JP2004003333A - Heat insulation form, structure using it, and construction method for foundation - Google Patents
Heat insulation form, structure using it, and construction method for foundation Download PDFInfo
- Publication number
- JP2004003333A JP2004003333A JP2003145507A JP2003145507A JP2004003333A JP 2004003333 A JP2004003333 A JP 2004003333A JP 2003145507 A JP2003145507 A JP 2003145507A JP 2003145507 A JP2003145507 A JP 2003145507A JP 2004003333 A JP2004003333 A JP 2004003333A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- heat
- foundation
- insulating
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Foundations (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明はコンクリート用の型枠と構造体並びに基礎の施工方法に関し、特に断熱性に優れたコンクリート用の型枠と、その型枠を具備した構造体並びにその型枠を具備したコンクリート基礎を施工する方法に関するものである。
【0002】
【従来の技術】
従来から一般木造住宅の基礎の施工方法としては、建築現場の所定位置に木製や鋼板製の堰板(コンクリートパネル)を用いてコンクリート基礎用の型枠を組み、その型枠の中に混練した生コンクリートを流し込み、養生硬化させた後前記堰板をはぎ取ってコンクリート土台を完成させ、該コンクリート土台の上に柱等の構造物を組み立てる工法が取られてきた。
木製や鋼板製の堰板は大気中の湿気によって腐食するため、コンクリートの養生後は堰板を取り外さないと羽蟻の発生原因になったり、基礎の膨張変形の原因となる。このためコンクリートの養生後に堰板を取り外す作業が必要となり、その分工期を必要とするほか、堰板の運搬費や工賃がかさむ結果となっていた。
また、裏日本地方のように冬季の気温が低く湿気の多い地方では、冬季にコンクリート土台の表面が冷やされると結露し、木造の構造体の基礎部分が腐食し易い傾向にある。建物の寿命にとって基礎部分の腐食は致命的となることも少なくない。
【0003】
さらに住宅の省エネルギー化の推進に伴って、住宅の床、壁、天井などの構造体からの熱放散を少なくする試みが行われている。これまでは主として床、壁、天井などの構造体の内側にガラスウール等の断熱材を張る、いわゆる「内断熱法」が試みられてきた。近頃、耐火性の住宅の普及に伴ってコンクリート構造体の使用が増してきたが、この場合「内断熱法」では放熱ロスを防ぐには限界があり、さらなる対策が求められている。
【0004】
【発明が解決しようとする課題】
本発明は上記の事情に鑑みなされたものであって、断熱性に優れたコンクリート型枠を提供し、コンクリート構造体の断熱効果を高め、いわゆる「外断熱」を可能とするコンクリート構造体を提供することを目的とする。また、基礎コンクリートを打ち込み後型枠を取り外す必要が無く、かつ型枠の断熱効果によりコンクリート土台の表面が冷やされても結露することが無く、木造の構造体でも基礎部分が腐食されることのない、打ち込み型コンクリート型枠を提供するものである。さらに、この打ち込み型コンクリート型枠を使用したコンクリート基礎の施工方法を提供するものである。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明の断熱型枠は少なくともセメント及び発泡断熱材を含むセメント系組成物を、所望の形状に成型硬化させてなる型枠とした。
本発明の断熱型枠では、前記発泡断熱材として黒曜石パーライトを使用することができ、その発泡断熱材の粒径は0.5〜10mmであることが好ましい。
粒径が0.5〜10mmの中空状の黒曜石パーライトを使用することにより、強度を保ちつつ嵩比重を下げ、熱伝導率を低くして断熱効果や結露防止効果を最大限に発揮させることができる。
このようにセメント系組成物から構成された成型体をコンクリート型枠用の堰板として使用することにより、断熱効果が発揮されて冬季に湿度が高くなっても結露することはなく、建物の構造体からの放熱量が減少し、外断熱により省エネルギーが達成できる。また、基礎コンクリートを打ち込んだ後でも堰板を取り外す必要はない。このため施工作業が簡略化され、工期短縮や工費の節減をはかることができる。
【0006】
本発明の断熱型枠では、セメント系組成物を固化させるためのバインダーとして、カチオン系クロロプレンラテックス配合物を含むことが好ましい。ここでカチオン系クロロプレンラテックス配合物とは、クロロプレン配合の乳液であって、たとえばタイトメント(昭和電工建材(株)製:登録商標)等が利用できる。
カチオン系クロロプレンはセメント中に含まれる金属酸化物と架橋反応を起こし、壊れやすい黒曜石パーライトの球状体形を保護しつつ一体成型硬化するので、高強度でしかも軽量性、断熱性、耐衝撃性、不燃性、遮水性及び保形成に優れた成型体とすることができ、コンクリート型枠用堰板としても利用することができるものとなる。
【0007】
本発明の断熱型枠は、熱伝導率が0.05〜0.5(Kcal/mh℃)で、嵩比重が0.3〜1.5(Kg/m3)であることが好ましい。
発泡断熱材の特性を最大限に発揮させることにより、断熱効果や結露防止効果を高めることができるからである。
【0008】
上記の断熱型枠を使用してコンクリートを打ち込み構造体を製造し、養生後も少なくとも1面に該型枠を残したままにすれば、構造体の断熱性能が向上し、構造体からの放熱量を抑えることが可能となる。ここで構造体とは建築物を構成する壁、床、天井等の主として板材を指す。コンクリート製の板材は断熱型枠を組み合わせて空間を形成し、その空間内にコンクリートを流し込んで養生硬化させて製作する。本発明の構造体では養生硬化後も断熱型枠を取り外すことなくそのまま残したものである。断熱型枠は、通常は板状の構造体の表裏2面に残しておくのが断熱効果の点から好ましいが、構造体は装飾上や他の部材との関係から表裏2面に残せない場合がある。したがって、断熱型枠は構造体の少なくとも1面、好ましくは建物の外側になる面に残しておくのが好ましい。構造体は板状に限らず、柱状であっても構わない。
【0009】
次に、本発明のコンクリート基礎の施工方法は、少なくともセメント、発泡断熱材及び水を所定量配合して混練し、あらかじめ板状型に流し込んで固化させて型枠となし、該得られたセメント系組成物からなる型枠を用いて施工現場の所定位置にコンクリート基礎用型枠を形成し、該コンクリート基礎用型枠内に基礎コンクリートを打ち込んで固化させた後、前記コンクリート基礎用型枠を取り外すことなくコンクリート基礎と一体に残したまま基礎とし、該コンクリート基礎上に建物を構築するコンクリート基礎の施工方法とした。
本発明の基礎の施工方法によれば、型枠を解体取り外しをする手間が省けるので、工期や工費の節減が計れ、その上型枠が腐食する恐れもなくしかも断熱効果や結露防止効果が発揮されるので、床暖房施工施す住宅の基礎として極めて有用である。
【0010】
【発明の実施の形態】
本発明の断熱型枠は、少なくともセメント及び発泡断熱材を含むセメント系組成物を、所望の形状に成型硬化させてなる型枠である。
本発明の断熱型枠では、無機質の発泡材を利用して該発泡材の断熱作用を利用して断熱性のコンクリート用型枠とするものである。
本発明の断熱型枠では、前記発泡断熱材として黒曜石パーライト、真珠岩パーライト、膨脹頁岩等を使用することができる。これらの発泡断熱材のうち、特に黒曜石パーライトは粒径が0.5〜5mmのほぼ球状をなしているので、セメントと一体成型して硬化させた場合に強度が高くなり、コンクリート型枠としての強度を備えるとともに建造物の基礎の一翼を担うものとなるので好ましい。また、熱的にも球状の閉気泡をなしているので、断熱性に優れた性質を有している。
発泡断熱材をセメントと混練して硬化させる場合、発泡断熱材の割合が多くなるほど軽くなり断熱効果は高くなるものの強度は低下してくる。従って発泡断熱材の配合割合は、強度と熱伝導率の双方を勘案して決定する。例えば大きな型枠に使用する際、コンクリート打ち込みの側圧に耐える強度にするためには、発泡断熱材の配合割合を低くして嵩比重を1.0〜1.5程度とするのが好ましい。セメントと発泡断熱材との好ましい配合割合は、セメント100重量部に対して発泡断熱材が50〜350重量部程度である。
【0011】
セメントと発泡断熱材との混合物に水を加えて硬化させるに際して、バインダーとしてカチオン系クロロプレンラテックス配合物を添加するのが好ましい。
ここでカチオン系クロロプレンラテックス配合物とは、クロロプレン配合の乳液である。クロロプレンは、セメント中に含まれる金属酸化物と架橋反応を起こし、壊れやすい黒曜石パーライトの球状体形を保護しつつ一体成型硬化するので、高強度でしかも軽量性、断熱性、耐衝撃性、不燃性、遮水性及び保形成に優れた成型体とすることができる。セメントと混和させる際に乳液となっているものが使いやすい。カチオン系クロロプレンラテックス配合物の添加量は、使用するセメント100重量部に対して25〜30重量部程度が適当である。
これらの混合原料に適量の水を加えて混練し、所定の形状の型枠に流し込んで養生硬化させる
【0012】
本発明の断熱型枠は、コンクリート型枠の堰板として適するように、例えば長さ;600〜900mm、幅;150〜450mm、厚さ;25〜40mmの寸法に成型する。
養生硬化後の本発明の断熱型枠は、嵩比重;0.3〜1.5(kg/m3)、曲げ強さ;1.5〜2.2(N/mm2)、含水率;2.5〜3.5%、耐水性;−5.0〜−5.5(mm)、熱伝導率;0.05〜0.5(kcal/mh℃)、難燃性能;JIS難燃2級の表面試験に合格の性能を有するものが得られる。このように本発明の断熱型枠は、高強度でしかも軽量性、断熱性、耐衝撃性、不燃性、遮水性及び保形成に優れた型枠である。
【0013】
本発明の断熱型枠は、木製型枠と同じ感覚で使用することができ、ノコギリを使用して必要な寸法に切断することも可能で、釘やビス等も使用できるので施工がし易い利点も有する。
【0014】
次に、本発明の断熱型枠を使用した構造体について説明する。
本発明の構造体は、少なくとも1面に前記本発明の断熱型枠を具備したコンクリート製の構造体である。前記本発明の断熱型枠を使用して空間を形成し、該空間にコンクリートを打ち込んで養生硬化させ、固化後も断熱型枠を取り外すことなく少なくとも1面に残したままとしたものである。構造体は板状に限らず柱状であっても良い。
【0015】
次に、本発明の断熱型枠を使用して住宅用のコンクリート基礎の施工方法について説明する。
図1は本発明の断熱型枠を使用した住宅用のコンクリート基礎10の断面図である。
先ず、設計図に基づき建設現場の所定位置を掘削して水平に捨てコン1を施工する。次いで、風鎮部分2に所定寸法の断熱型枠11を用いて箱形のコンクリート型枠を形成する。なお、必要により得られたコンクリート型枠内に鉄筋の骨組みを形成するが、図では鉄筋を省略している。次いで、得られたコンクリート型枠内にコンクリート3を打ち込み、養生硬化させて風鎮部分2を形成する。
次に、得られた風鎮部分2の上に再び所定寸法の断熱型枠12を用いて布基礎部分5用の箱形のコンクリート型枠を形成する。得られたコンクリート型枠内にコンクリート4を打ち込み、養生硬化させて布基礎部分5を形成し、コンクリート基礎10を形成する。
【0016】
なお、コンクリート型枠の組み立てに当たっては、専用のセパレーター17を使用して断熱型枠の間隔を一定に保って固定する。図2にセパレーター17を使用した断熱型枠の固定方法を拡大して示す。図に示すように断熱型枠の間隔を一定に保って組み立てるのは、断熱型枠11(12)にドリル等を使用して孔13を貫通させ、その中につば付きナット8をはめ込む。つば付きナット8はつば14と袋ナット9を備え、内部にはネジが切ってある。2枚の断熱型枠の相対向する位置につば付きナット8を取り付け、その間に所定長さの両ネジボルト17を取り付け、袋ナット9を使用して締めつける。セパレーター17のネジ部根本にもフランジ18を設けておくのが好ましい。このようにして2枚の断熱型枠を一定の間隔を保って固定して、コンクリート用型枠を構築する。
【0017】
コンクリートを養生硬化させた後、図1に示すように断熱型枠11,12を取り付けたままグランドレベル(GL)まで土を埋め戻す。そして基礎コンクリート4上に土台枠6となる角材を取り付け、柱7を組み上げる。
【0018】
このように本発明の断熱型枠を使用してコンクリート基礎を構築すれば、型枠をつけたまま建物を建設するので、型枠を撤去する時間や手間が省略でき、工期の短縮や工費の節減を計ることができるようになる。また、コンクリート基礎の表面に断熱層が形成されているので、コンクリート基礎からの放熱が押さえられ、外断熱工法の利点を最大限に発揮できるようになる。また、建物の湿気が多い状態で気温が降下しても結露しにくくなり、たとえ結露しても木製の基礎が腐食し難くなるので建物の寿命延長に寄与するところが大である。
【0019】
以下実施例を用いて説明する。
【実施例】
重量部でポルトランドセメント;30部、粒径1〜3mmの黒曜石パーライト;30部、タイトメント;20部及び水;10部を配合混練して、長さ;90cm、幅;45cm、厚さ;3cmの板状型に流し込んで5日間養生硬化させ、さらに型から外して3日間養生して断熱型枠とした。
得られた断熱型枠の嵩比重は0.53(kg/m3)、曲げ強さは1.86N/mm2、熱伝導率は0.14(kcal/mh℃)であった。
【0020】
次いで、この断熱型枠を使用して厚さ10cm、長さ1.8m、幅0.9mのコンクリート製の板状構造体を作成した。断熱型枠はコンクリート養生後も板状構造体の両面に残したままとした。
【0021】
次いで、この断熱型枠を使用して布基礎部の幅が10cm、高さが90cmのコンクリート型枠を形成した。コンクリート型枠は2枚の対向する断熱型枠に、4個ずつの専用のセパレーターを使用して固定することにより形成した。
コンクリート型枠の内部に鉄筋を組んだ後、通常の生コンクリートを流し込んだ。1週間放置して養生硬化させた後、断熱型枠を組んだまま深さ45cm(布基礎部の半分相当)を土砂で埋め戻してコンクリート基礎を完成させた。
【0022】
このコンクリート基礎は、表面からの放熱量が従来のコンクリート基礎の25〜35%に抑えられ、露出部の基礎の単位面積当たりの放熱量は150kcal/m2hであった。
【0023】
ついで、先の断熱型枠を具備した板状構造体を壁材と床材に使用して、建物を構築した。この建物の壁と床からの放熱量を測定したところ、断熱型枠を具備しない普通のコンクリート構造体を使用した場合に比較して、約10%減少していた。
【0024】
【発明の効果】
本発明の断熱型枠は、高強度でしかも軽量性、断熱性、耐衝撃性、不燃性、遮水性及び保形成に優れた型枠である。また、本発明の断熱型枠は、木製型枠と同じ感覚で使用することができ、ノコギリを使用して必要な寸法に切断することも可能で、釘やビス等も使用できるので施工がし易い利点も有する。
また、本発明の断熱型枠を使用したコンクリート基礎の施工方法によれば、型枠をつけたまま建物を建設するので、型枠を撤去する時間や手間が省略でき、工期の短縮や工費の節減を計ることができるようになる。また、コンクリート基礎の表面に断熱層が形成されているので、コンクリート基礎からの放熱が押さえられ、外断熱工法の利点を最大限に発揮できるようになる。また、建物の湿気が多い状態で気温が降下しても結露し難くなり、たとえ結露しても木製の基礎が腐食し難くなるので建物の寿命延長に寄与するところが大である。
【図面の簡単な説明】
【図1】本発明の断熱型枠を使用した木造住宅用のコンクリート基礎の構造を示す断面図である。
【図2】セパレーターを使用した断熱型枠の固定方法を拡大して示すずである。
【符号の説明】
1・・・・・捨てコン、2・・・・・風鎮部分、3,4・・・・・コンクリート、5・・・・・布基礎部分、6・・・・・土台枠、7・・・・・柱、8・・・・・つば付きナット、10・・・・・コンクリート基礎、11,12・・・・・断熱型枠、17・・・・・セパレーター[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE
[0002]
[Prior art]
Conventionally, as a method of constructing a foundation of a general wooden house, a formwork for a concrete foundation is assembled at a predetermined position on a construction site using a wooden or steel plate damper (concrete panel) and kneaded into the formwork. A method has been adopted in which ready-mixed concrete is poured, cured and hardened, and then the weir plate is peeled off to complete a concrete base, and a structure such as a pillar is assembled on the concrete base.
Wooden and steel dams are corroded by atmospheric moisture, so if the dam is not removed after the concrete is cured, it will cause fins and expansion and deformation of the foundation. For this reason, it is necessary to remove the weir plate after curing the concrete, which requires a longer construction period, and results in increased transport and labor costs for the weir plate.
In addition, in regions where the temperature of winter is low and the humidity is high, such as the back Japan region, when the surface of the concrete base is cooled in winter, dew condensation occurs, and the basic portion of the wooden structure tends to corrode. Corrosion of foundations is often fatal to the life of a building.
[0003]
Further, with the promotion of energy saving in houses, attempts have been made to reduce heat dissipation from structures such as floors, walls and ceilings of houses. Until now, the so-called "inner heat insulation method", in which a heat insulating material such as glass wool is provided inside structures such as floors, walls, and ceilings, has been attempted. Recently, the use of concrete structures has increased with the spread of fire-resistant houses, but in this case, there is a limit in preventing the heat loss by the "inner heat insulation method", and further measures are required.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a concrete form having excellent heat insulating properties, enhancing a heat insulating effect of a concrete structure, and providing a concrete structure capable of so-called "outer heat insulation". The purpose is to do. In addition, there is no need to remove the formwork after driving the foundation concrete, and there is no condensation even if the surface of the concrete base is cooled due to the heat insulating effect of the formwork, and the foundation part of a wooden structure is also corroded. No, it is intended to provide a driven concrete formwork. Further, the present invention provides a method for constructing a concrete foundation using the driven-in concrete formwork.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the heat insulating mold of the present invention is a mold formed by molding and hardening a cement-based composition containing at least cement and a foamed heat insulating material into a desired shape.
In the heat insulation form of the present invention, obsidian pearlite can be used as the foam insulation, and the particle diameter of the foam insulation is preferably 0.5 to 10 mm.
By using hollow obsidian pearlite having a particle size of 0.5 to 10 mm, the bulk specific gravity can be reduced while maintaining the strength, the thermal conductivity can be reduced, and the heat insulation effect and the dew condensation prevention effect can be maximized. it can.
By using the molded body composed of the cement-based composition as a dam for a concrete form as described above, a heat insulating effect is exerted and there is no dew condensation even when the humidity increases in winter, and the structure of the building is reduced. The amount of heat released from the body is reduced, and energy conservation can be achieved by external insulation. Also, there is no need to remove the weir plate after the foundation concrete has been driven in. Therefore, the construction work is simplified, and the construction period can be shortened and the construction cost can be reduced.
[0006]
In the heat insulating mold of the present invention, it is preferable that a cationic chloroprene latex compound is included as a binder for solidifying the cement composition. Here, the cationic chloroprene latex compound is an emulsion containing chloroprene, and for example, Tightment (registered trademark, manufactured by Showa Denko Kenzai Co., Ltd.) can be used.
Cationic chloroprene undergoes a cross-linking reaction with the metal oxide contained in the cement, and is integrally molded and hardened while protecting the fragile obsidian pearlite spheroid, so it is high-strength yet lightweight, heat-insulating, impact-resistant, and non-flammable. It can be made into a molded article excellent in water resistance, water shielding properties and preservation, and can be used as a dam for concrete formwork.
[0007]
The heat insulating form of the present invention preferably has a thermal conductivity of 0.05 to 0.5 (Kcal / mh ° C) and a bulk specific gravity of 0.3 to 1.5 (Kg / m 3 ).
This is because by maximizing the properties of the foamed heat insulating material, the heat insulating effect and the dew condensation preventing effect can be enhanced.
[0008]
If a structure is manufactured by driving concrete using the above-mentioned heat-insulating formwork and leaving the formwork on at least one surface even after curing, the heat-insulating performance of the structure is improved and the structure is released from the structure. The amount of heat can be reduced. Here, the structure mainly refers to a plate material such as a wall, a floor, a ceiling, etc., which constitute the building. Concrete plate materials are manufactured by combining a heat-insulating formwork to form a space, pouring concrete into the space and curing and curing. In the structure of the present invention, the heat insulating mold is left without being removed even after curing and curing. It is generally preferable to leave the heat-insulating formwork on the front and back surfaces of the plate-like structure from the viewpoint of the heat insulating effect. However, when the structure cannot be left on the front and back surfaces due to the relationship with decoration and other members. There is. Therefore, it is preferable to leave the heat-insulating formwork on at least one surface of the structure, preferably on the surface outside the building. The structure is not limited to a plate shape, and may be a column shape.
[0009]
Next, the concrete foundation construction method of the present invention comprises mixing at least a predetermined amount of cement, a foamed heat insulating material and water, kneading them, pouring them into a plate mold in advance, and solidifying to form a mold. Forming a concrete foundation form at a predetermined position of the construction site using a formwork composed of a system composition, after solidifying the foundation concrete into the concrete foundation form, and then solidifying the concrete foundation form The concrete foundation was used as a foundation without removing it, leaving it as a single piece with the concrete foundation, and constructing a building on the concrete foundation.
According to the method for constructing the foundation of the present invention, the labor for dismantling and removing the formwork can be omitted, so that the construction period and cost can be reduced, and the upper formwork does not corrode, and the heat insulation effect and the dew condensation prevention effect are exhibited. Therefore, it is extremely useful as a foundation for a house to be installed with floor heating.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat-insulating form of the present invention is a form obtained by molding and hardening a cement-based composition containing at least cement and a foamed heat-insulating material into a desired shape.
In the heat-insulating form of the present invention, a heat-insulating concrete form is made using an inorganic foaming material and utilizing the heat-insulating action of the foaming material.
In the heat insulation form of the present invention, obsidian pearlite, perlite pearlite, expanded shale and the like can be used as the foamed heat insulating material. Among these foam insulation materials, especially obsidian pearlite has a substantially spherical shape with a particle size of 0.5 to 5 mm, so that when it is integrally molded with cement and hardened, the strength increases, and as a concrete formwork, It is preferable because it has strength and plays a part in the foundation of a building. In addition, since it has a spherical closed cell shape thermally, it has excellent heat insulating properties.
In the case where the foamed heat insulating material is kneaded with the cement and hardened, as the proportion of the foamed heat insulating material increases, the weight becomes lighter and the heat insulating effect increases, but the strength decreases. Therefore, the mixing ratio of the foamed heat insulating material is determined in consideration of both the strength and the thermal conductivity. For example, when used in a large formwork, it is preferable to lower the compounding ratio of the foamed heat insulating material and make the bulk specific gravity about 1.0 to 1.5 in order to make the strength resistant to the lateral pressure of concrete driving. A preferred mixing ratio of the cement and the foamed heat insulating material is about 50 to 350 parts by weight of the foamed heat insulating material with respect to 100 parts by weight of the cement.
[0011]
When water is added to the mixture of the cement and the foamed heat insulating material to cure the mixture, it is preferable to add a cationic chloroprene latex compound as a binder.
Here, the cationic chloroprene latex formulation is an emulsion containing chloroprene. Chloroprene undergoes a cross-linking reaction with the metal oxides contained in the cement, and is integrally molded and hardened while protecting the fragile obsidian pearlite spheroid, so it is high-strength yet lightweight, heat-insulating, impact-resistant, and non-flammable. A molded article excellent in water-shielding and preservation can be obtained. When mixed with cement, it is easy to use those that are in the form of emulsion. An appropriate amount of the cationic chloroprene latex compound is about 25 to 30 parts by weight based on 100 parts by weight of the cement used.
An appropriate amount of water is added to these mixed raw materials, kneaded, poured into a mold having a predetermined shape, and cured and cured.
The heat-insulating form of the present invention is formed to have dimensions of, for example, length: 600 to 900 mm, width: 150 to 450 mm, and thickness: 25 to 40 mm so as to be suitable as a dam for a concrete form.
The heat-insulating mold of the present invention after curing and curing has a bulk specific gravity of 0.3 to 1.5 (kg / m 3 ), a flexural strength of 1.5 to 2.2 (N / mm 2 ), and a water content; 2.5 to 3.5%, water resistance; -5.0 to -5.5 (mm), thermal conductivity: 0.05 to 0.5 (kcal / mh ° C), flame retardancy; JIS flame retardant Those having performance that passes the second-class surface test are obtained. As described above, the heat-insulating mold of the present invention is a mold having high strength and excellent in lightness, heat insulating properties, impact resistance, non-combustibility, water-shielding properties and forming.
[0013]
The heat-insulating formwork of the present invention can be used with the same feeling as a wooden formwork, can be cut to required dimensions using a saw, and can be easily used because nails and screws can be used. Also have.
[0014]
Next, a structure using the heat-insulating formwork of the present invention will be described.
The structure of the present invention is a concrete structure provided with the heat-insulating form of the present invention on at least one surface. A space is formed by using the heat-insulating form of the present invention, and concrete is poured into the space to cure and harden, and after solidification, the heat-insulating form is left on at least one surface without being removed. The structure is not limited to a plate shape but may be a column shape.
[0015]
Next, a method of constructing a concrete foundation for a house using the heat insulating formwork of the present invention will be described.
FIG. 1 is a sectional view of a
First, a predetermined position of a construction site is excavated based on a design drawing, and a
Next, a box-shaped concrete formwork for the
[0016]
When assembling the concrete formwork, a fixed
[0017]
After the concrete is cured and hardened, the soil is buried back to the ground level (GL) with the heat-insulating
[0018]
By constructing a concrete foundation using the heat-insulating formwork of the present invention as described above, the building is constructed with the formwork attached, so that the time and labor for removing the formwork can be omitted, shortening the construction period and reducing construction costs. You will be able to save money. In addition, since the heat insulation layer is formed on the surface of the concrete foundation, heat radiation from the concrete foundation is suppressed, and the advantage of the external heat insulation method can be maximized. In addition, even if the temperature drops in a humid building, dew condensation hardly occurs, and even if the dew forms, the wooden foundation hardly corrodes, which greatly contributes to extending the life of the building.
[0019]
Hereinafter, description will be made with reference to an embodiment.
【Example】
Portland cement in parts by weight; 30 parts, obsidian pearlite having a particle size of 1 to 3 mm; 30 parts, tightment; 20 parts and water; 10 parts, kneaded, length; 90 cm, width: 45 cm, thickness: 3 cm And cured for 5 days, then removed from the mold and cured for 3 days to obtain a heat insulating mold.
The bulk density of the obtained heat insulating mold was 0.53 (kg / m 3 ), the bending strength was 1.86 N / mm 2 , and the thermal conductivity was 0.14 (kcal / mh ° C.).
[0020]
Next, a concrete plate-like structure having a thickness of 10 cm, a length of 1.8 m, and a width of 0.9 m was prepared using the heat-insulating formwork. The heat-insulating formwork was left on both sides of the plate-like structure after the concrete curing.
[0021]
Next, a concrete form having a width of the fabric base of 10 cm and a height of 90 cm was formed using the heat insulating form. The concrete form was formed by fixing it to two opposed heat-insulating forms using four dedicated separators.
After assembling the reinforcing steel inside the concrete formwork, ordinary ready-mixed concrete was poured. After being left to cure and harden for one week, 45 cm deep (equivalent to half of the fabric base) was backfilled with earth and sand while the heat-insulating formwork was assembled to complete the concrete foundation.
[0022]
In this concrete foundation, the amount of heat radiation from the surface was suppressed to 25 to 35% of the conventional concrete foundation, and the amount of heat radiation per unit area of the exposed portion foundation was 150 kcal / m 2 h.
[0023]
Next, a building was constructed using the plate-like structure provided with the above-mentioned heat-insulating formwork as a wall material and a floor material. When the amount of heat radiation from the walls and floor of this building was measured, it was reduced by about 10% as compared with the case of using a normal concrete structure having no heat-insulating formwork.
[0024]
【The invention's effect】
INDUSTRIAL APPLICABILITY The heat-insulating form of the present invention is a form having high strength and excellent in lightness, heat insulation, impact resistance, non-combustibility, water-shielding, and forming. The heat-insulating formwork of the present invention can be used with the same feeling as a wooden formwork, can be cut to the required dimensions using a saw, and can be used with nails and screws, so it can be used for construction. It also has the advantage of being easy.
Further, according to the concrete foundation construction method using the heat-insulating formwork of the present invention, since the building is constructed with the formwork attached, time and labor for removing the formwork can be omitted, shortening the construction period and reducing the construction cost. You will be able to save money. In addition, since the heat insulation layer is formed on the surface of the concrete foundation, heat radiation from the concrete foundation is suppressed, and the advantage of the external heat insulation method can be maximized. In addition, even if the temperature drops in a humid building, dew condensation hardly occurs, and even if the dew forms, the wooden foundation hardly corrodes, which greatly contributes to extending the life of the building.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a concrete foundation for a wooden house using the heat-insulating formwork of the present invention.
FIG. 2 is an enlarged view of a method for fixing a heat insulating mold using a separator.
[Explanation of symbols]
1 ····· Discarded concrete, 2 ··························· Concrete, 5 ···························· ···· Pole, 8 ····· Nut with brim, ················································································· Separator
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003145507A JP2004003333A (en) | 2002-04-20 | 2003-04-16 | Heat insulation form, structure using it, and construction method for foundation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002154737 | 2002-04-20 | ||
JP2003145507A JP2004003333A (en) | 2002-04-20 | 2003-04-16 | Heat insulation form, structure using it, and construction method for foundation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004003333A true JP2004003333A (en) | 2004-01-08 |
Family
ID=30447607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003145507A Pending JP2004003333A (en) | 2002-04-20 | 2003-04-16 | Heat insulation form, structure using it, and construction method for foundation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004003333A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006348470A (en) * | 2005-06-13 | 2006-12-28 | Daiei Probis Kk | Building foundation and construction method therefor |
CN104988941A (en) * | 2015-05-21 | 2015-10-21 | 中国化学工程第三建设有限公司 | Large bearing platform type foundation hanging formwork and construction method thereof |
CN105484280A (en) * | 2015-12-30 | 2016-04-13 | 安徽上能管桩混凝土有限公司 | Corrosion-resistance industrial factory building concrete cup opening prefabricated bearing platform |
JP2016148149A (en) * | 2015-02-10 | 2016-08-18 | 東北資材工業株式会社 | Structure and method of manufacturing the same |
CN107522505A (en) * | 2016-06-21 | 2017-12-29 | 天津城建大学 | A kind of ultra-light heat insulation insulation material and preparation method thereof |
-
2003
- 2003-04-16 JP JP2003145507A patent/JP2004003333A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006348470A (en) * | 2005-06-13 | 2006-12-28 | Daiei Probis Kk | Building foundation and construction method therefor |
JP2016148149A (en) * | 2015-02-10 | 2016-08-18 | 東北資材工業株式会社 | Structure and method of manufacturing the same |
CN104988941A (en) * | 2015-05-21 | 2015-10-21 | 中国化学工程第三建设有限公司 | Large bearing platform type foundation hanging formwork and construction method thereof |
CN105484280A (en) * | 2015-12-30 | 2016-04-13 | 安徽上能管桩混凝土有限公司 | Corrosion-resistance industrial factory building concrete cup opening prefabricated bearing platform |
CN107522505A (en) * | 2016-06-21 | 2017-12-29 | 天津城建大学 | A kind of ultra-light heat insulation insulation material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9809981B2 (en) | High performance, lightweight precast composite insulated concrete panels and high energy-efficient structures and methods of making same | |
CA2532736C (en) | Composite building panel and method of making composite building panel | |
US20070062143A1 (en) | Construction products and method of making same | |
CN102245529A (en) | Lightweight concrete containing aggregates of cement-bonded foamed polystyrene, procedure of making the same and building structures made from this lightweight concrete | |
JP2007132131A (en) | Reinforcing structure and reinforcing method for concrete building | |
KR20070107510A (en) | A mortar for concrete having polyurethane foam and method of thereof | |
JP4348331B2 (en) | Reinforcing structure and reinforcing method of concrete structure | |
JP2009299296A (en) | Fire-resistive covering structure, mounting bracket for alc panel, and alc panel fixing method | |
JP2004003333A (en) | Heat insulation form, structure using it, and construction method for foundation | |
Hulimka et al. | Possibilities of the structural use of foamed concrete on the example of slab foundation | |
CN101492938B (en) | Construction body with thermal insulation layer | |
Sallal | Use foam concrete in construction works | |
WO2008089414A1 (en) | Building panel for walls, roofs and floors, buildings made therefrom and construction techniques using such panels | |
JP3048465B2 (en) | Formwork and concrete panel | |
CN213837222U (en) | Hollow self-insulation concrete wall | |
CN104481059B (en) | A kind of mechanism steel mesh and the compound Self-insulation wall plate of light-weight inorganic thing | |
JP2001316159A (en) | Cement mortar board mixed with polystyrene foam and method for manufacturing same | |
JP3551290B2 (en) | Sound insulation board | |
JPH0636103Y2 (en) | Building wall structure | |
JPS60119843A (en) | Outer wall heat insulating construction method of building | |
JPH06180032A (en) | Ceramics panel wall for dwelling | |
KR20210052401A (en) | Thermal meta embedded high insulation panel | |
JP2002021250A (en) | Earthquake resisting panel and earthquake resisting framework structure | |
JP2001271436A (en) | Outer wall structure and floor heat insulating airtight structure of building | |
RU65912U1 (en) | COMBINED FRAME-MONOLITHIC SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041119 |
|
A977 | Report on retrieval |
Effective date: 20060221 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060620 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061024 |