ビスフェノールZ型ポリカーボネート
(帝人化成製:PCX−5) 10部
下記構造式で表される低分子電荷輸送材料 7部
【化19】
ジクロロメタン 150部
〔電荷輸送層用塗工液2〕
2,2−ビスグリシジルオキシフェニルプロパン 20部
実施例1で得られたエポキシ化合物 No.1 14部
イソホロンジアミン 7部
ジクロロメタン 370部
【0030】
比較例1
応用例1において、電荷輸送層用塗工液2を塗布しない以外は、応用例1と全く同様にして電子写真感光体を作製した。
【0031】
各種評価試験
応用例1および比較例1で作製した電子写真感光体を実装用にした後、(株)リコー製複写機イマジオMF2200に装着し、60K枚(A4用紙)の連続通紙試験を行い、感光体の膜厚減少量と耐傷性およびトナー画像の評価を行った。結果を下記表3に示す。
【表3】
【0032】
評価方法及び評価基準
(1)膜厚減少量
評価方法:FISCHER社製 フィッシャースコープ MMS 渦電流式膜厚測定器で感光体上の任意の20点について、それぞれ10回測定し、それらの平均値をとって膜厚とした。
(2)耐傷性
評価方法:感光体の外観を目視により観察した。
評価基準:未発生を○、局所的に発生を△、全面に発生を×、とした。
(3)トナー画像評価
評価方法:白画像(全面露光画像)の地肌汚れについて、目視により評価した。
評価基準:未発生を○、局所的に発生を△、全面に発生を×、とした。
【0033】
この結果から電子写真感光体の最表面層として、本発明の電荷輸送能を有するエポキシ化合物を三次元架橋することにより形成することで、機械的耐久性(耐摩耗性、耐傷性)を飛躍的に向上させ、かつトナー画像も良好な電子写真感光体を提供できた。
【0034】
【発明の効果】
本発明によれば、従来の電子写真感光体の機械的耐久性(耐摩耗性、耐傷性)を飛躍的に向上させ、かつ電子写真特性をも満足する新規な電荷輸送能を有するエポキシ化合物、及びそれらの混合物を提供することができる。
【図面の簡単な説明】
【図1】化合物No.1の赤外線吸収スペクトル図(NaCl液膜法)。
【図2】化合物No.11の赤外線吸収スペクトル図(NaCl液膜法)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a three-dimensional crosslinked film that dramatically improves the mechanical durability (abrasion resistance, scratch resistance, etc.) of an electrophotographic photoreceptor, suppresses the deposition of a charge transport material, and does not impair the electrostatic properties. The present invention relates to an epoxy compound having charge transportability that can be prepared, and a mixture thereof.
[0002]
[Prior art]
Conventionally, as a photoconductive material used for an electrophotographic photoreceptor, inorganic materials such as selenium, cadmium sulfide, and zinc oxide, and poly-N-vinylcarbazole and triphenylamine compounds (US Pat. No. 3,180,730) ), Benzidine compounds (U.S. Pat. No. 3,265,496, JP-B-39-11546, JP-A-53-27033) and the like.
Inorganic photoreceptors have good sensitivity and durability, but have high production costs and have problems such as toxicity, disposability, and flexibility. ing. However, organic photoreceptors tend to be inferior in sensitivity and mechanical durability as compared with inorganic photoreceptors, and in particular, improvements in mechanical durability are strongly demanded.
[0003]
At present, many organic photoconductors are of a function-separated type having a charge generation layer and a charge transport layer, and the use of a function-separated type achieves both electrostatic characteristics and mechanical durability.
In addition to the sensitivity, electrostatic characteristics, and optical characteristics according to each electrophotographic process, the organic photoreceptor has durability against electrical and mechanical hazards (such as charging, exposure, development, transfer, and cleaning). Is also required.
[0004]
Specifically, electrostatic deterioration (sensitivity decrease, potential decrease, residual potential increase, etc.) of the photoreceptor due to charging or oxidizing gas (ozone, NOx) during the electrophotographic process, and physical deterioration due to rubbing ( It is required to improve durability against abrasion, scratches, increase in friction coefficient, and the like.
[0005]
In general, the surface layer of an organic photoreceptor comprises a resin photosensitive layer in which a charge transporting substance is molecularly dispersed in a binder resin. Since this charge transporting substance acts as a plasticizer and lowers the film strength, the mechanical durability of the photoreceptor greatly depends on the type of binder resin. At present, polycarbonate resins, acrylic resins, and the like have been put to practical use as resins satisfying the above requirements, but in reality, they do not satisfy all characteristics. Further, the organic photoreceptor also has a problem that a charge transport substance is deposited during storage.
[0006]
As means for solving these problems, use of a curable resin as a binder resin is disclosed in Japanese Patent Application Laid-Open No. 2-127652. However, when a curable resin is used as a binder resin, abrasion resistance and scratch resistance are greatly improved, but if the hardness is simply too high, the charge transport ability tends to be low, and the residual potential in repeated use tends to increase. is there. In addition, since the molecule-dispersed charge transport substance acts as a plasticizer to the last, problems such as precipitation are not fundamentally solved, so it is required that the curable resin and electrophotographic characteristics be compatible at a high level. I have.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems of the conventional electrophotographic photoreceptor, in particular, to dramatically improve the mechanical durability (abrasion resistance, scratch resistance, etc.) and to prevent the photosensitive layer from depositing a charge transport material. It is an object of the present invention to provide a novel epoxy compound having a charge transport ability useful for forming a compound, and a mixture thereof.
[0008]
[Means for Solving the Problems]
According to the present invention, an epoxy compound having charge transport ability represented by the following general formulas (1), (2), (3), (4), (5), (6) and (7), and a number Mixtures thereof having an average molecular weight of 600 to 500,000 are provided.
Embedded image
(Wherein, R 1 represents a hydrogen atom, a substituted or unsubstituted alkyl group, .Ar 2 .Ar 1 representing a substituted or unsubstituted aryl group of an aryl group having at least one tertiary amino group, Ar 3 represents a substituted or unsubstituted arylene group, provided that Ar 2 and Ar 3 may be the same or different, and n represents an integer of 0 to 5000.)
Embedded image
(Wherein, .Ar 2, Ar 3 Ar 1 is representative of the aryl group having at least one tertiary amino group is a substituted or unsubstituted arylene group. However, Ar 2 and Ar 3 are either the same or different And n represents an integer of 0 to 5000.)
Embedded image
(In the formula, R 2 and R 3 represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Ar 2 to Ar 4 represent a substituted or unsubstituted arylene group, provided that R 2 and R 3 represent 3 , and Ar 2 to Ar 4 may be the same or different, and n represents an integer of 0 to 5000.)
Embedded image
(In the formula, R 2 and R 3 represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. R 4 to R 11 represent a hydrogen atom, a halogen atom, or a substituted or unsubstituted alkyl group. Ar 4 represents a substituted or unsubstituted arylene group, provided that R 2 and R 3 , and R 4 to R 11 may be the same or different, and n represents an integer of 0 to 5000.
Embedded image
(In the formula, R 2 and R 3 represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. R 4 to R 15 represent a hydrogen atom, a halogen atom, or a substituted or unsubstituted alkyl group. However, R 2 and R 3 , and R 4 to R 15 may be the same or different, and n represents an integer of 0 to 5000.)
Embedded image
(In the formula, R 4 to R 15 represent a hydrogen atom, a halogen atom, or a substituted or unsubstituted alkyl group, and may be the same or different. R 16 to R 25 each represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group. Represents a substituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, which may be the same or different, and n represents an integer of 0 to 5000 .)
Embedded image
(In the formula, R 4 to R 15 represent a hydrogen atom, a halogen atom, or a substituted or unsubstituted alkyl group, and may be the same or different. R 16 to R 25 each represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group. Represents a substituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aryloxy group, which may be the same or different.)
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The epoxy compound having a charge transporting ability represented by the general formulas (1) to (7) of the present invention is a novel substance, and has a carbon-carbon double bond other than a tertiary amino group or an aromatic ring in a chain measurement portion. Therefore, when a photoreceptor is prepared using these epoxy compounds, the photoreceptor has high durability against electrostatic hazards during charging and extremely excellent abrasion resistance. This is considered to be due to the fact that molecular breakage or the like in the main chain direction does not occur.
On the other hand, in a compound having a carbon-carbon double bond other than a tertiary amino group or an aromatic ring in the main chain portion, the amino group or the double bond site is easily cut by an electrostatic hazard at the time of charging. The molecular weight tends to decrease and the wear resistance tends to decrease.
In addition, when photopolymerization is used for the curing reaction of the epoxy group, it is difficult to obtain a large-area uniform crosslinked film such as a photoreceptor, and the characteristics of the photoreceptor and the abrasion characteristics are likely to be deteriorated. It is preferable to use a thermosetting method using an active hydrogen group for the epoxy compound having the function, and a large-area cross-linked film having uniform film quality can be obtained by the method.
Furthermore, unlike a photoreceptor made from a conventional thermoplastic resin, a photoreceptor made using an epoxy compound (epoxy resin) as in the present invention is composed of a three-dimensionally cross-linked curable resin. Dramatically strong against mechanical and electrostatic hazards. In particular, the three-dimensional crosslinked film of epoxy resin is different from other hard and brittle three-dimensional crosslinked films in that it has excellent toughness, and therefore has excellent wear resistance.
[0010]
The charge transport ability of the epoxy compound having charge transport ability of the present invention represented by the general formulas (1), (2), (3), (4), (5), (6) and (7) is as follows. In the epoxy compound having, the substituted or unsubstituted alkyl group of R 1 to R 25 is a linear or branched alkyl group having 1 to 5 carbon atoms, which may be substituted with a halogen atom or a phenyl group. The phenyl group may be further substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, or the like. Specifically, methyl, ethyl, n-propyl, i-propyl, t-butyl, s-butyl, n-butyl, i-butyl, n-pentyl, trifluoromethyl, Examples include a benzyl group, a 4-chlorobenzyl group, and a 4-methylbenzyl group.
[0011]
Examples of the substituted or unsubstituted aryl group for R 1 to R 25 include a phenyl group, a naphthyl group, a biphenylyl group, a terphenylyl group, a pyrenyl group, a fluorenyl group, a 9,9-dimethyl-2-fluorenyl group, an azulenyl group, and an anthryl group. Group, triphenylenyl group, chrysenyl group and the like. These aryl groups may be substituted by a halogen atom, the above-mentioned alkyl group, phenyl group and the like. Further, a group represented by the following general formula (8) can also be mentioned.
Embedded image
Wherein, X is -O -, - S -, - SO -, - SO 2 -, - CO- and represent a divalent group of the following.
Embedded image
Embedded image
(Where R 26 and R 27 represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, a is an integer of 1 to 12, and b is an integer of 1 to 3 Represents.)]
In the general formula (8), the substituted or unsubstituted alkyl group and the substituted or unsubstituted aryl group represented by R 26 and R 27 are defined as R 1 to R 3 and R 16 to R 25 , respectively, as defined above. Specific examples are the same.
[0012]
In the epoxy compounds having a charge transporting ability represented by the general formulas (6) and (7), a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group of R 16 to R 25 is, respectively, Examples thereof include groups each derived from a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group described in the description of R 1 to R 25 .
[0013]
Further, in the epoxy compound having a charge transporting ability represented by the general formulas (1) and (2), the aryl group of the aryl group having at least one tertiary amino group of Ar 1 includes the above-described R 1 to The same as those described in the description of R 3 and R 16 to R 25 can be given.
Yet the tertiary amino group, include groups represented by -NR 2 R 3 group, definition and specific examples of the R 2, R 3 are the same as those described above.
[0014]
In the epoxy compounds having a charge transporting ability represented by the general formulas (1), (2), (3) and (4), the substituted or unsubstituted arylene groups of Ar 2 , Ar 3 and Ar 4 are preferably And the divalent group derived from the aryl group described in the description of Ar 1 (that is, the description of R 1 to R 3 and R 16 to R 25 ).
Further, as the substituent for the arylene group, the same substituents as those described in the description of R 4 to R 15 can be given.
[0015]
Furthermore, specific examples of the halogen atom in each of the above groups include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
[0016]
Further, the epoxy compound having a charge transporting ability represented by any of the general formulas (1) to (7) of the present invention is a mixture of the epoxy compound with another epoxy compound, a mixture thereof, or a mixture thereof. It is also preferable to use it as a mixture with another epoxy compound.
By using such a mixture, the photoconductor design (eg, electrostatic characteristics, charge mobility, mechanical durability, glass transition temperature, etc.) can be easily and freely performed. There is also an advantage that the photoreceptor can be manufactured at low cost by combining with a commercially available epoxy compound.
[0017]
Further, the number average molecular weight of the mixture of the epoxy compounds having a charge transporting ability represented by any of the general formulas (1) to (6) of the present invention is preferably from 600 to 500,000.
When the number average molecular weight is in the range of 600 to 500,000, solution-based coating is easy in the production of the photoreceptor, and the control of the photoreceptor characteristics is also easy.
On the other hand, when the number average molecular weight exceeds 500,000, inconveniences such as insolubility in a solvent and an insoluble portion in a solution occur, and it is difficult to form a uniform photosensitive layer by solution coating.
[0018]
The epoxy compound having a charge transport ability of the present invention is a novel substance, and examples of a general production method are shown below, but the invention is not limited thereto.
For example, the compound represented by the general formula (3) is synthesized by glycidylation of a hydroxy compound represented by the following general formula (9).
Embedded image
(In the formula, R 2 , R 3 , Ar 2 , Ar 3 , and Ar 4 represent the same as defined above.)
[0019]
The basic reaction by glycidylation of a hydroxyl compound is described in, for example, “Epoxy Resin Handbook”, pages 21 to 23, written by Masaki Shinbo, Nikkan Kogyo Shimbun.
The reaction at this time may be a conventionally known method, for example, in a solvent or no solvent such as toluene, dichloromethane, and tetrahydrofuran, after dissolving or dispersing the glycidylating agent such as a hydroxyl compound and epichlorohydrin, and then adding an aqueous potassium hydroxide solution. It can be easily synthesized by adding an alkali substance such as an aqueous solution of sodium hydroxide little by little and reacting at room temperature to about 150 ° C. At this time, in order to prevent hydrolysis of the epoxy group, it is preferable that excess water in the reaction system is discharged out of the reaction system using an ester tube or the like.
[0020]
The charge-transporting epoxy compound of the present invention is extremely useful as a photoconductive material in an electrophotographic photoreceptor, in particular, as a curable protective layer having photoconductivity, and is provided by a sensitizer such as a dye or a Lewis acid. Sensitized optically or chemically. Further, this is also useful as a charge transport material in a so-called function separation type in which an organic pigment or an inorganic material is used as a charge generating material.
[0021]
Examples of the sensitizer include triarylmethane dyes such as methyl violet and crystal violet, xanthene dyes such as rose bengal, erythrosine and rhodamine, thiazine dyes such as methylene blue, 2,4,7-trinitro-9-fluorenone, 2,4-dinitro-9-fluorenone and the like.
[0022]
Examples of organic pigments include azo pigments such as C.I. Pigment Blue 25 (CI No. 21180), C.I. Pigment Red 41 (CI. No. 21200), C.I. Pigment Red 3 (CI. No. 45210), and C.I. Phthalocyanine pigments, such as C.I. Brown 100 (CI No. 73410), C.I. No. In addition, inorganic materials such as selenium, selenium-tellurium, cadmium sulfide, and α-silicon can also be used.
[0023]
Specific examples of the epoxy compound having a charge transport ability of the present invention are shown in Tables 1 and 2 below.
Table 1 shows a specific example in the case where Ar 1 in the general formula (1) is a group of —Ar 4 NR 2 R 3 . Table 2 shows the compound No. in Table 1. Specific examples when n = 0 in 1 to 10 are shown.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to these examples.
[0027]
Example 1
<Compound No. Synthesis of 1>
9.67 g (20.0 mmol) of 4- [2,2-bis (4-hydroxyphenyl) vinyl] phenyl-bis (4-methylphenyl) amine was added to a reaction vessel equipped with a stirring device, a thermometer, and a dropping funnel. 18.51 g (200.0 mmol) of epichlorohydrin and 20 ml of toluene were added, and 9.60 g (48.0 mmol) of a 20 wt% aqueous sodium hydroxide solution was added dropwise over 5 minutes under a nitrogen stream, followed by reaction at 85 ° C. for 4 hours. This was allowed to cool to room temperature, excess epichlorohydrin was recovered under reduced pressure, dichloromethane was added, the organic layer was washed with water, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. This was reprecipitated in methanol and filtered to obtain 8.98 g (yield 75.4%) of a yellow powder. The melting point was amorphous.
FIG. 1 shows an infrared absorption spectrum (NaCl liquid film method).
[0028]
Example 2
<Compound No. Synthesis of 11>
A reaction vessel equipped with a stirring device, a thermometer, a dropping funnel, and a device for condensing and separating an azeotrope of epichlorohydrin and water and returning a lower epichlorohydrin layer was placed in a reaction vessel equipped with 4- [2,2-bis (4-hydroxy). 19.34 g (40.0 mmol) of phenyl) vinyl] phenyl-bis (4-methylphenyl) amine and 37.01 g (400.0 mmol) of epichlorohydrin were added, and the mixture was heated and stirred at 110 ° C. under a nitrogen stream. To this, 19.20 g (96.0 mmol) of a 20 wt% aqueous sodium hydroxide solution was added dropwise over 3 hours such that the temperature in the reaction system was maintained at 100 ° C to 120 ° C. Only water and epichlorohydrin distilled off during the reaction were returned to the reaction vessel, and after the completion of the dropwise addition of the aqueous sodium hydroxide solution, the reaction was further carried out at 110 ° C. for 1 hour. This was allowed to cool to room temperature, and excess epichlorohydrin was recovered under reduced pressure. Toluene was added, the organic layer was washed with water, dried over anhydrous magnesium sulfate, and the toluene solvent was distilled off under reduced pressure to give a yellow crude product. 20.75 g (yield: 87.1%) of a compound having a melting point of 111.0 to 116.0 ° C was obtained. This was purified by silica gel column chromatography (eluent: toluene / ethyl acetate = 20/1 vol.), And then recrystallized from ethyl acetate and ethanol to obtain 15.85 g of pale yellow needle crystals (yield: 66.5%). Got. The melting point was 128.0-129.0 ° C.
FIG. 2 shows the infrared absorption spectrum (NaCl liquid film method).
The results of elemental analysis are shown below.
Elemental analysis value (wt%)
[0029]
Application example 1
<Preparation of electrophotographic photoreceptor>
A coating liquid for an undercoat layer, a coating liquid for a charge generation layer, a
(Coating liquid for undercoat layer)
Alkyd resin (Veccosol 1307-60-EL
6 parts melamine resin (Super Beckamine G-821-60)
4 parts Titanium oxide 40 parts
Oxytitanium phthalocyanine pigment 3 parts Polyvinyl butyral (UCC: XYHL) 2 parts Tetrahydrofuran 95 parts [
Bisphenol Z-type polycarbonate (PCX-5 manufactured by Teijin Chemicals) 10 parts Low molecular charge transporting material represented by the following structural formula 7 parts
150 parts of dichloromethane [Coating liquid for charge transport layer 2]
2,2-
Comparative Example 1
An electrophotographic photoreceptor was produced in exactly the same manner as in Application Example 1, except that the
[0031]
Various evaluation tests After the electrophotographic photosensitive members produced in Application Example 1 and Comparative Example 1 were mounted, they were mounted on a copier Imagio MF2200 manufactured by Ricoh Co., Ltd., and a continuous paper passing test of 60K sheets (A4 paper) was performed. Then, the amount of reduction in the thickness of the photoreceptor, the scratch resistance, and the toner image were evaluated. The results are shown in Table 3 below.
[Table 3]
[0032]
Evaluation Method and Evaluation Criteria (1) Film Thickness Reduction Evaluation Method: Measured 10 times for each of 20 arbitrary points on the photoreceptor using a Fischerscope MMS eddy current type film thickness meter manufactured by FISCHER, and averaged the average values. This was taken as the film thickness.
(2) Scratch resistance evaluation method: The appearance of the photoreceptor was visually observed.
Evaluation criterion: O was not generated, Δ was locally generated, and X was generated over the entire surface.
(3) Toner image evaluation evaluation method: The background image of a white image (entirely exposed image) was visually evaluated.
Evaluation criteria: O was not generated, Δ was locally generated, and X was generated over the entire surface.
[0033]
From these results, the mechanical durability (abrasion resistance and scratch resistance) is dramatically improved by forming the outermost surface layer of the electrophotographic photosensitive member by three-dimensionally crosslinking the epoxy compound having the charge transport ability of the present invention. And an electrophotographic photoreceptor having a good toner image was provided.
[0034]
【The invention's effect】
According to the present invention, there is provided an epoxy compound having a novel charge transporting ability that dramatically improves the mechanical durability (abrasion resistance and scratch resistance) of a conventional electrophotographic photoreceptor and also satisfies electrophotographic properties. And mixtures thereof.
[Brief description of the drawings]
FIG. 1. Compound No. 1 is an infrared absorption spectrum diagram (NaCl liquid membrane method).
FIG. 2. Compound No. 11 is an infrared absorption spectrum diagram (NaCl liquid membrane method).
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171849A JP3871973B2 (en) | 2002-06-12 | 2002-06-12 | Epoxy compound having charge transporting ability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171849A JP3871973B2 (en) | 2002-06-12 | 2002-06-12 | Epoxy compound having charge transporting ability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004018566A true JP2004018566A (en) | 2004-01-22 |
JP3871973B2 JP3871973B2 (en) | 2007-01-24 |
Family
ID=31171602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002171849A Expired - Fee Related JP3871973B2 (en) | 2002-06-12 | 2002-06-12 | Epoxy compound having charge transporting ability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3871973B2 (en) |
-
2002
- 2002-06-12 JP JP2002171849A patent/JP3871973B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3871973B2 (en) | 2007-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5483612B2 (en) | p-Terphenyl compound and electrophotographic photoreceptor using the compound | |
JP5209325B2 (en) | P-terphenyl compound mixture and electrophotographic photoreceptor using the compound mixture | |
EP2460796A1 (en) | Indole derivative | |
JP2001166516A (en) | Electrophotographic photoreceptor, process cartridge and electrophotoraphic device | |
US6818366B2 (en) | Photoconductive imaging members | |
JP2001166517A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
GB2055803A (en) | Hydrazones of 9-ethylcarbazole-3- aldehyde and their use in electrophotography | |
JP4167454B2 (en) | Epoxy compound having charge transporting ability | |
JP3871973B2 (en) | Epoxy compound having charge transporting ability | |
JP3854452B2 (en) | Diamine compound and electrophotographic photoreceptor using the same | |
JP4128247B2 (en) | Phenolic compounds and electrophotographic photoreceptors | |
JP3949592B2 (en) | Electrophotographic photosensitive member, process cartridge having electrophotographic photosensitive member, and image forming apparatus | |
JP3930380B2 (en) | Epoxy compound having charge transport ability and method for producing the same | |
JP3497199B2 (en) | Hydrazone derivatives and electrophotographic photoreceptors using the same | |
JPH06211757A (en) | New-9,10-bis@(3754/24)n,n-diarylamino)phenanthrene derivative and its production | |
JP4343605B2 (en) | Enamine-bis (hydroxyarylene-substituted) polyene compound and production intermediate thereof | |
JPH06118670A (en) | Electrophotographic organic sensitive body | |
JP3770980B2 (en) | Phenolic compound and electrophotographic photoreceptor containing the same | |
JP3540056B2 (en) | Hydroxyl group-containing amine compounds | |
JP3954976B2 (en) | Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and image forming apparatus | |
US8722288B2 (en) | Diphenylnaphthylamine derivatives | |
JP2639061B2 (en) | Electrophotographic photoreceptor | |
JP2639060B2 (en) | Electrophotographic photoreceptor | |
JPH10237149A (en) | Polyether resin and electrophotographic photoreceptor using the same | |
JP2004217527A (en) | Bishydroxy-substituted alkenylamine compound and intermediate for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050225 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050601 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050714 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20060222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061018 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131027 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |