JP2004072806A - Power converter - Google Patents
Power converter Download PDFInfo
- Publication number
- JP2004072806A JP2004072806A JP2002224325A JP2002224325A JP2004072806A JP 2004072806 A JP2004072806 A JP 2004072806A JP 2002224325 A JP2002224325 A JP 2002224325A JP 2002224325 A JP2002224325 A JP 2002224325A JP 2004072806 A JP2004072806 A JP 2004072806A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- short
- voltage
- power supply
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Rectifiers (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、交流電力を直流電力に変換する電力変換装置に係り、特に、交流電源の半周期に1回もしくは複数回の短絡動作を行い電源の力率改善を行う電力変換装置に関する。
【0002】
【従来の技術】
交流電源の半周期に1回もしくは複数回の短絡動作を行い力率を改善する電力変換装置を、特開平10−201248号公報が開示している。特開平10−
201248号公報は、電源装置に接続したインバータ回路のパルス幅変調信号(PWM信号)のデューティー比もしくは出力周波数などの内部的状態に基づいて短絡手段の短絡開始時刻(ディレイ時間)と短絡期間(パルス幅)とを決定して、負荷の状態に応じて力率を最適点に制御する方法を開示している。
【0003】
前記特開平10−201248号公報は負荷の状態に応じてディレイ時間とパルス幅を、予め設定した関数、例えば、インバータのPWMデューティーに対するディレイ時間とパルス幅の関数、から算出して力率を改善している。このため、設定した条件下では最適な力率を確保するとともに安定したモータ制御が行える。
【0004】
【発明が解決しようとする課題】
前記電源装置は交流電源に接続しており、交流電源の電力を直流電力に変換する装置である。交流電源として用いている商用電源の電圧は、一般的に変動することが知られている。前記特開平10−201248号公報には、交流電源の電圧変動の対応策の記載が無く、電源変動による力率の低下防止方法の開示がない。
【0005】
また、前記従来技術は、インバータによるモータ制御を念頭に、負荷状態量に対するディレイ時間とパルス幅の関数を使用してディレイ時間とパルス幅を決定していて、直流電圧の制御が記載されていない。
【0006】
本発明の目的は交流電源の電圧変動に対応した力率改善型電力変換装置を提供することであり、本発明の別の目的は、簡単な演算でディレイ時間とパルス幅を決定し、直流電圧を制御する電力変換装置を提供することである。
【0007】
【課題を解決するための手段】
本発明の電力変換装置は、一端を交流電源に接続したリアクトルと、一端を該リアクトルの他端に接続した短絡手段と、交流入力側の一端を前記リアクトルの他端に接続し、交流入力側の多端を前記短絡手段の他端に接続した整流回路と、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、一端を前記交流電源の他端に接続し、他端を前記短絡手段の他端に接続した入力電流検出回路と、前記整流回路の直流出力の両端に接続した平滑コンデンサと、前記短絡手段を制御する制御回路とを備え、前記制御回路が前記交流電源のゼロクロス点から短絡動作を開始するまでの期間であるディレイ時間Tdと、短絡期間であるパルス幅Twとに基づいて、前記短絡手段の短絡動作を制御し、前記ディレイ時間Tdと前記パルス幅Twを、それぞれを制御する。
【0008】
本発明の電力変換装置は、ディレイ時間Tdとパルス幅Twを以下のように制御する。
(1)予め設定した入力電流もしくは入力電力に対する関数からディレイ時間を算出し、直流電圧が予め設定した所定値になるようにパルス幅Twを可変する。
(2)ディレイ時間Tdを予め設定した所定値(固定値)とし、直流電圧が予め設定した所定値になるようにパルス幅Twを可変する。
(3)ディレイ時間Tdおよびパルス幅Twを入力電流もしくは入力電力に対する関数として、それぞれ与え、この関数を用いて検出した入力電流もしくは入力電力から前記パルス幅Twおよび前記ディレイ時間Tdを設定する。
(4)ディレイ時間Tdを決定する(1)に示した関数もしくは(2)に示した所定値(固定値)あるいは、(3)で示した前記ディレイ時間Tdとパルス幅Twの関数を交流電源の電圧に対応して複数備え、交流電源の電圧に応じて選択する。
(5)交流電源の電圧を、短絡手段が短絡動作する前の直流電圧あるいは短絡動作を一時停止したときの直流電圧から推定して、電源電圧の変動に対応する。
【0009】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳しく説明する。
【0010】
図1は、本実施例の電力変換装置を用いたモータ制御装置の基本構成図である。本実施例の電力変換装置100は図1に示すように、単相の交流電源1の一方の出力端に一端が接続したリアクトル2と、そのリアクトル2を介して交流電源1を短絡する短絡手段3と、交流電源1に接続していない側のリアクトル2の他端とリアクトル2が接続していない側の交流電源1の他端との間に入力電流検出回路30を介して接続した整流回路4と、整流回路4の直流出力の両端に直列接続した平滑コンデンサ6と、整流回路4の交流入力の一方と、平滑コンデンサ6を構成する平滑コンデンサ61と平滑コンデンサ62との接続点の間に接続した整流回路切替手段5と、交流電源1のゼロクロスを検出するゼロクロス検出回路8と、前記平滑コンデンサ6の両端の直流電圧Vdを入力しゼロクロス信号92を基準タイミングとして短絡手段3を動作させる短絡パルス信号96を出力し、整流回路切替手段5に整流回路切替信号97を出力する制御回路7と、前記交流電源1から入力される入力電流Isを検出し、制御回路7に入力電流値98を出力する入力電流検出回路30とを備えている。
【0011】
図1には、前記電力変換装置100の直流出力に接続したインバータ回路10と電動機を内蔵した圧縮機20とを備えたモータ駆動システム101を合わせて示す。ここで、制御回路7は、例えばワンチップマイクロコンピュータなどの半導体集積回路(IC)で構成しており、全ての動作をソフトウェア処理で実行している。
【0012】
ゼロクロス検出回路8は、交流電源1の両端の電圧を入力し、交流電源1の交流電圧(以下、電源電圧Vsと略記する。)がゼロクロス点を通過し極性が変わるタイミングでHigh信号からLow信号に、もしくはLow信号からHigh信号に切り替わるゼロクロス信号92を出力する。このゼロクロス信号92は制御回路7へ入力される。
【0013】
制御回路7は、入力されたゼロクロス信号92の立ち上がりもしくは立ち下りを基準タイミングとして、そこから短絡手段3が短絡動作を開始するまでの期間(以下、ディレイ時間Td)および短絡する期間(以下、パルス幅Tw)を設定し、短絡パルス信号96(High,Low信号)を短絡手段3に出力する。ディレイ時間Tdおよびパルス幅Twは、制御回路7に予め記憶させたり、制御回路7で計算して求める。
【0014】
短絡手段3は短絡パルス信号96に従って短絡開閉動作を行う。本実施例では、制御回路7から出力される短絡パルス信号96がHighの時に、短絡手段3は短絡動作する。短絡手段3は、ダイオードブリッジとIGBTもしくは、バイポーラトランジスタ,MOSFETなどの電力半導体スイッチング素子で構成しており、短絡パルス信号96に従ってリアクトル2を介して交流電源1を短絡する。この短絡開閉動作によって交流電源1の力率を改善する。
【0015】
整流回路切替手段5は、パワーリレー,トライアック,ダイオードブリッジと電力半導体スイッチング素子(IGBT,バイポーラトランジスタ,MOSFET)の組み合わせなどによる双方向スイッチで構成され、制御回路7が出力する整流回路切替信号97(High,Low信号)に応じて整流回路4を切り替える。本実施例では、整流回路切替信号97がLow信号のときに整流回路4を全波整流回路に切り替え、High信号のときに倍電圧整流回路に切り替える。
【0016】
制御回路7は、ゼロクロス信号92と、平滑コンデンサ6の両端の直流電圧
Vdである直流電圧値93と、入力電流値98とを入力し、短絡パルス信号96と、整流回路切替信号97を出力する。
【0017】
本実施例の電力変換装置100は、交流電源1を電源半周期に一回もしくは複数回、リアクトル2を介して短絡する動作を行って、電源電流の通流角を広げ電源力率を改善しながら、交流電力を直流電力に変換する。本実施例の電力変換装置100は、整流回路切替手段5を備えていて、整流回路4を全波整流回路あるいは倍電圧整流回路に切り替えて動作させる。そのため、パルス幅Twで直流電圧Vdを制御することに加え、幅広い範囲の直流電圧Vdを出力できる。
【0018】
本実施例の電力変換装置100の入力電流Isに対する、ディレイ時間Tdと、パルス幅Twと、効率と、力率と、直流電圧Vdとの関係を図2を用いて説明する。図2は、入力電流Isを変化した場合に、力率が最大となるようにディレイ時間Tdとパルス幅Twとを変えた実験結果である。図2の横軸は入力電流
Isであって、図2(a)に効率と力率を、図2(b)に直流電圧を、図2(c)にディレイ時間Tdとパルス幅Twとを示す。ここで、図2の横軸に入力電流を記載したが、横軸を入力電力としても同様である。以下、本実施例では横軸が入力電流の場合を説明する。
【0019】
図2は全波整流回路及び倍電圧整流回路の実験結果である。図2の区間Aは全波整流回路で動作する入力電流範囲を示し、区間Bと区間Cとは倍電圧整流回路で動作する入力電流範囲であり、区間Cでは区間Bより負荷が重い。電源装置の起動時(入力電流がゼロ近傍)では区間Aの全波整流回路動作し、入力電流Isの増加に伴って区間Bの倍電圧整流回路動作に移行する。入力電流Isが減少していくと区間Bの倍電圧整流回路動作から区間Aの全波整流回路動作へと移行するが、区間Aと区間Bとの入力電流値が重複する部分がありヒステリシスを持たせてあるために円滑に移行できる。
【0020】
区間A,区間Bの入力電流Isの場合、図2(c)に示すようにディレイ時間Tdが入力電流Isに対して単調減少し、パルス幅Twが単調増加しており、ディレイ時間Tdとパルス幅Twとの和が一定値になっている。すなわち、ディレイ時間Tdとパルス幅Twとが相互に関連付けられており、どちらか一方を決定すれば、他方を決定できる関係になっている。言い換えると、検出した入力電流Isが区間A,区間Bであれば、ディレイ時間Tdとパルス幅Twとを決定できる。また、図2(b)に示すように、直流電圧Vdは、入力電流Isに対してほぼ一定値である。
【0021】
ディレイ時間Tdとパルス幅Twとを決定する第1の方法として、直流電圧
Vdを一定にするようにパルス幅Twを制御し、かつディレイ時間Tdとパルス幅Twとの和が一定になるようにする。この方法は、短絡手段で短絡開始する時点を直流電圧が一定になるように制御して、短絡動作を終了する時点を一定にすることと同じである。これにより、図2に示す区間Aおよび区間Bでは直流電圧Vdを一定に制御すると同時に最大力率で運転が可能となる。なお、区間A,区間Bに入っているか否かの判定は電流検出信号98を用いて判定する。
【0022】
ディレイ時間Tdとパルス幅Twとを決定する第2の方法として、入力電流検出回路30からの入力電流検出信号98に応じて、ディレイ時間Tdとパルス幅Twを相互に関連付けずに、入力電流検出信号98に応じてそれぞれ独立にディレイ時間Tdとパルス幅Twとを決定する。高い力率で運転できるディレイ時間Tdとパルス幅Twとを、シミュレーションで予め求めて、ディレイ時間Tdの値を入力電流Isから求める関数と、パルス幅Twの値を入力電流Isから求める関数とを予め制御回路7に入力しておく。この方法はディレイ時間Tdおよびパルス幅Twを簡便に求める良い方法である。
【0023】
次に、交流電源1の電源電圧Vsの変動に対応した、ディレイ時間Tdとパルス幅Twとを決定する第3の方法を説明する。この方法では、図2で示した関係を利用して入力電流Isとディレイ時間Tdの関係に従ってディレイ時間Tdを決定する。一方、パルス幅Twは直流電圧Vdを一定にするように決定する。なお、ディレイ時間Tdを入力電流Isで求める関数は、予め実験やシミュレーションで求めた。
【0024】
図3に、横軸にパルス幅Twにした場合の、効率や力率や直流電圧Vdの電源電圧Vs依存性を示す。図3に示すように、電源電圧Vdの変動に伴って効率や力率や直流電圧が変動するが、これらのグラフの概形は変わらない。言い換えると、電源電圧に応じて効率と力率とは図3に示すパルス幅TwがA,B,Cの各値で極大値のピークを持つ2次関数状に変化する。また、直流電圧Vdは、単調増加関数的に変化する。また、図3のパルス幅TwがA,B,Cの各値で、直流電圧Vdが等しいことがわかる。つまり、電源電圧Vsが変化しても直流電圧
Vdが一定になるようにパルス幅Twを制御すれば、力率を最大値に制御できる。
【0025】
この第3の方法では、図2の区間Aと、区間Bとで、ディレイ時間Tdを入力電流Isもしくは入力電力に対応した値として予め設定しておき、直流電圧Vdを一定に制御するようにパルス幅Twを決定して、電源変動に対応した力率改善制御をする。
【0026】
なお、図3に示したように、前記条件が成り立つ範囲は電源変動は定格電圧の±5%程度である。そこで、いくつかの異なる電源電圧Vsで、ディレイ時間
Tdの設定値(関数)をそれぞれ記憶(格納)し、電源電圧Vsの大きさによりディレイ時間Tdの設定値(関数)を変更して、広い範囲の電源電圧変動に対応できる。
【0027】
ここで、電源電圧Vsの変動は直接電源電圧Vsを検出する回路を別に設けても良いが、本実施例では力率改善動作停止時すなわち短絡動作の停止時の直流電圧Vdと電源電圧Vsとの関係を予め測定し、この測定結果を格納したテーブルあるいは測定結果から導き出した直流電圧Vdと電源電圧Vsとの関係式を用いて推定する。
【0028】
ディレイ時間Tdとパルス幅Twとを決定する第4の方法として、パルス幅
Twに制限を設けて、電源電圧Vsの変動に対応する。この第4の方法は図3の横軸に示した最大パルス幅52や最小パルス幅53に示す通り、基準となる電源電圧Vsに対するディレイ時間Tdの設定値(関数)を使用し、例えば電源変動±5%程度までは前記第3の方法でパルス幅Twを決定するが、それ以上の電源変動が生じたときはパルス幅Twを制限値、例えば最大パルス幅52や、最小パルス幅53に固定する。これによって、最大力率で運転できる電源電圧Vsの範囲は狭くなっても、多数のディレイ時間設定値(関数)が必要なく、電源電圧
Vsの大きさを把握する必要もないので制御構成が簡素化でき、力率もあまり低下しない。ここで、パルス幅Twが制限値(最大値もしくは最小値)になっている場合は、直流電圧Vdが必ずしも一定値となっているわけではないが、パルス幅Twの制限値を、使用するシステムが許容できる最小の力率値もしくは直流電圧の値から決定すればよい。
【0029】
次に図2の区間Cの制御方法を説明する。図2の区間Cでは、先に述べたディレイ時間Tdとパルス幅Twの和が一定になるという条件が成立しないが、ディレイ時間Tdを固定値にして、パルス幅Twを変更して直流電圧Vdを一定に保つことができる。つまり、ディレイ時間Tdを固定し、直流電圧Vdを一定に保つようにパルス幅Twを制御すれば、力率を最大値にした動作ができる。この場合にも、電源電圧Vsの大きさに対応した数種類のディレイ時間Td(固定値)を制御回路7に記憶し、電源電圧Vsの大きさに基づいてその固定値を変更すれば、電源電圧Vsの変動にも対応ができる。
【0030】
以上の実施例で説明したように、電源電圧Vsの半周期に一回もしくは複数回、電源を短絡する力率改善回路を備えた本発明の電源装置は、力率を最大値に保ちながら直流電圧Vdを一定に制御できる。
【0031】
【発明の効果】
本発明によれば、電源電圧変動が生じても電源装置の力率を最大値に保ちながら直流電圧Vdを一定に制御できる。
【図面の簡単な説明】
【図1】実施例の電力変換装置を用いたモータ制御装置の説明図。
【図2】実施例の電力変換装置の効率,力率,直流電圧の入力電流依存性の説明図。
【図3】実施例の電力変換装置で電源電圧が変動した場合の効率,力率,直流電圧の変化とパルス幅との関係の説明図。
【符号の説明】
1…交流電源、2…リアクトル、3…短絡手段、4…整流回路、5…整流回路切替手段、6…平滑コンデンサ、7…制御回路、8…ゼロクロス検出回路、10…インバータ回路、20…圧縮機、30…入力電流検出回路、100…電力変換装置、Tw…パルス幅、Td…ディレイ時間。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power converter that converts AC power into DC power, and more particularly to a power converter that performs a short-circuit operation once or a plurality of times in a half cycle of an AC power supply to improve the power factor of the power supply.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 10-201248 discloses a power converter that improves the power factor by performing one or more short-circuit operations in a half cycle of an AC power supply. JP-A-10-
2012248 discloses a short circuit start time (delay time) and a short period (pulse) of a short circuit based on an internal state such as a duty ratio or an output frequency of a pulse width modulation signal (PWM signal) of an inverter circuit connected to a power supply device. Width) and controlling the power factor to an optimum point in accordance with the state of the load.
[0003]
Japanese Patent Application Laid-Open No. 10-201248 discloses that a power factor is improved by calculating a delay time and a pulse width according to a load condition from a function set in advance, for example, a function of the delay time and the pulse width with respect to the PWM duty of the inverter. are doing. For this reason, under the set conditions, an optimum power factor can be ensured and stable motor control can be performed.
[0004]
[Problems to be solved by the invention]
The power supply device is a device that is connected to an AC power supply and converts the power of the AC power supply into DC power. It is known that the voltage of a commercial power supply used as an AC power supply generally fluctuates. Japanese Patent Application Laid-Open No. Hei 10-201248 does not describe a measure against voltage fluctuations of an AC power supply, and does not disclose a method for preventing a reduction in power factor due to power supply fluctuations.
[0005]
Further, in the above-described prior art, the delay time and the pulse width are determined by using a function of the delay time and the pulse width with respect to the load state amount in consideration of the motor control by the inverter, and the control of the DC voltage is not described. .
[0006]
An object of the present invention is to provide a power factor improving type power conversion device corresponding to a voltage fluctuation of an AC power supply. Another object of the present invention is to determine a delay time and a pulse width by a simple calculation, and Is to provide a power conversion device that controls the power conversion.
[0007]
[Means for Solving the Problems]
The power conversion device according to the present invention includes a reactor having one end connected to an AC power supply, a short-circuit means having one end connected to the other end of the reactor, and one end on the AC input side connected to the other end of the reactor. A rectifier circuit having a multi-terminal connected to the other end of the short-circuit means, a zero-cross detection circuit for detecting a zero cross of the AC power supply, one end being connected to the other end of the AC power supply, and the other end being the other end of the short-circuit means An input current detection circuit connected to the rectifier circuit, a smoothing capacitor connected to both ends of the DC output of the rectifier circuit, and a control circuit for controlling the short-circuit means, the control circuit performs a short-circuit operation from a zero-cross point of the AC power supply. The short-circuit operation of the short-circuit means is controlled based on a delay time Td which is a period until the start, and a pulse width Tw which is a short-circuit period, and the delay time Td and the pulse width Tw are calculated. To control respectively.
[0008]
The power converter of the present invention controls the delay time Td and the pulse width Tw as follows.
(1) The delay time is calculated from a function for the preset input current or input power, and the pulse width Tw is varied so that the DC voltage becomes a preset predetermined value.
(2) The delay time Td is set to a predetermined value (fixed value) set in advance, and the pulse width Tw is varied so that the DC voltage becomes a predetermined value set in advance.
(3) The delay time Td and the pulse width Tw are given as functions to the input current or the input power, respectively, and the pulse width Tw and the delay time Td are set from the input current or the input power detected using the functions.
(4) Determining the delay time Td The function shown in (1) or the predetermined value (fixed value) shown in (2) or the function of the delay time Td and the pulse width Tw shown in (3) is used as an AC power supply. Are provided corresponding to the voltage of the AC power supply, and are selected according to the voltage of the AC power supply.
(5) The voltage of the AC power supply is estimated from the DC voltage before the short-circuiting means short-circuits or the DC voltage when the short-circuiting operation is temporarily stopped, and corresponds to the fluctuation of the power supply voltage.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 is a basic configuration diagram of a motor control device using the power converter of the present embodiment. As shown in FIG. 1, a
[0011]
FIG. 1 also shows a
[0012]
The zero-crossing detection circuit 8 inputs the voltage at both ends of the
[0013]
The control circuit 7 uses the rising or falling edge of the input zero-
[0014]
The short-circuit means 3 performs a short-circuit opening / closing operation according to the short-
[0015]
The rectifier circuit switching means 5 is constituted by a bidirectional switch formed by a combination of a power relay, a triac, a diode bridge and a power semiconductor switching element (IGBT, bipolar transistor, MOSFET), and the like, and a rectifier circuit switching signal 97 ( The rectifier circuit 4 is switched in accordance with the High and Low signals. In this embodiment, the rectifier circuit 4 is switched to a full-wave rectifier circuit when the rectifier
[0016]
The control circuit 7 receives a zero-
[0017]
The
[0018]
The relationship among the delay time Td, the pulse width Tw, the efficiency, the power factor, and the DC voltage Vd with respect to the input current Is of the
[0019]
FIG. 2 shows experimental results of the full-wave rectifier circuit and the voltage doubler rectifier circuit. 2 shows an input current range operated by the full-wave rectifier circuit, and sections B and C are input current ranges operated by the voltage doubler rectifier circuit. In section C, the load is heavier than in section B. When the power supply device is started (when the input current is near zero), the full-wave rectifier circuit operates in the section A, and shifts to the voltage doubler rectifier circuit operation in the section B with an increase in the input current Is. When the input current Is decreases, the operation shifts from the voltage doubler rectifier circuit operation in the section B to the full-wave rectifier circuit operation in the section A. However, there is a portion where the input current values in the section A and the section B overlap and the hysteresis is reduced. You can move smoothly because you have.
[0020]
In the case of the input current Is in the section A and the section B, as shown in FIG. 2C, the delay time Td monotonously decreases with respect to the input current Is, and the pulse width Tw monotonically increases. The sum with the width Tw has a constant value. That is, the delay time Td and the pulse width Tw are associated with each other, so that if one of them is determined, the other can be determined. In other words, if the detected input current Is is the section A or the section B, the delay time Td and the pulse width Tw can be determined. Further, as shown in FIG. 2B, the DC voltage Vd is substantially constant with respect to the input current Is.
[0021]
As a first method for determining the delay time Td and the pulse width Tw, the pulse width Tw is controlled so that the DC voltage Vd is constant, and the sum of the delay time Td and the pulse width Tw is constant. I do. This method is the same as controlling the time when the short circuit is started by the short circuit means so that the DC voltage is constant, and the time when the short circuit operation ends is constant. Thereby, in the sections A and B shown in FIG. 2, the DC voltage Vd is controlled to be constant, and at the same time, the operation can be performed with the maximum power factor. It is to be noted that whether or not the current time falls within the sections A and B is determined using the
[0022]
As a second method for determining the delay time Td and the pulse width Tw, the input current detection is performed without associating the delay time Td and the pulse width Tw with each other in accordance with the input
[0023]
Next, a third method for determining the delay time Td and the pulse width Tw corresponding to the fluctuation of the power supply voltage Vs of the
[0024]
FIG. 3 shows the power supply voltage Vs dependence of the efficiency, power factor, and DC voltage Vd when the pulse width Tw is set on the horizontal axis. As shown in FIG. 3, the efficiency, the power factor, and the DC voltage fluctuate with the fluctuation of the power supply voltage Vd, but the outline of these graphs does not change. In other words, the efficiency and the power factor change in the form of a quadratic function in which the pulse width Tw shown in FIG. 3 has a maximum value peak at each of the values A, B, and C according to the power supply voltage. Further, the DC voltage Vd changes in a monotonically increasing function. Also, it can be seen that the DC voltage Vd is equal when the pulse width Tw in FIG. 3 is A, B, and C. That is, if the pulse width Tw is controlled so that the DC voltage Vd becomes constant even when the power supply voltage Vs changes, the power factor can be controlled to the maximum value.
[0025]
In the third method, the delay time Td is previously set as a value corresponding to the input current Is or the input power in the section A and the section B in FIG. 2 so that the DC voltage Vd is controlled to be constant. The pulse width Tw is determined, and the power factor improvement control corresponding to the power supply fluctuation is performed.
[0026]
As shown in FIG. 3, in the range where the above condition is satisfied, the power supply fluctuation is about ± 5% of the rated voltage. Therefore, the set value (function) of the delay time Td is stored (stored) for each of several different power supply voltages Vs, and the set value (function) of the delay time Td is changed according to the magnitude of the power supply voltage Vs. It can respond to power supply voltage fluctuations in the range.
[0027]
Here, the fluctuation of the power supply voltage Vs may be provided separately with a circuit for directly detecting the power supply voltage Vs. However, in this embodiment, the DC voltage Vd and the power supply voltage Vs at the time of stopping the power factor improvement operation, that is, at the time of stopping the short-circuit operation. Is measured in advance, and is estimated using a table storing the measurement results or a relational expression between the DC voltage Vd and the power supply voltage Vs derived from the measurement results.
[0028]
As a fourth method for determining the delay time Td and the pulse width Tw, the pulse width Tw is limited to cope with the fluctuation of the power supply voltage Vs. In the fourth method, as shown by the maximum pulse width 52 and the minimum pulse width 53 shown on the horizontal axis in FIG. 3, a set value (function) of the delay time Td with respect to the reference power supply voltage Vs is used. The pulse width Tw is determined by the third method up to about ± 5%, but when the power supply fluctuations exceed that, the pulse width Tw is fixed to a limit value, for example, a maximum pulse width 52 or a minimum pulse width 53. I do. As a result, even if the range of the power supply voltage Vs that can be operated at the maximum power factor is narrowed, a large number of delay time set values (functions) are not required, and it is not necessary to know the magnitude of the power supply voltage Vs, so that the control configuration is simplified. And the power factor does not decrease much. Here, when the pulse width Tw is a limit value (maximum value or minimum value), the DC voltage Vd is not always a constant value, but a system using the limit value of the pulse width Tw is used. May be determined from the minimum allowable power factor value or DC voltage value.
[0029]
Next, a control method for the section C in FIG. 2 will be described. In the section C of FIG. 2, the above-mentioned condition that the sum of the delay time Td and the pulse width Tw is not constant is not satisfied. However, the DC voltage Vd is changed by setting the delay time Td to a fixed value and changing the pulse width Tw. Can be kept constant. That is, if the delay time Td is fixed and the pulse width Tw is controlled so as to keep the DC voltage Vd constant, the operation can be performed with the power factor at the maximum value. In this case as well, several kinds of delay times Td (fixed values) corresponding to the magnitude of the power supply voltage Vs are stored in the control circuit 7, and if the fixed values are changed based on the magnitude of the power supply voltage Vs, the power supply voltage can be changed. It can also respond to fluctuations in Vs.
[0030]
As described in the above embodiment, the power supply device of the present invention including the power factor improvement circuit that short-circuits the power supply once or more than once in a half cycle of the power supply voltage Vs has a direct current while maintaining the power factor at the maximum value. The voltage Vd can be controlled to be constant.
[0031]
【The invention's effect】
According to the present invention, the DC voltage Vd can be controlled to be constant while the power factor of the power supply device is kept at the maximum value even when the power supply voltage varies.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a motor control device using a power converter according to an embodiment.
FIG. 2 is an explanatory diagram of the input current dependence of the efficiency, power factor, and DC voltage of the power converter of the embodiment.
FIG. 3 is an explanatory diagram of a relationship between a change in efficiency, a power factor, a DC voltage and a pulse width when a power supply voltage fluctuates in the power converter according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF
Claims (13)
前記制御回路が前記交流電源のゼロクロス点から短絡動作を開始するまでの期間であるディレイ時間Tdと、短絡期間であるパルス幅Twとに基づいて、前記短絡手段の短絡動作を制御し、前記ディレイ時間Tdと前記パルス幅Twを、それぞれ独立に制御することを特徴とする電力変換装置。A reactor having one end connected to the AC power supply, short-circuit means having one end connected to the other end of the reactor, one end on the AC input side being connected to the other end of the reactor, and a multi-end on the AC input side being connected to the other end of the short-circuit means. A rectifier circuit connected to an end, a zero-crossing detection circuit that detects a zero-crossing of the AC power supply, and a power conversion device including a control circuit that controls the short-circuiting means.
The control circuit controls the short-circuit operation of the short-circuit means based on a delay time Td, which is a period from the zero-cross point of the AC power supply to the start of the short-circuit operation, and a pulse width Tw, which is a short-circuit period. A power converter, wherein a time Td and the pulse width Tw are controlled independently.
前記制御回路が前記交流電源のゼロクロス点から短絡動作を開始するまでの期間であるディレイ時間Tdと、短絡期間であるパルス幅Twとに基づいて、前記短絡手段の短絡動作を制御し、前記ディレイ時間Tdと前記パルス幅Twとを相互に関連付けて制御することを特徴とする電力変換装置。A reactor having one end connected to the AC power supply, short-circuit means having one end connected to the other end of the reactor, one end on the AC input side being connected to the other end of the reactor, and a multi-end on the AC input side being connected to the other end of the short-circuit means. A rectifier circuit connected to an end, a zero-crossing detection circuit that detects a zero-crossing of the AC power supply, and a power conversion device including a control circuit that controls the short-circuiting means.
The control circuit controls the short-circuit operation of the short-circuit means based on a delay time Td, which is a period from the zero-cross point of the AC power supply to the start of the short-circuit operation, and a pulse width Tw, which is a short-circuit period. A power converter, wherein a time Td and the pulse width Tw are controlled in association with each other.
Tdと前記パルス幅Twの和を一定値に制御することを特徴とする電力変換装置。10. The power converter according to claim 9, wherein the control circuit controls the sum of the delay time Td and the pulse width Tw to a constant value.
前記短絡手段は前記交流電源のゼロクロス点から短絡動作を開始するまでの時点とゼロクロス点から短絡動作を終了する時点に応じて、短絡動作し、
前記制御回路が、前記短絡を終了する時点を一定として、前記直流電圧が一定となるように、前記短絡動作を開始する時点を制御することを特徴とする電力変換装置。A reactor having one end connected to the AC power supply, short-circuit means having one end connected to the other end of the reactor, one end on the AC input side being connected to the other end of the reactor, and a multi-end on the AC input side being connected to the other end of the short-circuit means. A rectifier circuit connected to an end, a zero-crossing detection circuit that detects a zero-crossing of the AC power supply, and a power conversion device including a control circuit that controls the short-circuiting means.
The short-circuit means performs a short-circuit operation in accordance with a time from the zero-cross point of the AC power supply to the start of the short-circuit operation and a time point at which the short-circuit operation ends from the zero-cross point,
The power conversion device, wherein the control circuit controls a time point at which the short-circuit operation is started such that the time point at which the short-circuit ends is fixed and the DC voltage is constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002224325A JP3848903B2 (en) | 2002-08-01 | 2002-08-01 | Power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002224325A JP3848903B2 (en) | 2002-08-01 | 2002-08-01 | Power converter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006092742A Division JP4248560B2 (en) | 2006-03-30 | 2006-03-30 | Power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004072806A true JP2004072806A (en) | 2004-03-04 |
JP3848903B2 JP3848903B2 (en) | 2006-11-22 |
Family
ID=32012313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002224325A Expired - Lifetime JP3848903B2 (en) | 2002-08-01 | 2002-08-01 | Power converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3848903B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006304586A (en) * | 2005-03-25 | 2006-11-02 | Mitsubishi Electric Corp | Dc power supply device |
JP2007028781A (en) * | 2005-07-15 | 2007-02-01 | Matsushita Electric Ind Co Ltd | Dc power supply of air conditioner |
JP2007215385A (en) * | 2006-02-13 | 2007-08-23 | Mitsubishi Electric Corp | Dc power supply |
JP2008253089A (en) * | 2007-03-30 | 2008-10-16 | Daikin Ind Ltd | Power supply circuit of freezer and method of controlling power supply circuit of freezer |
JP2009176263A (en) * | 2007-12-26 | 2009-08-06 | Nippon Makisen Kogyo Kk | Power supply unit and timing control circuit in power supply unit |
EP2133986A1 (en) * | 2007-03-30 | 2009-12-16 | Daikin Industries, Ltd. | Power supply device |
JP2010068683A (en) * | 2008-09-12 | 2010-03-25 | Panasonic Corp | Power supply unit and air conditioner |
WO2010035428A1 (en) | 2008-09-29 | 2010-04-01 | パナソニック株式会社 | Drum type washing machine |
EP2369049A1 (en) | 2010-03-24 | 2011-09-28 | Panasonic Corporation | Drum washing machine |
CN102577067A (en) * | 2009-10-23 | 2012-07-11 | 松下电器产业株式会社 | DC power supply device, and motor driving inverter apparatus using same |
JPWO2017130357A1 (en) * | 2016-01-28 | 2018-04-19 | 三菱電機株式会社 | Power converter |
WO2018150521A1 (en) | 2017-02-16 | 2018-08-23 | 三菱電機株式会社 | Air conditioner |
-
2002
- 2002-08-01 JP JP2002224325A patent/JP3848903B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006304586A (en) * | 2005-03-25 | 2006-11-02 | Mitsubishi Electric Corp | Dc power supply device |
JP2007028781A (en) * | 2005-07-15 | 2007-02-01 | Matsushita Electric Ind Co Ltd | Dc power supply of air conditioner |
EP1750362A2 (en) | 2005-07-15 | 2007-02-07 | Matsushita Electric Industrial Co., Ltd. | Dc power supply device for an air conditioner |
JP2007215385A (en) * | 2006-02-13 | 2007-08-23 | Mitsubishi Electric Corp | Dc power supply |
EP2133986A4 (en) * | 2007-03-30 | 2017-03-29 | Daikin Industries, Ltd. | Power supply device |
JP2008253089A (en) * | 2007-03-30 | 2008-10-16 | Daikin Ind Ltd | Power supply circuit of freezer and method of controlling power supply circuit of freezer |
EP2133986A1 (en) * | 2007-03-30 | 2009-12-16 | Daikin Industries, Ltd. | Power supply device |
JP2009176263A (en) * | 2007-12-26 | 2009-08-06 | Nippon Makisen Kogyo Kk | Power supply unit and timing control circuit in power supply unit |
JP4723606B2 (en) * | 2007-12-26 | 2011-07-13 | 日本▲まき▼線工業株式会社 | Power supply device and timing control circuit in power supply device |
JP2010068683A (en) * | 2008-09-12 | 2010-03-25 | Panasonic Corp | Power supply unit and air conditioner |
WO2010035428A1 (en) | 2008-09-29 | 2010-04-01 | パナソニック株式会社 | Drum type washing machine |
CN102577067A (en) * | 2009-10-23 | 2012-07-11 | 松下电器产业株式会社 | DC power supply device, and motor driving inverter apparatus using same |
JP2011205723A (en) * | 2010-03-24 | 2011-10-13 | Panasonic Corp | Drum washing machine |
EP2369049A1 (en) | 2010-03-24 | 2011-09-28 | Panasonic Corporation | Drum washing machine |
JPWO2017130357A1 (en) * | 2016-01-28 | 2018-04-19 | 三菱電機株式会社 | Power converter |
CN108604867A (en) * | 2016-01-28 | 2018-09-28 | 三菱电机株式会社 | Power-converting device |
CN108604867B (en) * | 2016-01-28 | 2020-07-03 | 三菱电机株式会社 | Power conversion device |
WO2018150521A1 (en) | 2017-02-16 | 2018-08-23 | 三菱電機株式会社 | Air conditioner |
US11009254B2 (en) | 2017-02-16 | 2021-05-18 | Mitsubishi Electric Corporation | Air conditioner having relay coil abnormality voltage control |
Also Published As
Publication number | Publication date |
---|---|
JP3848903B2 (en) | 2006-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004070928A1 (en) | Digital power supply controller for power factor correction | |
WO2008026643A1 (en) | Motor control device | |
JP2002186172A (en) | Inverter power generator and control method in overloaded condition | |
WO1997034446A1 (en) | High-frequency inverter and induction cooking device using the same | |
CN111371327B (en) | Resonant converter and control method thereof | |
JP2000278955A (en) | Power unit and air conditioner using the same | |
JPH11187662A (en) | Dc-to-dc converter | |
JP3848903B2 (en) | Power converter | |
CN110870198B (en) | Drive device, control method, and storage medium | |
JP3934982B2 (en) | Power supply | |
JP2008193815A (en) | Power supply system | |
JP4706349B2 (en) | DC power supply device and compressor drive device | |
JPH11206130A (en) | Power unit | |
JP3742929B2 (en) | Power supply | |
JP7490089B2 (en) | Air conditioners | |
JPH10201248A (en) | Power supply device | |
JP3598936B2 (en) | Inverter generator | |
JP3675336B2 (en) | Power supply circuit and electric device | |
JP2020167747A (en) | Power supply device, driving device, control method, and program | |
JP4248560B2 (en) | Power converter | |
KR102043216B1 (en) | Power transforming apparatus, Method for controlling the same and Air conditioner including the power transforming apparatus | |
JP2000032751A (en) | Converter | |
JP3525910B2 (en) | Inverter generator and parallel operation method of inverter generator and external AC power supply | |
KR101946369B1 (en) | Power transforming apparatus and air conditioner including the same | |
JP2022143053A (en) | Power conversion device and washing machine including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060509 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060512 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3848903 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |